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Abstract

the exploration of a great variety of critical manifolds.

The existence of quantum tricriticality and exotic phases are found in a tricritical Dicke triangle (TDT) where three
cavities, each one containing an ensemble of three-level atoms, are connected to each other through the action of
an artificial magnetic field. The conventional superradiant phase (SR) is connected to the normal phase through first-
and second-order boundaries, with tricritical points located at the intersection of such boundaries. Apart from the SR
phase, a chiral superradiant (CSR) phase is found by tuning the artificial magnetic field. This phase is characterized by
a nonzero photon current and its boundary presents chiral tricritical points (CTCPs). Through the study of different
critical exponents, we are able to differentiate the universality class of the CTCP and TCP from that of second-order
critical points, as well as find distinctive critical behavior among the two different superradiant phases. The TDT can
be implemented in various systems, including atoms in optical cavities as well as the circuit QED system, allowing
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1 Introduction

Recent efforts have been devoted to exploring many-body
quantum phases emerging in light-matter coupling sys-
tems using different platforms such as cavity and circuit
QED [1-4], and cold atoms in optical lattices [5-7]. The
rapid development of such platforms offers high control
and tunability, allowing for the exploration of richer phase
diagrams with more complex critical behaviors, for exam-
ple, the study of tricritical points (TCPs) and higher-order
critical points (multicritical points). TCPs were originally
found in He®-He* mixtures and a simple description of
their mean-field characteristics can be done using the Lan-
dau theory of phase transitions [8]. These special points
are located in the intersection of a second-order bound-
ary and a first-order boundary, with both of them separat-
ing the same two phases [8—13]. Although well understood

“Correspondence: yuyuzh@cqu.edu.cn; hpu@rice.edu

"Department of Physics, and Chongging Key Laboratory for strongly coupled
Physics, Chongging University, Chongging, 401330, China

’Department of Physics and Astronomy, and Rice Center for Quantum
Materials, Rice University, Houston, TX, 77251, USA

@ Springer

from a theoretical perspective, quantum tricriticality is not
abundant in real materials but can be found, for example,
in certain metallic magnets [14—17].

Recently, light-matter interacting systems have been
proposed to realize TCPs in experiments, specifically in
generalizations of the Dicke model [12, 18]. The Dicke
model has served historically as the cornerstone model in
the description of the interaction of light with an ensem-
ble of identical two-level atoms [19-22]. When the light-
matter coupling strength is tuned above a critical threshold
value, this system undergoes a superradiant phase transi-
tion, which has been realized in various experimental set-
tings [23, 24].

Apart from interesting critical boundaries, atom-light
interacting systems can be used to engineer exotic phases
of matter when external fields are incorporated. Arti-
ficial magnetic fields have been used to explore chiral
ground-state currents of interacting photons in a three-
qubit loop [25], chiral phases in a quantum Rabi triangle
[26], and fractional quantum Hall physics in the Jaynes-
Cummings Hubbard lattice [27-29]. Advances in synthe-
sizing such artificial magnetic fields have been reported
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in neutral ultracold atoms [30-32] and photonic sys-
tems [25, 33-36].

Here we propose a tricritical Dicke triangle (TDT) sys-
tem as a building block for exploring all these features. The
system is composed of three cavities each one containing
an ensemble of three-level atoms allowing the realization
of the tricritical Dicke Hamiltonian in each cavity. As a re-
sult, not only a second-order phase transition occurs, but
also a first-order transition from the normal phase (NP)
to the superradiant (SR) phase can be observed. The two
types of phase boundaries meet at a conventional TCP. In-
terestingly, as photon hopping between neighboring cav-
ities is permitted, new chiral superradiant phase (CSR)
and chiral tricritical points (CTCP) can be found by tun-
ing the artificial magnetic field, which breaks the Z, and
Cs symmetries, causing a chiral current of photons in the
ground state. Computation of the scaling exponents shows
aplethora of critical behaviors, in particular, the CTCP and
conventional TCPs are found to belong to different univer-
sality classes.

2 Single cavity tricritical Dicke model

Let us first consider a single cavity containing N identical
three-level atoms coupled uniformly to the cavity mode.
The Hamiltonian of this system is a generalization of the
conventional Dicke model and reads

Hp=wa'a+ @(ﬂ +a) id(k) +Q ih(k), (1)

VN P P
where a (a') is the photon annihilation (creation) operator
of the single-mode cavity with frequency w, g the atom-
cavity coupling strength. The dipole operator d¥) of the k-
th atom and the single-atom Hamiltonian #*) are defined
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where we have chosen the eigenstates of #¥) to be the ba-
sis states. These states are labelled as |1), |0) and | — 1)
as shown schematically in Fig. 1(a). The cavity field cou-
ples |1) and |0) as well as |0) and | — 1), with the coupling
strengths given by g and yg, respectively. The tunable di-
mensionless parameter y serves as a control parameter.
The phase diagram can be described in terms of the
scaled dimensionless coupling strength A = g/+/Qw and
the transition strength ratio y as shown in Fig. 1(b). For
simplicity, we set w = Q = 1. In the thermodynamic limit
N — oo the normal phase with (a) = 0 and the superra-
diant phase with macroscopic photon population ({a)
V/N), are separated by first and second-order boundaries,
indicated by the yellow dashed and the white solid lines
in Fig. 1(b), respectively. These two types of boundaries
meet at the tricritical point. A Landau theory approach can
be followed to explore the expressions for the second- and
first-order phase transitions, as well as for the TCP. Here,
the order parameter is given by « = (a)/+/N. In terms of
this order-parameter, the mean-field energy is given by:

E 1
X . P +ad+h, (3)
QN  8)2

where /1 and d are just the single atom operators given in

Eq. (2), and the order parameter o has been rescaled by

a— %a. Due to the Z; symmetry of the Hamiltonian,
the mean-field ground-state energy can be expanded as a

(a)

Figure 1 (a) Schematic showing the atomic levels of the tricritical Dicke model. Light with frequency w couples the states |1) and |0) with
interaction strength g, and the states |0) and | - 1) with interaction strength gy . (b) Phase diagram of the tricritical Dicke model in the A-y plane,
using o = {a)/+/N as order parameter. The white solid line, yellow dashed line and red dot indicate the second-order boundary, first-order boundary,

and tricritical point, respectively

(b)
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Taylor series in terms of a?: Eyg = Y 1o cx?*. The coeffi-
cients ¢, are obtained through perturbation theory, which
is performed by treating / as the unperturbed Hamilto-
nian and 4 as the perturbation as shown in the Appendix
and in Ref. [18]. Keeping the expansion up to order «® and
discarding the constant term, the mean-field energy is ap-
proximated by

Eue

2 4 6
=+ ca” + ca (4)
QN ’

where ¢; = 1/(8A2) — y2, ¢y = y2(y? - %), and ¢3 = -y2(1 -

7y? + 8y*)/4 (see the Appendix). An ordinary 2nd-order
critical point is obtained when ¢; = 0 and ¢, > 0, leading to
the second-order boundary expression

1
AocVac = ﬁ (5)

The tricritical point is defined by the condition ¢; = ¢; =
0and ¢3 > 0 [8, 18, 37]. For the single cavity case, the tricrit-
ical point is located at yrcp = 1/+/2 and Agep = 1/2. When
¥ > yrep, one has ¢; < 0, and Eyr goes from having a single
global minimum at « = 0 for A < A, to having two global

minima at oy = :I:\/(—cz ++/¢5 = 3ci¢3)/3c3 for A > Ay, this
behavior indicates the second-order character of the phase
transition. In the case y < Yrcp, Evr has three local minima
at ox and o = 0, the global minimum switches from o = 0
to @ = oy as the phase transition is crossed, the discon-
tinuous jump on the global minimum location character-
izes the first-order boundary. The change in the order of
the transition can be clearly observed in Fig. 2 where the
ground-state energy Egy as a function of « is presented for
different values of y and A.

27| - gnd order, SR 7
1% order, SR
3 | | |
-1 -0.5 0 0.5 1

(07

Figure 2 Ground-state energy Eng/(S2N) as a function of the order
parameter « in the superradiant phase for y < yrcp (black solid line),
and y > yrep (red dashed line), and in the normal phase (blue dotted
line), respectively
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3 Tricritical Dicke triangle

We now consider three such cavity systems linked by
photon hopping, as schematically shown in Fig. 3, forming
the tricritical Dicke triangle (TDT). The TDT Hamiltonian
is given by

3 3
H= ZHD'” + Z[(eiea;aml + e’i9a2+1a,,). (6)
n=1 n=1

Here Hp, is the single-cavity Hamiltonian as given by
Eq. (1), where we use the sub-index # to denote the nth cav-
ity; J is the hopping amplitude between nearest-neighbor
cavities with a phase 6. The complex photon hopping am-
plitude means that the photons are subjected to an artifi-
cial vector potential A(r) such that 6 = fr :m A(r) dr where r,
and r,, denote the position of the two neighboring cavities.
Such an artificial vector potential or magnetic field can
be achieved through temporal modulation of the photon-
hopping strength on each cavity [26], and indeed has been
experimentally implemented in a superconducting qubit
platform [25]. Hence the TDT model we present here can
be realized using existing technologies.

In analogy to the Dicke model, there exists a parity sym-
metry operator P = H?zl explin[a;a; + Zszl(h(k) + 1)1},
which satisfies [H,P] = 0 with eigenvalues £1. Besides
such Z, symmetry, the Hamiltonian is real when 6 = mx
(m € Z), and, consequently, it preserves time-reversal
symmetry (TRS). When this condition is not met, the
breaking of the TRS can have important implications on
the behavior of photons as will be shown later.

4 Normal phase of TDT
Let us first explore the normal phase (NP) of the TDT. This
phase features no photon excitation just as in the single

Q? n=1 45%

Je+i0

n=2 n=3

Figure 3 Schematic of the TDT. Each cavity contains a three-level
atom interacting with light as described in Fig. 1(a). Photons can hop
between neighboring cavities with hopping strength Je*
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cavity case. We employ a Schrieffer-Wolff transformation
u,= exp(ﬁg/ V/NS,) with an anti-Hermitian operator S,
given by

N (0 -1 O
= (ajl + an)/Q Z 1 0 -y, (7)
k=1 \O y 0

which makes the off-diagonal terms of the single-cavity
Hamiltonian Hp, vanish. Neglecting higher-order terms
in the thermodynamic limit N — oo, the transformed
TDT Hamiltonian becomes

3 3
Hy = [u/H] ]
i=1 j=1
3
= Z(a)a ay,+QZh )
=1

2
*ZN%(“Z+“")2
n=1
N (1 0 0
xY o -1+ 0 |]. (8)
k=1 \0 0 —y?

The above Hamiltonian is diagonal in the atomic degrees
of freedom, and an effective low-energy Hamiltonian can
be found by projecting into the lowest energy state of the
three-level atom,

3
4 27/2 2 2)/2
iy = 320 25 Jaton - 2 )
n=1
3
+ Z](e’eafaml +e "a;Hlan) + Eo, 9)
n=1

where the energy constant is Ey = —6g2y2/Q - 3NQ.
Using the discrete Fourier transformationa = Y 1% end

with the quasi-momentum g = 0,427 /3, we can rewrite

the projected Hamiltonian Hép in momentum space as

28%y
Hép = qua};aq S
q

2

q

(zz;a + aqa,q) +Ey, (10)

where w,; = » — 4¢%y?/Q2 + 2] cos(6 - q) By introducing a
unitary transformation S, = exp[B,(a/a’, — aja_,)] with a
] wq+w,q—8g2y2/9

T
q—q

variational squeezing parameter §, = gt g 8EY 7R
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Hy\» can be diagonalized and takes the form H}p = >4 X
a;aq + E,, where

E,=Ep+ %Z(sq—wq) (11)

q

is the ground-state energy, and the excitation energies are
given by

1

€q= _[wq —w_ g+ \/(wq +w_g)? — 64g4y4/522].

5 (12)

A second-order phase transition occurs when the gap
between the first excited state and the ground state van-
ishes, then, the condition &, = 0 can be used to determine
the location of these boundaries, leading to the critical val-
ues

)\20 Y2c

(13)

_ |1+4]/wcosgcost + 42 /w? cos(0 — gq) cos(0 + q)
- 8(1 + 2J/wcos 6 cos q) ’

Note that if 0 and J/w are fixed, the expression above sig-
nals a y-A second-order line, but since 8 will be taken
as an additional control parameter that can vary, Eq. (13)
refers, in general, to a second-order surface in the three
dimensional parameter space spanned by y, A and 6, as
shown in Fig. 4. Moreover, Eq. (13) describes two different
second-order boundaries, one for g = 0 and the other for
q = £27/3, as discussed in the following sections, each of
these g-values is associated with a different superradiant
phase. Additionally, note that Eq. (13) reduces to Eq. (5)
for the single cavity case if we take the limit of no hopping
between cavities J = 0, which is expected.

5 Superradiant phases of TDT

As the coupling strength increases to A > A,c, the num-
ber of photons in each cavity becomes proportional to N.
To capture the superradiant physics, the bosonic operators
are shifted as a, — a, + v/Na,,, a), > a; + /N with the
complex displacement parameter «, = A, + iB,,. Note that
in the NP «,, = 0. The transformed Hamiltonian becomes

3 N N
R= ) W@y, + Z\/%g(zz; +an)d® + Q) " h®
n=1 k=1 k=1

3
+Z]a (¢®Gp + € ay_1) + H + Esg,

n=1

(14)

where the linear term is H; = Zi:l ov/N(@ o, + a,at) +
VNJla! (e i1 + e Py, 1) + h.c]. The ground-state energy
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Figure 4 The phase diagram of the tricritical Dicke triangle system,
which y is plotted as a function of the dimensionless coupling
strength A and the hopping phase 6. The color bar represents the
order parameter A3 =Re({as)). Thered solid line y —Aisa
second-order critical line while the blue dashed line y = X isa
first-order critical line at +6, for the NP-SR and NP-CSR phases
transitions, respectively. The tricritical points are marked by red circles,
in which yrcp = 1/4/2. The phase boundary between the SR and CSR
is denoted by solid black line, determined by |6 = .. Here, we set
J/w=0.1

n

is expressed as

E 3
% = ZZﬁgAnd +Qh+w(A} +B))

n=1

+ ]An [COS Q(ArHl + An—l)
- Sine(BrHl - Bn—l)]
+JBu[c0s 0 (Bys1 + By_1)

+8in60(Ap1 —Au1)]. (15)
with d and % being the three-level operators in Eq. (2). The
mean-field values A,, and B,, used to characterize the dif-
ferent phases are found by minimizing the energy given
in Eq. (15), where two types of superradiant phases can
be identified depending on whether |0] is greater or lower
than 6. (see below). The complete phase diagram of the
TDT is presented in Fig. 4. Note that although there are
six order parameters, namely, A, and B, with n = 1,2,3,
the value A3 has been chosen to describe the phase dia-
gram. Nonetheless, relations between all six-order param-
eters are provided in the following sections.

5.1 Conventional superradiant phase (SR)
In the SR phase «,, = A, is real and non-zero, and is the
same for all three cavities, o, = @,1;. Then, each cavity
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behaves as an independent tricritical Dicke model. For a
given value of 6, the boundary between the SR and NP
phases is split into a second-order line (the red solid line)
and a first-order critical line (the blue dashed line) as
shown in Fig. 4. The two lines merge together in the TCP
(represented with the red dots). In the three dimensional
parameter space shown in Fig. 4, the TCPs form a line. The
second-order phase boundary is consistent with the ana-
lytical expression y2c-Azc in Eq. (13) with the momentum
q=0.

Figure 5(a), (b) shows the order parameter o, for the NP-
SR phase transition as a function of A. For a small value
of the atomic transition ratio y = 0.1, «, is zero in the
NP, and increases with an abrupt jump in the SR phase
in Fig. 5(a), indicating a first-order phase transition. Since
the transition between the middle and the upper state of
the three-level atom dominates for a small y, (/,) > 0 in-
creases abruptly as well across the first-order transition
(see the Appendix). However, for y = 1.5 in Fig. 5(b), (a,)
changes smoothly from the NP to SR phase, exhibiting a
second-order phase transition. Note that, in the SR, the
ground state is two-fold degenerate as the configurations
break the Z; symmetry. In Figs. 4 and 5, one of the degen-
erate configurations is chosen, the other one is simply ob-
tained by changing the sign of the order parameter.

A perturbation theory analysis can be done in a similar
fashion as for the single cavity case. Similarly, the mean-
field energy for the SR can be approximated by

Esr

3QN (16)

= Clol2 + CzOl4 + C30l6,

with ¢; = ‘é’;f?, where o’ = w + 2] cos0. ¢y and c¢3 have the
same form as in the single cavity case. Consequently, the
second order boundary expression for the SR is given by

1
Aoryat = ——/1+2]/wcosb,

24/2

which is consistent with Eq. (13) for g = 0. The tricritical
point is located at yrcp = 1/+/2 and Apcp = /1 + 2JTw cos 0/
2. Note that, as expected, both of these results reduce to
the single cavity case if the limit J = 0 is taken.

(17)

5.2 Chiral superradiant phase (CSR)
In the CSR phase, «,, is complex and depends on 7. Mini-
mization of the mean-field energy in Eq. (15) yields

An 7{An+1 :An—lr Bn =0, Bn+1 :Bn—l- (18)
Since the solutions above break both the Z, and C; sym-
metries, the ground state in the CSR is six-fold degenerate.
For a clear presentation of results we choose the particular
solution A3 #Al = Ag, Bg =0, 32 = —Bl.
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Figure 5 The order parameter (a,) = &y, as a function of the dimensionless coupling strength A across the NP-SR phase transition of (a) first-order
y =0.1,and (b) second-order y = 1.5. 8 is kept fixed at 277/3 > 6. The real part of (a,) across the NP-CSR phase transition of (c) first-order y =0.1,
and (d) second-order y = 1.5. 6 is kept fixed at /3 < 6. The inset corresponds to the imaginary part B, = Im({an)) of the order parameter

In Fig. 5(c), (d) the order parameter «, is shown for the
CSR phase transition. As observed in both panels, the or-
der parameter is site-dependent, contrary to the SR case.
However, there is still a change in the order of the transi-
tion depending on the y value. Consequently, just as in the
SR phase, there are chiral tricritical points (CTCPs) in the
CSR phase as observed in Fig. 4.

To investigate the phase boundaries in the CSR phase,
we start with a particular solution A3 = A, A; = Ay = A and
B; = 0. Similar to the SR case, the mean-field ground-state
energy can be written as a Taylor series in terms of A? and
A2

ECSR

QN

= Z(wCSR +]/ - ]/2)22 + (a)CSR - ]/2)142

+4TAA + ¢, (A4 + 2;{4), (19)
where wcgr = [0 — 2J%sin®6/(w — J cos6)]R2/8¢>, ] = Q/

2 J%sin? ¢
8g“(Jcost + <705
By minimizing the energy using 0E/dA = 0 and 9E/dA =0,
the expression for the second-order boundary in the CSR
can be found to be

) and the coefficient ¢, = y*(y? - 1).

CSR,,CSR
)\'ZC Yac

1 [1-2//wcosf +J2/w?(cos? O — 3sin®0)
- 23/2 1-J/wcosb

which is consistent with Eq. (13) when choosing g =
+27/3. As expected, the critical line y-A of the second-
order NP-CSR transition in Fig. 4 fits well with the analyt-
ical solutions A55R. The CTCP is located at yercp = 1/+/2 as
a consequence of setting ¢; = 0 in Eq.(19). By substituting
Yerep into Eq. (20), Acrep can be determined.

If y and X are fixed inside the SR phase, and 6 is var-
ied until entering the CSR the order parameter changes
discontinuously. Thus, the phase transition between the
two superradiant phases is of first-order and indicated
by the solid black line in Fig. 4. Right at the boundary
between the SR and CSR phases, conditions B, = 0 and
A,-1 = A, = £A, need to be satisfied. From Eq. (15), this
implies J cos 0 +J2sin?0/(w—-J cos ) = 0, which leads to the
critical hopping phase that separates the SR and CSR

(21)

2]
6, =cos ! ———F ).
€08 ( 8]2+a)2+a))

The entire superradiance region is split into the CSR phase
regime for |#| < 6, and the SR phase regime for |6| > 6..

To characterize further the chirality in the CSR phase, we
analyze the ground-state current of photons in the closed
loop of three cavities. Similar to the continuity equation
in classical systems, the photon current operator can be
explicitly defined as

Ly = i[(aiaz + ﬂ;ﬂg + agal) - h.c.]. (22)
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Figure 6 Chiral photon current /,, as a function of the hopping
phase 6 for y = 0.1, yrcp, and 1.2, respectively. Schematic of the
mean photon population in the three cavities in the CSR region, two
cavities with the blue color have the same excitation of photons and
are different from the third cavity denoted in red. Here A = 1 and
J/w=0.1

Figure 6 shows the photon current in the ground state for
A > Ao in the SR and CSR phases. By varying the effective
magnetic flux 6, a discontinuous jump of Iy, is observed at
the critical hopping phase £6,. I, goes from zero in the SR
phase, to a non-zero value in the CSR phase and changes
its sign depending on the phase 8. Then, varying 6 changes
the orientation of the photons circulating in the loop from
clockwise to anticlockwise, a signature of the chiral phase.
The ground-state current of photons is associated with the
nonuniform excitation of photons in three cavities, which
is induced by the magnetic flux.

6 Critical behavior

Second-order phase transitions are characterized by their
scaling exponents in the vicinity of the transition. Here,
we explore the critical behavior of the total photon num-
ber Ngy = Zzzl(a;a,,) near three important regions: the
second-order critical boundary, the TCP and the CTCP, in
order to classify the universality of each of these critical
manifolds.

First, we consider a point (y, A) in the SR region and
close to the second-order critical line for fixed 6 = 27/3.
A line through this point is perpendicular to the criti-
cal line and intercepts the critical line at a second-order
critical point (y5%, A3%) [12]. Around the critical point,
the photon number scales like Ny, o Lf, where L =
V(L= 25R)2 + (¥ — ¥5R)2 is the distance between the point
and the second-order critical point. Figure 7(a) displays
Npn at (y, A) as a function of L. The critical exponent for
this transition is 8 = 1, consequently, Ngfjd o L. However,
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if the perpendicular line through (y, 1) intercepts the crit-
ical line at the TCP (yzcp, Arcp), one has a different scaling

NS ocLM? (23)
which gives a critical exponent 1/2 for the TCP. This il-
lustrates that the TCP belongs to a different universality
class in comparison to the conventional second-order crit-
ical points.

Figure 7(b) show the scaling behaviors for the CSR phase
at 0 = /3. The mean photon number in one of the sites
is different from that in the other two cavities due to the
break of the C3 symmetry. However, we found that the
photon number in each cavity has the same scaling behav-
jor. Similar to the SR phase, the critical exponent for the
2nd-order critical point (y55%, A52®) is obtained to be 1.
The scaling function at the CTCP (ycrep, Acrep) is found
to be

NS® o L2, (24)
This indicates that all tricritical points, regardless of
whether they are TCP or CTCP, have the same scaling ex-
ponent for photon numbers.

Finally, Fig. 7(c) shows the scaling exponents at 6 = 6,
at the critical line. This line is special since it represents
the line of triple points at which three phases (SR, CSR,
and NP) coexist. The scaling along this line shows the same
behavior, which is expected, as both SR and CSR have the
same scaling exponents.

The exponent of Ny, (8) is useful to distinguish between
ordinary critical points and tricritical ones, nonetheless, it
does not signal any differences between the SR and CSR
phase transitions, which is unexpected as both phases have
very distinct features, the scaling behavior of other quan-
tities could be useful for further characterization of the
critical behavior. To this end, let us examine other crit-
ical exponents such as the scaling of the excitation en-
ergy. The effective low-energy Hamiltonian in Eq. (9) has
a quadratic form in the a4, operators, consequently, a Bo-
goliubov transformation can be performed to diagonalize
the Hamiltonian in the form

Hlﬁp = Z sqa;aq +Eg, (25)
q

with g = 0,£27/3, E, being the ground state energy given
in Eq. (11), &; being the excitation energies given in
Eq. (12), and a, (a;) being a new set of annihilation (cre-
ation) operators obtained through the Bogoliubov trans-
formation. Precisely at the critical points, the lowest of
the set of excitation energies {¢,} vanishes, and we denote
the lowest excitation energy by ¢;. consequently, we ex-
pect that around the critical point this quantity behaves as
&1 X L.
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critical point located in the boundary with the normal phase for the CSR phase (a), the SR phase (b), and a triple point (c). Conventional second-order
critical points (y = 0.9) are represented by open squares, while TCP’s and CTCP’s are represented with open circles. The corresponding fitting lines
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Figure 8 Excitation energies ¢; as a function of the distance L between a point in the normal phase and critical point located in the boundary with
the CSR phase (a), the SR phase (b), or a triple point (c). &1 denotes the lowest excitation energy, and €, is the second-lowest. Both conventional
second-order critical points (y = 0.9) and tricritical points (TCP's and CTCP’s) with ¥ = yrcp are explored. The fitting lines are shown on each panel.
Here, J/w =0.01

tween such phases. However, this exponent does not seem
to be sensitive to the order of the critical point as tricriti-

Since Eq. (25) is only valid in the normal phase, L in this
case is the distance between a point in the normal phase

and the critical point. In Fig. 8, the scaling of ¢; as a func-
tion of L is shown for both the SR and CSR phases. In the
SR we find that &; = g4, while in the CSR &; = g4-1973.
The exponent 7 is found to be 1 for the CSR while it has a
value of 1/2 for the SR. This means that the excitation be-
havior on the onset of the phase boundaries is different be-

cal points follow the same behavior as conventional critical
points.

Moreover, we note that at a triple point (6 = 6,) two ex-
citation energies vanish (denoted by ¢; and ¢&,) instead of
just one, as a sign of the coexistence of both superradiant
phases at this point This behavior is illustrated in Fig. 8(c).
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Table 1 Critical exponents 8 and n for each critical
boundary/point

Critical boundary/point B n
SR-NP second-order boundary 1 1/2
Tricritical points (TCP) 172 1/2
CSR-NP second-order boundary 1 1
Chiral tricritical points (CTCP) 172 1
Second order critical points at the triple line 1 172 &1
Tricritical points at the triple line 1/2 172 &1

Consistently, the two 1 exponents are found to be 1/2 and
1 representing the SR and CSR phase transitions, respec-
tively. A summary of the critical exponents for each critical
boundary/point is presented in Table 1.

A study of &; for points inside the superradiant region
could retrieve some interesting behavior as described in
Refs. [38, 39]. However, an effective Hamiltonian of the
form of Eq. (9) is not easily obtainable for the TDT in the
superradiant regions. Nonetheless, it seems that the com-
plementary use of n and 8 exponents already allow us to
characterize the critical behavior of the different points
and boundaries in the system, illustrating the great variety
of features that can be explored using the TDT.

7 Conclusion

A different transition ratio between atomic levels and the
incorporation of an artificial magnetic field make the tri-
critical Dicke triangle an ideal platform for studying the
interplay between higher-order critical points and chiral
phases of matter. Two different superradiant phases can be
found by tuning the phase 6 of the photon hopping ampli-
tude, and both of them can be accessed from the normal
phase through first- and second-order transitions, as well
as tricritical points. The scaling behavior of the excitation
energy indicates that the NP-SR and the NP-CSR transi-
tions belong to different universality classes; while the scal-
ing behavior of the photon mean-field population eluci-
dates a different universality between tricritical and ordi-
nary critical points, making evident the richness of critical
manifolds in the system. Our study opens intriguing av-
enues for exploring quantum tricriticality and rich phases
in a single light-matter interacting platform.

Finally, we want to comment that two natural exten-
sions of the current work can be explored in the future.
(1) We may consider, instead of three-level atoms, general
multi-level atoms. Such a system can support multicriti-
cal points [18]. In general, more atomic levels can support
higher-order critical points. (2) Instead of three cavities on
a ring, we can consider an even number of cavities. Re-
cent work has shown that there exist some qualitative dif-
ferences between odd and even number of cavities, as the
former exhibiting geometric frustration [38, 39].
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Appendix: Coefficients ¢,'s by perturbation theory

We apply perturbation theory to obtain the coefficients
¢t’s in Eq. (16). The mean-field Hamiltonian in the SR
phase is given by

E 2 %
R :a)+ J cos o+ H,

3NQ Q

H,=D+h.

(A1)

(A2)

with o’ = 2«/§got/§2 and D = o'd. h is treated as the un-
perturbed Hamiltonian, which gives the eigenstates |e;)
(i = 1,2,3) with the eigenvalues ¢, = -1, &, =0 and &3 = 1.
And d is the perturbation term, the coefficients ¢ are ob-
tained by the perturbation expansion up to (2k) order. The
ground-state wave function can be expanded as

01 = ey + 3 2y

P

= |e1) + G(E)Dlg), (A3)

where G(E) = Zm;a |m){m|/(E - &,,) and H,|p) = E|p).
This means that the wave function can be found through
iteration as:

lg) = le1) + G(E)DIn) + G(E)DG(E)D|n)

+ G(E)DG(E)DG(E)D|n) + - - - (A4)

From D|¢) = (E—¢€1)|¢), we obtain the ground-state energy

E —¢1 = (e1|Dlg). (A5)

By substituting the wave function into the equation above,
the ground-state energy is given by

E = &1 + (¢1|Dle1) + (1|DG(E)Dley)

+ (&1|DG(E)DG(E)D|&1) + - - - (A6)

Clearly, the zero-th energy correction is E© = g,. Since
(e1|Dle1) is zero due to the symmetry of the Hamiltonian,
the first non-zero correction is the second-order one

E® = g1 + (e1|DG(E)D|e1)

|D1a|?
R g, L

=&

(A7)

The fourth-order correction of the ground-state energy is

E® = ¢, + (6;|DG(E)D|¢;)
+ (61|DG(E)DG(E)DG(E)D|e1)

o ldil?
EQ) — &

=g +a
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4 |m)(m|  |n)(n|
vt YD) eild o — g
m#1 n#1 k1 m "
k) (k]
ded|81)
a/2y2 1
=-1+ - —aty? A8
a2 2% 7 (A8)

Since « is small around the critical point, the above en-
ergy can be approximated by

- l-a?y%+ yz(yz _ %)0/4'

EW (A9)

The sixth-order correction of the energy is given by

E® = g1 +(e1|DG(E)Dle;)
+(611DG(E)DG(E)DG(E)D|¢,)
+ (61|DG(E)DG(E)DG(E)DG(E)DG(E)Dle; )
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, (e1lm)dyn  dy
+O‘6ZZZZZ 21(0?1_% E(o)_kgn

mAl nfl kAl il j1

» dii di  {(jle1)
EO — g EO —g; EO —g;
e a’?y? a4 ldul® ldal
YTE® g, (E® —6,)2 E® — g,
d)? dys)?
o |d12] |da3| (A10)

(EO — £9)3 (EO) — g3)?

Then, the ground-state energy up to the sixth-order in per-
turbation can be approximately given as a power series in
terms of o2

E© = _1-a2y24 yz(yz _ %)O{A

1
- E)/Z(S)/4 -7y*+ 1) (A11)
The expected value of (/,) for a single atom in the n-th
cavity is calculated by minimizing the energy in Eq. (A1).
Figure Al shows (/,) in the three cavities for the first-

e +a? |daa* and second-order phase transitions from the NP to SR and
E@ — g CSR phases. In the NP phase, the atom stays in the down
|m) (m] 1) (n] state with (/,) = —1. For the first-order phase transition
rat Z Z Z<81|dE(2) p dE(Z) s (panels (a) and (c)), {(h,) exhibits an abrupt jump from -1
m#l n7l k71 " " to (h,) > 0. In contrast, (h,) increases smoothly from —1
|k (k| across the second-order phase transition with y = 1.5 as
X dE(Z) — ekd|81> show in panels (b) and (d).
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Figure A1 (h,) of a single atom in the n-th cavity as a function of the dimensionless coupling strength A across the NP-SR phase transition of (a)
first-order y =0.1, and (b) second-order y = 1.5. 8 is kept fixed at 27r/3 > 6. (h,) is a function of the dimensionless coupling strength A across the
NP-CSR phase transition of (c) first-order y = 0.1, and (d) second-order y = 1.5. 8 is kept fixed at w/3 < 6,
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