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Temperature shapes the processes and outcomes of behaviors

that occur throughout the progression of insect and arachnid

mating interactions and reproduction. Here, we highlight how

temperature impacts precopulatory activity levels, competition

among rivals, communication with potential mates, and the

relative costs and benefits of mating. We review how both the

prevailing temperature conditions during reproductive activity

and the temperatures experienced early in life influence

mating-related behavior. To effectively predict the

consequences of global warming for insect and arachnid

mating behavior, we advocate for future work that universally

integrates a function-valued approach to measuring thermal

sensitivity. A function-valued approach will be especially useful

for understanding how fine-scale temperature variation shapes

current and future selection on mating interactions.
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Introduction
Temperature influences all biological processes [1,2],
including the expression and development of behavioral,
physiological, and morphological traits used to coordinate
mating [3,4]. Recent work has highlighted the immense
range of temperatures that individual insects and arachnids
experience [5,6], and this considerable thermal heteroge-
neity at small spatial scales may be an overlooked factor
shaping the outcomes of mating interactions. Despite the
importance of mating success for the persistence of insect
and arachnid populations, the consequences of global
warming for mating-related behavior and sexual communi-
cation have been relatively unexplored compared to other

ecologically relevant traits [7,8]. Here, we review how
temperature affects (i) precopulatory activity and the like-
lihood to mate; (ii) intrasexual interactions that mediate
competition among rivals; (iii) intersexual communication
involved in mate attraction and selection; and (iv) the net
fitness consequences of engaging in mating-related behav-
ior. Finally, as function-valued approaches—those which
quantify the expression of traits as functions of continuous
environmental variation—have advanced our understand-
ing of how temperature impacts ecology and evolution in
other contexts [9–13], we conclude by outlining this
approach’s utility for studying mating interactions in a
warming world.

Pre-copulatory activity levels and mating
rates
Mating interactions are constrained by the initiation of
precopulatory activity. Any thermal sensitivity of activity
rates will therefore have outsized consequences for mating
interactions. Indeed, recent work reveals that temperature
controls the likelihood of an individual engaging in precop-
ulatory activity [14–17,18!!,19!!], with the highest activity
occurringatintermediatetemperatures[17,19!!].However,
the optimal temperatures for arthropod activity often differ
between sexes [17,18!!,19!!,20,21]. As a result, the thermal
sensitivity of one sex’s activity has the potential to dispro-
portionately affect mating rates (Figure 1). For example, in
Habronattus jumping spiders, females are less choosy at
higher temperatures and mating consequently occurs at
warmer temperatures than those preferred by males [18!!].
Similarly, the likelihood of copulation is governed by the
thermal sensitivity of male activity rates in Enchenopa
treehoppers likely because males must seek out and locate
the relatively stationary females [19!!]. Because Enchenopa
males travel greater distances than females, they likely also
encounter a broader range of environmental temperatures
[5,6], which may further constrain mate searching at
extreme ambient temperatures. Thus, considering how
temperature affects the pre-copulatory activity patterns
of each sex is key to understanding if, when, and where
mating interactions are likely to culminate in copulation.

Temperatures experienced during development [22–25],
or in early adulthood [26,27], can also affect mating activity.
For example, Plodia moths reared at hotter temperatures
are less likely to mate overall [22]; and adult Bactrocera flies
exposed to extreme or fluctuating temperatures subse-
quentlyhave lower mating rates [26]. Alternatively, in other
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insects, extreme temperatures experienced earlier in life
can prepare individuals for extreme temperatures later in
life (‘hardening’ [28,29]). However, this hardening is not
uniformly beneficial. For instance, heat hardening in Dro-
sophila melanogaster increases viability and mating activity
at hotter temperatures [30], but cold hardening in this
species reduces overall mating success [27]. Previously
experienced temperatures may also shape the range of
temperatures across which mating occurs, which could
shape population dynamics in novel thermal environments
with important implications for biological control and con-
servation in a warming world. For example, after the
introduction of Brazilian salvinia weevils as a biological
control in the United States, thermal acclimation has
allowed the population of weevils to mate at previously

unsuitable temperatures and become unintentionally
established [31!].

Competition among rivals
Many insects communicate and compete with rivals for
access to mates and/or mating territories [32,33]—some-
times engaging in remarkable feats of strength, speed, or
endurance [34]. Since the performance of these acts
depends on the body temperature of an individual [35],
temperature differences between rivals can dramatically
affect the outcomes of competitive interactions. In but-
terflies and damselflies, for example, flight performance is
sensitive to body temperature [36,37], and warmer indi-
viduals outperform cooler rivals in ritualized combat and
territorial defense [38,39]. High thermal variation at the
relevant spatial scales for insects and arachnids [5] could
therefore affect intrasexual interactions by generating
variation in temperature among rivals.

Temperature can also alter the advantages provided by the
sexual characters that mediate communication and other
interactions with rivals. For instance, although body size
often determines an individual’s status among its rivals
[40,41], larger insects alsoheat and cool more slowly [42,43].
This thermal inertia can be detrimental if it prevents large
individuals from quickly reaching the optimal temperature
range for communicating or competing with rivals [44,45].
Conversely, greater thermal inertia may be advantageous
by ensuring that large individuals remain near their thermal
optimum during these interactions [46,47]. Temperature
can further affect the advantages conferred by ornaments
and armaments that evolved to resolve disputes among
rivals. For example, dark or saturated color patterns that are
used to signal condition or fighting ability often absorb
more sunlight, causing the individual to experience hotter
body temperatures [37,48]. Any subsequent ornament- or
armament-induced heating might improve reproductive
performance under cool conditions, but hinder it under
warmer conditions ([49,50!!]; Figure 2a). As a result, tem-
perature has the capacity to modify the total strength and
direction of intrasexual selection on morphological char-
acters, and may affect the evolution of these characters in
response to global warming.

One overlooked consequence of the thermal sensitivity of
intrasexual signals is that it may also affect how individuals
evaluate and respond to a rival’s sexual characters. Consider
the melanin wing patches ofodonates,which signal a male’s
condition and energetic reserves for battle [51,52]. Because
larger patches heat the bearer [50!!,53–55], larger patches
confer advantageous body temperatures for fighting under
cooler conditions ([53]; Figure 2a). Conversely, underwarm
conditions, heat absorption by large patches may confer
body temperatures that are not optimal for fighting
([50!!,54]; Figure 2a). The likelihood of defeating a
large-patched rival then depends on temperature, and
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How sex-specific thermal sensitivity of precopulatory activity can
shape mating activity peaks. (a) The thermal sensitivity of mating rates
is a combination of male and female thermal sensitivity (indicated by
the blue and yellow curves, respectively). Thus, mating rates may be
highest at the temperature where male and female precopulatory
activity overlaps the most (Mating Topt, or thermal optimum). (b) The
thermal sensitivity of one sex (in this case, females) can
disproportionately impact the temperature where mating rates are
highest. This is the case for Habronattus jumping spiders, where the
more choosy females govern the temperatures at which mating occurs
[18!!].
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selection should favor individuals that avoid large-patched
rivals under cool conditions but that are aggressive towards
them under warm conditions ([50!!]; Figure 2b). In this
way, temperature may govern the evolution of how indi-
viduals behave in response to their rivals’ sexual characters.

Temperatures experienced during development can also
affect the expression of intrasexually selected traits in
adults. In insects and other ectotherms, warmer tempera-
tures often speed up development and ultimately restrict
adult body size [45,56]. However, strong intrasexual
selection should favor that the optimal body size is
developed irrespective of environmental temperature
[57,58]. Consistent selection for large size may explain
the canalization of body size across developmental tem-
peratures in dragonflies, which have intense territorial
battles, but a lack of body size canalization in damselflies,
which primarily engage in scramble competition [59].
When developmental temperatures predict thermal con-
ditions in the adult reproductive environment, some
insects might also evolve adaptive plasticity in their
thermally sensitive sexual traits [60!]. Although the only

direct test of this hypothesis did not provide support
(dragonfly wing patches [61!]), further tests would be
valuable given the well-characterized relationships
among developmental plasticity, thermal performance,
and intrasexual interactions (e.g. lepidopterans [39,62]
and coleoptera [63,64]).

Communication with potential mates
Temperature also affects a wide variety of the intersexual
communication systems that insects and arachnids use to
coordinate mating. Most research to date has focused on
the thermal sensitivity of courtship signals, with an
emphasis on airborne acoustic communication in orthop-
terans [65,66!]; substrate-borne vibrational communica-
tion in hemipterans and spiders [18!!,67,68!!,69!!]; visual
signaling in spiders and fireflies [18!!,67,69!!,70]; and
chemical signaling in important lepidopteran pest species
[71,72!]. However, in addition to shaping the signals
that courters use to attract mates, temperature also
affects the mating preferences that choosers use to select
among courters [67,68!!,73,74,75]. Variation in ambient
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Examples of how temperature can affect competition among rivals and communication with potential mates. (a) Male dragonflies with large
patches of wing pigmentation (dark brown curve) absorb more heat from the sun compared to individuals with less pigmentation (grey curve),
which is advantageous for combat performance in cool climates but diminishes performance in warm climates [50!!]. (b) The heating effects of
pigmentation could result in less pigmented individuals being more aggressive to large-patched individuals in warm climates [50!!]. (c) The thermal
sensitivity of mate attraction signals can match the thermal sensitivity of mate preferences, resulting in temperature coupling of signals and
preferences. This is the case for the male signals (blue line) and female mate preferences (yellow line) of Enchenopa treehoppers [67]. (d)
Mismatches in the thermal sensitivity of signals and preferences can result in absent or incomplete temperature coupling.
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temperature could, in response, dramatically affect the
strength and direction of sexual selection on intersexual
signals [76!]. Furthermore, differences in courter and
chooser body temperatures due to the considerable ther-
mal heterogeneity found at small spatial scales could be
an important overlooked factor shaping mating outcomes
[18!!]. Overall, thermal variation has high potential to
affect many aspects of the mate attraction and selection
process.

Temperature can impact intersexual communication
across the many signaling modalities—acoustic, visual
(i.e. gestural), and chemical—that insects and arachnids
use to coordinate mating. Acoustic and visual signals are
consistently sensitive to temperature due to thermal
constraints on muscle contraction rates during signal
production [65,73,77–83]. As a result, increased tempera-
tures generate both temporal and spectral changes in
signals. For example, the speed of signaling increases
with temperature for acoustic and visual modalities
[16,18!!,66!,69!!,84!]; and spectral components—like
dominant signal frequency—increase at hotter tempera-
tures for acoustic modalities [16,18!!,66!,68!!]. While not
measured as often as other acoustic properties with
respect to temperature, acoustic signals can also be qui-
eter at high thermal extremes [16,18!!]. Despite the
central role of pheromones in insect sexual communica-
tion [71,85], relatively few studies have explored the
thermal sensitivity of chemical signaling compared to
other communication modalities. However, temperature
affects chemical signals at all stages of communication—
from pheromone production and propagation to signal
detection and behavioral responses [71,72!]. Because
temperature alters the ratio of compounds in pheromone
blends used as long-range attractants (reviewed in Refs.
[71,72!]), long-range chemical communication may be
more susceptible to global warming than contact chemical
signaling [71]. In response, long-range signalers may
increase pheromone production at increased ambient
[86] and developmental temperatures [60!].

The aspects of mating signals that are sensitive to tem-
perature are often those used by choosers to select mates
[68!!,73–75]. Thus, understanding the relationship
between the thermal sensitivities of mating signals and
mate preferences is critical for predicting how tempera-
ture affects sexual selection and mating outcomes
[68!!,75,80]. Temperature coupling occurs when the ther-
mal sensitivity of mate preferences mirrors that of mating
signals ([68!!,75,83,87,88]; Figure 2c), and can arise when
physiological constraints are shared between signal pro-
duction and signal perception [73] or when selection
favors mate preferences that match mating signals [89].
Temperature coupling reinforces the action of sexual
selection across temperatures [68!!], ensures choosers
are likely to identify conspecifics [75], and enables
choosers to select high quality mates irrespective of

temperature [90]. However, when temperature coupling
does not arise [74] or is incomplete [91], signals and
preferences can become mismatched at thermal extremes
(Figure 2d). Mismatched signals and preferences could
cause breakdowns in sexual communication at extreme
temperatures, including the misidentification of hetero-
specifics as acceptable mates or reductions in mating
opportunities if choosers are no longer attracted to the
signals of available mates. Absent or incomplete temper-
ature coupling could also induce changes in the strength
and direction of sexual selection across environmental
temperatures [69!!,76!]. Signals and preferences may
have higher variance in a population at extreme tempera-
tures (e.g. Enchenopa treehoppers [68!!]), which could
weaken sexual selection at thermal edges and contribute
to the maintenance of genetic variation in variable ther-
mal environments. In addition to direct effects on the
expression of sexual signals and preferences, temperature
also influences the honesty of signals of quality and the
ability for choosers to distinguish among mates [86],
sometimes even leading to sexual isolation among
lineages reared at different temperatures (e.g. changes
in cuticular pheromones in fruit flies [92]). For these
reasons, measuring signals and preferences across a wide
range of ambient temperatures will be critical for under-
standing how the increased temperature means and
fluctuations accompanying global warming will impact
mating success and the temporal dynamics of sexual
selection.

Although most research on how temperature affects
intersexual communication centers around temperatures
experienced during signal production and reception,
developmental temperatures can also influence the
expression of signals and preferences in adults. This
may be most dramatic in seasonal polyphenisms deter-
mined by developmental temperatures [80]. The effects
of developmental temperature can also mirror those of
ambient temperatures during signaling: for example, field
crickets reared at hotter temperatures generate faster
chirp rates and higher frequency signals than individuals
reared at cooler temperatures [66!]. Relationships
between developmental and mating-season temperatures
may become increasingly decoupled and extreme tem-
perature conditions more frequent in a warming world
[93]. Thus, previously adaptive patterns of developmen-
tal plasticity in signals and preferences may produce less
beneficial or even maladaptive phenotypes for individuals
communicating in less predictable thermal environments.

The fitness consequences of mating
interactions
The cost-to-benefit ratio of individual mating events
shapes how optimal mating rates evolve, and temperature
can be a key regulator of these relationships. Tempera-
ture can govern the benefits of mating interactions by
affecting copulation and fertilization success [22,94–97],
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and thus the degree to which a given mating interaction
will increase the net fitness of an individual. Secondary
benefits of mating interactions, such as nuptial gift quality
[98], can further depend on temperature. If suboptimal
temperatures decrease the per-capita fitness benefits of
each mating interaction, higher mating rates may be
favored to compensate for decreased lifetime reproduc-
tive output (e.g. wolf spiders [95,99,100]). Temperature
also determines the costs of engaging in a mating inter-
action by altering the metabolic consequences of court-
ship and intrasexual interactions (e.g. crickets and cicadas
[101–103]), the production costs of nuptial gifts or ejacu-
lates (e.g. butterflies and seed beetles [104,105]), and the
harassment experienced from rivals or non-mates (e.g.
damselflies [106!]). When these cost-benefit relationships
are sex-specific, sexual conflict over optimal mating rates
can arise [76!]. For example, warmer developmental
temperatures induce high costs for reproduction in male
but not female butterflies, leading to the evolution of
seasonality in male choosiness and mating rates [104].
Temperature can also indirectly shape mating systems by
altering other proximate drivers, such breeding season
length [107] and operational sex ratios (reviewed in Ref.
[76!]). However, despite these myriad impacts, relatively
few studies integrate the net fitness consequences of
temperature on mating rates [108] (but see Refs.
[104,105]). Because of the diverse avenues through which
temperature can affect mating interactions, it should be a
priority to resolve how variation in temperature underlies
mating system diversification in insects and arachnids.

Leveraging a function-valued approach for
predicting responses to global warming
The pervasive thermal sensitivity of mating behaviors
suggests that reproduction may be altered or impaired for
many insects and arachnids under global warming.
Despite the importance of reproduction for population

persistence, few studies have investigated the potential
consequences of global warming for mating interactions
compared to other behaviors [8]. Future work should
therefore prioritize understanding how warming will
impact the coordination of mating, as well as the capacity
for reproductive interactions to evolve in response to
novel temperatures.

One advantageous approach to studying how mating
interactions will proceed and evolve in a warming world
is to measure the expression of mating behaviors across
temperature as a function-valued trait. Function-valued
traits are those for which their expression changes as a
function of a continuous environmental variable [9–11]—
in this case, temperature. Characterizing thermally sensi-
tive mating behaviors as functions of temperature can
promote deeper insight into how organisms evolve and
interact with variation in their environment [9–11]. For
instance, assessing how mating activity changes across
temperatures ranging from the minimum and maximum
encountered in the environment can allow for more
accurate estimates of mating activity peaks (Figure 3a),
the detection of more precise differences in thermal
sensitivity among mating behaviors, and distinctions
among thermal generalists and specialists. Moreover,
refining the shape of these functions for both male and
female mating behaviors could be valuable for predicting
if, and to what degree, different warming scenarios will
lead to breakdowns in the coordination of mating [19!!].

Using a function-valued approach to measure how indi-
viduals, rather than populations, respond to temperature
could further enhance our ability to forecast evolutionary
responses to global warming. While population-averaged
curves can show the temperature at which mating rates
are highest in a population, it ignores variation in the
patterns of thermal sensitivity among individuals
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Graphical depictions of the advantages of a function-valued approach. (a) A hypothetical reaction norm (black line) obtained from sampling mating
activity at two temperatures (indicated in yellow). Sampling at additional temperatures reveals a more accurate pattern of thermal sensitivity (grey
curve). (b) A population-averaged curve (dark blue) masks individual variation in activity peaks across temperatures (light yellow curves). (c)
Individual variation in the thermal sensitivity of mate preferences (light yellow) causes shifts in the direction of sexual selection (black arrows) on
mate attraction signals across temperatures (dark blue). (d) Selection from global warming can act on the entire function of thermal responses,
potentially favoring the evolution of thermal generalists (G; blue curve) from thermal specialists (S; black curve), and/or horizontal shifts in activity
peaks (H; yellow curve). Arrows indicate potential directions of selection generated by environmental warming.
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(Figure 3b). This among-individual variation could have
important consequences for ecological and evolutionary
processes that are obscured when estimating the average
function of a population [12]. For example, among-indi-
vidual variation in the optimal temperature for mating
activity could generate assortative mating according to
thermal activity curves in spatially and temporally
variable thermal environments. Additionally, among-
individual variation in the thermal sensitivity of mate
preferences can result in weaker selection on male signals
at thermal extremes (Figure 3c). Both of these scenarios
may contribute to the maintenance of genetic variation in
sexual characters in fluctuating and/or heterogenous ther-
mal environments.

Selection may primarily act on components of a thermal
response (e.g. the level of signal production at a focal
temperature) or an entire function of a thermal response
(e.g. changes in signal production across the range of
temperatures encountered in the environment). In either
case, evolutionary responses to selection will often
depend on the genetic (co)variation underlying the entire
function rather than that of its isolated components ([13];
Figure 3d). Consequently, measuring individual-level
and genotype-level thermal responses as functions that
are subject to selection (e.g. generalist versus specialist
curves) will improve our forecasts for evolutionary
responses to global warming [9–11]. However, despite
its potentially central role in promoting adaptation to
novel climates, researchers have yet to estimate herita-
bility in these patterns of thermally sensitivity for mating
behaviors.

Integrating individual-level and population-level thermal
functions is an ongoing area of research [109,110] and
involves multiple empirical challenges. Characterizing
how temperature affects an individual’s mating behavior
can be difficult when individuals cannot be accurately
assessed multiple times—for instance, when individuals
mate only once, when performance or receptivity
diminishes across consecutive mating interactions, or
when choosers do not obviously indicate receptivity. In
some cases, researchers can circumvent these challenges
by measuring responses within genetic lines or among
siblings within families [111,112]. When population-aver-
aged curves are most practical, reporting confidence
intervals and individual data points on these curves can
help approximate levels of variability within populations.

Conclusions
Both the temperatures in the reproductive environment
and those experienced during development can affect a
wide range of behavioral traits that insects and ara-
chnids use to attract, compete for, and select mates.
Measuring changes in mating-related behaviors as con-
tinuous functions of temperature—rather than with
typical univariate or multivariate approaches—will

enable researchers to accurately estimate peaks in mat-
ing activity, distinguish differences in the thermal sen-
sitivity of mating behaviors, and, as a result, predict
the outcomes of inter-sexual and intra-sexual interac-
tions across environmental variation. Furthermore, the
incredibly variable thermal environments found at small
spatial scales [5,6] could create differences in the body
temperatures of interacting individuals and generate
variation in thermal sensitivity due to developmental
plasticity. Understanding how this fine-scale thermal
heterogeneity shapes variation in function-valued
responses to temperature may provide critical insights
into the ecological and evolutionary processes of the
Anthropocene. Overall, given the importance of repro-
duction to population persistence, the thermal sensitiv-
ity of the behavioral interactions used to coordinate
mating is likely a crucial feature of how insects and
arachnids have adapted to climatic conditions in the
past. Gaining a mechanistic understanding of the ther-
mal sensitivity of mating behaviors and the information
encoded in inter-sexual and intra-sexual signals will also
be central to understanding how temperature impacts
sexual selection, reproduction, and persistence in a
warming world.
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