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Local gauge symmetry is intriguing for the study of quantum thermalization breaking. For example, in the
high-spin lattice Schwinger model (LSM), the local U(1) gauge symmetry underlies the disorder-free many-body
localization (MBL) dynamics of matter fields. This mechanism, however, would not work in a spin-% LSM
due to the absence of electric energy in the Hamiltonian. In this paper, we show that the spin-% LSM can
also exhibit disorder-free MBL dynamics, as well as entropy prethermalization, by introducing a four-fermion
interaction into the system. The interplay between the fermion interaction and U(1) gauge symmetry endows
the gauge fields with an effectively disordered potential which is responsible for the thermalization breaking. It
induces anomalous (i.e., nonthermal) behaviors in the long-time evolution of such quantities as local observables,
entanglement entropy, and correlation functions. Our work offers a different platform to explore emergent
nonthermal dynamics in state-of-the-art quantum simulators with gauge symmetries.
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I. INTRODUCTION

Quantum thermalization is prevalent in quantum many-
body physics. It refers to the phenomenon that the long-time
dynamical behavior of a closed quantum system can be
described by a thermal ensemble characterized by a few
parameters such as temperature and chemical potential, ac-
companied by the loss of the local information of the initial
state [1-4]. Two important classes of exceptions are known
to severely break quantum thermalization; one is quantum
integrable systems with the number of conserved quantities
being equal to the degree of freedoms [5,6], and the other is
disordered systems which support the many-body localization
(MBL) [7-9]. A strongly disordered system typically carries a
set of local integrals of motion which localizes the excitations
and freezes the transport [10-13], allowing the local infor-
mation of the initial states to survive for a long time without
being erased. These features also underlie several potential ap-
plications of MBL states in quantum information processing.
Over the past decade, MBL has been extensively studied in
various contexts of physical systems, including cold atoms in
optical lattices [14—16], trapped ions [17], nuclear magnetic
resonance [18], superconducting circuits [19,20] and so on.

In recent years, another interesting mechanism of nonther-
malization has been found in lattice gauge models without
disorders, namely, the disorder-free MBL [21-27]. In these
systems, the quantum dynamics are constrained by local
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gauge symmetries, causing a portion of the system effectively
to experience a disorder under the gauge-sector average. Par-
ticularly for the lattice quantum electrodynamics [QED; also
called the lattice Schwinger model (LSM)] with gauge fields
being realized by high spins (S = 1) [22], fermions (matter
fields) fail to thermalize when relaxed from a clean Néel state.
This MBL results from the combined effect of the U(1) gauge
symmetry (Gauss’s Law) and the electric field energy E? in
the Hamiltonian. However, in the LSM with gauge fields being
spin %, a system that was recently realized in two cold-atom
simulators [28-30], this disorder-free MBL induced by the
electric field energy would not occur due to the vanishing of
the E? term.

In this paper, we show that, contrary to what has been
described above, the gauge fields of the spin-% LSM can, in
fact, also exhibit nonthermal dynamics, such as disorder-free
MBL and prethermalization, as long as the system carries a
four-fermion interaction term. Including such a fermion in-
teraction in the Schwinger model was motivated by a recent
proposal on realizing the synthetic U(1) gauge field using
spin-1 bosons [31], in which the four-fermion interaction
naturally arises from the intrinsic interactions of spinor cold
atoms. With the help of Gauss’s law, the fermion interac-
tion can be transformed away, which gives rise to a type of
effective disorder for the gauge particles, causing the latter
to exhibit MBL dynamics. We carry out detailed numerical
simulations on such quantities as local observables, bipartite
entanglement entropy, and correlation functions, in which the
dynamical features of thermalization breaking can be clearly
demonstrated.

The rest of this paper is organized as follows: In Sec. II,
we introduce the U(1) lattice Schwinger model and briefly
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review the mechanism of the disorder-free MBL. In Sec. III,
we present our scheme for breaking the thermalization by
four-fermion interactions in a spin-% LSM. In Sec. IV, we go
into detail about our numerical results. A brief conclusion is
given in Sec. V.

II. DYNAMICAL MBL IN THE HIGH-SPIN LSM

Before fully engaging in our scheme, we briefly re-
view the disorder-free MBL in the LSM with high-spin
gauge fields. The continuous Schwinger model refers to the
(141)-dimensional QED theory with U(1) gauge invariance,
depicting the interactions between electrons (matter fermions)
and photons (gauge bosons). It is also widely used as a
toy model to study various phenomena in quantum chromo-
dynamics, such as quark confinement and chiral symmetry
breaking [32-34]. The lattice Hamiltonian of the Schwinger
model can be obtained by following the discretization con-
vention provided by Kogut and Susskind [35], which is
formalized as (setting /i = 1)

Hisu= -y (] U +He)
j

+m Yy (DY iy, + %z > E; ()
J J

where w; and v, indicate the local matter fields of charged
fermions, j € ZT ={1,2,...,L}, with L being the length
of the chain; and U; and E; satisfy the su(2)-like algebra
[E;, Ux] = §;xU; and denote, respectively, the parallel trans-
porter and the electric field of the gauge fields living on the
link between two neighboring matter sites vy;_; and /;, as
is schematically shown in Fig. 1(a). In Higy, the first term
describes the coupling between matter and gauge fields with
coupling strength w, and the second term is the staggered mass
referring to the opposite mass experienced by fermions seated
on odd and even sites. The occurrence of negative mass is
somewhat strange. However, as we will show in Sec. III, by
introducing the antiparticles, the mass term will have a clearer
picture—two neighboring fermions respectively correspond
to the electron and the positron carrying opposite charges but
the same mass. The last term of Higy indicates the energy
of the gauge field, with g > 0 being the coupling constant,
which is purely composed of the electric energy E2. This is
a property of (1+1) dimensions, where the magnetic field is
absent since the curl of the vector potential field is forbidden
in one-dimensional space. In quantization, the electric states
can take only integer values up to a shift,i.e.,E; = Z — 0 /2n,
where 6 € [0, 2) is the topological angle indicating a back-
ground electric field [34,36,37].

The LSM [Eq. (1)] carries a local gauge symmetry
[Gj, HLSM] = O, with

Gi=vy,—(En—Ep+i-1-1 @

being the Gauss operator defined in a building block consist-
ing of two gauge fields {E;, E;;,} and one matter field ;
in the middle [see Fig. 1(a)]. The static charge g; is defined
as the quantum number of G;, which is apparently a good
quantum number. Up to some constants, g; locally charac-
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FIG. 1. (a) Schematic of the LSM [Eq. (1)] and that with four-
fermion interaction [Eq. (3)]. The circles denote the matter fields, and
ovals denote the gauge fields. The blue dashed line labels a building
block consisting of two neighboring gauge fields with one matter
field in the middle. w indicates the coupling between the matter
and gauge fields; J denotes the fermion interaction between two
nearest-neighboring matter fields. (b) LSM and its QED picture in the
framework composed of particles and antiparticles, i.e., H in Eq. (4).
(bl) The correspondence between matter (gauge) fields in the left
column and the charges (electric fields) in the right column. Specif-
ically, a matter field occupation on odd (even) sites corresponds to
the generation of a positron (electron) with a positive (negative)
electric charge in the vacuum. An up-polarized gauge spin on odd
(even) sites denotes the right-moving (left-moving) electric fields.
The electric directions are inverted for a down-polarized gauge spin.
(b2) A detailed example of a state (top row), with all the matter sites
being occupied and all the gauge spins being down polarized, and its
QED picture (bottom row).

terizes the difference between the net electric flux E; | — E;
and the fermionic charge 1//; ¥, which is a direct manifesta-
tion of Gauss’s law. The local gauge symmetry divides the
entire Hilbert space into different gauge sectors, with each
gauge sector labeled by a set of static charge numbers q =
g, 92, -+ ,qL}.

To quantum simulate the LSM in experiments [28-30],
it is common to realize the electric fields by spin-S spinors,
ie, U™ - §* and E; — S, which is also called the quan-
tum link model [38,39] or spin-gauge model [40,41]. This
means selecting a finite-dimensional representation for the
s5u(2) gauge fields and truncating E; within the range [—S, S].
For high-spin LSM, the matter fields can exhibit disorder-
free MBL as the gauge fields are integrated out. The electric
energy term E]2 in Hy gy is responsible for this phenomenon.
Let us take S = 1 as an example [22]. In each gauge sector,
the gauge field can be expressed by the static charge ¢; and
the matter-field occupation w}'w ;j using Gauss’s law [Eq. (2)].
Consequently, the electric energy can be reexpressed com-
pletely in terms of the matter fermions and contains a term
Hi=)Y_ i q;lﬂ;lﬁj, with ¢(q) being a fur.lction.d.epending
on the gauge-sector number . Therefore, if the initial state
|Wy) spans over a large number of random gauge sectors, Hy
effectively acts like a disorder potential, causing the
postquench dynamics to break the thermalization. However,
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this mechanism would no longer work in the spin-l LSM
since in this case E} = (07)*/4 = 1/4 (with o7 being the

spin-5 L Pauli matrix) is simply a constant that can be neglected.
Hence the electric-energy-based approach in inducing the
disorder-free MBL will not be applicable.

We additionally would like to mention that in the gauge
sector q = 0, the E? term is also closely related to the charge
confinement of QED [34,41,42]. Particularly, the high-spin
LSM (6 # m) is confined. Separating two fermions with
opposite charges would lead to an electric string between
them, and hence, the total electric energy in the Hamiltonian
would be linearly proportional to the length of the string, i.e.,
o |i — j|g*S?. To lower the electric energy, an additional pair
of fermionic charges will emerge to screen the electric string,
which is known as the string breaking [41—43]. In contrast, the
LSM with § = 1/2 (6 = m) is deconfined due to the absence
of the electric energy in Hisym. In this case, the state of a
local electric field should be either % or —%, causing the
total electric energy to be a constant Lg>S?/2 independent of
the distribution of fermions. Note that not all gauge sectors
are equivalent for the LSM with a finite S, and hence, the
relationship between the confinement and the disorder-free
localization remains an open question worthy of further study.
However, this question goes beyond the scope of the current

paper.

III. DYNAMICAL MBL IN THE SPIN-% LSM

Considering the fact that current state-of-the-art experi-
mental techniques can realize only the spin—% LSM [28-30],
it is highly desirable to investigate possible ways to break the
thermalization in such a system. Here, we formally discuss
our scheme. The basic idea is to introduce a four-fermion
interaction term into Hy gy such that the total Hamiltonian now
reads

H=-w) (¥,
J

Am Y (VY Iy v iy, ()
J J

S;_Iﬂj + H.c.)

with J characterizing the interaction strength. The addition of
this interaction term does not affect the local gauge symme-
try as [G;, H] = 0O still holds. Our goal is to show that, by
integrating the matter field out, the gauge field experiences
an effective disorder. Our approach thus is in contrast to the
scheme shown in Ref. [22], where the MBL is realized on
matter fields. Introducing the fermion interaction term into the
LSM was proposed in Ref. [31], in which the equilibrium-
state phase diagram and quench dynamics were studied under
a fixed gauge sector, q = 0. In the current work, we find
that the fermion interaction is capable of inducing nonthermal
dynamics when different gauge sectors are mixed.

We explicitly introduce the antiparticles by taking the
particle-hole transformation on the odd sites, i.e., ¥jcoad —>
wjeodd’ and making a similar transformation on the gauge

Z . .
ﬁeldsS jcodd Sjeodd, Sjeodd — -8 eOdd,whlch transforms

Hamiltonian (3) into a new form:

= —waf, 1STj + He.)
+m’2w}wj—JZw_}_le_lw}wj, )
J J

with m’ = m + J. Correspondingly, we have the Gauss opera-
tor

Gi=vlv;+5+5,,, (5)

where [G;, H] = 0 and § = {gi, §2, . . ., 41} labels the gauge
sectors, with §; being the quantum number of G ;. Apparently,
H is translationally invariant, with all fermions featuring the
same mass ', as mentioned before. H provides a clear analog
of the LSM in QED [see Fig. 1(bl)]: The occupation of the
odd and even matter sites denotes the positron and electron
with equal mass m’, respectively; for gauge spins at even
sites, states | 1) and | ) respectively correspond to the left-
and right-pointing electric fields, whereas for gauge spins at
odd sites, the directions of electric fields are reversed. In
Fig. 1(b2), we show a concrete example of the state (top
row) with all the matter sites being occupied and its QED
analog (bottom row), in which the distributions of charges
and electric fields are clearly illustrated. In this picture, the
matter-gauge interaction (w term in H) indicates the process
that an electron and a positron merge together simultaneously,
generating gauge photons. Photon generation in the context
of § = % corresponds to the spin ﬁi~p of gauge spins. Also
within this picture, Gauss’s law with G; indicates that the total
excitation within a building block is conserved, including the
electron (positron) and gauge spins.

Since matter fields and gauge spins are mutually related
to each other by Gauss’s law [Eq. (5)], we are, in principle,
allowed to eliminate the matter fields and write down an
effective model purely in terms of the gauge spins. Elimi-
nating the matter fields is straightforward for the last two
terms of H. To be specific, given a certain gauge sector
d, substituting Eq. (5) into Eq. (4) leads to —2m’ >_ j Sj -
J Zj[c]j,l — (Sj_1 + S;)][c]j — (Sj + S§+1)]. The m’ term is
free of disorder and thus is irrelevant to the MBL dynamics. In
the following discussion, we thus focus on the case of m’ = 0.
In contrast, the J term, arising from the fermion interaction, is
gauge sector relevant. Rewriting the J term in terms of gauge
spins yields

—JZ 28555, + 85,85, — 4S%), (6)

with c]} = {j—2 + §j-1 + G; + Gj+1. This indicates that, in ad-
dition to the homogeneous interactions (SjS; 41 and 557 155 1)
the gauge field additionally experiences a local potential
—q}S; whose strength depends on the gauge sector . There-
fore, if the initial state mixes various random gauge sectors,
the gauge spins will experience an effective disorder under
the sector average. This term therefore plays a central role in
our scheme in inducing the anomalous nonthermal dynamics,
which will be presented in Sec. IV.

Within a building block as defined in Fig. 1(a), g; is al-
lowed to take four integer values, i.e., §; € {—1,0, 1, 2}. With
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TABLE 1. Allowed |S%, n;, 3, ,) configurations in the jth build-

ing block, with §; being the quantum number of G;.

qj
—1 0 1 2
[1.0,4) It 1L{)
N 14,04 14,01 1LY L1
configurations 3. 5L 1101

the choice of the Fock basis |n; = 0, 1) and the spin basis
ST =1, |) for the matter and gauge fields, respectively, the
correspondence between §; and the allowed configurations
is listed in Table I. It can be observed that §; = {0, 1} each
possesses three distinct configurations, whereas §; = {—1, 2}
each possesses only one unique configuration. We thus con-
sider an initial state

0) + 1)\ ®*
W) = (L 7
[Wo) (ﬁ ) [, 1 ) @)

which is a product state, with the matter fields being an equal
superposition of states |0) and |1) and the gauge fields be-
ing simply an antiferromagnetic Néel state. In each building
block, the state |\Wo) completely lies in §; = {0, 1} with equal
probability of % Hence, for a chain with length L, there are in
total 2¢ gauge sectors involved. Most of these gauge sectors
have with a random q, e.g., ¢ = {1,0,0, 1,0, 1, ...}. There
are, indeed, some exceptions. For example, § = 0 and § =1
are completely ordered. However, their portion is always ex-
ponentially small, and hence, they would not dominate the
dynamics for a large L.

Eliminating the matter fields from the first term of H is
not as straightforward as eliminating them from the last two
terms. To date, no simple way exists to eliminate the matter
fields for a general random {. However, as will be shown
by numerics below, the w term alone in Eq. (4) is unable
to prevent thermalization, manifested by the phenomenon
that the local gauge spins of |Wy) quickly relax to thermal
equilibrium. Therefore, | V) serves as an important reference
state for the discussion of the thermalization breaking induced
by the fermion interaction J. It may also be worthwhile to
mention that, in the completely ordered gauge sectors (q = 0
and q = 1), matter-field elimination can be accomplished by
mapping the system to a Rydberg chain [31,36,44,45]. The
resulting term is a PXP Hamiltonian which is known to pos-
sess a set of quantum many-body scar states weakly breaking
the eigenstate thermalization hypothesis [46,47]. In spite of
this, the mapping cannot be simply generalized to a general q.
Since the weight of the ordered sectors is sufficiently small, as
mentioned above, we will not discuss this any further in this

paper.

IV. NUMERICAL RESULTS

In practical simulations, it is convenient for us to addi-
tionally map the fermions of Eq. (4) to Pauli spins using the

Jordan-Wigner transformation:

j—1

j—1
vi=si [len -0, vi=s [len -1,
=1 =1

with n; = s;"s;". Under this mapping, H can be written as an
interacting spin chain Hamiltonian,

H, = — Z [w(s;_,STs7 +He) +Js5_ 55+ Is5]. (8)
J

in which the gauge spins and the matter spins are denoted by
S; and s;, respectively. Correspondingly, the initial state has

the form
RS
|"IJ0>_ < \/5 ) | \Lﬂ T5 \La"')a (9)

with | ) and | ) denoting the eigenstates of matter spins s°.
We simulate the dynamics |W(t)) = e~ | W) via exact diag-
onalization of the Hamiltonian H;. By utilizing the (discrete)
translational symmetry of H; and |\W) [48,49], we are able to
deal with a system of size up to L = 14 (i.e., 14 matter spins
plus 14 gauge spins) on a medium-size workstation.

We first look at the dynamics of local polarization of gauge
spins, i.e., (S;(t)). Generally, for a many-body system under
thermalization [50-52], after a sufficiently long time of evolu-
tion, all the local information of the initial state will be erased,
and the system will behave like a thermal state characterized
by density matrix pg. Namely, the local observable (S?(t))
will approach the thermal equilibrium, i.e.,

Jim (S500) ~ (S3)y, = Tr(owS). (10)
with
o BH.
P = Tr(e—AH) (v

being the density matrix of the Gibbs ensemble, where S
is the effective inverse temperature determined by the ini-
tial state via & = (Wy|H,|Wo) = Tr(pmHy). In contrast, for
systems breaking the thermalization, such as the MBL, the
local equilibration limHoo(Sj(t)) will deviate from the ther-
mal value (S;)th. Our numerics show that, for arbitrary J, the
thermal state py, associated with our initial state |Wy) [Eq. (9)]
is always an infinite-temperature thermal state, i.e., py o I,
such that (S§>th = 0. This can be understood in the following
way. Since |W) is a product state with each matter spin being
(1) +14))/+/2 and each gauge spin being either | 1) or
| 4}, it thus has zero energy expectation £ = (Wy|H,|¥y) = 0.
On the other hand, H; is traceless such that the average of all
the eigenenergies is also equal to zero. These two facts indi-
cate that £ = Tr(pnH,) = 0 should occur at 8 = 0, namely, at
the infinite temperature. The infinite-temperature state should
have vanishing expectation values for all the traceless oper-
ators, and hence, the deviation of the long-time dynamics of
local traceless operators from zero conveniently measures the
degree of thermalization breaking.

In Fig. 2(al), we plot the polarization of a local gauge field
(szz(t )) for various matter-field interactions J, with the solid,
dashed, dot-dashed, and dotted lines denoting J = 0, w, 2w,
and 3w, respectively. One can observe that, in the absence
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FIG. 2. (a) Time evolution of (al) a local gauge spin (S;ZZ)
and (a2) a local matter spin (si_,) on log(t), with solid, dashed,
dot-dashed, and dotted lines corresponding to the cases of J = 0, w,
2w, and 3w, respectively. (a3) The averaged long-time polarization
ng [Eq. (12)] versus system size, where markers are numerical data
at L = {8, 10, 12, 14} and lines denote the linear fitting for the data.
(b) Dynamics of local gauge polarizations (S7) on each site j, where
(b1)—(b3) denote the cases with J =0, w, and 2w, respectively.
Except for (a3), all panels are calculated at L = 12.

of fermion interaction (J = 0), the local polarization rapidly
decays from % to (S%)m = 0 as a manifestation of quantum
thermalization. However, for the cases with J # 0, the long-
time behaviors (S7_, (7)) apparently deviate from zero. With
an increase in J, the deviation will become larger. These
behaviors are consistent with our previous discussion that in-
creasing J leads to an increase in the disorder strength, which
results in more severe destruction of quantum thermalization.

By contrast, the matter field does not exhibit thermalization
breaking. This is shown in Fig. 2(a2), where we plot the
dynamics of (s’]‘,=2 (1)) for various values of J. As one can see,
in the long-time limit, (55 (@) all converge to the thermal
equilibrium value, which 1s also zero, regardless of the values
of J. This is understandable since the matter fields do not
experience the disorder potential, which is thus different from
the gauge fields.

Furthermore, to characterize the dependence of local po-
larization on the system size L, we perform a system-size
analysis of the averaged polarization S_é and show the result
in Fig. 2(a3), where

- 10+T
§S=1" / di(S5(1)), (12)
fo
with fo = 50w ™" and T = 300w~! chosen to be sufficiently
large to ensure that S_é can capture the average long-time fea-

ture of the local gauge spin. It can be observed that, for large J
(J = 2w and 3w), the local polarization increases slowly with
system size, which indicates that the system is not ergodic in
the thermodynamic limit.

The thermalization process is generally accompanied by
the information loss of the initial state, which can be observed
in the dynamics of gauge spins, as shown in Fig. 2(bl)-
2(b3). We show the dynamics of (Sj(t)) for each site j, with
Figs. 2(b1)-2(b3) corresponding to J = 0, w, and 2w, respec-
tively. At t+ = 0, the staggered magnetization for the initial
Néel state of the gauge spins [Eq. (9)] is quite obvious. As
time passes, the staggered magnetization structure vanishes
for the case with J = 0 [Fig. 2(b1)], indicating the informa-
tion loss of the initial state. In contrast, for the nonthermal
dynamics with J = w and 2w [Figs. 2(b2) and 2(b3)], the
staggered magnetization structure persists after a long time
of evolution. Moreover, the larger J is, the more information
about the initial state remains.

To characterize the entropy growth in the system, we cal-
culate the dynamics of Rényi entropy

Iofn(t) =

InTrp% (1), 13
l_anr/)A() (13)

where py = Trgp = Trg| W) (W] is the reduced density matrix
of subsystem A and « is the order of Rényi entropy. Partic-
ularly in the limit of « — 1, the Rényi entropy reproduces
the von Neumann entropy [53], i.e., SI{H = —Tr(pa In pa).
Subscripts I and II indicate two different ways of partitioning
the system: (I) A consists of the left half of the gauge spins,
while B consists of the rest (i.e., the right half of the gauge
spins and all matter spins); (II) A consists of the left half
of the system, including both gauge and matter spins, while
B consists of the right half of the system. In partition I, the
boundary between the two subsystems is extensive, while in
partition II, the boundary is not extensive since it is just a
single site as the entire chain is cut into two halves directly
from the middle.

In the top two rows of Fig. 3, we fix L = 12 and show,
respectively, the dependence of the von Neumann entropy S},H
and the second-order Rényi entropy 512,11 on log(t), where
different line styles again indicate the cases with different
fermion interactions J. Clearly, for a given partition (I or II),
S! and S? exhibit similar behavior, allowing us to focus solely
on the first row. S} and S} exhibit a similar long-time behavior
after equilibration; that is, the entropy saturates at a value Sgy.
Sqat decreases as J increases, akin to the results observed in the
conventional disorder-free MBL [22,25,26]. However, in the
short-time scale, SII,II exhibit some unconventional features.
Particularly, in Fig. 3(al), for J =0, S} shows a smooth
and rapid growth with speed faster than log(¢), whereas for
large J (e.g., J = 3w), S} first hits a small plateau S, and
then increases approximately linearly in log(¢) until satura-
tion. The small plateau S is called the prethermalization
[1-3,54], indicating the gauge spins exhibit an intermediate
quasistationary state before being further thermalized. The
prethermalization plateau becomes more and more obvious as
J grows. S} in Fig. 3(a2) is similar to S} in the short term,
but there exists a difference that mainly lies in the fact that SIII
oscillates during the prethermalization stage of S;.
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FIG. 3. Bipartite entropy dynamics versus log(¢), where (a) and
(b) correspond to two ways (I and II) of partitioning the system,
respectively. (al) and (b1) correspond to the von Neumann entropies
Sl(z) and S}(t), where the solid, dashed, dot-dashed, and dotted
lines indicate the cases with J = 0, w, 2w and 3w, respectively. (a2)
and (b2) correspond to the second-order Rényi entropies SI2 (t) and
SZ(t). (a3) and (b3) respectively show the dependence of S| (r)/L
and S} (#)/L on various lattice sizes L at a fixed J = 3w, with solid,
dashed, dot-dashed, and dotted lines denoting the cases with L = 8,
10, 12, and 14.

In Figs. 3(a3) and 3(b3), we fix / = 3w and show, respec-
tively, the dependence of S!(t)/L and Sj(t)/L on various
system sizes L, with solid, dashed dot- dashed and dotted
lines corresponding to the cases with L = 8, 10, 12 and 14,
respectively. The long-time features of the two plots are quite
similar in that all curves roughly collapse into a single curve,
indicating extensive entropy saturation. On the other hand, the
short-time behavior in Fig. 3(a3) is also extensive, whereas
that in Fig. 3(b3) is nonextensive. The discrepancy can be at-
tributed to the ways in which the system is partitioned. As we
mentioned earlier, the boundary between the two subsystems
is extensive (nonextensive) for partition I (II). The magnitude
of thermalization can also be reflected in the propagation of
correlators. In practice, we calculate the connected two-point
correlation function of gauge spins:

TA(t) = (S50S%,, @) = (S5O)S5,, ), (14)

with 7 denoting the relative distance. The results for the cases
with J =0 and J = 3w are shown in Figs. 4(a) and 4(b),
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FIG. 4. Dynamics of the connected correlation function I', of
gauge spins, with r being the distance between two spins. (a) The
case with J = 0. (b) The case with J = 3w. In the calculation, we fix
L=14.

respectively. One can observe that I, is zero at ¢ = 0 since the
initial state | W) is a product state and also an eigenstate of S;.
As t increases, I, spreads out from the center to both sides.
One apparent feature is that the correlation propagation of
J = 3w is much slower than that of / = 0, which is consistent
with our expectation for MBL [1]. Generally, for a thermal-
izing system, correlation propagates ballistically, forming a
light cone |r| ~ ¢. In contrast, due to the exponential decay of
the interaction strength of localized dressed spins, the light
core of the MBL is generally in the shape of |r| ~ log().
The correlation boundaries in Figs. 4(a) and 4(b) qualitatively
capture the ballistic and log(#) light cones, respectively.

V. CONCLUSION

We have shown that the four-fermion interaction term
in the spin-% lattice Schwinger model is responsible for
the breaking of quantum thermalization. Under the gauge
sector average, the gauge spins effectively experience a
disorder after the matter degree of freedom is integrated
out. This fermion-interaction-induced disorder underlies such
nonthermal dynamics as many-body localization and en-
tropy prethermalization when the system relaxes from an
antiferromagnetic state. Our work promisingly facilitates the
observation of disorder-free many-body localization in state-
of-the-art cold-atom quantum simulators with U(1) gauge
invariance.
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