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Synthetic U(1) gauge invariance in a spin-1 Bose gas
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Recent experimental realizations of the U(1) gauge invariance [Nature (London) 587, 392 (2020); Science 367,
1128 (2020)] open a door for quantum simulation of elementary particles and their interactions using ultracold
atoms. Stimulated by such exciting progress, we propose a platform—a spin-1 Bose-Einstein condensate—to
simulate the deconfined lattice Schwinger model. Unlike previous platforms, it is shown that the atomic inter-
actions in the spin-1 condensate naturally lead to a matter-field interaction term which respects the U(1) gauge
symmetry. As a result, a new Zj-ordered phase with threefold ground-state degeneracy emerges in the phase
diagram. The Z; phase connects to the disordered phase by a three-state Potts criticality, which is in contrast to
the conventional Coleman’s transition with Ising criticality. Furthermore, the ordered state is constructed by a set
of weak quantum scars, which is responsible for the anomalously slow dynamics as it is quenched to a special
point in the phase diagram. Our proposal provides a platform for extracting emergent physics in synthetic gauge

systems with matter-field interactions.

DOI: 10.1103/PhysRevResearch.4.1.042018

I. INTRODUCTION

Gauge invariance, which refers to the coordinated dy-
namics of matter and gauge fields being restricted by local
symmetries at each spacetime location [1], has fundamentally
shaped our understanding of interacting elementary parti-
cles in quantum electrodynamics (QED) [2] and quantum
chromodynamics [3—-5]. While a number of breakthroughs in
synthesizing gauge fields in cold atoms have been made over
the last decade [6], including the experimental realization of
artificial electric [7] and magnetic fields [8], spin-orbit cou-
pling [9-11], and the density-dependent gauge field [12,13],
none of them is essentially endowed with local symme-
try. Very recently, this situation has been changed by two
cold-atom groups [14,15] who experimentally realized the
deconfined lattice Schwinger model (LSM) with topologi-
cal angle being equal to w [16]. As a result, counterparts
of physical phenomena in the traditional LSM, such as the
Coleman’s phase transition [16], string inversion, and meson
formation [17,18], are expected to be observed. It has been
also shown recently that a Rydberg chain with nearest-site
Rydberg blockade [19] can also be mapped to a deconfined
LSM [20] with U(1) gauge invariance.

Motivated by the recent experimental progress, we propose
a platform to simulate the deconfined LSM by loading spin-1
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bosonic atoms (with three spin modes 50:&1_0}) in an optical
lattice. Our basic idea can be summarized as follows [see
Fig. 1(a)]: at each site, the matter field is realized by Bil
modes, whereas the gauge field is realized by the mode by;
the matter-gauge interaction arises from the spin-exchange
interaction between 130 and Bil; an additional Raman pro-
cess is employed connecting independent sites into a chain.
Remarkably, our effective Hamiltonian carries a four-fermion
(matter-field) interaction term that has no counterpart in the
conventional LSM [14-18]. This term gives rise to several
new physics in both ground-state and quench dynamics. In the
equilibrium phase diagram, this term leads to a Zj3-ordered
phase which connects to the disordered phase D and the
Z,-ordered phase by a second-order Potts criticality and a
first-order transition, respectively. This is in sharp contrast to
the conventional LSM without matter-field interaction, where
only an Ising-type transition D-Z, can be observed. This
D-Z, transition is also known as the Coleman’s transition in
some literature [21,22]. Additionally, we find that the Potts
criticality is intimately related to the anomalous quench dy-
namics, and the quantum scars associated with the Z3 state
thus is of help in tracing the origin of Zj-related quantum
scars.

Although models with four-fermion interactions (V1)
are fundamental in quantum field theory [23,24], such as
the Gross-Neveu model [25] and the Thirring model [26],
there have been few studies on the synthetic gauge fields in
these models. Since our effective model naturally contains
a matter-field (fermion) interaction, our proposal thus paves
the way for the study of strongly correlated Dirac fermion
with gauge invariance. We note that the experimental setup
in Ref. [14] cannot support a strong matter-field interaction,
since there, the matter-field interaction corresponds to the
next-neighboring-site interaction, which is generally much
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weaker than the on-site and nearest-neighboring interactions.
On the other hand, the lattice sites in experiment Ref. [15]
have not been linked to form a chain; thus no matter-field in-
teraction exists. Furthermore, their setup involves two species
of spin-1/2 atoms, whose interaction are more difficult to
control than the single-species spin-1 system [27,28] proposed
in our scheme.

II. MODEL

The U(1) LSM is represented by the following Hamilto-
nian [14,15,17,18,20]:

Hism = —t Z(I/Af;_lﬁj—l,ﬂﬁj +H.c.)
J

+my (=1 + Z
J

e O

where 1/, is the fermionic matter field at site j, U;_y;
and £ j—1,; account for the gauge degree of freedom living
on the link (j — 1, j), respectively denoting the transporter
and the electric field, and satisfying the su(2) algebra
[Ejflyj, kal,k] = 81"]{0/(,1,/(. The first term of ﬁLSM indicates
the matter-gauge interaction, the second term denotes the stag-
gered mass in odd and even sites, and the last term accounts
for the electric energy. In experiments [14,15], the gauge fields

were realized by spin-1,/2 Pauli spins, i.e., UJ L,j= Uf -and

E; -1, = 0] 1.;/2, and the resulting model is also called the
quantum link model [29]. In this case the electric energy is just
a constant since E 2 1,; = 1/4, which can be neglected. The
realized quantum hnk model corresponds to the deconfined
LSM in the continuous limit with topological angle fixed to
7 [20,21].

We simulate the deconfined LSM model by loading a
spin-1 Bose gas deeply in a one-dimensional optical lattice
along the x direction, as is schematically shown in Fig. 1(a).
Under the tight-binding approximation, the lowest-band Wan-
nier mode of the site j is denoted by 13]-,0 with bare spin
o ={1,0, —1}. We introduce a biased magnetic field and a
gradient potential, where the former splits the Zeeman levels
with the linear and quadratic splittings respectively denoted
by p and g, and the latter provides a spin-independent tilt with
strength A [30,31]. To connect different sites into a chain
we adopt the well-established technique of Raman-assisted
hopping [32], as is shown in Fig. 1(a). The A-type Raman
transition can be realized by the combined effects of the lattice
beam (along x direction with frequency w;) and an additional
traveling wave (along z direction with frequency w;). Now
we write out the total Hamiltonian in the laboratory frame as
(setting i = 1)

H = Hy + Hi, )
with Hj the single-particle Hamiltonian given by
Hy=) [pFi+4q
J

+ )»o(e_isw’l;;,lgﬂl,ﬂ + H.C.)], 3)

8) + jAn;

(b) gauge field matter field building block
| | ¢
< o——» e <
> X
ji—1 J j+1

FIG. 1. (a) Schematic of our model in the laboratory frame. p and
g respectively denote the linear and quadratic Zeeman splittings, and
A is a gradient potential. w; and w, are the frequencies of the lattice
beam along x direction and the traveling wave along z direction. The
two beams resonantly couple the modes b i1 and b j+1,—1, forming a
A-type Raman process. (b) Upper panel: diagram of the U(1) lattice
gauge model, where the gauge and the matter fields correspond
to the bare mode b ;.0 and the dressed mode a;_ in subfigure (a),
respectively. Lower panel: QED analog composed by electrons and
positrons (matter fields), and electric fields (gauge fields). A building
block surrounded by the dashed line consists of two neighboring
gauge fields and one matter field in the middle.

and Hiy the interaction Hamiltonian [33,34] given by

Hiy = Zn A — Jj
Here, F =3 bjUSM bj s are the local spin operators

with S”—X P the generahzed spin-1 Pauli matrices, and 71; =
>, fij s is the local number operator with 71 , = bj Ubj,(,, and

% & "
D+ (B -2my). @

J

o j="hj1+7;_1. Uy and U, in H;, indicate the strengths
of the spin-independent and the spin-dependent interaction,
respectively. The last term in Hy characterizes the Raman cou-
pling, with dw = w, — w; the frequency difference between
the two Raman beams and A the strength of Raman coupling.
We obtain the time-independent Hamiltonian in the rotat-
ing frame, i.e., Hy — U(t)HyU"(t) — iU (t)3,U" (t), where

Swt A\ A
U(t)_l_[eXp |:l(]At)l’lj+l( ) +7>F;} (5)

is a unitary transformation to eliminate both the phase factor
¢ in the hopping term and the gradient term [32,35,36]. In
such a frame, we have

Hy =Y [PFi +q8;+r() bjr1 1 +He)].  (6)

J
with p' = p— A/2 — Sw/2. We will focus on the case un-
der Raman resonance, i.e., p’ =0. The resonant Raman
coupling introduces two dressed modes, denoted by a;+ =

(b i1 £ lA)‘,-H_,_l)/\/E with an energy gap 2X, between them
[see Fig. 1(a)]. In the regime Ay =~ g > U, only the lower-
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energy modes a; _ are relevant, since two adjacent ones are
resonant to the mode b ;0 during the spin-exchange pro-
cess NUQ&j_],_l;;Ol;;O&j,_ (included in the U, term of Hiy),
whereas the higher-energy modes a; ;. are off-resonance and
can thus be ignored.

Now we formally construct the U(1) lattice gauge model.
We define the spin-0 mode b; as the gauge field, schemat-
ically denoted by the ovals in Fig. 1(b), and define the
lower-lying dressed mode a;_ as the matter field, indicated
by circles in Fig. 1(b). By restricting that there are at most
two particles on a gauge mode and at most one particle on a
matter mode, the effective Hamiltonian in terms of matter and
gauge fields can be obtained as

A

L P N T
Heip = 5 ;(ajflﬁbj,()bj,oajv* +He)

+mZN,-+gZNj_1N-, 7
J J

withm =g — Ay — Up/2 and U = (Uy — U,)/2. We have de-
fined the number operator of the matter field as N = &;’_& =
The occupation restriction can be satisfied by a proper prepa-
ration of the initial state [37]. Heg carries a global translational
symmetry and a local U(1) gauge symmetry generated by the
local Gauss operator,

G, =N, + ﬁj+1,02+ fijo

which is defined on a building block consisting of two neigh-
boring gauge fields and one matter field in the middle, as
illustrated in Fig. 1(b). Here we emphasize that the U(1) gauge
invariance is valid in the parameter regime Ag =~ g > U, out
of which the conservation of G will be broken. This point will
be further verified in Append1x A, where a fully numerical
calculation is carried out in the context of quench dynamics
(see Sec. IV) using the original Hamiltonian Egs. (4) and (6)
with all the modes present. There the effects of Ay >~ g > Uy
on G ; will be clearly demonstrated.

To characterize the relation between our effective Hamil-
tonian H.; and the LSM Hism [Eq. (1)], we perform the
Jordan-Wigner transformation on the matter fields a;_ to
map them into fermions. We additionally map gauge fields
to spin-1/2 Pauli spins using the relations

-1 ®)

1 . o A
6 o —=bl bl 67 < —=bjobjo. 65 < fjo—1. (9)

V2 7,075,007 V2 J
A subsequent particle-hole transformation on the odd-site
matter fields v jeodd — 1//;6 oad and gauge flipping on the odd

AZ
sites 6 —6coad reform the effec-

jGOdd jeodd’ jEOdd
tive Hamiltonian H.¢ into

U, av
H; = —E E (gb.;f_laflﬁj + H.c.)
U
+ <E

)Z( /9] w,——Zw,’ .

(10)

Following the same manner, Gauss’s law in terms of the
fermions and the gauge spins is given by

=1, - Ly di-y—nan
A 2 2 ’

which is conserved, i.e., [Gj, Hi] = 0. By comparing H; with
Hism [Eq. (1)] one can observe that, in the case of U =0,
H; reproduces the conventional LSM with parameter relations
Us /N2 < tand U /2 +m < m.

The Hamiltonian H; provides the following QED interpre-
tation of the effective Hamiltonian H.g. The occupation of
even and odd matter sites respectively represent the electrons
and the positrons [see F1g 1(b)], and the spin-exchange in-
teraction (~Ura;_1, _b b Oaj _) describes the process that
a pair of electron and p051tr0n annihilate each other, gener-
ating the photons (gauge bosons). For the current case with
gauge fields being spin-1/2 Pauli spins, the photon gener-
ation is reflected by the direction inversion of the electric
field. Within a building block, the local Gauss operator G g
ensures the total flux of the electric field being equal to the
number of charged particles, representing the manifestation of
Gauss’s law. For finite U, H; additionally possesses a nearest-
site matter-matter interaction ~U Iﬁ)_ll/; j,ﬂﬁ; ¥/, which has
no counterpart in the conventional LSM. This term comes
from the intrinsic interactions of the spin-1 BEC [Eq. (4)]
and will lead to a rich phase diagram as will be shown
below.

III. PHASE DIAGRAM

We discuss the equilibrium phases at 1/3 filling, i.e., a total
of L particles for a chain with L lattice sites, and focus on the
gauge sector with no background charges, i.e., {G;} = 0 [16],
with G; being the quantum number of G ;. In this case, four
occupation configurations, |0;0), |290), |092), and |1¢1), are
allowed in a building block, as displayed in Fig. 2(a), where
|nj.0n,1j+1,0) denotes the Fock basis. Since the state [1o1) is
a dark state uncoupled to the other three states through the
U, interaction, we restrict our discussion within the subspace
spanned by the remaining three states.

We plot the ground-state phase diagram in the m-U, plane
in Fig. 2(b) obtained via numerically diagonalizing Heq with
L = 18. A disordered phase D and two ordered phases Z,
and Zs are identified. Three phases exhibit different ground-
state degeneracy: the disordered phase D is nondegenerate,
whereas the ordered phases Z, and Zj3 possess two- and
threefold degeneracy, respectively. In Figs. 2(d1)-2(d3), we
show particle number distributions of the three phases and
their QED analog at U, = 0. Clearly, the phase D exhibits a
configuration with all the matter fields being occupied whose
wave function |D) =|---0;0,0; ---) preserves the transla-
tional symmetry of Heg. On the other hand, the ordered phase
Z, (Z3) spontaneously breaks the translational symmetry in a
Z, (Z:3) way such that the two (three) ground-state wave func-

tions, |Zy) =|---200020---) and |Z,) = |-+ 002000 - - - )
(1Z3) = 1200100 --), |Z3) = | ---00200; - - ) and |Z3) =
[-+-01002¢ - - -)), are energy degenerate. We emphasize that

in the conventional LSM with U =0 (i.e., Uy = U,), only
the D and the Z, phases can be found, with phase transition
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FIG. 2. (a) Four allowed configurations in a building block
within the {G;} = 0 gauge sector. (b) Ground-state phase diagram in
the m-U, plane, where the dashed and the solid lines respectively de-
note the first- and second-order phase boundary. In the diagram, the
dot-dashed line satisfying U = —2m connects the chiral-symmetric
point (diamond) to the Potts critical point (star). On this line we track
the |Z3)-related quantum scars as discussed in Fig. 3. (c) Finite-size
scaling analysis of the central charge ¢ on the second-order phase
transitions D-Z, and D-Z3 with the cross and the star corresponding
to the critical points located at (m >~ 0.1U,, U, = 0.4U,) and (m =~
—0.22Uy, U, = 0.10p) in (b), respectively. (d) Occupation config-
urations (upper line) and the corresponding QED analogy (lower
line) of the three states |D), |Z,), and |Z3) at U, = 0. For U, # 0,
populations in individual sites are no longer conserved. However, the
ground-state degeneracy in each phase remains the same.

D-Z, being the Coleman’s transition [14,16,38]. Therefore the
Zs3-ordered phase is new and has no counterpart in the conven-
tional LSM. In the phase diagram, the Z3 phase exists in the
regime with strong matter-field interaction U (i.e., U, < Up).
The existence of the Z3 phase stems from the competition be-
tween the negative mass m < 0 and U > 0: the former favors
all the matter fields being occupied, while the latter hinders
two neighboring matter fields being occupied simultaneously.
From an experimental point of view, the two most commonly
used spin-1 species, 2*Na and 8"Rb, both feature a strong U,
making the physics predicted in our work quite feasible in
practice [27,28].

In the phase diagram, we identify phase transitions be-
tween the disordered phase and the ordered phases, D-Z, and
D-Z3, to be of second order, while the transition between
the two ordered phases Z,-Zj is of first order. The phase
boundaries as well as the transition orders are determined
by whether the first- or the second-order derivatives of the
ground-state energy with respect to the parameters (m or U,)
exhibit discontinuity or not. Furthermore, the second-order
transitions D-Z, and D-Z3 respectively belong to the Ising
and the three-state Potts universality classes, whose low-
energy critical behaviors are described by the conformal field

theory with different central charges ¢ [39]. Practically, one
can extract ¢ through fitting the curve of the von Neumann
entropy [40],

S(ly) = gln E sin (’%‘)] +9, (12)

where I, is the length of subsystem A and s is a nonuni-
versal factor. The von Neumann entropy is given by S(l4) =
—Tr(palog pa), with p4 being the reduced density matrix. In
Fig. 2(c) we show the dependence of ¢ as a function of the
chain length L at two critical points [corresponding to the
cross and the star in Fig. 2(b)], in which one can observe that
the transitions D-Z, and D-Z3 exhibit ¢ = 0.5 and ¢ = 0.8
in the thermodynamic limit 1/L — 0, clearly indicating the
Ising and the three-state Potts universality classes, respec-
tively [39].

IV. QUENCH DYNAMICS AND QUANTUM SCARS

Since we fix the gauge sector ({G;} = 0), the matter field
and the gauge field are no longer independent. Substituting
Eq. (9) into the Gauss operator [Eq. (8)], the U(1) lattice gauge
model H.g; can therefore be mapped to a spin- 1/ 2 chain by

A

eliminating the matter fields [20], i.e., a;_;, b b' Gofj— +

Hc. < 65 and ]Vj © —(6; +6;,,)/2. Followmg thlS rule,
the mapped spin Hamiltonian takes the form

_% Zﬁj_la;ﬁj+l - m;a;
G X (5543

with I3j = (1 —6;)/2 the projection operator, which projects
out the cases of two neighboring spins being polarized up
simultaneously. This projection is necessary to make sure that
the system remains in the {G;} = O sector, and the resulting
states can be described by the three allowed configurations
shown in Fig. 2(a). Particularly at U = m = 0 [denoted by the
diamond in Fig. 2(b)], I:I reproduces the PXP model [41],
which was originally realized in a Rydberg chain [19] The
PXP Hamiltonian carries a symmetry xH,x = —H, with
x=116 6;. As a result, the energy spectrum is symmetric
about € = 0. This symmetry corresponds to the chiral sym-
metry of the original lattice gauge model, i.e., RT (H;) =
—H;, with R and T respectively representing the particle-
hole transformation and the one-site translation. The PXP
model is well known to lead to dynamical revivals, which
refer to the phenomenon that the postquench evolutions of
the Rydberg |Z,) and |Z3;) charge-density waves (CDWs)
exhibit periodic recoveries and slow thermalization [19]. This
revival can be attributed to the quantum many-body scar
states [41-43], which are the low-entropy eigenstates of the
PXP Hamiltonian that violate the eigenstate thermalization
hypothesis.

The |Z,) and |Z3) ordered states in our current model cor-
respond exactly to the Rydberg |Z,) and |Z3) CDW states, and
hence our model would also exhibit the dynamical revivals by
quenching these two states into the chiral point. We perform
such numerics by exactly diagonalizing (ED) the effective

5 %a_,az), (13)
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FIG. 3. Dynamics of the Loschmidt echo £ (a) and occupation
on the first gauge site (b) as |Z,) and |Z3) states are quenched to
the chiral-symmetric point (al, bl) and the Potts critical point (a2,
b2). (c) The von Neumann entropy S plotted vs energy spectra ¢; at
the chiral [denoted by diamond in Fig. 2(b)], the middle (triangle),
and the Potts critical (star) points on the line of U = —2m in (c1)—
(c3), where crosses and plus signs indicate the scar states with large
overlap to the |Z,) and |Z3) states, respectively. In the calculation,
we take L = 18, and S is calculated using [, = L/2.

Hamiltonian H.¢ and plot the evolution of the Loschmidt echo
L(@) = [{(¥(0)|¥(#))]> and the occupation (fij o—0(t)) on one
gauge site in Figs. 3(al) and 3(bl). |¥(0)) is initialized by
|Z5) (solid line) and |Z3) (dashed line) states, respectively.
The periodic oscillating curves clearly demonstrate the dy-
namical revivals. In Fig. 3(c1) we show the eigenspectrum
€; with vertical axis S denoting the bipartite von Neumann
entropy of eigenstates |€;), where the scar states responsi-
ble for the |Z,) and |Z3) revivals are marked by cross and
plus signs, respectively. These scars are selected according to
the projective probability |(€;|Z,)|> and |({€;|Z3)|> above the
threshold > 0.03. As one can see, the scar states possess equal
energy intervals and relatively low entropy within the spec-
trum. The energy interval Ae matches well with the revival
period T of L(t) via the relation T = 27 /A€. In comparison,
the dynamics of the same quantities, quenched to the Potts
critical point, are plotted in Figs. 3(a2) and 3(b2), where
the physical quantities exhibit fast quantum thermalization
without oscillation. To check the validity of these results, in
Appendix A we also carry out numerical calculations based on
the original Hamiltonian Egs. (4) and (6) using the technique
called the time evolution of matrix product states (tMPS) [44].
The tMPS results are in excellent agreement with the ED
results when the condition Ay >~ g > U, is satisfied. This
also serves as a confirmation of the validity of the effective
Hamiltonian ﬁeff.

The origin of the scars is of tremendous interest. Recently,
Yao and co-workers observed that the |Z,)-related quantum
scars migrate from the low-energy low-entropy states of the
Ising transition [45]. Considering the diagram Fig. 2(b) pos-

sesses a Potts criticality, hence now we have an opportunity
in tracing the origin of the scar states associated with the |Z3)
dynamics. We focus on the line U = —2m [see the dot-dashed
line in diagram Fig. 2(b)] and show the |Z,)- as well as the
|Z3)-related scar spectra at the chiral-symmetric (diamond),
middle (triangle), and Potts critical (star) points in Figs. 3(c1)—
3(c3), respectively. One may immediately observe that the
spectra 3(c2) and 3(c3) are asymmetric about € = 0 due to the
chiral symmetry breaking induced by the finite U interaction.
Furthermore, as the Potts critical point is approached, |Z3)-
and |Z,)-related scars respectively transfer to the low- and
high-energy regimes, indicating that the scars associated with
|Z3) originate from the low-energy low-entropy states of the
Potts transition.

V. SUMMARY AND OUTLOOK

We propose a scheme to synthesize the U(l) gauge
invariance in a spin-1 Bose gas. Unlike in previous real-
izations [14,15], the interactions in the spinor gas naturally
leads a matter-field interaction term in the effective U(1)
gauge model, which gives rise to a new Zj-ordered phase.
This ordered phase connects to the disordered phase by the
Potts criticality, whose low-energy eigenstates are found to be
the origin of quantum scar states responsible for the anoma-
lous dynamical revivals of the |Z3) states. There are several
follow-up questions. In the context of high-energy physics,
the continuous deconfined Schwinger model is known to be
equivalent to the sine-Gordon model under bosonization [16].
The matter-field interaction seems to only modify the free
part. In this picture, clarification of the physical mechanism of
the Z3-ordered phase would require a more detailed calcula-
tion in the future. In the context of quantum thermodynamics,
why do the ordered states, |Z,) and |Z3), tend to be thermal-
ized at quantum criticality? Can the matter-field interaction
induce many-body localization dynamics [46,47] as different
gauge sectors are involved? Very recently, we notice that two
works [48,49] have explored the possibility of tuning the topo-
logical angle in the synthetic LSM. It will be also interesting
to study the combined effect of topological angle and the
matter-field interaction.
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APPENDIX: QUENCH DYNAMICS USING TMPS

In the derivation of the effective Hamiltonian H.¢ [Eq. (7],
we focus on the parameter regime Ag =~ g > Uy in which
the off-resonant &;_ modes can be neglected. Therefore the
parameter condition A9 =~ g 3> Uy stands as the prerequisite
for our effective Hamiltonian H.i and the U(l) gauge in-
variance. Here, let us in detail discuss how this condition
would affect our lattice gauge model in the context of quench
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dynamics. To this end, we adopt the tMPS method, which
is a powerful tool for the large-scale simulation of one-
dimensional quantum systems out of equilibrium [44]. Our
numerical simulation is based on the original Hamiltonian
Egs. (4) and (6) with all the modes present. We set the lattice
length L = 54 and quench the |Z;) = |---2¢002¢---) and
|Z3) = |---200,0p - - - ) states to the chiral point U = m = 0.
We examine two operators that are experimentally measur-
able: one is the particle number of a single gauge site, e.g.,
(fj,s=0), and the other is the averaged expectation of the
Gauss operator, i.e.,

(AD)

PN

where (G;), according to the definition [Eq. (8)], is simply the
measurement on the local particle numbers within a building
block. In the {G;} = 0 gauge sector, since G j is conserved,
the deviation of G from zero reflects the breaking of the gauge
invariance.

In Figs. 4(a) and 4(b) we show the dynamics of these two
observables with respect to the |Z,) initial state [(al) and
(b1)] and the |Z3) initial state [(a2) and (b2)]. In each sub-
figure, the dot-dashed, dashed, and dotted lines indicate the
cases with Uy/1g = 1, Up/ro = 0.1, and Uy/Ao = 0.01, cor-
responding to the situations that the condition Ay 2~ g > U
is unsatisfied, just satisfied, and strictly satisfied, respectively.
In comparison, the dynamics of (#i;,—o) obtained by exactly
diagonalizing the effective Hamiltonian H.g are also plotted
by solid lines in Figs. 4(al) and 4(a2). One can clearly observe
that, for the latter two cases (Up/Ag = 0.1 and Uy/Ao = 0.01),
the tMPS dynamics of (71 o) are in good agreement with those
obtained by the ED method, and G exhibits small oscillation
around zero. In contrast, for the case of Uy/Ag = 1, the re-
sulting (7 o) exhibits a large discrepancy to the ED’s results,
accompanied by the large deviation of the local conservation

tMPsS - Uo/}.o =1
~-Up/Ag = 0.1

— ED

ﬁj=1,0=0)

{

FIG. 4. Upper row: Dynamical evolution of the particle num-
ber of the first gauge site (fij—; ,—0) under the government of the
chiral-symmetric Hamiltonian with U = m = 0, where (al) and (a2)
correspond to the cases with initial states being |Z,) and |Z3), re-
spectively. Bottom row: Evolution of the averaged expectation of the
Gauss operator G [Eq. (A1)] with initial states being |Z,) (bl) and
|Z3) (b2). In each subfigure, the solid line denotes the ED’s result
based on the effective Hamiltonian Fleff in the gauge sector {G;} = 0;
the dot-dashed, dashed, and dotted lines respectively correspond to
the cases Uy/Ao = 1, 0.1, 0.01, indicating the results obtained by the
tMPS method using the original Hamiltonian Egs. (4) and (6). In
our calculation, we fix L = 54 and L = 18 for the tMPS and ED
simulations, respectively.

G from zero. These results serve as a criterion for the validity
of our effective model He.
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