
Quantum FrontiersCheng et al. Quantum Frontiers            ( 2022)  1:18 

https://doi.org/10.1007/s44214-022-00019-5

OR IG INAL ART ICLE Open Access

Chiral quantum phases and tricriticality in a
Dicke triangle
Guo-Jing Cheng1, Diego Fallas Padilla2, Tao Deng1, Yu-Yu Zhang1* and Han Pu2*

Abstract

The existence of quantum tricriticality and exotic phases are found in a tricritical Dicke triangle (TDT) where three
cavities, each one containing an ensemble of three-level atoms, are connected to each other through the action of
an artificial magnetic field. The conventional superradiant phase (SR) is connected to the normal phase through first-
and second-order boundaries, with tricritical points located at the intersection of such boundaries. Apart from the SR
phase, a chiral superradiant (CSR) phase is found by tuning the artificial magnetic field. This phase is characterized by
a nonzero photon current and its boundary presents chiral tricritical points (CTCPs). Through the study of different
critical exponents, we are able to differentiate the universality class of the CTCP and TCP from that of second-order
critical points, as well as find distinctive critical behavior among the two different superradiant phases. The TDT can
be implemented in various systems, including atoms in optical cavities as well as the circuit QED system, allowing
the exploration of a great variety of critical manifolds.
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1 Introduction

Recent efforts have been devoted to exploring many-body

quantum phases emerging in light-matter coupling sys-

tems using different platforms such as cavity and circuit

QED [1–4], and cold atoms in optical lattices [5–7]. The

rapid development of such platforms offers high control

and tunability, allowing for the exploration of richer phase

diagrams with more complex critical behaviors, for exam-

ple, the study of tricritical points (TCPs) and higher-order

critical points (multicritical points). TCPs were originally

found in He3-He4 mixtures and a simple description of

theirmean-field characteristics can be done using the Lan-

dau theory of phase transitions [8]. These special points

are located in the intersection of a second-order bound-

ary and a first-order boundary, with both of them separat-

ing the same two phases [8–13]. Althoughwell understood
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from a theoretical perspective, quantum tricriticality is not

abundant in real materials but can be found, for example,

in certain metallic magnets [14–17].

Recently, light-matter interacting systems have been

proposed to realize TCPs in experiments, specifically in

generalizations of the Dicke model [12, 18]. The Dicke

model has served historically as the cornerstone model in

the description of the interaction of light with an ensem-

ble of identical two-level atoms [19–22]. When the light-

matter coupling strength is tuned above a critical threshold

value, this system undergoes a superradiant phase transi-

tion, which has been realized in various experimental set-

tings [23, 24].

Apart from interesting critical boundaries, atom-light

interacting systems can be used to engineer exotic phases

of matter when external fields are incorporated. Arti-

ficial magnetic fields have been used to explore chiral

ground-state currents of interacting photons in a three-

qubit loop [25], chiral phases in a quantum Rabi triangle

[26], and fractional quantum Hall physics in the Jaynes-

Cummings Hubbard lattice [27–29]. Advances in synthe-

sizing such artificial magnetic fields have been reported
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in neutral ultracold atoms [30–32] and photonic sys-

tems [25, 33–36].

Here we propose a tricritical Dicke triangle (TDT) sys-

tem as a building block for exploring all these features. The

system is composed of three cavities each one containing

an ensemble of three-level atoms allowing the realization

of the tricritical Dicke Hamiltonian in each cavity. As a re-

sult, not only a second-order phase transition occurs, but

also a first-order transition from the normal phase (NP)

to the superradiant (SR) phase can be observed. The two

types of phase boundaries meet at a conventional TCP. In-

terestingly, as photon hopping between neighboring cav-

ities is permitted, new chiral superradiant phase (CSR)

and chiral tricritical points (CTCP) can be found by tun-

ing the artificial magnetic field, which breaks the Z2 and

C3 symmetries, causing a chiral current of photons in the

ground state. Computation of the scaling exponents shows

a plethora of critical behaviors, in particular, theCTCP and

conventional TCPs are found to belong to different univer-

sality classes.

2 Single cavity tricritical Dickemodel
Let us first consider a single cavity containing N identical

three-level atoms coupled uniformly to the cavity mode.

The Hamiltonian of this system is a generalization of the

conventional Dicke model and reads

HD = ωa†a +

√
2g

√
N

(
a† + a

) N∑

k=1

d(k) +�

N∑

k=1

h(k), (1)

where a (a†) is the photon annihilation (creation) operator

of the single-mode cavity with frequency ω, g the atom-

cavity coupling strength. The dipole operator d(k) of the k-

th atom and the single-atom Hamiltonian h(k) are defined

as

d(k) =

⎛
⎝
0 1 0

1 0 γ

0 γ 0

⎞
⎠ , h(k) =

⎛
⎝
1 0 0

0 0 0

0 0 –1

⎞
⎠ , (2)

where we have chosen the eigenstates of h(k) to be the ba-

sis states. These states are labelled as |1〉, |0〉 and | – 1〉
as shown schematically in Fig. 1(a). The cavity field cou-

ples |1〉 and |0〉 as well as |0〉 and | – 1〉, with the coupling

strengths given by g and γ g , respectively. The tunable di-

mensionless parameter γ serves as a control parameter.

The phase diagram can be described in terms of the

scaled dimensionless coupling strength λ = g/
√

�ω and

the transition strength ratio γ as shown in Fig. 1(b). For

simplicity, we set ω = � = 1. In the thermodynamic limit

N → ∞ the normal phase with 〈a〉 = 0 and the superra-

diant phase with macroscopic photon population (〈a〉 ∝√
N ), are separated by first and second-order boundaries,

indicated by the yellow dashed and the white solid lines

in Fig. 1(b), respectively. These two types of boundaries

meet at the tricritical point. A Landau theory approach can

be followed to explore the expressions for the second- and

first-order phase transitions, as well as for the TCP. Here,

the order parameter is given by α = 〈a〉/
√
N . In terms of

this order-parameter, the mean-field energy is given by:

EMF

�N
=

1

8λ2
α2 + αd + h, (3)

where h and d are just the single atom operators given in

Eq. (2), and the order parameter α has been rescaled by

α → 2
√
2g

�
α. Due to the Z2 symmetry of the Hamiltonian,

the mean-field ground-state energy can be expanded as a

Figure 1 (a) Schematic showing the atomic levels of the tricritical Dicke model. Light with frequency ω couples the states |1〉 and |0〉 with
interaction strength g, and the states |0〉 and | – 1〉 with interaction strength gγ . (b) Phase diagram of the tricritical Dicke model in the λ-γ plane,
using α = 〈a〉/

√
N as order parameter. The white solid line, yellow dashed line and red dot indicate the second-order boundary, first-order boundary,

and tricritical point, respectively
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Taylor series in terms of α2: EMF =
∑∞

k=0 ckα
2k . The coeffi-

cients ck are obtained through perturbation theory, which

is performed by treating h as the unperturbed Hamilto-

nian and d as the perturbation as shown in the Appendix

and in Ref. [18]. Keeping the expansion up to order α6 and

discarding the constant term, the mean-field energy is ap-

proximated by

EMF

�N
= c1α

2 + c2α
4 + c3α

6, (4)

where c1 = 1/(8λ2) – γ 2, c2 = γ 2(γ 2 – 1
2
), and c3 = –γ 2(1 –

7γ 2 + 8γ 4)/4 (see the Appendix). An ordinary 2nd-order

critical point is obtained when c1 = 0 and c2 > 0, leading to

the second-order boundary expression

λ2cγ2c =
1

√
8
. (5)

The tricritical point is defined by the condition c1 = c2 =

0 and c3 > 0 [8, 18, 37]. For the single cavity case, the tricrit-

ical point is located at γTCP = 1/
√
2 and λTCP = 1/2. When

γ ≥ γTCP, one has c1 < 0, and EMF goes from having a single

global minimum at α = 0 for λ < λ2c to having two global

minima at α± = ±
√
(–c2 +

√
c22 – 3c1c3)/3c3 for λ > λ2c, this

behavior indicates the second-order character of the phase

transition. In the case γ < γTCP, EMF has three local minima

at α± and α = 0, the global minimum switches from α = 0

to α = α± as the phase transition is crossed, the discon-

tinuous jump on the global minimum location character-

izes the first-order boundary. The change in the order of

the transition can be clearly observed in Fig. 2 where the

ground-state energy ESR as a function of α is presented for

different values of γ and λ.

Figure 2 Ground-state energy EMF/(�N) as a function of the order
parameter α in the superradiant phase for γ < γTCP (black solid line),
and γ > γTCP (red dashed line), and in the normal phase (blue dotted
line), respectively

3 Tricritical Dicke triangle
We now consider three such cavity systems linked by

photon hopping, as schematically shown in Fig. 3, forming
the tricritical Dicke triangle (TDT). TheTDTHamiltonian
is given by

H =

3∑

n=1

HD,n +

3∑

n=1

J
(
eiθa†

nan+1 + e–iθa†
n+1an

)
. (6)

Here HD,n is the single-cavity Hamiltonian as given by
Eq. (1), wherewe use the sub-index n to denote the nth cav-
ity; J is the hopping amplitude between nearest-neighbor
cavities with a phase θ . The complex photon hopping am-
plitude means that the photons are subjected to an artifi-
cial vector potentialA(r) such that θ =

∫ rm
rn

A(r)dr where rn
and rm denote the position of the two neighboring cavities.
Such an artificial vector potential or magnetic field can
be achieved through temporal modulation of the photon-
hopping strength on each cavity [26], and indeed has been
experimentally implemented in a superconducting qubit
platform [25]. Hence the TDT model we present here can
be realized using existing technologies.
In analogy to the Dicke model, there exists a parity sym-

metry operator P = �3
i=1 exp{iπ [a+i ai +

∑N
k=1(h

(k) + 1)]},
which satisfies [H ,P] = 0 with eigenvalues ±1. Besides
such Z2 symmetry, the Hamiltonian is real when θ = mπ

(m ∈ Z), and, consequently, it preserves time-reversal
symmetry (TRS). When this condition is not met, the
breaking of the TRS can have important implications on
the behavior of photons as will be shown later.

4 Normal phase of TDT
Let us first explore the normal phase (NP) of the TDT. This
phase features no photon excitation just as in the single

Figure 3 Schematic of the TDT. Each cavity contains a three-level
atom interacting with light as described in Fig. 1(a). Photons can hop
between neighboring cavities with hopping strength Je±iθ
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cavity case. We employ a Schrieffer-Wolff transformation

Un = exp(
√
2g/

√
NSn) with an anti-Hermitian operator Sn

given by

Sn =
(
a†
n + an

)
/�

N∑

k=1

⎛
⎝
0 –1 0

1 0 –γ

0 γ 0

⎞
⎠ , (7)

which makes the off-diagonal terms of the single-cavity

Hamiltonian HD,n vanish. Neglecting higher-order terms

in the thermodynamic limit N → ∞, the transformed

TDT Hamiltonian becomes

HNP =

3∏

i=1

U†
i H

3∏

j=1

Uj

=

3∑

n=1

(
ωa†

nan +�

N∑

k=1

h(k)

)

+

3∑

n=1

J
(
eiθa†

nan+1 +H .c.
)

+

3∑

n=1

2g2

N�

(
a†
n + an

)2

×
N∑

k=1

⎛
⎝
1 0 0

0 –1 + γ 2 0

0 0 –γ 2

⎞
⎠ . (8)

The above Hamiltonian is diagonal in the atomic degrees

of freedom, and an effective low-energy Hamiltonian can

be found by projecting into the lowest energy state of the

three-level atom,

H
↓
NP =

3∑

n=1

(
ω –

4g2γ 2

�

)
a†
nan –

2g2γ 2

�

(
a†2
n + a2n

)

+

3∑

n=1

J
(
eiθa†

nan+1 + e–iθa†
n+1an

)
+ E0, (9)

where the energy constant is E0 = –6g2γ 2/� – 3N�.

Using the discrete Fourier transformation a†
n =

∑
q aq e

inq

with the quasi-momentum q = 0,±2π/3, we can rewrite

the projected Hamiltonian H
↓
NP in momentum space as

H
↓
NP =

∑

q

ωqa
†
qaq –

2g2γ 2

�

(
a†
qa

†
–q + aqa–q

)
+ E0, (10)

where ωq = ω – 4g2γ 2/� + 2J cos(θ – q). By introducing a

unitary transformation Sq = exp[βq(a
†
qa

†
–q – aqa–q)] with a

variational squeezing parameter βq = – 1
8

ln
ωq+ω–q–8g

2γ 2/�

ωq+ω–q+8g2γ 2/�
,

H
↓
NP can be diagonalized and takes the formH

↓
NP =

∑
q εq ×

a†
qaq + Eg , where

Eg = E0 +
1

2

∑

q

(εq –ωq) (11)

is the ground-state energy, and the excitation energies are

given by

εq =
1

2

[
ωq –ω–q +

√
(ωq +ω–q)2 – 64g4γ 4/�2

]
. (12)

A second-order phase transition occurs when the gap

between the first excited state and the ground state van-

ishes, then, the condition εq = 0 can be used to determine

the location of these boundaries, leading to the critical val-

ues

λ2cγ2c

=

√
1 + 4J/ω cosq cos θ + 4J2/ω2 cos(θ – q) cos(θ + q)

8(1 + 2J/ω cos θ cosq)
. (13)

Note that if θ and J/ω are fixed, the expression above sig-

nals a γ -λ second-order line, but since θ will be taken

as an additional control parameter that can vary, Eq. (13)

refers, in general, to a second-order surface in the three

dimensional parameter space spanned by γ , λ and θ , as

shown in Fig. 4. Moreover, Eq. (13) describes two different

second-order boundaries, one for q = 0 and the other for

q = ±2π/3, as discussed in the following sections, each of

these q-values is associated with a different superradiant

phase. Additionally, note that Eq. (13) reduces to Eq. (5)

for the single cavity case if we take the limit of no hopping

between cavities J = 0, which is expected.

5 Superradiant phases of TDT

As the coupling strength increases to λ > λ2c, the num-

ber of photons in each cavity becomes proportional to N .

To capture the superradiant physics, the bosonic operators

are shifted as an → ãn +
√
Nαn, a

†
n → ã†

n +
√
Nα∗

n with the

complex displacement parameter αn = An + iBn. Note that

in the NP αn = 0. The transformed Hamiltonian becomes

HSR =

3∑

n=1

ωã†
nãn +

N∑

k=1

√
2

N
g
(
ã†
n + ãn

)
d(k) +�

N∑

k=1

h(k)

+

3∑

n=1

Jã†
n

(
eiθ ãn+1 + e–iθ ãn–1

)
+Hl + ESR, (14)

where the linear term is Hl =
∑3

n=1 ω
√
N(ã†

nαn + ãnα
∗
n) +√

NJ[ã†
n(e

iθαn+1 + e
–iθαn–1) +h.c]. The ground-state energy
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Figure 4 The phase diagram of the tricritical Dicke triangle system, in
which γ is plotted as a function of the dimensionless coupling
strength λ and the hopping phase θ . The color bar represents the
order parameter A3 = Re(〈a3〉). The red solid line γ – λ is a
second-order critical line while the blue dashed line γ – λ is a
first-order critical line at ±θc for the NP-SR and NP-CSR phases
transitions, respectively. The tricritical points are marked by red circles,
in which γTCP = 1/

√
2. The phase boundary between the SR and CSR

is denoted by solid black line, determined by |θ | = θc . Here, we set
J/ω = 0.1

is expressed as

ESR

N
=

3∑

n=1

2
√
2gAnd +�h +ω

(
A2
n + B2

n

)

+ JAn

[
cos θ (An+1 +An–1)

– sin θ (Bn+1 – Bn–1)
]

+ JBn

[
cos θ (Bn+1 + Bn–1)

+ sin θ (An+1 –An–1)
]
. (15)

with d and h being the three-level operators in Eq. (2). The

mean-field values An and Bn used to characterize the dif-

ferent phases are found by minimizing the energy given

in Eq. (15), where two types of superradiant phases can

be identified depending on whether |θ | is greater or lower
than θc (see below). The complete phase diagram of the

TDT is presented in Fig. 4. Note that although there are

six order parameters, namely, An and Bn with n = 1, 2, 3,

the value A3 has been chosen to describe the phase dia-

gram. Nonetheless, relations between all six-order param-

eters are provided in the following sections.

5.1 Conventional superradiant phase (SR)

In the SR phase αn = An is real and non-zero, and is the

same for all three cavities, αn = αn±1. Then, each cavity

behaves as an independent tricritical Dicke model. For a

given value of θ , the boundary between the SR and NP

phases is split into a second-order line (the red solid line)

and a first-order critical line (the blue dashed line) as

shown in Fig. 4. The two lines merge together in the TCP

(represented with the red dots). In the three dimensional

parameter space shown in Fig. 4, the TCPs form a line. The

second-order phase boundary is consistent with the ana-

lytical expression γ2c-λ2c in Eq. (13) with the momentum

q = 0.

Figure 5(a), (b) shows the order parameter αn for theNP-

SR phase transition as a function of λ. For a small value

of the atomic transition ratio γ = 0.1, αn is zero in the

NP, and increases with an abrupt jump in the SR phase

in Fig. 5(a), indicating a first-order phase transition. Since

the transition between the middle and the upper state of

the three-level atom dominates for a small γ , 〈hn〉 > 0 in-

creases abruptly as well across the first-order transition

(see the Appendix). However, for γ = 1.5 in Fig. 5(b), 〈an〉
changes smoothly from the NP to SR phase, exhibiting a

second-order phase transition. Note that, in the SR, the

ground state is two-fold degenerate as the configurations

break the Z2 symmetry. In Figs. 4 and 5, one of the degen-

erate configurations is chosen, the other one is simply ob-

tained by changing the sign of the order parameter.

A perturbation theory analysis can be done in a similar

fashion as for the single cavity case. Similarly, the mean-

field energy for the SR can be approximated by

ESR

3�N
= c1α

2 + c2α
4 + c3α

6, (16)

with c1 =
ω′�
8g2

, where ω′ = ω + 2J cos θ . c2 and c3 have the

same form as in the single cavity case. Consequently, the

second order boundary expression for the SR is given by

λSR2c γ SR
2c =

1

2
√
2

√
1 + 2J/ω cos θ , (17)

which is consistent with Eq. (13) for q = 0. The tricritical

point is located at γTCP = 1/
√
2 and λTCP =

√
1 + 2J/ω cos θ/

2. Note that, as expected, both of these results reduce to

the single cavity case if the limit J = 0 is taken.

5.2 Chiral superradiant phase (CSR)

In the CSR phase, αn is complex and depends on n. Mini-

mization of the mean-field energy in Eq. (15) yields

An 
= An+1 = An–1, Bn = 0, Bn+1 = Bn–1. (18)

Since the solutions above break both the Z2 and C3 sym-

metries, the ground state in the CSR is six-fold degenerate.

For a clear presentation of results we choose the particular

solution A3 
= A1 = A2, B3 = 0, B2 = –B1.
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Figure 5 The order parameter 〈an〉 = αn as a function of the dimensionless coupling strength λ across the NP-SR phase transition of (a) first-order
γ = 0.1, and (b) second-order γ = 1.5. θ is kept fixed at 2π /3 > θc . The real part of 〈an〉 across the NP-CSR phase transition of (c) first-order γ = 0.1,
and (d) second-order γ = 1.5. θ is kept fixed at π /3 < θc . The inset corresponds to the imaginary part Bn = Im(〈an〉) of the order parameter

In Fig. 5(c), (d) the order parameter αn is shown for the

CSR phase transition. As observed in both panels, the or-

der parameter is site-dependent, contrary to the SR case.

However, there is still a change in the order of the transi-

tion depending on the γ value. Consequently, just as in the

SR phase, there are chiral tricritical points (CTCPs) in the

CSR phase as observed in Fig. 4.

To investigate the phase boundaries in the CSR phase,

we start with a particular solution A3 = A, A1 = A2 = Ã and

B3 = 0. Similar to the SR case, the mean-field ground-state

energy can be written as a Taylor series in terms of A2 and

Ã2

ECSR

�N
= 2

(
ωCSR + J ′ – γ 2

)
Ã2 +

(
ωCSR – γ 2

)
A2

+ 4J ′AÃ + c2
(
A4 + 2Ã4

)
, (19)

where ωCSR = [ω – 2J2 sin2 θ/(ω – J cos θ )]�/8g2, J ′ = �/

8g2(J cos θ + J2 sin2 θ

ω–J cos θ
) and the coefficient c2 = γ 2(γ 2 – 1

2
).

By minimizing the energy using ∂E/∂A = 0 and ∂E/∂Ã = 0,

the expression for the second-order boundary in the CSR

can be found to be

λCSR2c γ CSR
2c

=
1

2
√
2

√
1 – 2J/ω cos θ + J2/ω2(cos2 θ – 3 sin2 θ )

1 – J/ω cos θ
,

(20)

which is consistent with Eq. (13) when choosing q =

±2π/3. As expected, the critical line γ -λ of the second-

order NP-CSR transition in Fig. 4 fits well with the analyt-

ical solutions λCSR2c . TheCTCP is located at γCTCP = 1/
√
2 as

a consequence of setting c2 = 0 in Eq.(19). By substituting

γCTCP into Eq. (20), λCTCP can be determined.

If γ and λ are fixed inside the SR phase, and θ is var-

ied until entering the CSR the order parameter changes

discontinuously. Thus, the phase transition between the

two superradiant phases is of first-order and indicated

by the solid black line in Fig. 4. Right at the boundary

between the SR and CSR phases, conditions Bn = 0 and

An–1 = An+1 = ±An need to be satisfied. From Eq. (15), this

implies J cos θ + J2 sin2 θ/(ω– J cos θ ) = 0, which leads to the

critical hopping phase that separates the SR and CSR

θc = cos–1
(
–

2J
√
8J2 +ω2 +ω

)
. (21)

The entire superradiance region is split into the CSR phase

regime for |θ | ≤ θc and the SR phase regime for |θ | > θc.

To characterize further the chirality in theCSRphase, we

analyze the ground-state current of photons in the closed

loop of three cavities. Similar to the continuity equation

in classical systems, the photon current operator can be

explicitly defined as

Iph = i
[(
a†
1a2 + a†

2a3 + a†
3a1

)
– h.c.

]
. (22)
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Figure 6 Chiral photon current Iph as a function of the hopping
phase θ for γ = 0.1, γTCP , and 1.2, respectively. Schematic of the
mean photon population in the three cavities in the CSR region, two
cavities with the blue color have the same excitation of photons and
are different from the third cavity denoted in red. Here λ = 1 and
J/ω = 0.1

Figure 6 shows the photon current in the ground state for

λ > λ2c in the SR and CSR phases. By varying the effective

magnetic flux θ , a discontinuous jump of Iph is observed at

the critical hopping phase±θc. Iph goes from zero in the SR

phase, to a non-zero value in the CSR phase and changes

its sign depending on the phase θ . Then, varying θ changes

the orientation of the photons circulating in the loop from

clockwise to anticlockwise, a signature of the chiral phase.

The ground-state current of photons is associated with the

nonuniform excitation of photons in three cavities, which

is induced by the magnetic flux.

6 Critical behavior

Second-order phase transitions are characterized by their

scaling exponents in the vicinity of the transition. Here,

we explore the critical behavior of the total photon num-

ber Nph =
∑3

n=1〈a†
nan〉 near three important regions: the

second-order critical boundary, the TCP and the CTCP, in

order to classify the universality of each of these critical

manifolds.

First, we consider a point (γ , λ) in the SR region and

close to the second-order critical line for fixed θ = 2π/3.

A line through this point is perpendicular to the criti-

cal line and intercepts the critical line at a second-order

critical point (γ SR
2c , λSR2c) [12]. Around the critical point,

the photon number scales like Nph ∝ Lβ , where L ≡√
(λ – λSR2c)

2 + (γ – γ SR
2c )

2 is the distance between the point

and the second-order critical point. Figure 7(a) displays

Nph at (γ , λ) as a function of L. The critical exponent for

this transition is β = 1, consequently, N2nd
ph ∝ L. However,

if the perpendicular line through (γ , λ) intercepts the crit-

ical line at the TCP (γTCP, λTCP), one has a different scaling

NTCP
ph ∝ L1/2 (23)

which gives a critical exponent 1/2 for the TCP. This il-

lustrates that the TCP belongs to a different universality

class in comparison to the conventional second-order crit-

ical points.

Figure 7(b) show the scaling behaviors for the CSR phase

at θ = π/3. The mean photon number in one of the sites

is different from that in the other two cavities due to the

break of the C3 symmetry. However, we found that the

photon number in each cavity has the same scaling behav-

ior. Similar to the SR phase, the critical exponent for the

2nd-order critical point (γ CSR
2c , λCSR2c ) is obtained to be 1.

The scaling function at the CTCP (γCTCP, λCTCP) is found

to be

NCTCP
ph ∝ L1/2. (24)

This indicates that all tricritical points, regardless of

whether they are TCP or CTCP, have the same scaling ex-

ponent for photon numbers.

Finally, Fig. 7(c) shows the scaling exponents at θ = θc
at the critical line. This line is special since it represents

the line of triple points at which three phases (SR, CSR,

andNP) coexist. The scaling along this line shows the same

behavior, which is expected, as both SR and CSR have the

same scaling exponents.

The exponent ofNph (β) is useful to distinguish between

ordinary critical points and tricritical ones, nonetheless, it

does not signal any differences between the SR and CSR

phase transitions, which is unexpected as both phases have

very distinct features, the scaling behavior of other quan-

tities could be useful for further characterization of the

critical behavior. To this end, let us examine other crit-

ical exponents such as the scaling of the excitation en-

ergy. The effective low-energy Hamiltonian in Eq. (9) has

a quadratic form in the an operators, consequently, a Bo-

goliubov transformation can be performed to diagonalize

the Hamiltonian in the form

H
↓
NP =

∑

q

εqa
†
qaq + Eg , (25)

with q = 0,±2π/3, Eg being the ground state energy given

in Eq. (11), εq being the excitation energies given in

Eq. (12), and aq (a
†
q) being a new set of annihilation (cre-

ation) operators obtained through the Bogoliubov trans-

formation. Precisely at the critical points, the lowest of

the set of excitation energies {εq} vanishes, and we denote

the lowest excitation energy by ε1. consequently, we ex-

pect that around the critical point this quantity behaves as

ε1 ∝ Lη .
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Figure 7 Mean photons in three cavities Nph as a function of the distance L between a point inside the corresponding superradiant phase and a
critical point located in the boundary with the normal phase for the CSR phase (a), the SR phase (b), and a triple point (c). Conventional second-order
critical points (γ = 0.9) are represented by open squares, while TCP’s and CTCP’s are represented with open circles. The corresponding fitting lines
are listed. Here J/ω = 0.1

Figure 8 Excitation energies εi as a function of the distance L between a point in the normal phase and critical point located in the boundary with
the CSR phase (a), the SR phase (b), or a triple point (c). ε1 denotes the lowest excitation energy, and ε2 is the second-lowest. Both conventional
second-order critical points (γ = 0.9) and tricritical points (TCP’s and CTCP’s) with γ = γTCP are explored. The fitting lines are shown on each panel.
Here, J/ω = 0.01

Since Eq. (25) is only valid in the normal phase, L in this

case is the distance between a point in the normal phase

and the critical point. In Fig. 8, the scaling of ε1 as a func-

tion of L is shown for both the SR and CSR phases. In the

SR we find that ε1 = εq=0, while in the CSR ε1 = εq=±2π/3.

The exponent η is found to be 1 for the CSR while it has a

value of 1/2 for the SR. This means that the excitation be-

havior on the onset of the phase boundaries is different be-

tween such phases. However, this exponent does not seem

to be sensitive to the order of the critical point as tricriti-

cal points follow the same behavior as conventional critical

points.

Moreover, we note that at a triple point (θ = θc) two ex-

citation energies vanish (denoted by ε1 and ε2) instead of

just one, as a sign of the coexistence of both superradiant

phases at this point This behavior is illustrated in Fig. 8(c).
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Table 1 Critical exponents β and η for each critical
boundary/point

Critical boundary/point β η

SR-NP second-order boundary 1 1/2
Tricritical points (TCP) 1/2 1/2
CSR-NP second-order boundary 1 1
Chiral tricritical points (CTCP) 1/2 1
Second order critical points at the triple line 1 1/2 & 1
Tricritical points at the triple line 1/2 1/2 & 1

Consistently, the two η exponents are found to be 1/2 and

1 representing the SR and CSR phase transitions, respec-

tively. A summary of the critical exponents for each critical

boundary/point is presented in Table 1.

A study of ε1 for points inside the superradiant region

could retrieve some interesting behavior as described in

Refs. [38, 39]. However, an effective Hamiltonian of the

form of Eq. (9) is not easily obtainable for the TDT in the

superradiant regions. Nonetheless, it seems that the com-

plementary use of η and β exponents already allow us to

characterize the critical behavior of the different points

and boundaries in the system, illustrating the great variety

of features that can be explored using the TDT.

7 Conclusion

A different transition ratio between atomic levels and the

incorporation of an artificial magnetic field make the tri-

critical Dicke triangle an ideal platform for studying the

interplay between higher-order critical points and chiral

phases of matter. Two different superradiant phases can be

found by tuning the phase θ of the photon hopping ampli-

tude, and both of them can be accessed from the normal

phase through first- and second-order transitions, as well

as tricritical points. The scaling behavior of the excitation

energy indicates that the NP-SR and the NP-CSR transi-

tions belong to different universality classes; while the scal-

ing behavior of the photon mean-field population eluci-

dates a different universality between tricritical and ordi-

nary critical points, making evident the richness of critical

manifolds in the system. Our study opens intriguing av-

enues for exploring quantum tricriticality and rich phases

in a single light-matter interacting platform.

Finally, we want to comment that two natural exten-

sions of the current work can be explored in the future.

(1) We may consider, instead of three-level atoms, general

multi-level atoms. Such a system can support multicriti-

cal points [18]. In general, more atomic levels can support

higher-order critical points. (2) Instead of three cavities on

a ring, we can consider an even number of cavities. Re-

cent work has shown that there exist some qualitative dif-

ferences between odd and even number of cavities, as the

former exhibiting geometric frustration [38, 39].

Appendix: Coefficients ck’s by perturbation theory
We apply perturbation theory to obtain the coefficients

ck ’s in Eq. (16). The mean-field Hamiltonian in the SR

phase is given by

ESR

3N�
=

ω + 2J cos θ

�
α2 +Ha, (A1)

Ha =D + h. (A2)

with α′ = 2
√
2gα/� and D = α′d. h is treated as the un-

perturbed Hamiltonian, which gives the eigenstates |εi〉
(i = 1, 2, 3) with the eigenvalues ε1 = –1, ε2 = 0 and ε3 = 1.

And d is the perturbation term, the coefficients ck are ob-

tained by the perturbation expansion up to (2k) order. The

ground-state wave function can be expanded as

|ϕ〉 = |ε1〉 +
∑

m
=1

|m〉〈m|
E – εm

D|ϕ〉

= |ε1〉 +G(E)D|ϕ〉, (A3)

where G(E) =
∑

m
=1 |m〉〈m|/(E – εm) and Ha|ϕ〉 = E|ϕ〉.
This means that the wave function can be found through

iteration as:

|ϕ〉 = |ε1〉 +G(E)D|n〉 +G(E)DG(E)D|n〉

+G(E)DG(E)DG(E)D|n〉 + · · · (A4)

FromD|ϕ〉 = (E–ε1)|ϕ〉, we obtain the ground-state energy

E – ε1 = 〈ε1|D|ϕ〉. (A5)

By substituting the wave function into the equation above,

the ground-state energy is given by

E = ε1 + 〈ε1|D|ε1〉 + 〈ε1|DG(E)D|ε1〉

+ 〈ε1|DG(E)DG(E)D|ε1〉 + · · · (A6)

Clearly, the zero-th energy correction is E(0) = ε1. Since

〈ε1|D|ε1〉 is zero due to the symmetry of the Hamiltonian,

the first non-zero correction is the second-order one

E(2) = ε1 + 〈ε1|DG(E)D|ε1〉

= ε1 +
|D12|2

E(0) – ε2
= –1 – α′2γ 2. (A7)

The fourth-order correction of the ground-state energy is

E(4) = ε1 + 〈ε1|DG(E)D|ε1〉

+ 〈ε1|DG(E)DG(E)DG(E)D|ε1〉

= ε1 + α′2 |d12|2

E(2) – ε2
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+ α′4
∑

m
=1

∑

n
=1

∑

k 
=1
〈ε1|d

|m〉〈m|
E(0) – εm

d
|n〉〈n|
E(0) – εn

× d
|k〉〈k|
E(0) – εk

d|ε1〉

= –1 +
α′2γ 2

–1 – α′2γ 2
–
1

2
α′4γ 2. (A8)

Since α is small around the critical point, the above en-

ergy can be approximated by

E(4) = –1 – α′2γ 2 + γ 2

(
γ 2 –

1

2

)
α′4. (A9)

The sixth-order correction of the energy is given by

E(6) = ε1 +
〈
ε1|DG(E)D|ε1

〉

+
〈
ε1|DG(E)DG(E)DG(E)D|ε1

〉

+
〈
ε1|DG(E)DG(E)DG(E)DG(E)DG(E)D|ε1

〉

= ε1 + α′2 |d12|2

E(4) – ε2

+ α′4
∑

m
=1

∑

n
=1

∑

k 
=1

〈
ε1|d

|m〉〈m|
E(2) – εm

d
|n〉〈n|
E(2) – εn

× d
|k〉〈k|
E(2) – εk

d|ε1
〉

+ α′6
∑

m
=1

∑

n
=1

∑

k 
=1

∑

i
=1

∑

j 
=1

〈ε1|m〉dmn

E(0) – εm

dnk

E(0) – εn

×
dki

E(0) – εk

dij

E(0) – εi

〈j|ε1〉
E(0) – εj

= ε1 +
α′2γ 2

E(4) – ε2
+ α′4 |d12|2

(E(2) – ε2)2
|d23|2

E(2) – ε3

+ α′6 |d12|3

(E(0) – ε2)3
|d23|3

(E(0) – ε3)2
. (A10)

Then, the ground-state energy up to the sixth-order in per-

turbation can be approximately given as a power series in

terms of α2

E(6) = –1 – α′2γ 2 + γ 2

(
γ 2 –

1

2

)
α′4

–
1

4
γ 2

(
8γ 4 – 7γ 2 + 1

)
α′6. (A11)

The expected value of 〈hn〉 for a single atom in the n-th

cavity is calculated by minimizing the energy in Eq. (A1).

Figure A1 shows 〈hn〉 in the three cavities for the first-

and second-order phase transitions from the NP to SR and

CSR phases. In the NP phase, the atom stays in the down

state with 〈hn〉 = –1. For the first-order phase transition

(panels (a) and (c)), 〈hn〉 exhibits an abrupt jump from –1

to 〈hn〉 > 0. In contrast, 〈hn〉 increases smoothly from –1

across the second-order phase transition with γ = 1.5 as

show in panels (b) and (d).

Figure A1 〈hn〉 of a single atom in the n-th cavity as a function of the dimensionless coupling strength λ across the NP-SR phase transition of (a)
first-order γ = 0.1, and (b) second-order γ = 1.5. θ is kept fixed at 2π /3 > θc . 〈hn〉 is a function of the dimensionless coupling strength λ across the
NP-CSR phase transition of (c) first-order γ = 0.1, and (d) second-order γ = 1.5. θ is kept fixed at π /3 < θc
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