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Abstract
Quantum many-body systems in one dimension (1D) exhibit some peculiar
properties. In this article, we review some of our work on strongly interacting
1D spinor quantum gas. First, we discuss a generalized Bose–Fermi mapping
that maps the charge degrees of freedom to a spinless Fermi gas and the spin
degrees of freedom to a spin chain model. This also maps the strongly interact-
ing system into a weakly interacting one, which is amenable for perturbative
calculations. Next, based on this mapping, we construct an ansatz wavefunc-
tion for the strongly interacting system, using which many physical quantities
can be conveniently calculated. We showcase the usage of this ansatz wave-
function by considering the collective excitations and quench dynamics of a
harmonically trapped system.

Keywords: Bose–Fermi mapping, spinor quantum gas,
one dimensional many-body system, dynamical fermionization

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum many-body systems in one dimension (1D) often exhibit unique strongly correlated
quantum effects and consequently have attracted much attention over many decades. In recent
years, due to their experimental realization in cold atoms, 1D systems have again been at the
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forefront of active research [1–3]. Solving quantummany-body problems, particularly strongly
interacting ones, is in general notoriously difficult. This is mainly due to the fact that there is
no general efficient classical computational method to directly solve these systems, as com-
putational resource required is usually exponential in system size. However, many powerful
analytical (e.g. Bethe ansatz, bosonization) and numerical (e.g. matrix product states) tech-
niques have been developed specifically suitable for 1D systems. Adding to this repertoire,
we have recently developed a generalized Bose–Fermi mapping technique that allows us to
map a strongly interacting 1D system to a weakly interacting one, which is then amenable
for perturbative calculations. This mapping is based on the fact that, in 1D, the distinction
between bosons and fermions could become rather subtle, provided that the bosonic multiple
occupancy is suppressed, which can happen if strong repulsion exists between particles. In this
article, we provide a review of this technique and show its application by considering a few
examples.

2. Generalized Bose–Fermi mapping

We consider a system of N identical particles of arbitrary spin interacting pairwise via s-wave
contact interaction confined in a spin-independent external potential V(x). The Hamiltonian of
the system is given by (ℏ= m= 1)

H=
N∑

i=1

[

−1
2
∂2

∂x2i
+V(xi)

]

︸ ︷︷ ︸

Hf

+ĝ
∑

i<j

δ(xi− xj)
︸ ︷︷ ︸

Vs

, (1)

where Hf is the single-particle free Hamiltonian and Vs the s-wave contact interaction term,
with ĝ being a matrix acting on the spin state of two particles. There is no constraint on ĝ
except that it must be symmetric under permutation of two spins so that Vs is invariant under
permutation. In general, ĝ can be written as ĝ= gJP̂J, where P̂J is the projector operator that
projects the two particle to the total spin J and gJ is the interaction strength for the corres-
ponding spin channel. We will consider repulsive interaction so that there is no bound states
involved, although the formalismwe develop here also works for the upper branch of an attract-
ive system [4].

2.1. Girardeau’s Bose–Fermi mapping and its generalization

For a homogeneous system with V(x) = 0, Hamiltonian (1) may be Bethe Ansatz solvable.
For example, if the system is spinless bosons, this is the Lieb–Liniger model [5]; while for
spin-1/2 fermions, this is the Gaudin–Yang model [6, 7]. Both models are quantum integrable.
In the presence of the inhomogeneous trapping potential, Hamiltonian (1) is in general not
analytically solvable. However, Girardeau showed that for spinless bosons in the hardcore
limit (ĝ= g→∞), the system (known sometimes as the Tonks–Girardear or TG gas) can be
solved for arbitrary V(x) by mapping it to free fermions [8]. The eigenstates of the hardcore
boson is given by

ΨB (x1,x2, . . . ,xN) =
∑

P∈SN

P
(
ΨF (x1,x2, . . . ,xN)θ

1 (x1,x2, . . . ,xN)
)
, (2)
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where P is the permutation operator, ΨF the free fermion wavefunction, θ1 is a generalized
Heaviside step function of spatial coordinates and can be written into the form:

θ1 = θ(x2− x1)θ(x3− x2) · · ·θ(xi− xi−1)θ(xi+1− xi) · · ·θ(xN− xN−1), (3)

whose value is one in the spatial sector x1 < x2 < .. . < xN, and zero in any other sector.
Equation (2) represents Girardeau’s Bose–Fermi mapping (For a more recent review of this
mapping technique and a discussion of its generalization to dynamical situation and to finite
interaction strength, see [9]). The essence of this mapping can be understood as follows.
Within any spatial sector (say the one defined by θ1), the wavefunction should satisfy the
free Schrödinger equation:

HfΨ= EΨ, (4)

whereas at the boundary of the sector, due to the hardcore condition, the wavefunction should
vanish, i.e.

Ψ(x1,x2, . . . ,xN)xi=xj = 0, ∀ i, j. (5)

The free fermion wavefunction ΨF satisfies both equation (4) and the boundary condition (5).
After symmetrization, one arrives at ΨB in equation (2) for hardcore bosons.

On the experimental front, by tightly confining the atoms in the transverse directions, quasi-
1D systems have been routinely realized in cold atoms. In particular, two groups [10, 11] have
carried out pioneering studies of 1D spinless bosons in the strong interaction limit, realizing
the TG gas.

Since the original work byGirardeau [8], several important generalizations have beenmade:

• This mapping was later generalized to finite interaction strength by Cheon and Shegehara
[12, 13] who mapped a system of s-wave contact interacting spinless bosons with interaction
strength g to a system of short-range p-wave interacting spinless fermions with interaction
strength −1/g.
• The above idea was further developed by Girardeau and Olshanii [14, 15] who showed that
1D spinor Fermi gas and Bose gas can bemapped into each other. This was further developed
recently by Valiente who presented a general theory of Bose–Fermi statistical transmutation
in quantum 1D systems [16, 17].
• Mapping between 1D hardcore anyons and free Fermi gas was developed by Girardeau [18].
• Mapping to multi-component 1D quantum gases (mainly two-component bosons or fermi-
ons) was developed by various people [19–22].

We would like to make two important generalizations of the Bose–Fermi mapping:

(a) Include spin degrees of freedom, hence we can deal with particles of arbitrary spin.
(b) Away from the hardcore limit, i.e. the interaction strength may be finite.

2.2. Spinor gas with hardcore interaction

Let us first include the spin degrees of freedom while keeping the interaction in the hardcore
limit. The particles are either bosons or fermions with spin-s. For this case, we can write the
eigenstates in the θ1 spatial sector in the following form:

Ψ1 = ϕ1(x1,x2, . . . ,xN)χ(σ1,σ2, . . . ,σN), (6)

3
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Where χ is an arbitrary spin wavefunction, such that the spin state is represented by
|χ⟩=

∑

σ1,σ2,...,σN
χ(σ1,σ2, . . . ,σN)|σ1,σ2, . . . ,σN⟩, andϕ1 = ϕθ1 withϕ being a free fermion

eigenfunction (Slater determinant) of Hf. After a symmetrization (for bosons) or antisymmet-
rization (for fermions), the full wavefunction of the hardcore spinor gas takes the form [23, 24]

Ψ=
∑

P∈SN

(±1)PP
(

Ψ1
)

=
∑

P∈SN

(±1)PP
(

ϕ1(x1,x2, . . . ,xN)χ(σ1,σ2, . . . ,σN)
)

, (7)

where the permutation operator P is now acting on the indices of both the spatial (xi) and the

spin coordinates (σi).
We will call the form of Ψ in equation (7) the strongly coupling ansatz wavefunction

(SCAW). It obviously satisfies the free Schrödinger equation (4) and the hardcore boundary
condition (5), hence represents the exact wavefunction of the hardcore spinor gas. Two remarks
are in order: (a) the SCAW in one spatial sector is a direct product form of spatial and spin
wavefunctions (see equation (6)), but for the full wavefunction (7), the spatial and the spin
degrees of freedom are in general entangled. (b) Since any spin state will allow equation (7) to
be an eigenstate of the hardcore spinor quantum gas, each eigenstate possesses (2s+ 1)N fold
degeneracy (ignoring spatial state degeneracy).

2.3. Spinor gas with finite interaction

Let us now turn to the case with finite, but still strongly repulsive, interaction. We will show
that, to the leading order, the SCAW in equation (7) remains valid, only that now the spin
wavefunction χ is no longer arbitrary, but is determined by an effective spin chain Hamilto-
nian. We will proceed by first considering a Hamiltonian duality property for a single particle,
followed by a discussion of two interacting particles, and finally the general case of an inter-
acting many-body spinor gas.

2.3.1. A single-particle Hamiltonian duality. Consider a particle in an arbitrary symmetric
potential V(x) = V(−x) with a Dirac δ-function barrier, governed by the Hamiltonian

He =−1
2
∂2

∂x2
+V(x)+ gδ(x). (8)

This is a standard textbook problem. Due to the even parity of He, all its eigenstates possess
definite parity. Odd parity states are not affected by the δ-function barrier, hence we just focus
on even parity states φ(x). Integrating the Schrödinger equation from x= 0− to x= 0+, we
obtain

φ ′(0+) =−φ ′(0−) = gφ(0), (9)

where prime denotes derivative with respect to x, and the eigen equation on the left and right
of the barrier is

[

−1
2
∂2

∂x2
+V(x)

]

φ(x) = Eφ(x). (10)

With the solution of equation (10) satisfying the boundary condition equation (9), we can
obtain all the even eigenstates of Hamiltonian (8).

4
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Now consider another single-particle Hamiltonian:

Ho =−1
2
∂2

∂x2
+V(x)− 1

g

←

∂

∂x
δ(x)

→

∂

∂x
, (11)

where
←
∂
∂x and

→
∂
∂x are differential operators acting on the left and the right wavefunctions when

calculating the matrix elements of an operator under a basis, respectively. They are meaningful
only when calculating matrix elements of operators. Same asHe,Ho also has parity symmetry.

For even states, the p-wave singular operator
←
∂
∂xδ(x)

→
∂
∂x will have no effects, since

→
∂
∂x operators

will transform an even state2 to an odd one and the matrix element of δ(x) will vanish. Let
φm(x) and φn(x) be two odd eigenstates of Ho with eigenenergies Em and En, and consider the
following integral

ˆ 0+

0−
dxφm(x)



−1
2
∂2

∂x2
+V(x)− 1

g

←

∂

∂x
δ(x)

→

∂

∂x



φn(x)

=

ˆ 0+

0−
dxφm(x)Enφn(x). (12)

Using the fact that φm(x) and φn(x) are odd functions, integrating by parts, we obtain

φm(0
+)φ ′n(0)−

1
g
φ ′m(0)φ

′
n(0) = 0. (13)

Note that φm,n may not be continuous at x= 0, but since φn(x) is odd, φ ′n(0) is well defined

as φ ′n(0) = φ ′n(0
+) = φ ′n(0

−). After factoring out the φ ′n(0) term, we can arrive at a similar
boundary condition as equation (9),

φ ′(0) = gφ(0+) =−gφ(0−), (14)

for any odd eigenstate φ. Comparing equations (9) and (14), for x > 0, the boundary conditions

are the same, for x < 0, they differ by a sign. This is because we are considering the even
eigenstates of He and the odd eigenstates of Ho, which are dual to each other. And also to the
left and right of the p-wave singular potential, φm,n satisfy the same eigen equation (10), which
means that the eigenstates and eigen energies have one-to-one correspondence for He and Ho

by the relation

φo(x) = sign(x)φe(x). (15)

An example is shown in figure 1. For odd eigenstates of He and even eigenstates of Ho, they

are trivially dual to each other, and equation (15) still holds. Hence we conclude that the two
Hamiltonians He in equation (8) and Ho in equation (11) are dual to each other. Due to this

duality, we can map the s-wave interaction term gδ(x) to the p-wave one − 1
g

←
∂
∂xδ(x)

→
∂
∂x .

In the following, we shall extend this duality to two- and many-body systems. This was first
done by Girardeau and Olshanii [14], see also their review article in [25].

2 Note that the wavefunction is not necessarily continuous. For discontinuous wavefunction, we regard it as a limit of
a set of continuous wavefunctions.
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Figure 1. The duality of the φe and φo single-particle wavefunctions, related to each
other by equation (15).

2.3.2. Generalized Bose–Fermi mapping for two particles. Let us consider two identical
particles of arbitrary spin, interacting with contact s-wave interaction. The Hamiltonian of the
system is given by

H=
∑

i=1,2

[

−1
2
∂2

∂x2i
+V(xi)

]

+ ĝδ(x1− x2), (16)

where ĝ is the interaction matrix acting on the spin states of the two particles. By diagonalizing
ĝ, we can fix the spin state χ to be an eigenstate of ĝ, which allows us to substitute ĝ with the
corresponding eigenvalue g. And the full wavefunction can be written as

Ψ(x1,x2,σ1,σ2) = Φ(x1,x2)χ(σ1,σ2). (17)

As we have mentioned earlier, ĝ must be invariant under permutation. Therefore χ can have a
fixed permutation symmetry, and in turn Φ(x1,x2) should also have a fixed permutation sym-
metry, since the total wavefunction Ψ must have a fixed permutation symmetry.

For concreteness, let us assume now that the two particles are fermions. To experience the
contact s-wave interaction, Φ must be symmetric and χ then must be anti-symmetric. We can
separate Φ into center-of-mass motion and relative motion:

Φ(x1,x2) = Φc

(
x1 + x2

2

)

Φr(x12), (18)

where x12 ≡ x1− x2 and the relative motion is governed by the relative Hamiltonian

He
r = 2

(

−1
2

∂2

∂x212
+
g
2
δ(x12)

)

, (19)

which, according to the discussion above, is dual to

Ho
r = 2



−1
2

∂2

∂x212
− 2
g

←

∂

∂x12
δ(x12)

→

∂

∂x12



 . (20)
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Putting things together, we can map the original Hamiltonian (16) with s-wave interaction to
a new Hamiltonian with p-wave interaction:

H=
∑

i=1,2

[

−1
2
∂2

∂x2i
+V(xi)

]

− 4P̂a

ĝ

←

∂

∂x12
δ(x12)

→

∂

∂x12
, (21)

where P̂a is the projection operator acting on the spin states of the spins, such that P̂a/ĝ is
nonzero only when the spin state is anti-symmetric. For symmetric spin states, the projec-
tions leads to zero. This should be the case, since these states possess anti-symmetric spa-
tial wavefunction and hence do not experience the contact s-wave interaction in the original
Hamiltonian (16). Hence the new Hamiltonian (21) is valid for any spin states. Note that
Hamiltonian (21) is arrived from a theoretical construction. In reality, the low-energy p-wave
interaction between two spinless fermions contains an effective range term [26] that cannot
be neglected. The presence of such a term would spoil the Bose–Fermi mapping. For a Bethe
ansatz study of 1D spinless fermions with p-wave interaction including the effective range
term, see [27, 28].

The bases for the Hilbert space of the mapped p-wave Hamiltonian (21) are

{ϕ(x1,x2)χ(σ1,σ2) |ϕ ∈ Slater determinants,χ ∈ spin states}, (22)

where {ϕ(x1,x2)} is the set of all Slater determinants, and {χ(σ1,σ2)} is the set of spin states
without any symmetry constraints. Note that this bases are SCAWs for two particles.

If the two particles are identical bosons, the mapping follows the same derivation as above.
The only difference is that, in equation (21), the anti-symmetric spin projection operator should
change to symmetric spin projection operator P̂s.

Finally, we rewrite Hamiltonian (21) as

H=
∑

i=1,2

[

−1
2
∂2

∂x2i
+V(xi)

]

− 4 · 2! · P̂ s,a

ĝ

←

∂

∂x12
δ(x12)θ(x12)

→

∂

∂x12
. (23)

We have added θ1 in the p-wave interaction term so that Hamiltonian (23) is defined in the spa-
tial section with x1 > x2. This is valid since Hamiltonian (23) acts on the bases of equation (22),
and the derivative ∂ϕ(x1,x2)/∂x12 is continuous across x12 = 0. It is understood that the sym-
metric (anti-symmetric) spin projection operator P̂s (P̂a) should be taken for bosons (fermions).

2.3.3. Generalized Bose–Fermi mapping for many particles. Nowwe can consider a general
many-body system consisting of N identical spinful particles. A natural extension of Hamilto-
nian (23) to the N-body system is given by

Hp =
N∑

i=1

[

−1
2
∂2

∂x2i
+V(xi)

]

︸ ︷︷ ︸

Hf

−4N!
ĝ

N−1∑

i=1

P̂ s,a
i

←−
∂ xi,i+1δ(xi,i+1)θ

1−→∂ xi,i+1

︸ ︷︷ ︸

Vp

, (24)

where ∂xi,i+1 =
1
2∂xi − 1

2∂xi+1 , and the factor of N! in Vp arises from the fact that there are N!
spatial sectors, i.e. N! distinct ordering for xi’s. Hamiltonian (24) is defined in the θ1 spatial

7
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sector. That we only need to specify the wavefunction in one spatial sector is because of the
following. A general N-body wave function Ψ for a 1D system can be rewritten as

Ψ(x1,x2, . . . ,xN,σ1,σ2, . . . ,σN)

=
∑

P

(±1)PP
(
Ψ1(x1,x2, . . . ,xN,σ1,σ2, . . . ,σN)

)
, (25)

where Ψ1 =Ψθ1. Equation (25) is a manifestation of a special property of 1D system that the
spatial domain of the wavefunction can be separated into N! disconnected subdomains labeled
by various spatial orders, and the wavefunction in one spatial sector (say, in spatial sector θ1)
has the complete information of the full wavefunction, as the values of the wavefunction in
different spatial sectors are related by permutation operation. The spin projection operator can
be written as P̂ s,a

i = (1±Ei,i+1)/2, where Eij is the exchange operator that exchanges the ith
and jth spins. As in the two-particle case, if the original spinor gas is bosonic (fermionic), one
should take P̂si (P̂

a
i ).

The bases for the Hilbert space on which Hamiltonian (24) operates is given by

{ϕχ|ϕ ∈ Slater determinants,χ ∈ spin states}. (26)

That the original Hamiltonian (1) can be mapped to (24) can be understood as follows. The
δ-function contact interaction in (1) only introduces the boundary conditions of the eigen-
states at spatial sector boundaries. In the region away from those boundaries, the eigenstates
are governed by the free Hamiltonian Hf. The mapped Hamiltonian (24) contains a p-wave
pseudo interaction potential Vp acting on the Hilbert space defined by (26), such that its eigen-
states, at the boundary of the spatial sector θ1, are one-to-one mapped to the eigenstates of the
original Hamiltonian (1). As a result, the new Hamiltonian (24) is equivalent to the original
Hamiltonian (1), since they possess equivalent eigensystems.

This mapping is valid for any ĝ. It is particularly useful for a strongly interacting system
since it is mapped to a weakly interacting one, with the special case that if the original sys-
tem has hardcore interaction, the mapped system is non-interacting. Hence our generalized
Bose–Fermi mapping contains the Girardeau’s Bose–Fermi mapping as a special case. In the
following, we will focus our discussion on strongly interacting systems.

3. Effective spin-chain Hamiltonian and the SCAW

Now consider a strongly interacting spinor gas governed by Hamiltonian (1). For simplicity
we assume that the interaction is spin-independent (i.e. the interaction possesses SU(2s+ 1)
symmetry), or we focus on one particular spin eigenstate of ĝ, in either case we can replace
ĝ by a number g, which is taken to be large. For more general case where the SU(2s+ 1)
symmetry is broken, a similar approach can be adopted [29]. Usually many-body systems
with strong interactions are extremely difficult to treat. However, in 1D, as we have shown
explicitly in the generalized Bose–Fermi mapping, this is not the case since we can map to
the new Hamiltonian Hp in which the interaction term Vp contains a factor 1/g, hence can be
treated as a weak perturbation. Specifically, working with Hamiltonian Hp in equation (24),
the free part Hf is considered as the unperturbed Hamiltonian, the interaction part Vp is the
perturbing Hamiltonian. We will apply the standard first-order perturbation theory. Since the
charge degrees of freedom are described by a spinless Fermi gas, the unperturbed eigenstates
are just Slater determinants for free fermions. We label these Slater determinants as ϕn with

8
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ϕ0 being the ground state, i.e. a filled Fermi sea. We can consider perturbation on any of the
unperturbed eigenstates.

3.1. Ground-state manifold

Let us now focus on the ground state. To first order in Vp (i.e. in 1/g), we can readily derive
an effective Hamiltonian [4]:

H(0)
sc = E(0) + ⟨ϕ0|Vp|ϕ0⟩= E(0)− 1

g

N−1∑

i=1

C(0)
i (1±Ei,i+1), (27)

where E(0) is the unperturbed ground-state energy, and the coefficients C(0)
i are given by

C(0)
i = 2N!

ˆ

dx1 . . .dxN |∂iϕ0|2δ(xi− xi+1)θ
1. (28)

Equation (27) is an inhomogeneous spin-chain Hamiltonian governing the spin degrees of free-
dom of the 1D strongly interacting quantum gas. Here the plus (minus) sign should be taken for
bosons (fermions). The inhomogeneity stems from the trapping potential V(x), in the absence
of which C(0)

i become site-independent and we have a homogeneous spin-chain Hamiltonian.
The homogeneous spin model is the Sutherland model [30]. Here we want to make two further
comments concerning the effective spin-chain Hamiltonian: (a) note that the coefficients C(0)

i ,

and hence H(0)
sc , only depend on the unperturbed Slater determinant ϕ0, which is in turn only

dependent on the total number of particlesN and the external trapping potential V(x). In partic-
ular, H(0)

sc is independent of the spin of the original particles. (b) The spin-chain Hamiltonian
is constructed from the nearest-neighbor exchange terms described Ei,i+1. The physics behind
this can be intuitively understood as follows: in the hardcore limit g→∞, particles in 1D are
impenetrable, hence neighboring particles cannot exchange positions. Away from the hardcore
limit, the nearest-neighbor exchange becomes possible, and this possibility is captured by the
spin-chain Hamiltonian H(0)

sc . Our perturbational approach [4, 31] is inspired by the similar
technique used to construct effective spin models from Hubbard Hamiltonian in the large-
U limit. Using this technique, the super-exchange interaction arises naturally. Several other
groups have obtained the same spin-chain effective Hamiltonian using a variational method
[32–36].

An alternative understanding of the effective spin-chain model can be reached by consider-
ing the homogeneous system which can be exactly solved using Bethe ansatz. A hidden spin
chain emerges by examining the Bethe ansatz solution of the system in the strong interaction
limit [37], where the exchange coupling can be shown to be given by 2p/g [38] where p is
the pressure per length. This result can be generalized to the trapped case under local density
approximation (LDA) where p becomes position-dependent.

To leading order, the wavefunction of the system takes the form of the SCAW in
equation (7), where the spin wavefunction χ is the eigenstate of the spin-chain Hamilto-
nian. The spin degeneracy for the hardcore system will be (partially) lifted. Let us now take a
closer look at this. Consider repulsive3 interaction g> 0. Let us discuss bosons and fermions
separately.

3 For attractive interaction with g< 0, the low-energy states should be bound. Such bound states are not captured by
this formalism. However, the unbound states (the so-called upper branch) of the attractive system can still be treated
using this approach.

9
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For bosons, we need to take the plus sign in the spin-chain Hamiltonian:

Hboson = E(0)− 1
g

N−1∑

i=1

C(0)
i (1+ Ei,i+1). (29)

Note that coefficients C(0)
i are all positive by definition, see equation (28), hence the effective

spin exchange coupling is ferromagnetic in nature. Each exchange operator Ei,i+1 has eigen-
values ±1. Hence if we can construct a spin state χFS such that

Ei,i+1|χFS⟩= |χFS⟩ , ∀ i (30)

that would obviously be the ground state of Hboson. We call such a spin state fully symmetric
state, it is not only an eigenstate of Hboson, but also an eigenstate of all exchange operators
Ei,i+1 with the same eigenvalue 1. Such fully symmetric state always exists for any spin con-
figuration. For example, given a spin-1/2 system with two spin-↑ and one spin-↓ atoms, the
fully symmetric state is given by

|χFS⟩=
1√
3
(| ↑↑↓⟩+ | ↑↓↑⟩+ | ↓↑↑⟩) . (31)

The corresponding ground-state SCAW for the bosonic system is therefore

Ψboson =
∑

P∈SN

P
(
ϕ0θ

1χFS
)
=

(
∑

P∈SN

P
(
ϕ0θ

1
)

)

⊗χFS, (32)

where we have used the fact that P(χFS) = χFS. As a result, the ground state for the bosonic
system can be written as a product state of a spatial and a spin wavefunction, each of which is
symmetric under permutation. Furthermore, the spatial wavefunction is just the wavefunction
of the hardcore spinless bosons.

Now let us consider spinor fermions, for which the effective spin-chain Hamiltonian takes
the form

Hfermion = E(0)− 1
g

N−1∑

i=1

C(0)
i (1−Ei,i+1). (33)

Due to the sign change, here the spin exchange coupling is antiferromagnetic. A similar reas-
oning as above shows that if we can construct the fully anti-symmetric state such that

Ei,i+1|χFAS⟩=−|χFAS⟩ , ∀ i (34)

it will be the ground state of Hfermion. The corresponding ground state SCAW would be

Ψfermion =
∑

P∈SN

(−1)PP
(
ϕ0θ

1χFAS
)
=

(
∑

P∈SN

P
(
ϕ0θ

1
)

)

⊗χFAS, (35)

where we have used (−1)PP(χFAS) = χFAS. Here again the total wavefunction is a product
state of a spatial and a spin wavefunction, and the former is again given by the wavefunction
of hardcore spinless bosons. However, there is a caveat: the fully anti-symmetric spin state
χFAM can only be constructed if there is no more than one particle in a given spin state (Hence
a necessary condition is that N⩽ 2s+ 1, i.e. the total number of fermions cannot be more
than the spin multiplicity.) [39]. In the analogous system as considered above: two spin-↑ and

10



J. Phys. A: Math. Theor. 55 (2022) 464005 L Yang et al

Figure 2. Schematic representation of the ground state (a), the first excited state (b), and
the second excited states (c) of an ideal spinless Fermi gas.

one spin-↓ fermionic atoms, χFAM does not exist. In this case, the ground state of Hfermion is
given by

|χ⟩= 1√
6
(| ↑↑↓⟩− 2| ↑↓↑⟩+ | ↓↑↑⟩) , (36)

and the corresponding total SCAW cannot be written as a product state of a spatial and a spin
wavefunction, indicating entanglement between the spatial and the spin degrees of freedom.
Finally, we note that the fully symmetric state χFM remains as an eigenstates of Hfermion and
the associated SCAW is

ΨFS =
∑

P∈SN

(−1)PP
(
ϕ0θ

1χFS
)
= ϕ0⊗χFS. (37)

This is again a spin-charge product state and the spatial wavefunction is just the Slater determ-
inant of free fermions. However, this state is not the ground state, and is in fact the highest-lying
state in the ground-state manifold.

3.2. Excited-state manifold

In the above, we have focused on the ground-state manifold. Perturbation can be performed on
any eigenstates of the unperturbed Hamiltonian, i.e. Hf. Studies on the excited manifold can
provide information on the excitation properties of the system. To show this, let us consider the
specific example of a harmonically trapped system with V(x) = x2/2, where we have adopted
the natural units system with ℏ= m= ω = 1. The ground, first and second excited manifold
of a harmonically trapped ideal spinless Fermi gas (corresponding to the eigenstates ofHf) are
schematically shown in figure 2.

11
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The spin-chain model for the first excited state manifold can be constructed in the similar
way as for the ground state manifold. The effective Hamiltonian takes the same form as H(0)

sc :

H(1)
sc = E(1) + ⟨ϕ1|Vp|ϕ1⟩= E(1)− 1

g

N−1∑

i=1

C(1)
i (1±Ei,i+1), (38)

where C(1)
i have the same expression as C(0)

i in equation (28) except that ϕ0 is replaced by ϕ1.
For the harmonic trap, the unperturbed eigenenergies are: E(0) = N2/2 and E(n) = E(0) + n.

Due to the equal spacing single-particle energy levels for harmonic trap, the second excited-
state manifold is doubly degenerate, see figure 2(c). The spin-chain Hamiltonian for the second
excited manifold can be written as

H(2)
sc = E(2)− 1

g

N−1∑

i=1

C(2)
i (1±Ei,i+1), (39)

where C(2)
i is a 2× 2 matrix whose elements are given by

(

C(2)
i

)

αβ
= 2N!

ˆ

dx1 . . .dxN ∂iϕαδ(xi− xi+1)θ
1∂iϕβ , (40)

withα,β = 2a,2b. Strictly speaking, Hamiltonian (39) is no longer a pure spin Hamiltonian, as
we now have two spatial wave functions ϕ2a,2b, which leads to a spin–orbit coupling between
the spatial and the spin sectors.

In principle, one can construct the effective Hamiltonian for any other excited manifold in
a similar manner as long as we plug in the corresponding Slater determinant(s) to evaluate the
coefficients Ci. However, due to the special symmetry properties of harmonic trapping poten-
tial (specifically the SO(2,1) symmetry [40–43]), we can write down the spin-chain model for
low-lying excited manifolds from that of the ground-state spin-chain Hamiltonian (27) without
any extra calculations. The details can be found in [31]. Here we just summarize the main res-
ults. By separating the center-of-mass (COM) and the relative motions inside harmonic trap,
we can show that the first-excited manifold represents a COM dipole excitation, which are
not affected the interaction. Hence we have C(1)

i = C(0)
i . As a result, H(1)

sc differs from H(0)
sc by

only a constant shift. The doubly degenerate second excited manifold can be separated to two
uncoupled modes, denoted as Q and B, with associated spin-chain Hamiltonian given by

HQ,B
sc = E(2)− 1

g

N−1∑

i=1

C(Q,B)
i (1±Ei,i+1). (41)

The Q mode is a COM mode, and for the same reason given above, we have C(Q)
i = C(0)

i . The
Bmode is a relative mode. Quite amazingly, there also exists a simple relation between CBi and

C(0)
i which can be proved using a recursion relation for the SO(2,1) algebra [35, 43]:

CBi
C(0)
i

= 1+
3

2(N2− 1)
, (42)

which means that H(B)
sc and H(0)

sc , apart from a constant shift of E(2)−E(0) = 2, only differ by
a constant factor given in equation (42).

Note that our discussion is under the framework of perturbation theory in which Vp in
Hamiltonian (24) is treated perturbatively. We can separate the ground state and excited man-
ifolds under the assumption that Vp does not induce transitions between different manifolds.

12
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4. Collective excitations

The above results provide significant insights into the low-lying collective excitationmodes for
harmonically trapped spinor quantum gases. That COMmodes are not affected by the interac-
tion, but the relative modes are. In particular, let us examine the lowest breathing mode which
couples the ground-state to the second excited state manifolds, with the excitation frequency
given by

ωB = ⟨H(B)
sc ⟩− ⟨H(0)

sc ⟩= 2+
3

2(N2− 1)
Eg, (43)

where Eg = ⟨H(0)
sc ⟩−E(0) is the ground state energy of the spin-chain Hamiltonian H(0)

sc meas-
ured with respect to E(0). Hence the breathing mode frequency experiences an interaction-
dependent shift away from the non-interacting value of 2. In the strongly interaction regime,
this shift δωB ≡ ωB− 2∝ 1/g and vanishes exactly in the hardcore limit of g=∞. Let us now
further examine δωB and discuss bosons and fermions separately.

For bosons, as we have discussed above, the ground spin state is the fully symmetric state
and

Eboson
g =−2

g

N−1∑

i=1

C(0)
i . (44)

This result is independent of the spin configuration and only depends on the total number of
atoms N, a consequence of the fact that the bosonic ground state Ψboson in equation (32) takes
the spin-charge separated form. Under the LDA, we can obtain semi-analytic expressions for
C(0)
i [31], from which, we can show

Eboson
g =−1

g
128
√
2

45π2
N5/2 ≈−1

g
0.408N5/2, (45)

which is consistent with the result obtained previously for spinless bosons near the hard-
core limit [44–46]. Correspondingly, the interaction-induced shift of the breathing mode
frequency is

δωboson
B =

3
2(N2− 1)

Eboson
g ≈−1

g
64
√
2

15π2
N1/2. (46)

The case for fermions is more complicated.

• If the ground-state spin configuration is fully anti-symmetric, i.e. given by χFAS with the
associated SCAW Ψfermion given in equation (35), then we have Efermion

g = Eboson
g and, con-

sequently,

δωfermion
B = δωboson

B . (47)

However, as we discussed above, the fully anti-symmetric spin state is only possible if no
more than 1 fermion occupy one spin component.
• For the general case, the ground-state spin configuration is not fully anti-symmetric, and the
corresponding SCAW cannot be written as a spin-charge separated form. Efermion

g depends
on the specific spin state which is the ground state of Hfermion. In general, we have Eboson

g ⩽

Efermion
g ⩽ 0.

13
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Figure 3. Ground-state energy Eg (a), (b) and breathing mode frequency shift δωB

(c), (d) as functions of N. In (a) and (c), we present results for bosons and spin-1/2
fermions with various N↑/N. In (b) and (d), we present results for bosons, and fermi-
ons with different spin s and equal population in each spin component. For bosons, the
ground state energy and the breathing mode frequency shift are independent of spin. The
black solid lines represent the analytic LDA results for bosons given in equations (45)
and (46). Reprinted (figure) with permission from [31], Copyright (2016) by the Amer-
ican Physical Society.

In figures 3(a) and (b), we plot the spin-chain ground state energy Eg as functions of
total atom number N, with the corresponding breathing mode frequency shift δωB plotted in
figures 3(c) and (d). The symbols are obtained by numerically calculating the coefficients C(0)

i

and then diagonalizing the spin-chain HamiltonianH(0)
sc . The red dots are the results for bosons.

We also plot the analytical results based on LDA (equations (45) and (46)) as black solid lines.
As one can see, the LDA results agree very well with the numerical results even for small N.
As one can see, for fixed N, as s increases, the fermionic results approach the bosonic ones.
This behavior has been recently seen in the experiment [47].

5. One-body density matrix, momentum distribution and dynamical
fermionization

In this section, we show how the form of SCAW allows us to efficiently evaluate one-body
density matrix (OBDM), using which all one-body quantities can be calculated. In particular,
we show how to calculate the momentum distribution of a strongly interacting spinor gas.
Finally, we discuss the phenomenon of dynamical fermionization (DF).
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5.1. One-body density matrix

Given a many-body wavefunction Ψ(x1, . . . ,xN;σ1, . . . ,σN), the OBDM is defined as

ρ(x ′,x;σ ′,σ) = N
∑

σ1,...,σN−1

ˆ

dx1 . . .dxN−1Ψ
∗
(
x1, · · · ,xN−1,x

′;σ1, . . . ,σN−1,σ
′
)

×Ψ(x1, . . . ,xN−1,x;σ1, . . . ,σN−1,σ). (48)

Substituting equation (7) into equation (48), we have the OBDM associated with the SCAW

ρ(x ′,x;σ ′,σ) =
∑

σ1...σN−1

ˆ

dx1 . . .dxN−1ϕ
′∗ϕ
∑

P ′P

θ ′P ′θP⊗ (P ′χ ′†)(Pχ), (49)

where we have used the short-hand notation

ϕ′ = ϕ(x1, . . . ,xN−1,x
′) ,ϕ= ϕ(x1, . . . ,xN−1,x) ,

χ′ = χ(σ1, . . . ,σN−1,σ
′) ,χ= χ(σ1, . . . ,σN−1,σ).

To evaluate the above equation, we need to order x
′

and x with respect to x1, . . . ,xN−1. For
example, assuming x ′ < x, we can take x ′ ∈ (xm−1,xm) and x ∈ (xn−1,xn) with m⩽ n, and
denote this ordering configuration as Γm,n, in which

Γm,n : x1 < · · ·< xm−1 < x ′ < xm < · · ·< xn−1 < x< xn < · · ·< xN−1. (50)

Once the ordering of x
′

and x are fixed, all permutations on 1 . . .N− 1 will lead to the
same integral value, because these kind of permutations does not change either θ ′P

′

θP or
(P ′χ ′†)(Pχ) . According to this observation, the OBDM (49) can be written as [4, 48]

ρ(x ′,x;σ ′,σ) =
N∑

m,n=1

ρmn(x
′,x)Smn (σ

′,σ) . (51)

Equation (51) takes a kind of ‘spin-charge’ separated form, which is a consequence that the
SCAW has the spin-charge separated form in any given spatial sector. Here the spatial part

ρmn (x
′,x) = (−1)n−mN!

ˆ

Γm,n

dx1 . . .dxN−1ϕ
′∗ϕ, (52)

depends only on the charge state, i.e. the Slater determinant for non-interacting spinless fer-
mions, ϕ, and hence is ‘universal’. The information on the spin degrees of freedom is carried
by the spin correlation function

Smn (σ
′,σ) = (±1)m−n⟨χ|Sσ ′,σ

m (m . . .n)|χ⟩, (53)

(again, ±1 for bosonic and fermionic gases, respectively) where Sσ
′,σ

m is a local SU(N) gen-
erator (Sσ

′,σ|σ⟩= |σ ′⟩) on site m, and (m . . .n) is a loop permutation operator that permutes
the indices in the wavefunction by m→ m+ 1,m+ 1→ m+ 2, . . . ,n− 1→ n,n→ m. In the
above, we have assumed that m⩽ n. The case with m⩾ n can be obtained using the identity
ρmn(x ′,x) = ρnm(x,x ′) and Smn(σ ′,σ) = Snm(σ,σ ′).

The difficulty of evaluating the OBDM lies in the fact that equation (52) involves an
(N− 1)-dimensional integral. With sophisticated numerical techniques, one may be able to
carry out such an integral up to N∼ 20 [48]. We have developed a new method [49] to evalu-
ate ρm,n(x ′,x), which relies on its discrete Fourier transform given by:

ρmn(x
′,x) = N−2

∑

κ,κ ′

ρκ
′,κ(x ′,x)eiπκ

′m e−iπκn, (54)
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where κ and κ ′ take a discrete set of values 2k/N with N consecutive integers k, and

ρκ
′,κ(x ′,x) = N

ˆ

dx1 . . .dxN−1

N−1∏

j=1

Aκ ′∗(xj− x ′)Aκ(xj− x)ϕ ′∗ϕ, (55)

where Aκ(xi− xj)≡ eiπ(1−κ)θ(xi−xj). Remarkably,

Ψκ(x1, . . . ,xN) =




∏

i<j

Aκ(xj− xi)



 ϕ(x1, . . . ,xN), (56)

is the wavefunction of N hardcore spinless anyons [18, 50] with statistical parameter κ
(we use the convention in [51–53]), whose OBDM, ρκ(x ′,x)≡ ρκ,κ(x ′,x), is given exactly
by equation (55) with κ ′ = κ. The case with κ= 0 and 1 correspond to the hardcore spinless
bosons and the ideal spinless fermions, respectively. By defining a similar Fourier transform
for the spin correlation function

Sκ
′,κ = N−2

N∑

m,n=1

Smne
iπκ ′me−iπκn, (57)

we can rewrite equation (51), the OBDM of a strongly interacting spinor quantum gas, as

ρ(x ′,x;σ ′,σ) =
∑

κ ′,κ

ρκ
′,κ(x ′,x)Sκ

′,κ(σ ′,σ). (58)

There has been an extensive study of the properties of 1D hardcore spinless anyon gases
[18, 50–73] (and the references therein). In particular, their OBDM and momentum distri-
butions have been calculated. We can take advantage of these results to evaluate equation (58)
in a very efficient way. In the following, we consider the momentum distribution of a homo-
geneous system with translational invariance.

5.2. Momentum distribution

Given the OBDM ρ(x ′,x;σ ′,σ), the momentum distribution for spin component-σ can be
obtained as

ρσ(p) =
1
2π

ˆ

dx
ˆ

dx ′ eip(x−x
′)ρ(x ′,x;σ,σ). (59)

For a translational invariant system with length L (periodic boundary condition is assumed),
the OBDM ρ(x ′,x;σ ′,σ) depends only on y≡ x− x ′, and equations (51) and (58) are
reduced to

ρ(y;σ ′,σ) =
N−1∑

r=0

ρr(y)Sr(σ
′,σ) =

∑

κ

ρκ(y)Sκ(σ ′,σ), (60)

where r is understood as n−m. As a result, from equation (53) we have Sr(σ ′,σ) =
(±1)r⟨χ|Sσ ′,σ

m (m . . .m+ r)|χ⟩ which is independent of m. To ensure the boundary condition,
we need to impose the selection rule (1 . . .N)χ= (∓1)N−1χ on the spin state χ with ∓1 for
bosonic and fermionic gases, respectively. After Fourier transform with respect to y, the cor-
responding momentum distribution for the spinor quantum gas can be obtained as

ρσ(p) =
∑

κ

ρκ(p)Sκ(σ,σ), (61)
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Figure 4. Spin correlation function and momentum distribution of translational invari-
ant system. (a) Sr calculated by iTEBD for an infinite chain. (b) Sκ obtained by Fourier
transform of Sr with r up to 10 000. (c) Momentum distribution of hardcore anyon gas
ρκ(p) for N = 201. (d) Momentum distribution (summed over all spin components) of
the spinor gases for N = 201 particles. Figure extracted from [49]. In (c) and (d) the
momentum is normalized by ℏkF, the Fermi momentum of N spinless fermions. For the
spinor system, ρ(p) has a jump at p= ℏkF/(2s+ 1), which can be regarded as the Fermi
momentum for each spin component.

where ρκ(p), the Fourier transform of ρκ(y), is the momentum distribution for the hardcore
anyon system. Note that ρκ and Sκ are periodic in κ with period 2. Hence we may restrict κ in
the range [−1,1].

The OBDM for the homogeneous hardcore anyon gas, ρκ(y), has an analytic expression in
the form of the Toeplitz determinant [51–53]. Its momentum distribution, ρκ(p), is investigated
in [53]. It is shown that ρκ(p) is peaked at p= κℏkF, where kF = Nπ/L is the Fermimomentum,
for κ ∈ (−1,1). Whereas for κ=±1, the system becomes an ideal spinless Fermi gas whose
momentum distribution is characterized by the Fermi sea. Examples of ρκ(p) for N= 201 are
shown in figure 4(c).

As examples, we consider a spin-1/2 and a spin-1 Fermi gases with spin independent inter-
action with N= 201. The corresponding spin-chain models in the strong interaction limit are
the SU(2) and the SU(3) Sutherland models, respectively [30]. The spin correlation functions
Sr =

∑

σ Sr(σ,σ), calculated using the infinite system size TEBD (iTEBD) method [74, 75],
and Sκ =

∑

σ S
κ(σ,σ) are plotted in figures 4(a) and (b), respectively. The total momentum

distribution functions ρ(p) =
∑

σ ρσ(p) for the spinor gas are shown in figure 4(d).
We remark that the spinor quantum gas in strongly repulsive regime has been studied within

the context of spin-incoherent Luttinger liquid [76], and the ground state momentum distribu-
tion for SU(2) case has been studied in [77–79], the result in figure 4(d) can be compared with
figure 3 in [77] which is for a lattice system and for up to 32 sites with a quarter filling (note
that their definition of kF differs from ours by a factor of 2). Here we want to mention that a
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sophisticated method developed in [79] can be used to efficiently calculate ρ(p) for homogen-
eous spin-1/2 fermions, but our method is more flexible and much more general as it can deal
with both bosonic and fermionic systems with arbitrary spin.

5.3. DF

The real space density profile is given by the diagonal elements of the OBDM. The OBDM
ρ(x ′,x;σ ′,σ) associated with an SCAW is given by equation (51). Correspondingly, the real
space density profile of the strongly interacting spinor gas is given by

nσ(x) = ρ(x,x;σ,σ) =
N∑

m=1

ρmm(x,x)Smm(σ,σ), (62)

which depends on the spin configuration χ through the spin correlation function Smm(σ,σ).
However, using

∑

σ Smm(σ,σ) = 1, one can readily show that the total density profile, summed
over all spin components, is given by

n(x) =
∑

σ

nσ(x) =
N∑

m=1

ρmm(x,x) = nF(x), (63)

is spin-independent and coincides with the density profile of the spinless Fermi gas nF(x).
This phenomenon is sometimes called fermionization, which can be intuitively understood as
resulting from the strong repulsive interaction between particles which mimics the statistical
repulsion between identical fermions. The momentum distribution of a spinor gas, by contrast,
does not exhibit a similar fermionization. As figure 4(d) shows, even the total momentum
distribution depends on the spin configuration χ.

In the previous studies of spinless hardcore bosons, the phenomenon of DF [80–82] has
been discovered. This refers to the following situation: the system is initially trapped in a
harmonic potential and the potential is suddenly quenched such that the cloud starts to expand.
The momentum distribution of the expanded cloud asymptotically approaches that of an ideal
spinless Fermi gas in the initial harmonic trap. Recently, DF has been observed in experiment
[83]. Theoretically, a hardcore spinless anyonic gas has also been shown to exhibit DF [84].
A more recent work shows that DF in TG gas can be manipulated or reversed by a proper
temporal modulation of the trapping potential [85]. With the tools developed above, we can
now examine such a phenomenon in a strongly interacting spinor gas.

Consider a harmonically trapped spinor gas. Let us first focus on the hardcore limit.
The wavefunction takes the SCAW form (7), where the spin state χ is arbitrary due to
the spin degeneracy in the hardcore limit, and the charge state ϕ is the Slater determ-
inant constructed from the N lowest-energy single-particle harmonic oscillator eigenstates
φn(x) = (2nn!

√
π)−1/2Hn(x)e−x

2/2 (n= 0,1, . . . ,N− 1), which we denote as

ϕ(0) = Det[φ0(x),φ1(x), . . . ,φN−1(x)]/
√
N! . (64)

At t= 0, the trap is suddenly turned off. Crucially, due to the hardcore constraint, the spin
configuration remains frozen. As a consequence, the spin correlation function Smn(σ ′,σ) in
the OBDM (equation (51)) does not evolve in time. The time dependence of the OBDM is
carried by the spatial part ρmn(x ′,x), and hence ϕ(t), according to equation (52). On the other
hand, ϕ(t) is related to ϕ(0) as
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ϕ(x1,x2, . . . ,xN; t) = b−N/2ϕ
(x1
b
,
x2
b
, . . . ,

xN
b
;0
)

exp

×
[

i

(

ḃ
b

N∑

i

x2i
2
−

N∑

i

Eiτ(t)

)]

, (65)

where Ei is the energy of the ith single-particle eigenstate of the initial harmonic trap,
τ(t) =

´ t
0 dt
′/b2(t ′) the temporal scaling parameter, and the spatial scaling parameter b(t) is

governed by the equation b̈(t)+ω2(t)b(t) = ω2(0)/b3(t) for an arbitrary parametric modu-
lation of the trapping frequency ω(t). For a sudden quench of the trap at t= 0, we have
b(t) =

√
1+ t2. Equation (65) follows from the scaling solution of the harmonic oscillator state

under a parametric modulation of the trapping frequency [86–88]. Such behavior is a mani-
festation of the scale invariance of the hardcore system in harmonic traps [80, 89]. Note that
scale invariance can be extended to nonharmonic traps. For example, a recent study showed
that DF can also occur in spinless hardcore bosons initially trapped in a box potential [90].

With equation (65), one can readily show that the OBDM at time t is also related to the
initial OBDM through a scaling transformation:

ρ(x ′,x;σ ′,σ; t) =
1
b
exp

[

iḃ
2b

(

x2− x ′2
)
]

ρ(x ′/b,x/b;σ ′,σ;0) . (66)

It follows immediately that the real space density profile at time t is given by

nσ(x; t) = ρ(x,x;σ,σ; t) =
1
b
nσ(x/b;0), (67)

which describes a self-similar expansion for each spin component.
To obtain the momentum distribution, we need to take the Fourier transform of

equation (66). The integral in general does not yield closed form expression. However, in
the asymptotic limit t→∞ (for which b→ t and ḃ→ 1), the integral can be greatly simplified
by invoking the stationary phase approximation [80] due to the fast oscillating nature of the
integrand, and we obtain

ρσ(p; t→∞) = ρ(k,k;σ,σ;0) = nσ(p;0) (68)

which means the asymptotic momentum distribution of of the spin-σ component has the same
shape as the initial real space density profile inside the trap. It is amusing to note that this is just
the opposite situation of the ballistic expansion under which the asymptotic real space density
profile takes the shape of the initial momentum distribution in the trap. The total momentum
distribution therefore has the property

ρ(p; t→∞) =
∑

σ

ρσ(p; t→∞) = nF(p;0), (69)

and therefore takes the shape of the initial total real space density profile, which is the same as
the momentum distribution ρF(p) of the spinless Fermi gas in the trap. Equations (68) and (69)
sum up the properties of DF for a hardcore spinor gas [91].

Now let us consider the case where the interaction strength is large but finite. The discus-
sion above on the hardcore case relies on the fact that the spin degrees of freedom is frozen
for hardcore particles. It may seem that, away from the hardcore limit, DF should not occur
since now the spin degrees of freedom is released and governed by the effective spin-chain
Hamiltonian Hsc which becomes time-dependent after the quench of the trapping potential.
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However, as one can easily see, in this case the coefficients Ci inHsc have the scaling behavior
as Ci(t) = Ci(0)/b3(t). As a result, we have [92]

Hsc(t) =
1

b3(t)
Hsc(0), (70)

which means that an eigenstate of the initial spin-chain Hamiltonian Hsc(0) remains as an
eigenstate of Hsc(t) for t > 0. In this way, the spin degrees of freedom is effectively frozen,
just as in the hardcore case. Therefore, all the DF properties obtained for hardcore spinor gas
remains valid for large but finite interaction strength. We emphasize that the scaling behavior
of the spin-chain Hamiltonian, equation (70), is a special property for harmonic traps. For the
quench of an initial trapping potential that is non-harmonic, there will be nontrivial interplay
between the spin and the charge degrees of freedom. Whether DF will occur and/or how it will
be modified in this situation remain to be seen.

We also want to comment on some related work on the expansion of a Lieb–Liniger gas
(spinless boson with finite interaction in the absence of trap) from some general initial state
[93–95]. It is found that, for repulsive interaction, the asymptotic momentum distribution is
determined by that of a spinless Fermi gas with the same energy, and hence exhibit universal
features independent of the initial state. This could be understood that, as the bosons expand,
its real space density drops and the system necessarily enters the strong interaction limit as the
Lieb–Liniger parameter (the ratio of interaction strength g and the density) approaches infinity.
It will be interesting to study the same scenario for a spinor system in the future.

6. Conclusion

In this article, we provided a short review of strongly interacting spinor quantum gases, in
which the interplay between the spin and the charge degrees of freedom gives rise to intriguing
properties. Through a generalized Bose–Fermi mapping, we are able to map the strongly inter-
acting system into a weakly interacting one, whose charge degrees of freedom is described by
a spinless Fermi gas while the spin degrees of freedom by an effective spin-chain Hamiltonian
derived from a perturbative approach. The wavefunction of the system takes the form of the
SCAW, which takes the spin-charge separated form in a given spatial sector. This allows us
to calculate certain collective excitation frequencies, the OBDM, as well as the momentum
distribution in an efficient way. Finally, we discussed the DF of the spinor gas in an initially
harmonic trap that is suddenly quenched, and show that the asymptotic momentum distribu-
tion is intimately connected to the initial real space density profile. This represents a rare case
where exact results can be obtained for a many-body system.

In the future, it will be interesting to explore what other universal features can be extracted
from the SCAW. Furthermore, bridging the weak and the strong interaction limits and develop-
ing a unified framework for 1D spinor gases with arbitrary interaction strength is an important,
but challenging, theoretical task.
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