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Some of the most exotic properties of the quantum vacuum are predicted in ultrastrongly coupled
photon-atom systems; one such property is quantum squeezing leading to suppressed quantum
fluctuations of photons and atoms. This squeezing is unique because (1) it is realized in the ground
state of the system and does not require external driving, and (2) the squeezing can be perfect in
the sense that quantum fluctuations of certain observables are completely suppressed. Specifically,
we investigate the ground state of the Dicke model, which describes atoms collectively coupled to a
single photonic mode, and we found that the photon-atom fluctuation vanishes at the onset of the
superradiant phase transition in the thermodynamic limit of an infinite number of atoms. Moreover,
when a finite number of atoms is considered, the variance of the fluctuation around the critical point
asymptotically converges to zero, as the number of atoms is increased. In contrast to the squeezed
states of flying photons obtained using standard generation protocols with external driving, the
squeezing obtained in the ground state of the ultrastrongly coupled photon-atom systems is resilient

against unpredictable noise.

When photons strongly couple with an ensemble of atoms, there exists a threshold coupling strength above
which a static photonic field (i.e., a transverse electromagnetic field) and a static atomic field (i.e., an electro-
magnetic polarization) are expected to appear spontaneously. This phenomenon, known as the superradiant
phase transition (SRPT)"? depicted in Fig. 1, can occur at finite temperatures and at zero temperature. Since it
was first proposed in 1973, the SRPT has attracted considerable attention from both experimental and theoreti-

cal researchers®°.

In addition to experimental demonstrations of nonequilibrium SRPTs in atoms confined in optical cavities**, a
superconducting-current version of the thermal-equilibrium SRPT was found theoretically in 2016°. A magnonic
version was also confirmed in the magnetic material ErFeOj; in 2022'° based on a spin model that reproduces
both experimental terahertz magnetospectroscopy'! and magnetization measurements'?. In recent years, the
possibility of realizing photonic SRPT under thermal equilibrium has also been debated actively for spatially-
varying photonic modes coupled with interacting charged particles possessing the spin degree of freedom®2.
Those equilibrium SRPTs were discussed by mapping the specific systems into the Dicke model or its extended
versions. The Dicke model represents a simple model where the SRPT can occurs'?, and consists of an ensemble

of two-level atoms collectively coupled to a single photonic field, as depicted in Fig. 1.

Although the finite-temperature SRPT is a classical phase transition given that it is driven by thermal
fluctuations'® (in some studies »'*'*, the SRPT realized by changing a system parameter is called a quantum
SRPT when the term to be changed is not commutable with the rest of the Hamiltonian), quantum aspects of

the SRPT at zero temperature have been investigated in terms of quantum chaos

, entanglement entropy'®,

and individual photonic and atomic squeezing'*>™. In photonic (atomic) squeezing, the quantum fluctuation of
the photonic (atomic) field is suppressed in one quadrature, whereas its conjugate fluctuation is enlarged while

satisfying the Heisenberg uncertainty principle.
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Figure 1. Sketches of system under investigation (Dicke model) and superradiant phase transition. The
system consists of two-level atoms (yellow circles) collectively coupled with a single photonic field in a cavity
composed with two mirrors. (a) In the normal phase, the expectation values of the photonic field (transverse
electromagnetic field) and atomic field (electromagnetic polarization) are zero. (b) In the superradiant phase,
the photonic and atomic fields (blue and red arrows, respectively, and order parameters) get static non-zero
values spontaneously.

The critical (threshold) coupling strength required for realizing the SRPT exists in the ultrastrong or deep
strong photon-atom coupling regime?*-?, in which the photon-atom coupling strength (or vacuum Rabi split-
ting) is a considerable fraction of the bare photonic and atomic resonance frequency. It is known that ultras-
trongly coupled light-matter systems exhibit so-called intrinsic squeezing?>*-?’. Here, the intrinsic nature lies
in the fact that squeezing exists in the ground state of the coupled light-matter system in thermal equilibrium
without any external driving. This type of squeezing is in stark contrast to standard quantum squeezing, which
is produced only in the presence of an external driving field. Note that intrinsic squeezing can occur even in the
normal phase (i.e., zero expectation values of the photonic and atomic fields).

Critical quantum behavior, such as perfect spin squeezing®*-*° and quantum Fisher information divergence®,
is expected to emerge intrinsically at the onset of the SRPT, as the entanglement entropy is known to diverge at
the SRPT critical point'®. Although a universal behavior of thermal and quantum fluctuations around the SRPT
critical point has been investigated recently in a generalized Dicke model with a finite number of atoms at finite
temperatures’, critical behaviors of quantum fluctuations have not been reported even in the limit of an infinite
number of atoms (thermodynamic limit) at zero temperature.

In this study, we show that perfect squeezing, where quantum fluctuations completely vanish in one quad-
rature, can be obtained in an appropriate photon-atom two-mode basis at the onset of the SRPT in the Dicke
model under the thermodynamic limit. Unlike traditional squeezing generation in dynamic and nonequilibrium
systems®*2, this squeezing is intrinsic, i.e., it emerges in equilibrium. These facts imply that the SRPT can pro-
vide high squeezing stably in equilibrium situations. This might open a new avenue for quantum sensing® and
continuous-variable quantum information technologies****, because the squeezing in equilibrium is obtained
in the most stable state of systems and intrinsically robust against decoherence.

Results
Model. We consider the isotropic Dicke model*, whose Hamiltonian is given by
7:[ icke ot ~ N 2 R AN A
% =wuaTa+wb(SZ+E) +T%(aT+a)Sx. (1)

Here, @ is the annihilation operator of a photon with resonance frequency w,. The first term corresponds
to the energy of the photons. S are the collective spin % operators representing an ensemble of N two-
level atoms with the transition frequency wp. The second term in Eq. (1) corresponds to the energy of the
atoms. The last term represents the coupling between the photons and the atomic ensemble; g is the coupling
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strength and it is assumed to be real and positive for simplicity. In terms of the lowering and raising opera-
tors Sy = Sx + 1Sy = {S;}T the last term (i.e., the photon-atom coupling term) in Eq (1) can be rewritten as
2¢@@" + a)Sx/f g@ +a (SJr +3S_ )/~/N. N. Among these four terms, a'S_and S+a are co-rotating terms
that are responsible for the vacuum Rabi splitting, whereas 'S, and @S_ are counter-rotating terms that are

responsible for the vacuum Bloch-Siegert shift*”*®. As discussed later, these counter-rotating terms are respon-
sible for the two-mode squeezing®**?’.

Intrinsic squeezing for finite numbers of atoms.  We first numerically analyze the wavefunction of the
ground state |0 ) of the Dicke model, Eq. (1), for finite number N of atoms. In numerical calculations, we rewrite

I:IDicke as a matrix on the basis of |n), I;’ ,m), where |n), is the photonic Fock state with n=10,1,2,...and
!%, m ) represents the atomic state (spln state) with m = 0, 1, 2, :I:N

For obtaining the wavefunction, we first calculate the Q function® Qg («, 8) = |{c, 8]0) |2/7% on the basis
of the coherent states |o, 8 ) with photonic amplitude & € C and atomic one 8 € C, whose definition is shown
in “Methods” We then calculate the Wigner function W («, 8) by transforming Q, (o, 8) along the (@ — )/ V2
axis (see details in “Methods”).

Figure 2 shows the wavefunctions W (, 8) of the ground state |0) of the Dicke model for N = 26 = 64 and
wp = w,, which were chosen just as an example and for simplicity. Here, w, = @, means that the atomic and
photonic resonance frequencies are equal, i.e., zero detuning. We have numerically confirmed that the results in
Fig. 2 keep the same tendency in detuned cases (wp, # w,). The photon-atom coupling strength was set to (a,b)
g£=0,(c,d) g = 04wy, (e,f) g = 0.50,, (g,h) g = 0.55w,, and (i,j) g = 0.6w,. Here, g = 0 means no coupling,
and g = 0.5w, corresponds to the critical coupling strength of the SRPT in the thermodynamic limit!2.

Figure 2a, b show W (ar, Br) and W (ieij, iB;), respectively, for g = 0 (ari, Br,i € R). We find that the wavefunc-
tion is localized at the origin « = 8 = 0, and the peak broadening (corresponding to quantum fluctuations) is
isotropic both in the oy — B and «; — Bi planes, signature of the ground state not being squeezed.

By increasing the coupling strength g, as seen in Fig. 2c (g = 0.4w,) and Fig. 2e (g = 0.5w,), the peak is
getting broader (quantum fluctuation is getting anti-squeezed) along the (ay — Br)/ /2 axis (6 = —0.257). At
the same time, as seen in Fig. 2d (g = 0.4w,) and Fig. 2f (g = 0.5w,), the peak is getting narrower (quantum
fluctuation is getting squeezed) along the (o; — i)/ /2 axis (§ = —0.257).

Here, let us suppose that o, and «; correspond to the normalized (dimensionless) electric (displacement)
field D and vector potential A, respectively, and S; and B; correspond to the normalized electric polarization
P and current ], respectively. In this case, (or — Br)/ V2 corresponds to the difference between D and P, and

— Bi)/+/2 corresponds to the difference between A and J. Figure 2a-f imply that, by increasing g from 0 (no
coupling), the quantum fluctuations in D-P difference and A-] one are getting anti-squeezed and squeezed,
respectively. In other words, the quantum fluctuations of A and J are getting synchronized unlike those in the
no-coupling case (g = 0).

For larger g, as seen in Fig. 2g (g = 0.55w,) and Fig. 2i (g = 0.6w,), W (o, Br) gets two peaks at o, = £or
and B; = FB (@, B € R). This means that the system energy is minimized around | +a, F8 ), by which the pho-

ton—atom coupling term, the last term in Eq. (1), decreases the system energy approximately by 4gaz 81/ 1 — Ez /N

(see details in next subsection). When this energetical benefit is larger than the energetical demerit w, &> + a)bﬁz
[energy required for creating photons and exciting atoms; derived from the first and second terms in Eq. (1)],
the peak in the ground-state wavefunction W (o, B;) is displaced from the origin (system energy is minimized
around |:|:oe FB)).

However, because of the parity symmetry'#!® of the Dicke model, Eq. (1), the true ground state should include

a superposition of the two states |:|:0l, FB) in the case of finite N. In the thermodynamic limit (N — o), the
parity symmetry is spontaneously broken, and the ground state becomes well approximated by one of | +a,F8).
Thus, the photonic and atomic fields spontaneously get no-zero order parameters (0[a|0) ~ +& € R (corre-

sponding to D) and (0|§x|0 Yy~ FBy1 — EZ /N (corresponding to P), respectively. This is the basic picture of the
SRPT. The SRPT critical coupling strength is g = ,/waw}p/2 (see details in next subsection), which corresponds
to Fig. 2e, f (¢ = 0.5w,) in the zero-detuning case (w}, = w,).

Figure 2h, j show W (2.3 + iwj, —2.3 + iBj) for g = 0.55w, and W (3.2 + iaj, —3.2 + i) for g = 0.6w,, where
the wavefunction is maximized at@ ~ B & 2.3 and ~ 3.2 as seen in Fig. 2g, i, respectively. We can find that, by
increasing g from 0.5w,, the peak is getting broader (less squeezed), i.e., going back to be isotropic, in the o — B;
plane, whereas the squeezing direction 6 is shifted from —0.257. At the same time, as seen in Fig. 2g, i, each
peak is getting narrower (less anti-squeezed), i.e., going back to be isotropic, in the &y — B, plane. In the limit of
g > /@ay/2, the ground state becomes well approximated by a classical state |+a, F8) >!*", i.e., each peak
goes back to be isotropic both in the oy — ; and o; — B; planes, whereas the true ground state should include
their superposition for satisfying the parity symmetry. In summary, the degree of squeezing becomes maximal
around the SRPT critical point, whereas we have considered the finite number of atoms in Fig. 2.

In order to better quantify the squeezing, in Fig. 3a, we plot the minimum variance (A Xpin)? of the ground-
state wavefunction W (ixj, if;) in the o; — B plane as a function of g for N = 2% = 64, wp = 0.5w, (blue dash-
dotted line), w, = w, (red dashed line), and w}, = 2w, (yellow line). We numerically searched for the optimal

angle (squeezing angle) O, that provides the minimum variance (AXmin)?, which was calculated by
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Figure 2. Wavefunctions W (, 8) of the ground states of the Dicke model for N = 2° = 64 and w, = w,.

The photon-atom coupling strength is (a, b) g = 0, (¢, d) g = 0.4w,, (e, f) g = 0.5w,, (g, h) g = 0.55w,, and
(i,j) g = 0.6w,. Panels (a, ¢, e, g, i) show W (a, B;) and (b, d, f) show W (i, iB;). Panels (h) and (j) show

W (2.3 +iaj, —2.3 + 1Bi) and W (3.2 + iai, —3.2 + ifi), where 2.3 and £3.2 are the peak positions at Panels g
and i, respectively. For 0 < g < 0.5w,4, W («, f) is anti-squeezed and squeezed in the oy — B and «; — B planes,
respectively, along the direction of 8 = —0.257. For g = 0.55w, and 0.6w,, W («, B) gets two peaks in the

ar — By plane and becomes less squeezed than for ¢ = 0.5w, in the o; — S; plane. Parameters in the numerical
calculations are shown in “Methods” W (¢, B) is normalized to each maximum value.

2

i(&T - Ez) €08 Bopt + i(lAJT - B) sin opt .
[0), 2

2

(AXmin)? = (0]

i.e., by taking the expectation value of square of the operator [i (a" —a)cosbopt + i(@T — E) sineopt} /2 corre-
sponding to (O{iCOSQOPt + ﬂisinéopt), thatis=~ (o — Bi)/~/2 (Bopt & —0.257) in the case of Fig. 2b, d, and f. Here,

the atomic annihilation operator b is defined in “Methods” In Fig. 3a, we can find that (AXpmin)? are minimized
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Figure 3. Minimum variance, deviation from standard quantum limit, and optimal angles as functions of
coupling strength. (a, b) The minimum variance (AXmin)? Eq. (2), of the ground-state wavefunction W (itj, i8;)
in the o — Bi plane, ¢,d the product of AXmin and AXmax, Eq. (3), and (e, f) the optimal angle (squeezing

angle in o; — f; plane) 6opy are plotted as functions of the photon-atom coupling strength g. In Panels (a, c,

e), we assumed N = 2° = 64, wp, = 0.5w, (blue dash-dotted line), wp = w, (red dashed line), and w}, = 2w,
(yellow line). In Panels (b, d, f), we assumed @, = w,, N = 22 = 4 (blue dash-dotted line), N = 2° = 64 (red
dashed line), and N = 210 = 1024 (yellow line). The arrows represent the critical point g = ,/wawy/2 in the
thermodynamic limit (N — 00). As seen in Panel a, (AXmin)? is minimized around the critical point. With the
increase in N, the minimum point reaches the critical one and the minimum (AXmin)> monotonically decreases
as seen in Panel b. The squeezing is almost ideal AXyin AXmax & 0.25 for ¢ < /@wawp/2 and large enough N as
seen in Panels c and d. For g > ,/@a@p/2, AXmin AXmax rapidly increases, because W (e, ;) gets two peaks as
seen in Fig. 2g,iand (AXmax)? 1O longer corresponds to the broadening of each peak but represents the square
of the distance between the two peaks. In contrast, (AXmax)? in Fig. 5¢, g represents the broadening of each peak
due to the spontaneous symmetry breaking (SRPT) in the thermodynamic limit (N — oc0). Parameters in the
numerical calculations are shown in “Methods”

around the critical strength ¢ &~ ,/waw}p/2 (indicated by arrows), whereas the actual minimum point is shifted
due to finite N'*1°,

Figure 3b shows (AXmin)? as a function of g for wp = w, and N = 22 = 4 (blue dash-dotted line), 26 = 64
(red dashed line), and 2! = 1024 (yellow line). We can find that, with the increase in N, the minimum position
shifts towards g = ,/w,wp/2, and the minimum (AXmin)> monotonically decreases.

In Fig. 3e, f, the optimal angle 6, is plotted as a function of g. As we have seen in Fig. 2, Oy &~ —0.257
for g < 0.5w, in the zero-detuning case (wp = w,). However, 6ot depends on wp/w,, g/wq, and N, in general.

The anti-squeezing is quantified by the variance (AXmax)~ of W (e, B) in the ar — B; plane along the
(arcoseopt + ﬁrsineopt) axis [broadening in Fig. 2a, c, e], which was evaluated by

(&T + Zl) 08 Bopt + <IA7Jr + i)) sin Gopt

2 _
(AXmax)” = (0] 3

0). €)

Figure 3¢, d show AXmin AXmax as a function of g. When the atomic subsystem is well approximated as a bos-
onic system, this quantity should satisfy the Heisenberg uncertainty principle A Xpin AXmax > 1/4°%*, which is
satisfied in all the cases in Fig. 3¢, d. Further, we can find that AXjn AXmax & 1/41is obtained for g < \/wawp/2,
although AXpin AXmax is slightly larger than 1/4 exactly at the critical strength g = \/ws@p,/2. When g is larger
than the critical value \/®,®p/2, AXmin AXmax rapidly increases from 1/4. This is because W (o, B;) gets two
peaks as seen in Fig. 2g, i, and (AXmax)? no longer corresponds to the broadening of each peak but represents
the square of the distance between the two peaks'’. In contrast, (AXmax)? in Fig. 5¢, g represents the broadening
of each peak under the spontaneous symmetry breaking (SRPT) in the thermodynamic limit (N — o0).

To see the tendency of squeezing with the increase in N more in detail, in Fig. 4, we plot the ground-state
wavefunctions W (@, B) for wp = g, g = 0.5w,, and (a,b) N = 22, (c,d) N = 2%, and (e,f) N = 2!°. By increasing
N, we can find that W (e, B;) is getting broader along the (ay — )/ /2 axis (Fig. 4a, ¢, and e) because of the VN
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Figure 4. Wavefunctions W («, ) and the minimum variance in the ground states of the Dicke model for

wp = wgand g = 0.5w,. (a,b) N =22 = 4,(c,d) N = 2° = 64, and (e, f) N = 210 = 1024. Panels (g) and (h)
show (AXmin)? and AXmin A Xmaxs respectively, as functions of N for w, = w, and g = 0.5w,. With the increase
in N, W(a, B) is getting anti-squeezed and squeezed in the oy — B, and o; — i planes, respectively, along the
direction of & = —0.257, and (AXmin)? monotonically decreases as seen in Panel g. Parameters in the numerical
calculations are shown in “Methods”. W («, B) is normalized to each maximum value.

-proportionality of the order parameters @ and B (see also next subsection). On the other hand, W (ia;, 18;) is
getting narrower along the (o; — i)/ /2 axis (Fig. 4b, d, f).

Figure 4g shows the variance (AXmin)? along the (o — Bi)/~/2 axis as a function of N for wp = w, and
g = 0.5w,. We numerically confirmed that (AXmin)? decreases monotonically with the increase in N and reaches
3.5 x 107%at N = 2% ~ 108

Figure 4h shows AXpmin AXmax as a function of N. Although we got AXmin AXmax < 1/4 for N = 1 (atomic
subsystem is not bosonic at all), we found AXmin AXmax > 1/4 for larger N. As seen in Fig. 3d, AXmin AXmax
starts to increase rapidly around the critical point g = 0.5, thus we get AXmin AXmax = 0.253 even at
N = 2% ~ 10% in Fig. 4h. The asymptotic behavior of AXpin AXpay is slower than that of (AXmin)?. Regret-
tably, it was hard to discuss the N-dependence of A Xin AXmax more in detail by our computational power.

As we have seen above, when the photon-atom coupling term is represented as 2g(a@’ + @S,/+/N as in
Eq. (1), the ground-state wavefunction of the Dicke model gets two peaks at |:I:&, FB)forg > J/@awp/2, and
the best squeezing is obtained around the critical point g = ,/w,w/2 along a certain direction in the o — f;
plane [along the (o — 8i)/ /2 axis in the zero-detuning case (w, = w,) as seen in Fig. 2]. These facts mean that,
when o and «; correspond to the normalized electric (displacement) field D and vector potential A, respectively,
and B; and B; correspond to the normalized electric polarization P and current J, respectively, the ground state
approximately becomes a superposition of two classical states with non-zero =D and P for g 2 /w0y /2,
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Figure 5. Numerical demonstration of perfect and intrinsic squeezing. (a-d) w, = w, and (e-h) @, = 2w,.
We plot, as a function of g/w,, (a, ) order parameters @ and b; (b, f) eigenfrequencies Q2.; (¢, g) quadrature
variance; and (d, h) optimal angles Oypt, Yopt, and @opt that yield the minimum variance (AXmin)?% indicated
by the red bold solid line in Panels ¢ and g. The minimum variance vanishes at the SRPT critical point

(g = J/wawyp/2), while satisfying the equality in the Heisenberg uncertainty principle AXmin AXpax = 1/4
[red dashed line in Panels c and g] with the variance (AXmax)? [red bold dash-dotted line in Panels ¢ and gl
conjugate to (AXmin)z.

and the best synchronization (squeezing) of the quantum fluctuations of A and J is obtained around the critical
point g = /@awp /2.

The g-dependence of the ground-state wavefunction W («;, f;) for real amplitudes «; and B, has been dis-
cussed including the SRPT picture and the anti-squeezing by Emary and Brandes'>. However, the squeezing seen
in W (ievj, iB;) for imaginary amplitudes «; and B has been discussed just by focusing on one of them (basically
imaginary photonic amplitude «;)'>!”!**°. In Figs. 2 and 4, we found that the squeezing (narrowing) occurs
along a certain direction in the o; — i plane. It means that the ground state |0 ) of the Dicke model should be
described as a two-mode squeezed state as a one-mode squeezing discussed in Refs.!>!1%* cannot fully capture
the squeezing features of |0). By properly taking the two-mode basis (a; — f;)/+/2 for g = 0.5w, and wp, = w,,
we found the monotonic decrease in (AXmin)? with the increase in N in Fig. 4g.

Perfect intrinsic squeezing in thermodynamic limit. In the previous subsection, we have numerically
analyzed the squeezing of the ground state (intrinsic squeezing) of the Dicke model for finite numbers N of
atoms. In this subsection, we analyze the intrinsic squeezing in the thermodynamic limit (N — o0).

As the Dicke model is an effectively infinite-dimensional system'® in the thermodynamic limit, the SRPT
can be analyzed under a mean-field framework®!'#!>441 Here, we follow the Holstein-Primakoff transforma-
tion approach!'*#!>4%4! which is suitable for zero-temperature analyses of the SRPT (spontaneous symmetry

breaking). The spin operators are rewritten using a bosonic annihilation operator b of the atomic collective
excitations, as follows:
S, > b'h—N/2,5_ — (N — bTh)/2b. (4)

The appearance of the superradiant phase, where non-zero (4) = a+/N and (E) = —bJ/N (a,b € R)
appear spontaneously, can be easily confirmed at zero temperature through the classical energy

= -2 - -2
H/(AN) = w,a> + wpb” — 4gab\/ 1 — b" obtained from Eq. (1). The zero-temperature classical state (the most
stable state under this classical treatment, i.e., the state yielding the minimum of this classical energy) satisfies

9H/9a = 9H/db = 0, from which we obtain
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_ zgz 1 EZ EZ 0, 4 = LY, wawb/z
a=—b\/1-1b", = . .
v Y- 29), g > yowr/2 ®

These are plotted as a function of g/w, in Fig. 5a, e with w, = w, and wp, = 2w,; the latter was chosen as an
example of the detuned cases. The zero-temperature SRPT occurs at

WaWp

g:72 . (6)

In this way, it occurs in the ultrastrong or deep strong coupling regime**-22.
The quantum fluctuations around the zero-temperature classical state are described by replacing @ and b with

av/N + aand —b/N + b, respectively'*!5441, Thereafter, @ and b are considered as fluctuation operators. The
Dicke Hamiltonian, Eq. (1), is expanded as

H/li= NH/li+ wa'a+ apb'b+ 3@ + 20" +b) + D' + b)? + ON"?), ?)
where the coefficients are modified by the order parameters @ and b:
—2 -~
g(l —2b ) B gab . ~
D= , Wy = wy + 2D. (8)

- V1-% ’ 1-5

In Eq. (7), the first term represents the classical energy N’H governing the zero-temperature SRPT. The quad-

ratic Hamiltonian in terms of @ and b represent the energy of quantum fluctuation from the zero-temperature
classical state. The higher order terms are of the order of N~!/2. By numerically diagonalizing the original
Dicke model with increasing the number of atoms (as we have performed in previous subsection), it has been
confirmed that the lowest transition frequencies’, quantum entanglement and pairwise concurrence'® asymp-
totically approach those obtained by the quadratic Hamiltonian in the thermodynamic limit (neglecting the
higher order terms). In the following, we focus only on the quadratic Hamiltonian for discussing the quantum
squeezing in the thermodynamic limit (N — ©0). The calculation will be similar to that for the quantum squeez-
ing generation by the optical parametric oscillation®*2. However, optical parametric oscillation is a primarily
non-equilibrium spontaneous symmetry breaking (critical) phenomenon, whereas the SRPT in the present study
occurs in thermal equilibrium.

By describing the photonic and atomic fluctuations using Eq. (7), we will demonstrate numerically the perfect
intrinsic two-mode squeezing. We consider a general superposition (two-mode basis**?) of the two fluctuation
operators defined in terms of two angles 6 and :

Co,y = acosd + e Dsing. )

In the case of Y = 0, 6 corresponds to the angle depicted in Figs. 2 and 4. We define a quadrature®"?? with
the bosonic operator ¢,y and phase ¢ as

XO;\WP = (?g,weiw +/C\g,we_iw)/2. (10)

In the case of 0 = —7r/4andy = 0, )A(,n/{o,o (p = 0)and )AL”M,OJ/Z (¢ = m/2) correspond to the operators
of (ar — Br)/~/2 and (a;; — Bi)/+/2, respectively, discussed in the previous subsection. We evaluate the variance
(AXQ,WI,)2 = (0|()A(g,¢,w)2|0) — (0|)A(9,,/,,‘p|0)2 = (0|()A(9,¢,¢,)2|0) of this quadrature with respect to the ground
state |0) of the fluctuation Hamiltonian, Eq. (7).

Here, we consider annihilation operators p of eigenmodes (i.e., polariton modes) that diagonalize Eq. (7) as

H/h=Q p'p_ +Q,plpy + ON~Y?) + const,, (11)
where Q4 are the eigenfrequencies. The ground state |0) is defined such that
p10) =0. (12)
Owing to the presence of the counter-rotating terms ab, a'b', bb, and b, originating from those in the
Dicke model in Eq. (1), the eigenmode operators are obtained via Bogoliubov transformation?*»>-2740:41;
P =wid+xib+ysal +2zib'. (13)

For positive eigenfrequencies Q4 > 0 (when energy is needed to excite the eigenmodes), the coefficients

must satisfy [w |? + [xx|? — [y+]? — |z+|> = 1to yield [f)i,fyl] = 1. These coeflicients and Q. are determined
by an eigenvalue problem?**! derived from Eq. (7):
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wa § 0 —g wi wi
g€ @p+2D—g 2D x| _q. | %=
0 g —oa =g | lyx | T e | (14)
g 2D —g —wp—2D Z+ Z+

Two positive eigenvalues correspond to the eigenfrequencies Q.. We also obtain two negative eigenvalues
—Q4, which are mathematically obtained by solving Eq. (14), and their eigenvectors correspond to the creation
operators ... In this study, we suppose 0 < Q_ < Q,; that is, 2_ and €2, are the eigenfrequencies of the lower
and upper eigenmodes, respectively. Figure 5b, f shows Q24 as functions of g/w,. It is known that the lower

eigenfrequency 2_ vanishes at the SRPT critical point g = ,/@,@,/2"*". In this case,[p_, p! ] = 1does not hold
because Eq. (14) yields two mathematically degenerate solutions with 2_ = 0. In the following, we will see that
perfect squeezing is obtained at this critical point.

The quadrature variance (AXp,y ,)> = (0|()?9,¢,¢,)2 |0) can be evaluated by rewriting the original photonic

and atomic fluctuation operators @, a', b, and b' in terms of the eigenmode operators p and p. and using
Eq. (12). We numerically searched for the optimal angles Oopt, Wopt, and @op that provide the minimum variance
(AXmin)? = (AXgOPt,%p‘)%p‘)2 for given w,, wp, and g.

In Fig. 5¢, g, quadrature variances, including (AXmin)% and (d,h) optimal angles Oopt, Yopt, and @opy are plot-
ted as functions of g/w, for (¢,d) wp = wgand (g,h) wp = 2w,. As shown by the red bold solid lines in Fig. 5c¢, g,
while the minimum variance is (AXpin)? = 1/4 (standard quantum limit>"*?) in the absence of photon-atom
coupling (g = 0), it decreases as g increases and vanishes (perfect squeezing is obtained) at the SRPT critical
point, g = ,/wawy/2. Subsequently, in the superradiant phase (g > /wawy/2), (AXmin)? increases again and
approaches 1/4 asymptotically.

In this way, by using the quadratic Hamiltonian in the thermodynamic limit (neglecting the higher order
terms), we get the perfect squeezing (AXmin)? — 0 at the SRPT critical point. Its validity can be confirmed

from the asymptotic behavior (monotonic decrease) of (AXmin)? seen in Fig. 4g in the case of w, = w, (we have
confirmed also for detuned cases, while not shown in figures).

Next, we calculated the variance (AXmay)? = (AXoptYopt-popt— /2)? of the quadrature XOopt,optspopt—/2 CON-

jugate to the optimal one Xo, . yopt.0ops (AXmax)? is represented by the red bold dash-dotted lines in Fig. 5¢, g. We
found that this variance diverges at the SRPT critical point. However, as shown by the red bold dashed lines in
Fig. 5¢, g, we numerically confirmed that the product satisfies AXmin AXmax = 1/4, although only an inequality
AXmin AXmax > 1/4is obtained in general.

In this way, in the thermodynamic limit and under the Holstein-Primakoff transformation, the quantum fluc-
tuation in the ground state |0) is not simply squeezed but also satisfies the equality in the Heisenberg uncertainty
principle (i.e., ideal two-mode squeezing is obtained). However, as we have seen in Fig. 4h, we did not confirm
that AXmin AXmax asymptotically reaches 1/4 correctly with the increase in N. This confirmation remains as a
future task.

In Fig. 5¢, g, the blue thin solid lines represent the variance (AX(),O,,I/Z)2 = (0@ —a"?|0)/4 of a photonic
fluctuation. As we have already discussed in the previous subsection, this type of one-mode variance does not
vanish even at the critical point'>!”°. Further, as shown by the thin blue dashed line, the one-mode squeezing
satisfies only the inequality AX07/2AX0,0,0 > 1/4in the Heisenberg uncertainty principle even in the thermo-
dynamic limit and under the Holstein-Primakoff transformation.

As seen in Fig. 5d, h, in the present case, the minimum variance is always obtained for /opt = 0 (dashed line)
and @opy = /2 (dash-dotted line). These two phases depend on those of the coupling strengths of the co- and
counter-rotating terms*, although we simply considered the isotropic Dicke model, Eq. (1), and real g in the pre-
sent calculation. Conversely, 6opt (solid curves) depends on g/w, and wp/w, in general, while O = —m/4; that
is, (AX_z /407 /2)2, Eq. (2), always yields the minimum variance in the normal phase (g < w,/2) for wp = w,.
It is consistent with what we found in Figs. 2, 3, and 4.

Discussion
We numerically found that the minimum variance vanishes [(AXmin)? — 0] and its conjugate variance diverges

[(AXmax)? — 00], i.e., squeezing becomes perfect at the SRPT critical point in the thermodynamic limit
(N — 00). This occurs when we choose an appropriate photon-atom two-mode basis, as in Fig. 5¢, g. Here,

(AXmin)? and (AXpax)? were calculated from the fluctuation Hamiltonian, Eq. (7), derived from the Dicke
model, Eq. (1), through the Holstein-Primakoft transformation and by considering the spontaneous symmetry

breaking in the thermodynamic limit. The asymptotic behavior to the perfect squeezing [(AXmpin)> — 0] was
confirmed in Fig. 4g by increasing N.

As pointed out by Hirsch et al.*’, such Hamiltonians derived by truncating the terms [O(N ~1/2)in Eq. (7)]
beyond the quadratic ones may show some divergent (singular) results that are not obtained in the original
Hamiltonians. However, as demonstrated by Emary and Brandes'® and also in Figs. 2 and 4 of the present

study, the signature of divergence (anti-squeezing) along the axis of (a; — f;)/+/2 was observed by numerically
diagonalization of the original Dicke model for finite N It indicates that the divergent (A Xpay)? and vanishing
(AXmin)? in the thermodynamic limit are not an artifact caused by the truncation of the higher-order terms.
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Note also that, although the numerical calculation cannot be performed at exactly the critical point
J@awp/2) due to the divergence for the fluctuation Hamiltonian, Eq. (7), it is numerically observed that

the minimum variance gradually vanishes [(AXmin)> — 0] when the coupling strength approaches the critical
value (g — Jwawp/2 + 0%). This also indicates that the truncated Hamiltonian is )ustlﬁed even near the critical

point as long as the number N of atoms is larger than the expectation number (OIbTb|0) of atomic excitations,
which becomes infinite only at exactly the critical point.

A detailed mathematical analysis of the perfect squeezing [(AXmin)? — 0] is presented in “Methods”, where
we derived analytical expressions of the ground state |0) of the fluctuation Hamiltonian, Eq. (7). In the case
of wp = w, and the normal phase (g < \/wawp/2), we could easily find that the ground state is expressed as

[0) o ﬁd, ﬁd+|0a,h), where Ei =@+ Z) /+/2 are the equal-weight superpositions of the original fluctuation

~ Stat 5.3
operators, Ugy = e(mr=/D(didy—dyds) gre squeezing operators in that basis, and |0u)b y=1n), %, —% )¢ is the

original vacuum satisfying a|0,) = E|Oa)b) = 0. This is analytical evidence indicating why A Xin AXmax = 1/41is
satisfied for any g at Oopr = —7 /4, Yopt = 0, and opy = /2 in the fluctuation Hamiltonian, Eq. (7), because |0) is

an ideal two-mode squeezed vacuum where the variances of quadratures defined by d_ = C_r/a0=(@— i)\) /2
obey (AXmin)? = (AX_,T/4,0,,T/2)2 = e /4 and (AXmax)? = (AX_ﬂ/4,0,o)2 = e~%"~ /4. From the analytical
expression of r_ in Eq. (33), we could also easily find that the perfect squeezing is obtained asr— — —ooin the

d_ basis when the coupling strength reaches the critical point as g — w,/2 + 07. This is analytical evidence
indicating why the quadrature variance (AXmin)? vanishes at the SRPT critical point, as demonstrated in Fig. 5.
From the expression of the ground state derived in “Methods”, we can mathematically confirm perfect squeez-
ing also in the general case with w, # w, (and in the superradiant phase). Instead of such a straightforward but
complicated analysis, we can also understand perfect squeezing at the SRPT critical point g = ,/wawp/2 in the
following manner.

Perfect squeezing can generally be obtained when the quadrature
)Afg,w,w = [(e%3 + e7aM)cosh + eV (b + e~ b T)sind]) /2 is proportional to the eigenmode operator p_,
because p_|0) = 0 and then the quadrature variance (0|()A(9,,/,,¢,)2 |0) becomes zero. As we can freely choose the
angles 6, ¥, and ¢, perfect squeezing can be obtained when the weights of the annihilation and creation opera-
tors in the eigenmode operator p_ = w_a + x_b+ y_a' + z_b'are equal as|w_| = |y_|and|x_| = |z_|. Such
equal weights are obtained at critical points accompanied by a vanishing resonance frequency in some interacting
systems (e.g., weakly interacting Bose gases*). In the present case, we can easily find thatw_/y_ = x_/z_ = —1
is obtained under the condition of 2_ = 0 from the eigenvalue problem in Eq. (14). Thus, we can generally obtain
perfect squeezing in an appropriate quadrature at critical points in the Dicke model, as well as in similar models
with counter-rotating terms and a vanishing resonance frequency.

In summary, we found that perfect squeezing is an intrinsic property associated with the zero-temperature
SRPT in the Dicke model in the thermodynamic limit (N — o0). Phenomenologically, owing to a possible
divergence of quantum fluctuation [e.g., along (ar — Br)/ /2 axis in Fig. 4a, ¢, e demonstrated for finite N] at
a critical point, its conjugate fluctuation can be perfectly squeezed [e.g., along (e — f8;)/~/2 axis in Fig. 4b, d,
f demonstrated for finite N] while satisfying the Heisenberg uncertainty principle. Such a quantum behavior
should be obtained only in limited systems with a vanishing resonance frequency and counter-rotating terms;
we confirmed that the Dicke model is one of such systems.

In the superradiant phase, the physical quantities that mediate the photon-atom coupling get non-zero val-
ues spontaneously, and their conjugate variables are perfectly squeezed (two quantum fluctuations are perfectly
synchronized) at the SRPT critical point. For instance, if the photon-atom coupling is mediated by the electric
(displacement) field D and electric polarization P, non-zero D and P appear spontaneously in the superradiant
phase, and the quantum fluctuations of the vector potential A and electric current J are perfectly synchronized
(squeezed) at the SRPT critical point.

By the standard squeezing generation processes in dynamic and nonequilibrium situations, the two-mode

squeezed vacuum ﬁd, ad+ |04,5) is also generated and perfect squeezing (r+ — —o0) can be obtained at dynami-
cal critical points such as at the threshold of the optical parametric oscillation®*2. However, this perfect squeezed
vacuum is an excited state of the photonic system in free space (flying photons) carrying an infinite energy (infi-

nite number of photons), whose Hamiltonian is given by Hfree /b= wa'ad+ ap b'D. By contrast, in the Dicke
model, the squeezed vacuum and perfect squeezing are obtained in the ground state, i.e., in the energetically
minimal state. Although photon loss (dissipation) can generate quantum entanglement and squeezing in some
specially designed driven-dissipative situations**¢, usually squeezing of flying photons easily diminishes due to
photon loss during generation, propagation, and detection and due to noise in the driving laser light, nonlinear
crystal, cavity mirrors, etc.”. In contrast, the phenomenon of intrinsic squeezing described here does not dimin-
ish with time and is stably obtained in equilibrium situations.

Therefore, intrinsic squeezing might have the potential to make quantum sensing* and continuous-variable
quantum information technologies®** intrinsically robust against the photon loss and noises (decoherence).
We can use some of the existing protocols by replacing the superposing and displacement operations for fly-
ing photons with those for photons in equilibrium, which can be implemented via adiabatic changes in system
parameters. The control of system parameters is well established in superconducting circuits and also in mag-
nonic systems*, both of which can show the equilibrium SRPTs>!°. Specifically, ongoing terahertz magnetospec-
troscopy measurements of Er, Y, ,FeO;* provide us an experimental platform for creating squeezed magnons
around the magnonic SRPT in thermal equilibrium, whereas we need a different technique for measuring the
intrinsic squeezing.
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Concerning the measurements, in contrast to the perfect intrinsic spin squeezing reported in some spin
models, such as the Lipkin-Meshkov-Glick model?, the XY model?’, and the transverse-field Ising model®, the
quantum fluctuations of photons can be measured using modern experimental techniques even in the ground
state and in general equilibrium situations**°. The quantum fluctuations of magnons can also be performed in
a similar manner by utilizing a magnonic nonlinearity.

Although we restricted the present investigation only to zero temperature for deriving simple analytical
expressions, the obtained intrinsic squeezing is expected to become imperfect at finite temperatures. Such inves-
tigations should be performed for practical applications, including quantum metrology™, for example, along
the calculation scheme of Shapiro, Pogosov, and Lozovik'®. The asymptotic behavior of AXpin A Xmax with the
increase in N should also be analyzed more in detail. Further, whereas we implicitly assumed that system-bath
coupling is much weaker than the system parameters (v, and g), it should also worsen the intrinsic squeez-
ing. Such an influence should be investigated, for example, using the scheme by Shitara et al.>'. Although we
considered the isotropic Dicke model in the present study for deriving simple analytical expressions, we con-
firmed numerically that perfect intrinsic squeezing can be obtained even within the anisotropic Dicke model,
where the co- and counter-rotating coupling strengths are different** and complex. By multiplying phase factors
to the photonic and atomic operators as @ — e % and S_ — e"%S_, the coupling term is transformed to
(©a'S_ + g5, a)/v/N + (92a'S; + g#S_a)/+/N, and we obtain complex coupling strengths g; = gel(®«—9)
and g, = gel(®9) for the co- and counter-rotating terms, respectively. Thus, our analytical results can be
applied for solving cases with complex coupling strengths. We can numerically confirm that the optimal phases
are Yopt = Pa — ¢pand gopt = 7/2 — ¢, for the complex coupling strengths. However, it is still an open question
whether perfect squeezing can be obtained in more realistic systems beyond the Dicke model. Such studies are
required for examining sensing and computing protocols in superconducting circuits’ and ErFeO;'° that show
SRPTs in equilibrium.

Methods

Numerical evaluation of Wigner functions and variances. For calculating the ground-state wave-
function of the Dicke model by the Wigner function, we first define the atomic Fock state with the total angular
momentum of 4S = hN /2 as

In) N N
nypy=|—n—— ),
b 2 2/, (15)
wheren = 0,1,2,..., N. We define the atomic coherent state as
N
1812 B
By =€ "2 [1)p- 16
T 1
Thus, the two-mode coherent state with a photonic complex amplitude & € C and an atomic one g € Cis
defined as
At an
lo, B) = €** 7% 910)418 ). (17)
Because the ground state|0) is a pure state, the Q function® is represented as
(e, B10}|*
Qupl, B) = (18)
T

Here, we rewrite the Q function by introducing diagonal variable £+ = (o & 8)/+/2 as

§r +& & — & )
V2 i V2 )
Because of the limitation of our computational power, we transform this Q function into the Wigner

function® only along the £_ direction, which corresponds to the axis of the squeezing and anti-squeezing as
seen in Figs. 2 and 4. We define the anti-normally ordered characteristic function as

Q(§+,5-) = Qub( (19)

Caley, 1) = / N S (20)
The symmetrically ordered characteristic function is calculated as
Cs(E+. ) = CalErr Del 2. @D
Using this, we calculate the Wigner function as

e*\fﬂz

W)= —s / 422 Cs(E4, et 554, (22)

Here, the factor e~ 5+!" is additionally multiplied for compensating the broadening difference between the
Wigner function (along &_ axis) and Q function (along & axis).
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For numerically evaluating the variances in Egs. (2) and (3), using the atomic Fock states in Eq. (15), we
define the atomic annihilation operator as

N
EZ n)pp{n + 1. (23)

In the numerical calculations, the operators including the Hamiltonian are represented as matrices on the basis

of the two-mode Fock states|n), |n’>b = |n), & > . ) whereas the states withn > Npaxorn +n > Nmax

are truncated. We have numerically confirmed that the results in Figs. 2, 3, and 4 are well saturated by using
large enough Npaxand N, ..

We set Nyax = 112and N, = 114 for Figs. 2a-f and 4a-d. Nipay = 146and N, = 148 for Figs. 2g—j, 4e,
f. For Fig. 3, we set N = = Nmax + N. Nmax = 200 for Fig. 3a, ¢, and e, red dashed and blue dash-dotted lines

max

in Fig. 3b, d, f. Nmax = 1500 for yellow lines in Fig. 3b, d, f.

For Fig. 4g, h, we set Npax = 10000 and Nr/nax = 10002. We have confirmed that the additional truncation
= Nmax + 2) does not change the calculated (AXmin)? and AXmin A Xmax by comparing those without the
= Nmax + N) up to N = 218 &~ 2.6 x 10° with Nypax = 1000.

(N,

max )
truncation (N,
Analytical expression of the squeezed ground state. Here, we explain the numerically found perfect
and ideal squeezing (AXmin = 0 at the critical point with AXyin AXmax = 1/4) using an analytical expression

of the ground state |0) of the fluctuation Hamiltonian, i.e., Eq. (7). Following the discussion by Schwendimann

and Quattropani®*~*’, we consider a unitary operator U that transforms the fluctuation operators @ and b into

the eigenmode operators p as
p_=Ualt, py = UbU". (24)

For the vacuum ‘Oa,b ) =10),10); of the individual fluctuations satisfying a|0,,) = E|Oa)b) = 0, the ground
state |0) of the coupled system can be expressed as

0) o< 0|0, (25)

while there exists freedom to introduce an overall phase factor. This expression satisfies Eq. (12).

Sharma and Kumar® recently showed the explicit expression of U for the fluctuation Hamiltonian, Eq. (7),
derived from the Dicke model, as

U=0,0_04, (26)

where the three unitary operators are defined as

O = o™/ (iﬁiﬁ—iziz)e—¢(&f8—£*&)e—r(a*£*—za) 27)
0_ — e—(r,/Z)(aT&T—&&) 0 — ef(r+/2) (21}}17@5) (28)

Here, Uy are one-mode squeezing operators, and Upis a product of one-mode squeezing, superposing, and

two-mode squeezing operators®*2 Using a Bogoliubov transformation of b for renormalizing the D term in
Eq. (7), the atomic frequency and coupling strength are modified as follows:

b=\ (@ +4D), §=/A-n/A+73 (29)

where y, also yielding r, in Eq. (27), is defined as

\/1+4D/ay, —1

Y= = = tanh(ry). (30)
\/144D/ay + 1
The other factors in Eqs. (27) and (28) are defined as
tan(2¢) = 2g/ <a)a - E)b>, (31)
tanh(2r) = 2§cos(2¢)/(a)a + cT)b), (32)
tanh(2r_) = gsin(2¢)/e_, (33)
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tanh(2ry) = —gsin(2¢) /e, (34)
where newly defined quantities €+ with a frequency dimension and the eigen frequencies €2+ are expressed as
)2 )2
€r = ¢(“’“+4wb) — FPcos(2¢) £ \/(“’“4“’1’) + g (35)

Qs = \fes? — gsin2 29). (36)

Note that the unitary operator U can be rewritten as
U = 04-0440p; (37)
that is, a product of Uy and two one-mode squeezing operators

. N _ St 3. g
Ugr = UoUiUJ = ri/z)(didi didi) (38)

under a new basis transformed from the original one (4 and B) by Us as
a0 = 00a01, 4, = Oob0, (39)
In the case of w, = wp and the normal phase (zero expectation values of the photonic and atomic fields
a = b = 0) obtained for g < \/®Wawy/2, we obtainr, =y =0, ‘T’ﬁ = wy, and g = g from Egs. (8), (29), and
(30). In this case, we can easily find that the ground state |0) oc U|0,) is an ideal two-mode squeezed vac-
uum. From Egs. (31)-(36), under the limit of wp — w, + 07, we obtain Qi = \/wa(wa £2¢), ¢ = —7/4,
r =0, tanh(2r_) = —g/(ws — &), and tanh(2r}) = g/(w, + g). Because the unitary operator Uy is simply a
superposing operator as Uy = e(”/‘*)(a@_w@, the new basis d. defined in Eq. (39) is the equal-weight super-
position of the original fluctuation operators as di = (@=+b)/+/2. Then, the ground state is simply expressed
as |0) « ff|0a,b) = Uy ﬁd+\03,b); that is, squeezed by r+ in the two-mode (superposed) basis Ei, and the
variances of quadratures defined by d = C_y /4, are obtained as (AXmin)? = (AX_» /40,7 /2)2 = e%~ /4 and

(AXmaX)2 = (AX_, /4,0)0)2 =e - /4. This is analytical evidence indicating why A Xmin AXmax = 1/4 s satisfied
for any g. When the coupling strength reaches the critical point as g — w,/2 + 07, the lower eigenfrequency

becomes Q_ — 07, and perfect squeezing is obtained as r_ — —oc in the d_ basis. This is analytical evidence

indicating why the quadrature variance (AXmin)? vanishes at the SRPT critical point, as demonstrated in Fig. 5.
In the general case with w, # wj, (and in the superradiant phase), we can mathematically confirm that perfect

squeezing can be obtained from the expression|0) o< U|0,) of the ground state described by the unitary opera-
tor U in Eq. (37), while the basis d_. is not a simple superposition of the original fluctuation operators @ and b,

but also includes their creation operators @' and b'. Instead of such a straightforward but complicated analysis,
we can also understand perfect squeezing at the SRPT critical point g = ,/w,w}p/2 as explained in “Discussion”.
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