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Particular couplings between a scalar field and the Gauss-Bonnet invariant lead to spontaneous
scalarization of black holes. Here, we continue our work on simulating this phenomenon in the context of
binary black hole systems. We consider a negative coupling for which the black-hole spin plays a major role
in the scalarization process. We find two main phenomena: (i) dynamical descalarization, in which initially
scalarized black holes form an unscalarized remnant, and (ii) dynamical scalarization, whereby the late
merger of initially unscalarized black holes can cause scalar hair to grow. An important consequence of the
latter case is that modifications to the gravitational waveform due to the scalar field may only occur
postmerger, as its presence is hidden during the entirety of the inspiral. However, with a sufficiently strong
coupling, we find that scalarization can occur before the remnant has even formed. We close with a
discussion of observational implications for gravitational-wave tests of general relativity.
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I. INTRODUCTION

The detection of gravitational waves (GW) produced by
coalescing compact binaries by the LIGO-Virgo-Kagra
Collaboration [1-3] have opened a new avenue to test
general relativity (GR) in its strong-field, nonlinear regime
[4-8]. In fact, the first three catalogs of observations have
already been used to perform several null tests of GR [8—17],
as well as theory-specific tests [18-26]. The latter have
placed constraints on quadratic gravity theories [21-25].

In these theories, a scalar field couples to a curvature
scalar, which is quadratic in the Riemann tensor (see, e.g.,
Ref. [27] for an overview). Well-known examples include
coupling to the Pontryagin density or the Gauss-Bonnet (GB)
invariant. The latter theories are often named scalar Gauss-
Bonnet (sGB) gravity. They can emerge in the low-energy
limit of string theory (see, for instance, Refs. [28-30]), as
well as through a dimensional reduction of Lovelock gravity
[31], and belong to the wider class of Horndeski gravity
theories [32,33].

Black hole (BH) solutions in this theory have long been
known to have a nontrivial scalar field (i.e., a “hair”), to
which we can associate a monopole scalar charge that

“matthew.elley @kcl.ac.uk
"hector.silva@aei.mpg.de
*hwitek @illinois.edu
‘nyunes @illinois.edu

2470-0010/2022/106(4)/044018(16)

044018-1

depends on the BH’s mass and spin. When the BHs are
found in a binary, their motion can lead to the emission of
scalar dipole radiation, which in turn modifies the system’s
orbital dynamics and the GW signal with respect to GR’s
prediction. Such phenomenology has been explored with
both post-Newtonian (PN) [34—-40] and numerical relativity
[41-46] techniques. The scalar field can also affect the
post-merger signal, modifying the remnant BH’s ringdown
[47-52]. In sGB gravity, the presence of scalar hair depends
on the functional form of the coupling between scalar field
and the GB invariant.

More specifically, if the functional form of the coupling
always has a nonvanishing first derivative, such as for a
linear or exponential coupling, BHs are known to invar-
iably have scalar hair [53—-67]. Hence, the observation of
GWs from BH binaries and mixed neutron star (NS)-BH
binaries have allowed us to constrain the length scale at
which the scalar-field-GB interaction becomes relevant to
less than approximately one kilometer [22-25].

In contrast, if the first derivative of the coupling function
vanishes for some constant background scalar field, both
scalarized and unscalarized BH solutions can exist [68,69].
Depending on the length scale associated with the scalar-
field-GB interaction, and the BH’s mass [68—70] and spin
[71-78], the BH solutions of GR become unstable to scalar
field perturbations, and the end-state of this instability is a
scalarized BH [79]. This process is similar to spontaneous
scalarization of NSs in scalar-tensor gravity [80,81].
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The difference lies in the fact that for NSs the scalar field is
sourced by matter, while for BHs the scalar is sourced by
the spacetime curvature alone. Thus, one could envision
that the aforementioned GW constraints (such as e.g.,
Ref. [21]) can be avoided if scalarization occurs right
before merger, or possibly only after merger.

Can such a scenario happen? Here, we continue our
previous work [45] and explore how the onset of scalari-
zation plays out during binary BH mergers. As in our
previous paper, we work in the decoupling approximation,
1.e., we evolve the scalar field on a time-depenedent GR
background. In Ref. [45], we studied a variety of possible
processes for head-on BH collisions, as well as a quasi-
circular inspiral-merger of equal mass nonspinning binaries
using a positive sign of the scalar-field-GB coupling. We
demonstrated the existence of a process we coined dynami-
cal descalarization, whereby initially scalarized BHs
merged to form a larger remnant that descalarized because
its GB curvature was too small to sustain the scalar hair.
The alternative, the dynamical scalarization of the remnant,
was not possible because its larger mass (compared to the
initial BHs” masses) inevitably leads to a smaller GB
curvature near the horizon.

However, for a negative sign of the coupling, the scalar
field instability happens only for sufficiently rapidly spin-
ning BHs (“spin-induced scalarization™) [73-77]. This
leads to the following questions:

(1) Does the formation of a highly spinning remnant
cause spin-induced dynamical scalarization? If so, at
what stage in the binary’s evolution is the scalar hair
excited?

(2) Can the process of dynamical descalarization found
in Ref. [45] be generalized to the negative coupling
case?

Here, we address these questions with a new suite of binary
BH simulations and negative sign of the coupling constant.

We find that indeed spin-induced descalarization and
scalarization of the BH remnant are both possible. The
spin-induced descalarization of initially scalarized, spin-
ning black holes (BHs), extends and completes the work in
Ref. [45]. The spin-induced scalarization of the remnant is
a new result. For values of the coupling constant close to
the scalarization threshold, the growth of the scalar field has
a large instability timescale. Therefore, scalarization only
becomes significant significantly after the remnant BH’s
ringdown begins. We therefore now coin the term stealth
dynamical scalarization, whereby the scalar field remains
hidden throughout the full inspiral, merger and early
ringdown evolution of the BH binary and is thus uncon-
strainable with GW observations.

In the remainder of this work, we explain how we arrived at
these conclusions. In Sec. II, we review both scalarization
and descalarization of BHs in sGB gravity. Next, in Sec. III,
we discuss our numerical methods and our numerical
relativity simulations designed to answer our previously

stated questions. In Sec. IV, we present our findings and we
finish by discussing some of their observational implications
in Sec. V. We work with geometric units G = 1 = c.

II. SCALAR GAUSS-BONNET GRAVITY

A. Action and field equations

sGB gravity modifies GR via a nonminimal coupling
between a real scalar field ® and the GB invariant ¢, as
described by the action

1
S=_—_

= d4x\/—_g{R—%(Vd>)2+%f(d))%, (1)

where R is the Ricci scalar, g = det(g,,) the metric
determinant, (V®)? = ¢V, ®V,® the scalar field kinetic
term, and

4 = R> — 4R, R™ + R,,,,,R""", (2)

is the GB invariant, where R,,,, and R, are the Riemann
and Ricci tensor, respectively. The particular form of the
theory is parametrized by the coupling function f(®) and
the coupling constant agg with units of [Length]’.

As in our previous study [45], we work in the decoupling
limit. That is, we neglect the backreaction of the scalar field
onto the spacetime metric: the scalar field evolves on a
dynamical, vacuum background spacetime of GR. The
action (1) gives rise to the field equation for @

0 = agnf (@), 3)

where a prime denotes a derivative with respect to ®.
Since, we work in the decoupling limit, the d’ Alembertian
and the GB invariant are those of the time-dependent GR
background.

The choice of the coupling function f(®) determines
specific sGB models. As we already alluded to in Sec. I, the
models can be classified into two types depending on the
properties of their BH solutions. We label models as type 1
if the derivative of the coupling function f’(®) # 0. In this
case, BH solutions always have scalar hair [53-67].
Examples of type I models include the dilatonic f(®)
exp(®) [54-57] and shift-symmetric f(®) oc © [58-60]
coupling functions. We label models as type II if the
derivative of the coupling function f'(®,) = 0, for some
constant @,. In this case, the theory admits the stationary
vacuum BH solutions of GR, as proved by the no-hair
theorem of [69], but also admits, when the theorem is
violated, scalarized BHs. Examples include quadratic
f(®) x ®* [69] and Gaussian f(®) x exp(®?) [68] cou-
pling functions. Here, we consider type II models only.
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B. Scalarization of isolated black holes

In the second type of sGB model the onset of scalariza-
tion is found by linearizing Eq. (3) around the background
BH spacetime, i.e., ® = @ + 6P, where @ is a constant.
This results in the scalar-field evolution equation

(0 = mgy)5®@ = 0, (4)
with an effective mass squared

1
mey = _ZaGBf”(q)O)g’ (5)

which can become tachyonically unstable; in other words,
the BH can scalarize if mgff < 0[68,69]. This, however, is a
necessary, but not sufficient condition for scalarization. The
scalarization threshold can be calculated by finding a bound
state solution, i.e., a time independent solution of Eq. (4)
which is regular at the BH horizon and that vanishes at
spatial infinity. By imposing these boundary conditions on
o®d, the calculation of the scalarization threshold is reduced
to a boundary value problem, with the dimensionless ratio
between agg and the BH’s mass squared playing the role
of the eigenvalue. The smallest eigenvalue provides the sca-
larization threshold for the “fundamental” (i.e., the node-
less solution) family of scalarized BHs, while the other
eigenvalues determine the threshold for the formation of
“excited states” (i.e., solutions with one or more nodes). We
focus on the latter here. See Fig. 1 in Ref. [69] or Sec. 4.3 of
Ref. [82] for further details. To be more concrete, here we
consider a quadratic coupling function,

fl@) =, (6)

The coupling strength is determined by the dimensionless
constant'

B = ags/ M*, (7)

where .# is the characteristic mass of the system. The
effective mass then becomes

1
Mg = — 5/)7///254' (8)

If ¢ is positive-definite in the BH exterior, then the
instability can only happen for positive . However, if ¢
is negative, at least in some regions outside the horizon,
then the instability can also be triggered with a negative /.
For example, consider the Kerr metric, for which the
GB invariant in Boyer-Lindquist coordinates (t,7,6, )
is given by

'With respect to the notation of Ref. [45], we are omitting the
subscript “2” and fixing f = 1.

48m?

Gerr = m(# — 15746? + 157%6* — 6%), (9)

where 6 = acos @ and a = J/m is the angular momentum
per unit mass of the BH. When the dimensionless spin
x = a/m < 0.5, is positive everywhere outside the event
horizon and so scalarization can only take place if f is
positive. This also holds true in the limiting case of a
Schwarzschild BH. However, for sufficiently rapidly rotat-
ing BHs (i.e., those with y = a/m > 0.5), the GB invariant
can become negative in the exterior of the outer BH horizon
in regions along the rotation axis [83]. Hence, spin can
induce scalarization of BHs if f is negative and y > 0.5
[73-78] and suppress it if j is positive [71,72].

One may note that scalarized solutions in quadratic sGB
gravity with a positive coupling constant, f > 0, are
unstable to radial perturbations [84]. Although this is true,
such BHs can be stabilized by including higher-order scalar
terms in the coupling f(®) [85,86], through the addition of
scalar field self-interactions while retaining the quadratic
form of f(®) [70], or through the addition of a coupling of
scalar field to the Ricci scalar [87,88]. Since, we are
investigating the onset of scalarization, it is unnecessary
to include such terms and so we focus only on the quadratic
coupling case here.

C. Scalarization and descalarization
in black hole binaries

What could be the consequences of scalarization in BH
binaries? To answer this question, in Ref. [45] we per-
formed the first numerical relativity simulations of both
head-on collisions and quasicircular inspirals of BHs in
quadratic sGB gravity with a positive coupling f. We
identified a new effect, that we named dynamical descala-
rization, in which initially nonspinning scalarized BHs
shed-off completely their scalar hair after the merger. This
is a result of the comparatively weaker curvature generated
near the horizon of the resulting larger remnant BH.
Consequently, several possible dynamical processes were
discovered for particular combinations of mass ratio and
coupling strength, as illustrated in Fig. 1 of Ref. [45]. We
can contrast this with similar simulations in type I theories
in which the remnant BH always retains some scalar
hair [41].

Here, we extend our previous work by considering
negative coupling f < 0 values. For this case the spins
of the initial and/or remnant BHs play a crucial role in
the development of the scalar field of the system due the
possibility of spin-induced scalarization. Specifically, the
formation of negative GB regions close to merger causes
the remnant to scalarize, a process that we call spin-induced
dynamical scalarization. Additionally, we also demonstrate
spin-induced dynamical descalarization—the spin ana-
logue of the aforementioned dynamical descalarization
mechanism—as high-spinning binary components merge
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to produce a lower spin remnant that cannot support the
instability.

II1. SIMULATING BINARY BLACK HOLES IN SGB
GRAVITY—METHODS AND SETUP

A. Time evolution formulation

We investigate the dynamics of the sGB scalar field,
determined by its equation of motion (3), and sourced by a
binary BH background spacetime. We perform a series of
time evolution simulations in 3 + 1 dimensions by adopt-
ing standard numerical relativity techniques; see, e.g.,
Ref. [89]. That is, we foliate the four-dimensional space-
time into three-dimensional spatial hypersurfaces X,, para-
metrized by a time parameter ¢, with an induced spatial
metric y;;. We introduce the timelike vector n* that is
orthonormal to the hypersurface. Then, the spacetime
metric g,, can be decomposed as

ds?> = G dxtdx”

= —(a? = pEB)de? + 2y, dtdx’ +y;;dx'dx/, (10)

where « is the lapse function (not to be confused with the
dimensional coupling constant agg) and S is the shift
vector (not to be confused with the dimensionless coupling
constant f). Finally, we introduce the extrinsic curvature
K= —ﬁ(dt — Lp)yij» where L; is the Lie-derivative
along the shift vector f'.

To simulate the background BH binary, we write
Einstein’s equations as a Cauchy problem and adopt the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation [90,91] together with the moving puncture gauge
conditions [92,93]. We prepare initial data describing a
quasi-circular binary of two spinning BHs with the Bowen-
York approach [94,95].

To evolve the scalar field @ in this time-dependent GR
background, we write its field equation (3) as a set of time
evolution equations. Therefore, we introduce the scalar
field’s momentum K¢ = —1 (0, — £;5)® and we apply the
spacetime decomposition to Eq. (3). This procedure gives
the equations

(0, = L4)® = —aKo, (11a)

(0, - E/})K@ = —DiaDi(I)

. 1
—(X<DlDiq)—KKq) +Z(XGBf/g), (llb)

where D;, 4 and K = y"K,; are the covariant derivative
with respect to the induced metric, the four-dimensional
GB invariant and the trace of the extrinsic curvature of the
background spacetime.

We initialize the scalar field to represent multiple
scalarized BHs. For simplicity, we neglect the scalar field’s

initial linear and angular momentum, because it relaxes to
its equilibrium configuration within about 100M from the
start of the evolution, i.e., within approximately one orbit
[41,96]. Since the scalar field equation (3) is linear, we can
superpose the static bound-state solution anchored around
an isolated BH. For N BHs, we then have

N
D= P4,  Kolo=0, (12)
a=1

where the subscript (a) labels the ath BH. The bound state
of the sGB scalar field around an isolated, nonspinning BH
with a coupling of the form (6) was obtained numerically in
Ref. [69]. We approximate this solution with the fit

2
mria mriq mrig
O _ =" [ o Mt | Maro)]] )
€@ € €@

where ¢(4) = m,) + 2r(4), 1) 1s field point distance from
the location of the ath BH in quasi-isotropic radial
coordinates of the background spacetime, m ) is the mass

of the ath BH, and ¢; = 3.68375, ¢, =4.97242, ¢; =
2.29938 x 107 are fitting constants, where we corrected a
misprint in ¢3 in Ref. [45].

B. Code description

We performed the simulations with CANUDA [97], our
open-source numerical relativity code for fundamental
physics [41,45,98,99]. cANUDA is fully compatible with
the EINSTEIN TOOLKIT [100-102], a public numerical
relativity software for computational astrophysics. The
EINSTEIN TOOLKIT is based on the CACTUS computational
toolkit [103,104] and uses the CARPET driver [105,106] to
provide boxes-in-boxes adaptive mesh refinement (AMR)
as well as MPI parallelization. To evolve the field equations
we employ the method-of-lines. Spatial derivatives are
typically realized by fourth-order finite differences (with
sixth order also being available) and for the time integration
we use a fourth-order Runge-Kutta scheme.

The background spacetime, consisting of two spinning
BHs in a quasi-circular orbit, is initialized with the
TWOPUNCTURES spectral code [107] that solves the constraint
equations of GR with the Bowen-York approach [94,95].
We evolve Einstein’s equations using CANUDA’s modern
version of the LEAN thorn [108] that implements the BSSN
equations with the moving puncture gauge. The sGB scalar
field evolution equations (11) and its initial data (13) are
implemented in CANUDA’s arrangement CANUDA_EdGB_dec.
Details of the implementation are described in
Refs. [41,45,62]. To analyze the numerical data, we compute
the Newman-Penrose scalar W, as a measure for gravitational
radiation and we extract the gravitational and scalar field
multipoles on spheres of constant extraction radius r,, using
the QuasiLocalMeasures thorn [109]. We find the BHs’ apparent
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TABLE 1.  Setup of the simulations of equal-mass, quasicircular BH binaries. We show the initial separation d/M,
the initial dimensionless spins y; and y, of each binary component, the dimensionless spin y; of the remnant, and
the dimensionless coupling constant f used in the simulations. For reference, we also show the critical values to
scalarize the initial (. ; = f ) or final (B, ;) BHs, calculated using Eqgs. (14) and (15). The last column summarizes
the process that unfolds during the simulation. We use § and s to denote unscalarized and scalarized states,
respectively, and the subscript 1 (| ) indicates spin aligned (anti-aligned) with the orbital angular momentum, which

PHYS. REV. D 106, 044018 (2022)

is assumed to be 1. See Fig. 2 for additional details.

Run d/M X1 2 X5 p B Bey Process
Setup A 10 0 0 0.68 —-14.30 —12.96 5+35 -5y
Setup B 10 -0.6 -0.6 0.48 —11.00 —10.55 5|+, =35

horizons and compute their properties with the AHFinderDirect
thorn [110,111].

C. Setup of simulations

To investigate spin-induced dynamical scalarization or
descalarization in binary BH mergers, we have performed a
series of simulations of equal-mass, quasicircular inspirals
for the negative coupling case, # < 0. The initial BHs have
either zero spin or a spin (anti-)aligned with the orbital
angular momentum.

To choose the values of the coupling constant £ in our
simulations, we used the numerical data found in Ref. [74]
(cf. Appendix, Table I) to obtain a fitting formula that
returns the value of f at the threshold for spin-induced
scalarization as a function of the dimensionless spin y; we
will refer to this threshold value as the critical value of the
dimensionless coupling constant. The critical value for the
coupling constant satisfies the scaling

Pe(m/M. x) = (m/M)*p(1. ). (14)
where m is a place-holder for either the individual
masses of the binary m, or the final remnant mass m,
while M = m + m, is the initial total mass of the binary.

150 ‘
0.15 o
EQ_ 0.10 | R °f
100 | =
0.05F e . b
= ! ® o o
= = Lo s s
50 F ) .
— Fit
or ® Data
0.5 0.6 0.7 0.8 0.9 1.0
X
FIG. 1. Absolute value of the critical coupling, f., for spin-

induced scalarization of a single BH as a function of the
dimensionless spin y. We show the numerical data of Ref. [74]
and the fitting formula (15). The inset shows the relative error
between the fit and the data. We see that the error is less than 15%
in the range 0.5 < y < 1 and less than 5% for y < 0.74.

The quantity f.(1,y) is the critical value of the coupling
that leads to scalarization for a BH of mass 1M and
dimensionless spin y, namely

0.422

W + 1.487[;(|7'551,

Pe(l.y) == (15)

where f3.(1, y) diverges as |y| tends to 0.5, in agreement with
Ref. [76]. For instance, if we wish to scalarize the initial
components of the binary, and if the mass ratio is unity, then
M) = M/27 and ﬂc,(a)(l/sz(a)) = (1/4):[)70(1’)((41)) In
Fig. 1, we show Eq. (15) and compare it against the numerical
results of Ref. [74]. We obtain relative errors smaller than
15% in the range 0.5 < y < 1 and less than 5% for y < 0.74.
We use Eq. (14) as reference to choose the values of f to
probe scalarization of either one (or both) of the initial binary
components or of the remnant BH.

Here, we present two key simulations, listed in Table I
and illustrated in Fig. 2, with the following setups:

S S|

sy

Vol

(a) Setup A (b) Setup B

FIG. 2. Binary BH simulations, where s (3) stands for initial or
final BH states that are scalarized (unscalarized) and with
spin along the positive (1) or negative (]) z-direction (i.e.,
aligned or antialigned with the orbital angular momentum,
assuming the latter is 7). BH states without an arrow are
nonspinning. Panel 2(a) illustrates a process of spin-induced
dynamical scalarization: two initially unscalarized BHs produce a
spinning, scalarized remnant. Panel 2(b) illustrates a process of
dynamical descalarization: two initially rotating, scalarized BHs
whose spin is antialigned with the orbital angular momentum
merge into a rotating BH with a smaller spin magnitude.
Consequently, the remnant descalarizes.
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Setup A in Table I is designed to address our first
question: does the formation of a highly spinning remnant
cause spin-induced dynamical scalarization? Here, we
consider a binary of initially nonspinning, unscalarized
BHs that merges into a spinning, scalarized remnant as
illustrated in Fig. 2(a). The BHs complete 10 orbits prior to
their merger at ty = 927M, as estimated from the peak in
the gravitational (quadrupole) waveform; see the bottom
panel of Fig. 3. When the coupling f is negative, the
squared effective mass (5) of the initial BHs (with y = 0) is
positive definite everywhere outside their horizons, and so
they are initially not scalarized. The final BH has a
dimensionless spin of y, = 0.68 and mass m; ~ M. For
a BH with these parameters, the critical coupling is
Bes = Pc(1,0.68) ~ —12.96; cf. Eq. (14). In our simulation,
we chose || > |p. ;| such that the remnant BH is indeed
scalarized. In this simulation, we initialize the scalar field
according to Eq. (13) around each binary component. The
scalar field disperses early in the simulation, leaving each
BH unscalarized and a negligible, but nonvanishing ambi-
ent scalar field in the numerical grid. Notice that if, we had
set ®|,_, = 0, there would be no scalar field dynamics
[see Eq. (3)].

Setup B in Table I is designed to address our second
question: is the dynamical descalarization found in Ref. [45]
a general phenomenon? Is there a spin-induced dynamical
descalarization? Here, we consider a binary of initially
rotating, scalarized BHs with spins y; =y, = —0.6,

100 F e o 0-062t/M o

10-10 . . | | |
—200 —100 0 100 200 300

(t — Tex — tM)/A/[

FIG. 3. Evolution of the scalar field monopole (top panel),
scalar field £ = 2 multipoles (middle panel) and the gravitational
waveform of the background spacetime (bottom panel) for Setup
A in Table I. We rescale the multipoles by the extraction radius
Tex = 100M, and shift them in time such that (¢ — ro — 1) /M =
0 indicates the time of merger, determined by the peak of the
gravitational waveform.

anti-aligned with the orbital angular momentum as illus-
trated in Fig. 2(b). Each of the components of the binary has
a mass m; = m, = M/2. Inserting these parameters in
Eq. (14), we find f.; = f., = f.(1/2,-0.6) ~ —10.55.
In our simulations, we set || = |f.(1/2,—0.6)| such that
the initial BHs are scalarized. The initial BHs merge into a
final rotating BH that has a spin aligned with the orbital
angular momentum of the previously inspiraling system,
with a spin magnitude y; = 0.48. This value is below the
threshold for spin-induced scalarization, and so the remnant
BH does not support scalar hair.

To show that our qualitative results are robust for a large
variety of BH spin parameters, we have performed a series
of additional simulations listed in Table II of Appendix A.
All simulations presented in Tables I and II have the same
grid setup: the numerical domain was composed of a
Cartesian box-in-box AMR grid structure with seven
refinement levels. The outer boundary was located at
255.5M. We use a grid spacing of dx = 0.7M on the
outermost refinement level to ensure a sufficiently high
resolution in the wave zone. The region around the BHs has
a resolution of dx = 0.011M. To validate our code and
estimate the numerical error of our simulations, we per-
formed convergence tests for our most demanding simu-
lation with y;, = —0.6, corresponding to Setup B in
Table 1. The relative error in the gravitational quadrupole
waveform is AW, ,,/%W, 2, < 0.8%, while the relative error
of the scalar charge accumulates to A®y,/ Dy, < 30% in
the last orbits before merger; the latter is A®,/ Dy < 15%
in the merger and ringdown phase. The large error in the
scalar field, close to the BHs merger, is a consequence of
the exponential growth of the scalar field during inspiral.
As our investigation is of a qualitative nature, this cumu-
lative error is not a cause of concern for our results.
However, a future quantitative analysis would have to
address this issue. See Appendix B for details.

IV. RESULTS

A. Spin-induced dynamical scalarization

Here, we present key results obtained with simulation
Setup A (see Sec. III C), corresponding to Fig. 2(a). In
particular, we show that an initially unscalarized BH binary
can indeed form a hairy, rotating remnant.

This process is illustrated in the top panel of Fig. 3,
where we present the time evolution of the scalar field’s
monopole charge, r.,®Pyy, measured at r,, = 100M, and
shifted in time such that (¢ — ro, — ty)/M = 0 indicates the
time of merger. The scalar field perturbation that is initially
present in our simulations remains small during the entire
inspiral. See, for instance, the amplitudes r.,®,,, at (¢ —
Fex — tv)/M < 0 which are of O(107%) or O(107%). Yet,
we see an exponential growth of the scalar charge,
Fex®@op ~ e’ that exceeds the background fluctuations,
approximately 100M after the merger. We estimate the
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growth rate (for our choice of ) to be Mwy o, ~ 0.062 by
fitting to the numerical data. We show this with the dotted
red line in the top and middle panels.

We find a similar behavior in the scalar field quadrupole,
as shown in the middle panel of Fig. 3. That is, both the
axisymmetric (£, m) = (2,0) and the (£, m) = (2,2) mul-
tipoles are excited and grow exponentially with a rate of
May ~0.062. For the form of the coupling function
considered here, the rate appears to be independent of
the (£, m) multipole and is determined by the coupling
constant 3, as we further discuss later. The quadrupole
scalar field is absent in the initial data because we
initialized the scalar field with a spherically symmetric
distribution around each of the BHs. Hence, the scalar field
quadrupole we observe is caused by the “stirring” of the
ambient scalar field due to the dynamical binary BH
spacetime, which has a quadrupole moment. These ®,,,
multipoles also become unstable eventually, but at a later
time relative to the monopole, as is evident by comparing
the top and middle panels of Fig. 3. The exponential growth
of the ®,,, multipoles is consistent with the findings in
Refs. [73,77], showing that higher-£ and m # 0 scalar field
multipoles can also become unstable.

All of these results beg for the following questions: at
what stage in the binary’s evolution is the scalar field
instability induced? Is it due to the orbital angular momen-
tum at the late inspiral or is it due to the angular momentum
of the remnant BH? As we discussed in Sec. II B, anecessary
(but not sufficient) condition for the tachyonic instability to
occur is for the GB invariant to become negative outside the
BH horizon in the < 0 case; see Eq. (8). To address these
questions, we inspect the behavior of the GB invariant at
different stages throughout the evolution.

In Fig. 4, we show a close-up of the GB invariant’s (top
panel) and the scalar field’s (bottom panel) profiles along the
z-axis, parallel to the orbital angular momentum, at different
time snapshots throughout the evolution. In Fig. 5, we show
the GB invariant ¢ together with snapshots of the scalar field
@ in the xz-plane, perpendicular to the orbital plane of the
binary. The snapshots correspond to time instants during the
inspiral (top left), half an orbit before merger (top right), at
the formation of the common apparent horizon (CAH)
(bottom left) and about 200M after the merger (bottom
right). The color map represents the scalar field amplitude
and is shared among all panels, while the contours are
isocurvature levels |¢M*| = {1,107!,1072,107*}, with
positive (negative) values of ¢ in black (red). We also show
the location of the individual BHs using their apparent
horizons, represented as ellipses with center, semimajor
and semiminor axes given by the centroid, maximum
and minimum radial directions as obtained with the
AHFINDERDIRECT thorn [110,111]. We do not show the
evolution of ¢ in the equatorial plane because, we did not
observe negative regions forming on this plane throughout
the entire simulation.

T
o e

------ t = 796M
............ t = 904M ]
----- t = 913M (CAH formation)

— t=1174M

----- t =913M (CAH formation) |

- == t=1000M
10° t =1087M

— t=1174M

= 10
1073 e
10—7 | 1 ! !
0.8 1.0 1.2 1.4 1.6
z/M

FIG. 4. Profiles of the GB invariant (top panel) and of the scalar
field (bottom panel), corresponding to Setup A in Table I, along the
z-axis in a close-up region near the CAH. The curves correspond to
different times throughout the evolution. The shaded region
indicates the CAH, shown ¢ = 100M after its formation when
the final BH has relaxed to its stationary state. The GB invariant
becomes negative during the BHs’ last orbit before merger, and
settles to its profile around the final rotating BH with dimensionless
spin y; = 0.68. In response, the scalar field becomes unstable.

t = 796M _t=904M Lo
0.8
0.6
]
0.4
0.2
—25 00 25 —25 00 25 0.0
x /M x/M
FIG.5. Snapshots of the scalar field, ®@, and the GB invariant in

the xz-plane corresponding to Setup A in Table I. The color map
indicates the amplitude of the scalar field. The isocurvature
contours of the GB invariant correspond to |¢M*| =1 (solid
line), |9M*| = 10! (dashed line), |¥M*| = 1072 (dot-dashed
line), gM4| = 1073 (dotted line), black (red) lines correspond to
positive (negative) values of ¢. We show the inspiral (top left),
half an orbit before merger (top right), formation of the first CAH
(bottom left) and about 200M after the merger.
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During the early inspiral, the GB invariant is positive
around the individual, nonspinning BHs, and the scalar
field remains small across the numerical grid as can be seen
in the top left panel of Fig. 5. However, about half an orbit
before merger, we see the formation of regions between the
two BHs where the GB invariant is negative; see top right
panel of Fig. 5 and top panel of Fig. 4, t = 904M curve. By
the time ¢ = 904M, the effective mass squared defined in
Eq. (8) has become negative and this, we re-emphasize, is a
necessary, but not sufficient condition for the tachyonic
instability to occur.

As the BHs merge and the system settles to a final,
rotating BH, the GB invariant remains negative along the
z-axis, which now coincides with the remnant BH’s
rotation axis. This is illustrated in the bottom panels of
Fig. 5, which correspond to the instant of the formation of
the CAH (bottom left) and to about 200M after the merger
(bottom right). In response, the scalar field grows expo-
nentially as can be seen in its profiles shown in the bottom
panel of Fig. 4 for different times after the CAH has
formed. The scalar field assumes a predominantly dipolar
spatial distribution along the BH’s spin axis, a consequence
of the regions where the GB invariant is negative. We note
that the scalar field continues to grow instead of settling to a
stationary bound state because the magnitude of the
coupling is larger than the critical value for spin-induced
scalarization for the final BH with spin y, = 0.68; see
Table L.

To verify that the regions of negative GB curvature
before the merger can induce the instability, we repeated
the simulation of Setup A with a smaller initial BH
separation of d = 6M and a large-in-magnitude coupling
constant # = —10°; see Setup Al in Table II. Although this
choice of coupling, with |3 > |, ;| = |B.(1,0.68)|, may
appear unphysical® it has the desired effect of being able to
cause the instability before the merger and with a short
timescale; both effects are controlled by |3|. This can be
seen in Fig. 6, where we show the evolution of the scalar
field multipoles, and in Fig. 7, where we show the field’s
profile along the rotation axis. Indeed, shortly after the GB
invariant becomes negative, the scalar field grows expo-
nentially and exceeds the magnitude of its background
fluctuations at about t = 20M before the CAH is first
found.

In summary, if || is large enough, the BHs’ late inspiral
and merger may be affected by the sGB scalar field.
However, for |f|-values near the scalarization threshold,

Such a large value of |#| may be unphysical because the phase
space of nonlinear BH solutions (i.e., including backreaction) has
a band structure [69]: given a fixed value of M there is a
maximum value of |#| for which scalarized BHs exist. The
domain of existence of scalarized BHs depends on f(®), the BH
mass, and its spin. Thus, if this § is physical requires a careful,
nonlinear analysis. Here, we focus only on the scalarization
threshold.

1010 -

10°

Tqu)lm

10°

10—5 g
v

10-10 | | | | |
—30 —25 —20 —15 —10 -5 0

(t — Tex — tM)/M

FIG. 6. Evolution of the # = m = 0 (solid line), £ =2, m =0
(dashed line) and 7 = m = 2 (dot-dashed line) scalar field
multipoles for the coupling # = —103; cf. Setup Al in Table II.
We rescale the multipoles by the extraction radius r,, = 50M and
shift them such that (¢ — ro, — tyy)/M = 0 indicates the time of
merger determined by the peak in the gravitational waveform. For
comparison, we also show the formation of the CAH (dotted
line). We observe that the scalar field grows exponentially about
20M prior to the merger.

the inspiral and merger of initially unscalarized BH
binaries, and their GW emission, are identical to that of
GR and imprints of the sGB scalar field only appear during
the late ringdown. Such effects may be very difficult (if not
impossible) to detect, and this is what we refer to as stealth
scalarization.

B. Spin-induced dynamical descalarization

In this section, we present our key results obtained with
simulation Setup B in Table II (see Sec. III C), illustrated in
Fig. 2(b). The setup corresponds to two initially rotating,

-1.5

1037
1028

10%

||

10"

10!

1078

FIG.7. Same as Fig. 4, but for Setup Al in Table II. We see that
the GB invariant (top panel) becomes negative and triggers the
excitation of the scalar field (bottom panel) before the formation
of the CAH, indicated by the gray region.
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scalarized BHs (whose spin is antialigned with the orbital
angular momentum) that produce a unscalarized remnant
with a spin magnitude below the scalarization threshold for
any choice of the coupling constant.

In Fig. 8, we show snapshots of the scalar field and the
GB invariant in the xz-plane, perpendicular to the binary’s
orbital plane, during the inspiral (top left), half an orbit
before the merger (top right), at the merger (bottom left)
and about t = 100M after the merger (bottom right). We
illustrate the location of the BHs by their apparent horizons.
The color-coding represents the amplitude of the scalar
field and is shared among all panels. The contours represent
the isocurvature lines |¢M*| = {1,107!,1072,107*}, with
positive (negative) values shown in black (red). The spin
magnitude of the two inspiraling BHs is sufficiently large to
yield a GB invariant that has negative regions outside the
BHs’ horizon. Combined with our choice of ||, the BHs
sustain a scalar field bound state, as shown in the top left
panel of Fig. 8 and the BHs carry a scalar “charge” during
the inspiral. As the BHs merge, they form a single, rotating
BH which has a spin aligned with the orbital angular
momentum and a magnitude of y, = 0.48. For this spin
magnitude, the GB invariant is positive everywhere outside
the BH’s horizon, as shown in the bottom row of Fig. 8. As
a consequence, the effective mass-squared becomes pos-
itive everywhere in the BH’s exterior and the scalar field

t = 536M t=616M 008
0.06
0.04
. 0.02
: —25 00 25
0.00 =
t=630M t = T738M
e~ o —0.02
P o
2 ol .
P " N
= i y B —0.04
! N
A / 0.06
) . . ) iy
2l . 2 " L
—25 00 25 25 00 25 —008
z /M /M
FIG. 8. Snapshots of the scalar field, ®, and the GB invariant,

¢, in the xz-plane, corresponding to Setup B in Table II. The
color map represents the amplitude of the scalar field. The
isocurvature contours indicate the magnitude of the GB invariant
with |¢M* =1 (solid line), |¥M* =10"! (dashed line),
|9M* = 1072 (dot-dashed line), |¢M*| =107 (dotted line),
with positive (negative) values shown in black (red). We show the
inspiral (top left), half an orbit before merger (top right), 10M
after the CAH formation (bottom left) and about 100M after the
merger (bottom right).

......... t =536 M

——=- t=0616M

----- t = 630M (merger)
— t="T738M 1
......... t = 536M

—=- t=0616M

----- t = 630M (merger) |
— t=T738M

1.4 1.6 1.8

FIG. 9. Profiles of the GB invariant (top panel) and of the scalar
field (bottom panel) for Setup B in Table II along the z-axis. The
lines correspond to different times during the evolution. The
shaded region indicates the CAH, shown 100M after its for-
mation. The GB invariant becomes positive outside the horizon
when the CAH is first formed. Consequently, the scalar field
magnitude decreases and the remnant BH descalarizes.

bound states are no longer supported. That is, the scalar
field dissipates, and the BH dynamically descalarizes, in
agreement with the no-hair theorem of Ref. [69].3

These phenomena can also be seen in Fig. 9, where we
show the profiles of the GB invariant (top panel) and of the
scalar field (bottom panel) along the z-axis (parallel to
orbital angular momentum) for several instants during the
evolution. The shaded region indicates the apparent horizon
of the final BH. The GB invariant remains negative outside
the individual BHs during their (late) inspiral. Only when
the CAH first forms, does the GB invariant become positive
everywhere outside the remnant BH’s horizon At this point,
the effective mass-squared becomes positive, the tachyonic
instability that kept each BH scalarized switches off, and
the scalar field dissipates as shown in the bottom panel
of Fig. 9.

One might wonder if the final rotating BH may become
superradiantly unstable due to the presence of an effective mass
for the scalar field @. While the necessary conditions are satisfied
[112-114], the instability for a BH of y; < 0.5 would evolve on
e-folding timescales much longer than those studied here
[115,116]; see Ref. [73] for a comparison against spin-induced
scalarization. Moreover, if backreaction of ® onto the metric was
included, the BH mass and spin would decrease until the
superradiance condition is saturated and the instability is turned
off. Then, the scalar decays and the end-state is a BH with no
scalar field.
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Does the presence of scalar charges during the inspiral
produce scalar radiation? The answer is affirmative as can be
seen in Fig. 10 where we show the time evolution of the scalar
field monopole (top panel) and quadrupole (middle panel).
For comparison, we also display the gravitational quadrupole
waveform of the background spacetime (bottom panel). The
scalar field monopole quantifies the development of the
combined scalar charge of the BH binary measured on
spheres of radius r,, = 100M, 1i.e., enclosing the entire
binary. The total scalar charge remains approximately con-
stant during the inspiral as the coupling is close to its critical
value. Its magnitude increases about 10M before the merger
which coincides with the formation of a joined region in
which the GB invariant is negative due to the proximity of the
two BHs As the BHs merge into a single rotating remnant
with a spin below the threshold for the spin-induced
scalarization, the scalar charge decays as illustrated in the
inset of Fig. 10 (top panel). Because the scalar charges
anchored around each BH follow the holes’ orbital motion,
they generate scalar radiation. In general, one would expect
the scalar dipole to dominate the signal, as is also the case for
shift-symmetric sGB gravity [37,38,41]. In the simulations
shown here, however, the scalar dipole is suppressed due to
the symmetry of the system (equal mass and spin of the
companions), and the £ = m = 2 multipole dominates.

The scalar waveform is displayed in the middle panel of
Fig. 10 and shows the familiar chirp pattern: its amplitude and
frequency increase as the scalar charges inspiral (following
the inspiraling BHs in the background), and culminates in a

x1071

—200 —150 —100 —50 0 50 0 100
(t — Tex — tM)/]W

FIG. 10. Evolution of the scalar field monopole (top panel) and
quadrupole (middle panel) and gravitational quadrupole (bottom
panel) for Setup B in Table I. The waveforms are rescaled by
the extractions radius r., = 100M and shifted in time such that
(t — rex — ty)/M = 0 at the merger. In the insets we show the
absolute values of the multipoles, in logarithmic scale, during the
merger and ringdown.

peak as the BHs merge. The phase of the scalar field
quadrupole clearly tracks its gravitational counterpart.
Therefore, we deduce that the morphology (phase evolution)
of the observed scalar quadrupole radiation is a result of the
orbital dynamics of the system. A sufficiently large magni-
tude of the coupling constant may lead to an additional
scalarization of the #Z =2 mode, which would become
manifest as an exponential growth of the signal superposed
with the chirp. This situation is analogous to the evolutions
with positive coupling shown in our previous work [45].

After the merger, the scalar quadrupole exhibits a
quasinormal ringdown pattern, i.e., an exponentially
damped sinusoid, shown in the inset of Fig. 10 (middle
panel). Here, in contrast to Ref. [45], descalarization occurs
due to the vanishing of negative GB regions outside the
remnant BH (because its final spin is |y, < 0.5), rather
than due to a reduction of positive curvature (because of an
increase in mass). We note that the scalar field rings down
on similar timescales as the GW signal shown in the bottom
panel of Fig. 10 for comparison. Therefore, one might
expect a modification to the GW ringdown if backreaction
onto the spacetime is included.

V. DISCUSSION

In this paper, we continued our study of dynamical
scalarization and descalarization in binary BH mergers in
sGB gravity by extending our previous work [45]. The
latter focused on a positive coupling constant between the
scalar field and the GB invariant, yielding dynamical
descalarization in binary BH mergers. As a natural con-
tinuation, here we studied a negative coupling for which the
BHs’ spins play a major role in determining the onset of
scalarization. In particular, we have shown that the merger
remnant can either dynamically scalarize or dynamically
descalarize depending on its spin and mass.

Spin-induced dynamical scalarization occurs when the
merger remnant grows a scalar charge during coalescence
due to the large spin of the remnant. In cases like this, the
initial binary components lack a charge because their spins
are not large enough to support one [73-78]. However, after
the objects merge, the remnant BH spins faster than either
component, allowing for a charge to grow. We found that it is
possible for the scalar charge to grow as early as 1-2 orbits
before a CAH has formed if the coupling || is extremely
large. This occurs because there are spacetime regions before
merger (and near the poles of the future remnant) with a
negative GB invariant, and a sufficient large value of |J|
allows bound states to form fast enough. We also found that if
the coupling || is close to the threshold, then scalarization
occurs only in the late ringdown, because of the timescale
required for the bound states to form.

Is such spin-induced scalarization detectable with current
or future GW observatories? For values of |f| near the
scalarization threshold the instability timescale is large and
the effects of the scalar field growth would only appear at
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times much later than the merger and, more importantly, after
the start of the ringdown. Hence, the inspiral-merger-ring-
down of such a binary would be indistinguishable from one
in GR, and scalarization would be a hidden or “stealth” effect,
i.e., theremnant BH would acquire a charge, butits formation
would not lead to an easily measurable effect. For instance,
during the GW ringdown, which is dominated by the
fundamental (£, m) = (2,2) quasinormal mode (QNM)
frequency, we know that at a spin of y =~ 0.68, the decay
time is approximately = ~ 12.3M [117]. Hence, after 100M
from the peak in the waveform, the dominant mode has
decayed by roughly exp(—t/7) ~ exp(—100/12.3) ~ 107,
If the dominant QNM frequency begins to be modified only
after 100M, the GW has decayed so much that detecting this
change or constraining it would be essentially impossible.

Is there no hope to detect such late times scalarization? Not
necessarily. If we were to include the scalar field backreaction
onto the spacetime, one could entertain the possibility that the
late time growth of the scalar field (in particular of ®,,) and
the subsequent readjustment of the spinning remnant BH to
its scalarized counterpart could result in a second GW signal.
Confirming this possibility and, if confirmed, characterizing
such a GW signal is left for future work.

Spin-induced dynamical descalarization occurs when the
merger remnant loses its scalar charge during coalescence
due to the low spin of the remnant. In cases like this, the
initial binary components are spinning fast enough that
each of them has a scalar charge and the remnant
descalarizes if it has spin Xr < 0.5. Here, we demonstrated
this effect in a example in which the initial binary
components have their spin angular momenta antialigned
with the orbital angular momentum. The merger produces a
remnant BH with y, = 0.48, for which no scalar field
bound states are supported and the field is radiated away
shortly (~10M) after the CAH formation.

Is such spin-induced descalarization detectable with
current or future GW observatories? For such descalariza-
tion to be detectable, one must first detect that the binary
components were scalarized during the inspiral. Our
simulations showed that the scalar charges lead to scalar
quadrupole radiation because of the highly symmetric
configurations (equal mass, equal spin magnitude) we
chose to evolve. More realistic astrophysical configurations
(with unequal masses and unequal spin magnitudes) forces
the binary to emit scalar dipole radiation. Such emission of
dipole or quadrupole radiation accelerates the inspiral, and
thus affect the GW phase at —1PN and OPN respectively, as
shown in shift-symmetric theories [34-39]. These effects in
the inspiral are observable and can thus be constrained with
current ground-based [8,22-25] and future detectors
[118,119] within the parametrized post-Einsteinian frame-
work [120-123], provided the binary is of sufficiently low
mass such that enough of the inspiral is observed [119]. In
fact, a constraint of this type was recently obtained using
the GW190814 event [124] in [21].

Let us then assume, for the sake of argument, that some
future event reveals a scalar charge in the inspiraling binary
components. Our results then indicate that descalarization
may be detectable, if there is enough signal-to-noise ratio in
the merger and ringdown [41,42]. This is because this
process occurs at the same time and with the same time-
scales as the GW merger and ringdown, see Fig. 10. Future
work could study the backreaction of the scalar field onto
the metric to determine the magnitude of these modifica-
tions in the transient phase, without which one cannot
assess detectability confidently. Our results indicate that
descalarization might be best probed with a full inspiral-
merger-ringdown analysis of the GW signal.
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APPENDIX A: FULL SUITE OF SIMULATIONS

We ran a larger series of simulations, listed in Table II, of
equal-mass BH binaries with varying initial spin that show
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TABLE IL

List of our complete series of simulations. We denote the initial separation d/M with M being the total

mass, y; and y, are the initial dimensionless spin parameters of each BH, and y is the final dimensionless spin
parameter of the remnant. We use 5 and s to denote unscalarized and scalarized states, respectively, and the subscript
1 () indicates spin aligned (antialigned) with the orbital angular momentum. The coupling chosen for each simulation

is given by S, whereas f3.; and S ; denote the critical couplings for the component/remnant BHs respectively.

Setup d/M X1 X2 Xf s P Pey Process

A 10 0 0 0.68 —14.30 —12.96 545 =5y

Al 6 0 0 0.68 —1000 —12.96 5+5 = sy

A2 10 0.6 0.6 0.85 -2.9 -10.55 -3.01 e
A3 10 0.6 0.6 0.85 -12.0 —-10.55 -3.01 SpAsp = 5y
A4 10 0.0 0.6 0.77 -12.0 —10.55 -5.59 5+ sy = sy
B 10 -0.6 -0.6 0.48 —11.50 —-10.55 s, s, =5
B2 10 0.4 -0.6 0.64 —12.0 —10.55 -21.50 Sp+s) =5

a qualitatively same behavior as the runs presented in the
main text. In particular, we simulated a series of initially
spinning, unscalarized black holes that formed a scalarized
remnant with larger spin. We also list example simulations
in which one or both initial BHs are scalarized and they
merge into an unscalarized remnant.

APPENDIX B: VALIDATION TESTS

To validate our code, we performed a suite of conver-
gence tests. We ran Setup B, our numerically most
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FIG. 11. Convergence plots for the # = m = 2 mode of the

gravitational waveform (left panel) and the £ = m = 0 mode of the
scalar field (right panel). In both panels, we show the difference
between the low and medium resolution run (solid line) and the
medium and high resolution run (dashed line). The latter is rescaled
by Q4 = 1.94, indicating fourth order convergence. The lines are
shifted in time such that (¢ — r, — fjy)/M = 0 indicates the time of
merger and they are rescaled by the extraction radius r., = 100M.

demanding setup, at a lower resolution of dx,, = 0.8M
and a higher resolution of dxyj,, = 0.625M. The runs in the
main text use a medium resolution of dx,.q = 0.7M. The
egrid setup is the same across all simulations, see Sec. III.
We estimated the order of convergence n and its associated
convergence factor Q,,

(dxlow)n B (dxmed)n
(dxmed)n - (dxhigh)n '

We computed the n and Q, for the gravitational
waveform, ¥, ,,, of the background spacetime and for
the scalar charge. We show the corresponding convergence
plots in Fig. 11. For ¥, ,,, we find fourth order conver-
gence, and we estimate the numerical (truncation) error to
be Wy2/%Y42, <0.8%. For the scalar field charge, @y,
we also find fourth order convergence. performed a con-
vergence test on its £ = m = 0 multipole. We show our
result in the right panel of Fig. 11.

We find a cumulative error A®y,/ Dy, < 30% in the late
inspiral. The numerical error in the merger and ringdown is
A, /Dy < 15%. As we restrict this work to a qualitative

(late inspiral)
----- t= 616M (pre-merger)
(
(

— == ¢ =0632M (merger)
t =T730M (post-merger) |

10—]1

10° 10! 10%
z/M

FIG. 12. Hamiltonian constraint along the z-axis during the
late-inspiral (solid black), half an orbit before merger (dashed
red), at the time of merger from the peak of the gravitational
waveform (dash-dot blue) and 100M after merger (dotted green).
The shaded region indicates the CAH, shown 100M after merger.
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analysis, this error does not affect the main results of the
paper. Further quantitative work, such as forecasting con-
straints on the theory would require this issue to be
addressed.

Finally, in Fig. 12, we show the Hamiltonian constraint
‘H along the z-axis for Setup B at different time instants.
The constraint violation remains below 107> outside the
BH horizon through the simulation.
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