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Particular couplings between a scalar field and the Gauss-Bonnet invariant lead to spontaneous

scalarization of black holes. Here, we continue our work on simulating this phenomenon in the context of

binary black hole systems. We consider a negative coupling for which the black-hole spin plays a major role

in the scalarization process. We find two main phenomena: (i) dynamical descalarization, in which initially

scalarized black holes form an unscalarized remnant, and (ii) dynamical scalarization, whereby the late

merger of initially unscalarized black holes can cause scalar hair to grow. An important consequence of the

latter case is that modifications to the gravitational waveform due to the scalar field may only occur

postmerger, as its presence is hidden during the entirety of the inspiral. However, with a sufficiently strong

coupling, we find that scalarization can occur before the remnant has even formed. We close with a

discussion of observational implications for gravitational-wave tests of general relativity.
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I. INTRODUCTION

The detection of gravitational waves (GW) produced by

coalescing compact binaries by the LIGO-Virgo-Kagra

Collaboration [1–3] have opened a new avenue to test

general relativity (GR) in its strong-field, nonlinear regime

[4–8]. In fact, the first three catalogs of observations have

already been used to perform several null tests of GR [8–17],

as well as theory-specific tests [18–26]. The latter have

placed constraints on quadratic gravity theories [21–25].

In these theories, a scalar field couples to a curvature

scalar, which is quadratic in the Riemann tensor (see, e.g.,

Ref. [27] for an overview). Well-known examples include

coupling to the Pontryagin density or theGauss-Bonnet (GB)

invariant. The latter theories are often named scalar Gauss-

Bonnet (sGB) gravity. They can emerge in the low-energy

limit of string theory (see, for instance, Refs. [28–30]), as

well as through a dimensional reduction of Lovelock gravity

[31], and belong to the wider class of Horndeski gravity

theories [32,33].

Black hole (BH) solutions in this theory have long been

known to have a nontrivial scalar field (i.e., a “hair”), to

which we can associate a monopole scalar charge that

depends on the BH’s mass and spin. When the BHs are

found in a binary, their motion can lead to the emission of

scalar dipole radiation, which in turn modifies the system’s

orbital dynamics and the GW signal with respect to GR’s

prediction. Such phenomenology has been explored with

both post-Newtonian (PN) [34–40] and numerical relativity

[41–46] techniques. The scalar field can also affect the

post-merger signal, modifying the remnant BH’s ringdown

[47–52]. In sGB gravity, the presence of scalar hair depends

on the functional form of the coupling between scalar field

and the GB invariant.

More specifically, if the functional form of the coupling

always has a nonvanishing first derivative, such as for a

linear or exponential coupling, BHs are known to invar-

iably have scalar hair [53–67]. Hence, the observation of

GWs from BH binaries and mixed neutron star (NS)-BH

binaries have allowed us to constrain the length scale at

which the scalar-field-GB interaction becomes relevant to

less than approximately one kilometer [22–25].

In contrast, if the first derivative of the coupling function

vanishes for some constant background scalar field, both

scalarized and unscalarized BH solutions can exist [68,69].

Depending on the length scale associated with the scalar-

field-GB interaction, and the BH’s mass [68–70] and spin

[71–78], the BH solutions of GR become unstable to scalar

field perturbations, and the end-state of this instability is a

scalarized BH [79]. This process is similar to spontaneous

scalarization of NSs in scalar-tensor gravity [80,81].
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The difference lies in the fact that for NSs the scalar field is

sourced by matter, while for BHs the scalar is sourced by

the spacetime curvature alone. Thus, one could envision

that the aforementioned GW constraints (such as e.g.,

Ref. [21]) can be avoided if scalarization occurs right

before merger, or possibly only after merger.

Can such a scenario happen? Here, we continue our

previous work [45] and explore how the onset of scalari-

zation plays out during binary BH mergers. As in our

previous paper, we work in the decoupling approximation,

i.e., we evolve the scalar field on a time-depenedent GR

background. In Ref. [45], we studied a variety of possible

processes for head-on BH collisions, as well as a quasi-

circular inspiral-merger of equal mass nonspinning binaries

using a positive sign of the scalar-field-GB coupling. We

demonstrated the existence of a process we coined dynami-

cal descalarization, whereby initially scalarized BHs

merged to form a larger remnant that descalarized because

its GB curvature was too small to sustain the scalar hair.

The alternative, the dynamical scalarization of the remnant,

was not possible because its larger mass (compared to the

initial BHs’ masses) inevitably leads to a smaller GB

curvature near the horizon.

However, for a negative sign of the coupling, the scalar

field instability happens only for sufficiently rapidly spin-

ning BHs (“spin-induced scalarization”) [73–77]. This

leads to the following questions:

(1) Does the formation of a highly spinning remnant

cause spin-induced dynamical scalarization? If so, at

what stage in the binary’s evolution is the scalar hair

excited?

(2) Can the process of dynamical descalarization found

in Ref. [45] be generalized to the negative coupling

case?

Here, we address these questions with a new suite of binary

BH simulations and negative sign of the coupling constant.

We find that indeed spin-induced descalarization and

scalarization of the BH remnant are both possible. The

spin-induced descalarization of initially scalarized, spin-

ning black holes (BHs), extends and completes the work in

Ref. [45]. The spin-induced scalarization of the remnant is

a new result. For values of the coupling constant close to

the scalarization threshold, the growth of the scalar field has

a large instability timescale. Therefore, scalarization only

becomes significant significantly after the remnant BH’s

ringdown begins. We therefore now coin the term stealth

dynamical scalarization, whereby the scalar field remains

hidden throughout the full inspiral, merger and early

ringdown evolution of the BH binary and is thus uncon-

strainable with GW observations.

In the remainder of thiswork,we explainhowwearrived at

these conclusions. In Sec. II, we review both scalarization

and descalarization of BHs in sGB gravity. Next, in Sec. III,

we discuss our numerical methods and our numerical

relativity simulations designed to answer our previously

stated questions. In Sec. IV, we present our findings and we

finish by discussing some of their observational implications

in Sec. V. We work with geometric units G ¼ 1 ¼ c.

II. SCALAR GAUSS-BONNET GRAVITY

A. Action and field equations

sGB gravity modifies GR via a nonminimal coupling

between a real scalar field Φ and the GB invariant G , as

described by the action

S ¼ 1

16π

Z

d4x
ffiffiffiffiffiffi

−g
p �

R −
1

2
ð∇ΦÞ2 þ αGB

4
fðΦÞG

�

; ð1Þ

where R is the Ricci scalar, g ¼ detðg¿ÀÞ the metric

determinant, ð∇ΦÞ2 ¼ g¿À∇¿Φ∇ÀΦ the scalar field kinetic

term, and

G ¼ R2 − 4R¿ÀR
¿À þ R¿ÀρσR

¿Àρσ; ð2Þ

is the GB invariant, where R¿Àρσ and R¿À are the Riemann

and Ricci tensor, respectively. The particular form of the

theory is parametrized by the coupling function fðΦÞ and
the coupling constant αGB with units of ½Length�2.
As in our previous study [45], we work in the decoupling

limit. That is, we neglect the backreaction of the scalar field

onto the spacetime metric: the scalar field evolves on a

dynamical, vacuum background spacetime of GR. The

action (1) gives rise to the field equation for Φ

□Φ ¼ −
1

4
αGBf

0ðΦÞG ; ð3Þ

where a prime denotes a derivative with respect to Φ.

Since, we work in the decoupling limit, the d’Alembertian

and the GB invariant are those of the time-dependent GR

background.

The choice of the coupling function fðΦÞ determines

specific sGB models. As we already alluded to in Sec. I, the

models can be classified into two types depending on the

properties of their BH solutions. We label models as type I

if the derivative of the coupling function f0ðΦÞ ≠ 0. In this

case, BH solutions always have scalar hair [53–67].

Examples of type I models include the dilatonic fðΦÞ ∝
expðΦÞ [54–57] and shift-symmetric fðΦÞ ∝ Φ [58–60]

coupling functions. We label models as type II if the

derivative of the coupling function f0ðΦ0Þ ¼ 0, for some

constant Φ0. In this case, the theory admits the stationary

vacuum BH solutions of GR, as proved by the no-hair

theorem of [69], but also admits, when the theorem is

violated, scalarized BHs. Examples include quadratic

fðΦÞ ∝ Φ
2 [69] and Gaussian fðΦÞ ∝ expðΦ2Þ [68] cou-

pling functions. Here, we consider type II models only.
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B. Scalarization of isolated black holes

In the second type of sGB model the onset of scalariza-

tion is found by linearizing Eq. (3) around the background

BH spacetime, i.e., Φ ¼ Φ0 þ δΦ, where Φ0 is a constant.

This results in the scalar-field evolution equation

ð□ −m2

effÞδΦ ¼ 0; ð4Þ

with an effective mass squared

m2

eff ≔ −
1

4
αGBf

00ðΦ0ÞG ; ð5Þ

which can become tachyonically unstable; in other words,

the BH can scalarize ifm2

eff < 0 [68,69]. This, however, is a

necessary, but not sufficient condition for scalarization. The

scalarization threshold can be calculated by finding a bound

state solution, i.e., a time independent solution of Eq. (4)

which is regular at the BH horizon and that vanishes at

spatial infinity. By imposing these boundary conditions on

δΦ, the calculation of the scalarization threshold is reduced

to a boundary value problem, with the dimensionless ratio

between αGB and the BH’s mass squared playing the role

of the eigenvalue. The smallest eigenvalue provides the sca-

larization threshold for the “fundamental” (i.e., the node-

less solution) family of scalarized BHs, while the other

eigenvalues determine the threshold for the formation of

“excited states” (i.e., solutions with one or more nodes). We

focus on the latter here. See Fig. 1 in Ref. [69] or Sec. 4.3 of

Ref. [82] for further details. To be more concrete, here we

consider a quadratic coupling function,

fðΦÞ ¼ Φ
2: ð6Þ

The coupling strength is determined by the dimensionless

constant
1

β ¼ αGB=M
2; ð7Þ

where M is the characteristic mass of the system. The

effective mass then becomes

m2

eff ¼ −
1

2
βM 2G : ð8Þ

If G is positive-definite in the BH exterior, then the

instability can only happen for positive β. However, if G

is negative, at least in some regions outside the horizon,

then the instability can also be triggered with a negative β.

For example, consider the Kerr metric, for which the

GB invariant in Boyer-Lindquist coordinates ðt; r̄; θ;ÇÞ
is given by

GKerr ¼
48m2

ðr̄2 þ σ2Þ6 ðr̄
6 − 15r̄4σ2 þ 15r̄2σ4 − σ6Þ; ð9Þ

where σ ¼ a cos θ and a ¼ J=m is the angular momentum

per unit mass of the BH. When the dimensionless spin

È ¼ a=m < 0.5, G is positive everywhere outside the event

horizon and so scalarization can only take place if β is

positive. This also holds true in the limiting case of a

Schwarzschild BH. However, for sufficiently rapidly rotat-

ing BHs (i.e., those with È ¼ a=m ≥ 0.5), the GB invariant

can become negative in the exterior of the outer BH horizon

in regions along the rotation axis [83]. Hence, spin can

induce scalarization of BHs if β is negative and È ≥ 0.5

[73–78] and suppress it if β is positive [71,72].

One may note that scalarized solutions in quadratic sGB

gravity with a positive coupling constant, β > 0, are

unstable to radial perturbations [84]. Although this is true,

such BHs can be stabilized by including higher-order scalar

terms in the coupling fðΦÞ [85,86], through the addition of
scalar field self-interactions while retaining the quadratic

form of fðΦÞ [70], or through the addition of a coupling of
scalar field to the Ricci scalar [87,88]. Since, we are

investigating the onset of scalarization, it is unnecessary

to include such terms and so we focus only on the quadratic

coupling case here.

C. Scalarization and descalarization

in black hole binaries

What could be the consequences of scalarization in BH

binaries? To answer this question, in Ref. [45] we per-

formed the first numerical relativity simulations of both

head-on collisions and quasicircular inspirals of BHs in

quadratic sGB gravity with a positive coupling β. We

identified a new effect, that we named dynamical descala-

rization, in which initially nonspinning scalarized BHs

shed-off completely their scalar hair after the merger. This

is a result of the comparatively weaker curvature generated

near the horizon of the resulting larger remnant BH.

Consequently, several possible dynamical processes were

discovered for particular combinations of mass ratio and

coupling strength, as illustrated in Fig. 1 of Ref. [45]. We

can contrast this with similar simulations in type I theories

in which the remnant BH always retains some scalar

hair [41].

Here, we extend our previous work by considering

negative coupling β < 0 values. For this case the spins

of the initial and/or remnant BHs play a crucial role in

the development of the scalar field of the system due the

possibility of spin-induced scalarization. Specifically, the

formation of negative GB regions close to merger causes

the remnant to scalarize, a process that we call spin-induced

dynamical scalarization. Additionally, we also demonstrate

spin-induced dynamical descalarization—the spin ana-

logue of the aforementioned dynamical descalarization

mechanism—as high-spinning binary components merge

1
With respect to the notation of Ref. [45], we are omitting the

subscript “2” and fixing β̄ ¼ 1.
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to produce a lower spin remnant that cannot support the

instability.

III. SIMULATING BINARY BLACK HOLES IN SGB

GRAVITY—METHODS AND SETUP

A. Time evolution formulation

We investigate the dynamics of the sGB scalar field,

determined by its equation of motion (3), and sourced by a

binary BH background spacetime. We perform a series of

time evolution simulations in 3þ 1 dimensions by adopt-

ing standard numerical relativity techniques; see, e.g.,

Ref. [89]. That is, we foliate the four-dimensional space-

time into three-dimensional spatial hypersurfaces Σt, para-

metrized by a time parameter t, with an induced spatial

metric γij. We introduce the timelike vector n¿ that is

orthonormal to the hypersurface. Then, the spacetime

metric g¿À can be decomposed as

ds2 ¼ g¿Àdx
¿dxÀ

¼ −ðα2 − βkβkÞdt2 þ 2γijβ
idtdxj þ γijdx

idxj; ð10Þ

where α is the lapse function (not to be confused with the

dimensional coupling constant αGB) and βi is the shift

vector (not to be confused with the dimensionless coupling

constant β). Finally, we introduce the extrinsic curvature

Kij ¼ − 1

2α
ð∂t − LβÞγij, where Lβ is the Lie-derivative

along the shift vector βi.

To simulate the background BH binary, we write

Einstein’s equations as a Cauchy problem and adopt the

Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-

lation [90,91] together with the moving puncture gauge

conditions [92,93]. We prepare initial data describing a

quasi-circular binary of two spinning BHs with the Bowen-

York approach [94,95].

To evolve the scalar field Φ in this time-dependent GR

background, we write its field equation (3) as a set of time

evolution equations. Therefore, we introduce the scalar

field’s momentum KΦ ¼ − 1

α
ð∂t − LβÞΦ and we apply the

spacetime decomposition to Eq. (3). This procedure gives

the equations

ð∂t − LβÞΦ ¼ −αKΦ; ð11aÞ

ð∂t−LβÞKΦ ¼−DiαDiΦ

−α

�

DiDiΦ−KKΦþ 1

4
αGBf

0G

�

; ð11bÞ

where Di, G and K ¼ γijKij are the covariant derivative

with respect to the induced metric, the four-dimensional

GB invariant and the trace of the extrinsic curvature of the

background spacetime.

We initialize the scalar field to represent multiple

scalarized BHs. For simplicity, we neglect the scalar field’s

initial linear and angular momentum, because it relaxes to

its equilibrium configuration within about 100M from the

start of the evolution, i.e., within approximately one orbit

[41,96]. Since the scalar field equation (3) is linear, we can

superpose the static bound-state solution anchored around

an isolated BH. For N BHs, we then have

Φjt¼0 ¼
X

N

a¼1

ΦðaÞ; KΦjt¼0 ¼ 0; ð12Þ

where the subscript (a) labels the ath BH. The bound state

of the sGB scalar field around an isolated, nonspinning BH

with a coupling of the form (6) was obtained numerically in

Ref. [69]. We approximate this solution with the fit

ΦðaÞjt¼0
¼
mðaÞrðaÞ
ϱ2ðaÞ

�

c1þc2
mðaÞrðaÞ
ϱ2ðaÞ

þc3
ðmðaÞrðaÞÞ2

ϱ4ðaÞ

�

; ð13Þ

where ϱðaÞ ¼ mðaÞ þ 2rðaÞ, rðaÞ is field point distance from

the location of the ath BH in quasi-isotropic radial

coordinates of the background spacetime, mðaÞ is the mass

of the ath BH, and c1 ¼ 3.68375, c2 ¼ 4.97242, c3 ¼
2.29938 × 102 are fitting constants, where we corrected a

misprint in c3 in Ref. [45].

B. Code description

We performed the simulations with CANUDA [97], our

open-source numerical relativity code for fundamental

physics [41,45,98,99]. CANUDA is fully compatible with

the EINSTEIN TOOLKIT [100–102], a public numerical

relativity software for computational astrophysics. The

EINSTEIN TOOLKIT is based on the CACTUS computational

toolkit [103,104] and uses the CARPET driver [105,106] to

provide boxes-in-boxes adaptive mesh refinement (AMR)

as well as MPI parallelization. To evolve the field equations

we employ the method-of-lines. Spatial derivatives are

typically realized by fourth-order finite differences (with

sixth order also being available) and for the time integration

we use a fourth-order Runge-Kutta scheme.

The background spacetime, consisting of two spinning

BHs in a quasi-circular orbit, is initialized with the

TWOPUNCTURES spectral code [107] that solves the constraint

equations of GR with the Bowen-York approach [94,95].

We evolve Einstein’s equations using CANUDA’s modern

version of the LEAN thorn [108] that implements the BSSN

equations with the moving puncture gauge. The sGB scalar

field evolution equations (11) and its initial data (13) are

implemented in CANUDA’s arrangement CANUDA_EdGB_dec.

Details of the implementation are described in

Refs. [41,45,62]. To analyze the numerical data, we compute

theNewman-Penrose scalarΨ4 as ameasure for gravitational

radiation and we extract the gravitational and scalar field

multipoles on spheres of constant extraction radius rex using
the QuasiLocalMeasures thorn [109]. We find the BHs’ apparent

ELLEY, SILVA, WITEK, and YUNES PHYS. REV. D 106, 044018 (2022)

044018-4



horizons and compute their properties with the AHFinderDirect

thorn [110,111].

C. Setup of simulations

To investigate spin-induced dynamical scalarization or

descalarization in binary BH mergers, we have performed a

series of simulations of equal-mass, quasicircular inspirals

for the negative coupling case, β < 0. The initial BHs have

either zero spin or a spin (anti-)aligned with the orbital

angular momentum.

To choose the values of the coupling constant β in our

simulations, we used the numerical data found in Ref. [74]

(cf. Appendix, Table I) to obtain a fitting formula that

returns the value of β at the threshold for spin-induced

scalarization as a function of the dimensionless spin È; we

will refer to this threshold value as the critical value of the

dimensionless coupling constant. The critical value for the

coupling constant satisfies the scaling

βcðm=M; ÈÞ ¼ ðm=MÞ2βcð1; ÈÞ; ð14Þ

where m is a place-holder for either the individual

masses of the binary mðaÞ or the final remnant mass mf,

while M ¼ m1 þm2 is the initial total mass of the binary.

The quantity βcð1; ÈÞ is the critical value of the coupling

that leads to scalarization for a BH of mass 1M and

dimensionless spin È, namely

βcð1; ÈÞ ¼ −
0.422

ðjÈj − 1=2Þ2 þ 1.487jÈj7.551; ð15Þ

where βcð1; ÈÞ diverges as jÈj tends to 0.5, in agreement with

Ref. [76]. For instance, if we wish to scalarize the initial

components of the binary, and if the mass ratio is unity, then

mðaÞ ¼ M=2, and βc;ðaÞð1=2; ÈðaÞÞ ¼ ð1=4Þβcð1; ÈðaÞÞ. In

Fig. 1,we showEq. (15) and compare it against the numerical

results of Ref. [74]. We obtain relative errors smaller than

15% in the range 0.5 ≤ È < 1 and less than 5% for È r 0.74.

We use Eq. (14) as reference to choose the values of β to

probe scalarization of either one (or both) of the initial binary

components or of the remnant BH.

Here, we present two key simulations, listed in Table I

and illustrated in Fig. 2, with the following setups:

FIG. 1. Absolute value of the critical coupling, βc, for spin-

induced scalarization of a single BH as a function of the

dimensionless spin È. We show the numerical data of Ref. [74]

and the fitting formula (15). The inset shows the relative error

between the fit and the data. We see that the error is less than 15%

in the range 0.5 ≤ È < 1 and less than 5% for È r 0.74.

(a) (b)

FIG. 2. Binary BH simulations, where s (s̄) stands for initial or
final BH states that are scalarized (unscalarized) and with

spin along the positive (↑) or negative (↓) z-direction (i.e.,

aligned or antialigned with the orbital angular momentum,

assuming the latter is ↑). BH states without an arrow are

nonspinning. Panel 2(a) illustrates a process of spin-induced

dynamical scalarization: two initially unscalarized BHs produce a

spinning, scalarized remnant. Panel 2(b) illustrates a process of

dynamical descalarization: two initially rotating, scalarized BHs

whose spin is antialigned with the orbital angular momentum

merge into a rotating BH with a smaller spin magnitude.

Consequently, the remnant descalarizes.

TABLE I. Setup of the simulations of equal-mass, quasicircular BH binaries. We show the initial separation d=M,

the initial dimensionless spins È1 and È2 of each binary component, the dimensionless spin Èf of the remnant, and

the dimensionless coupling constant β used in the simulations. For reference, we also show the critical values to

scalarize the initial (βc;1 ¼ βc;2) or final (βc;f) BHs, calculated using Eqs. (14) and (15). The last column summarizes

the process that unfolds during the simulation. We use s̄ and s to denote unscalarized and scalarized states,

respectively, and the subscript ↑ (↓) indicates spin aligned (anti-aligned) with the orbital angular momentum, which

is assumed to be ↑. See Fig. 2 for additional details.

Run d=M È1 È2 Èf β βc;1 βc;f Process

Setup A 10 0 0 0.68 −14.30 … −12.96 s̄þ s̄ → s↑
Setup B 10 −0.6 −0.6 0.48 −11.00 −10.55 … s↓þs↓→ s̄↑
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Setup A in Table I is designed to address our first

question: does the formation of a highly spinning remnant

cause spin-induced dynamical scalarization? Here, we

consider a binary of initially nonspinning, unscalarized

BHs that merges into a spinning, scalarized remnant as

illustrated in Fig. 2(a). The BHs complete 10 orbits prior to

their merger at tM ¼ 927M, as estimated from the peak in

the gravitational (quadrupole) waveform; see the bottom

panel of Fig. 3. When the coupling β is negative, the

squared effective mass (5) of the initial BHs (with È ¼ 0) is

positive definite everywhere outside their horizons, and so

they are initially not scalarized. The final BH has a

dimensionless spin of Èf ¼ 0.68 and mass mf ∼M. For

a BH with these parameters, the critical coupling is

βc;f ≈ βcð1; 0.68Þ ≈ −12.96; cf. Eq. (14). In our simulation,

we chose jβj > jβc;fj such that the remnant BH is indeed

scalarized. In this simulation, we initialize the scalar field

according to Eq. (13) around each binary component. The

scalar field disperses early in the simulation, leaving each

BH unscalarized and a negligible, but nonvanishing ambi-

ent scalar field in the numerical grid. Notice that if, we had

set Φjt¼0 ¼ 0, there would be no scalar field dynamics

[see Eq. (3)].

Setup B in Table I is designed to address our second

question: is the dynamical descalarization found in Ref. [45]

a general phenomenon? Is there a spin-induced dynamical

descalarization? Here, we consider a binary of initially

rotating, scalarized BHs with spins È1 ¼ È2 ¼ −0.6,

anti-aligned with the orbital angular momentum as illus-

trated in Fig. 2(b). Each of the components of the binary has

a mass m1 ¼ m2 ¼ M=2. Inserting these parameters in

Eq. (14), we find βc;1 ¼ βc;2 ¼ βcð1=2;−0.6Þ ≈ −10.55.

In our simulations, we set jβjs jβcð1=2;−0.6Þj such that

the initial BHs are scalarized. The initial BHs merge into a

final rotating BH that has a spin aligned with the orbital

angular momentum of the previously inspiraling system,

with a spin magnitude Èf ¼ 0.48. This value is below the

threshold for spin-induced scalarization, and so the remnant

BH does not support scalar hair.

To show that our qualitative results are robust for a large

variety of BH spin parameters, we have performed a series

of additional simulations listed in Table II of Appendix A.

All simulations presented in Tables I and II have the same

grid setup: the numerical domain was composed of a

Cartesian box-in-box AMR grid structure with seven

refinement levels. The outer boundary was located at

255.5M. We use a grid spacing of dx ¼ 0.7M on the

outermost refinement level to ensure a sufficiently high

resolution in the wave zone. The region around the BHs has

a resolution of dx ¼ 0.011M. To validate our code and

estimate the numerical error of our simulations, we per-

formed convergence tests for our most demanding simu-

lation with È1;2 ¼ −0.6, corresponding to Setup B in

Table I. The relative error in the gravitational quadrupole

waveform is ΔΨ4;22=Ψ4;22 ≤ 0.8%, while the relative error

of the scalar charge accumulates to ΔΦ00=Φ00 ≤ 30% in

the last orbits before merger; the latter is ΔΦ00=Φ00 ≤ 15%

in the merger and ringdown phase. The large error in the

scalar field, close to the BHs merger, is a consequence of

the exponential growth of the scalar field during inspiral.

As our investigation is of a qualitative nature, this cumu-

lative error is not a cause of concern for our results.

However, a future quantitative analysis would have to

address this issue. See Appendix B for details.

IV. RESULTS

A. Spin-induced dynamical scalarization

Here, we present key results obtained with simulation

Setup A (see Sec. III C), corresponding to Fig. 2(a). In

particular, we show that an initially unscalarized BH binary

can indeed form a hairy, rotating remnant.

This process is illustrated in the top panel of Fig. 3,

where we present the time evolution of the scalar field’s

monopole charge, rexΦ00, measured at rex ¼ 100M, and

shifted in time such that ðt − rex − tMÞ=M ¼ 0 indicates the

time of merger. The scalar field perturbation that is initially

present in our simulations remains small during the entire

inspiral. See, for instance, the amplitudes rexΦlm at ðt −
rex − tMÞ=M < 0 which are of Oð10−4Þ or Oð10−6Þ. Yet,
we see an exponential growth of the scalar charge,

rexΦ00 ∼ eωI;00t, that exceeds the background fluctuations,

approximately 100M after the merger. We estimate the

FIG. 3. Evolution of the scalar field monopole (top panel),

scalar field l ¼ 2 multipoles (middle panel) and the gravitational

waveform of the background spacetime (bottom panel) for Setup

A in Table I. We rescale the multipoles by the extraction radius

rex ¼ 100M, and shift them in time such that ðt − rex − tMÞ=M ¼
0 indicates the time of merger, determined by the peak of the

gravitational waveform.
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growth rate (for our choice of β) to be MωI;00 ∼ 0.062 by

fitting to the numerical data. We show this with the dotted

red line in the top and middle panels.

We find a similar behavior in the scalar field quadrupole,

as shown in the middle panel of Fig. 3. That is, both the

axisymmetric ðl; mÞ ¼ ð2; 0Þ and the ðl; mÞ ¼ ð2; 2Þ mul-

tipoles are excited and grow exponentially with a rate of

MωI ∼ 0.062. For the form of the coupling function

considered here, the rate appears to be independent of

the ðl; mÞ multipole and is determined by the coupling

constant β, as we further discuss later. The quadrupole

scalar field is absent in the initial data because we

initialized the scalar field with a spherically symmetric

distribution around each of the BHs. Hence, the scalar field

quadrupole we observe is caused by the “stirring” of the

ambient scalar field due to the dynamical binary BH

spacetime, which has a quadrupole moment. These Φ2m

multipoles also become unstable eventually, but at a later

time relative to the monopole, as is evident by comparing

the top and middle panels of Fig. 3. The exponential growth

of the Φ2m multipoles is consistent with the findings in

Refs. [73,77], showing that higher-l and m ≠ 0 scalar field

multipoles can also become unstable.

All of these results beg for the following questions: at

what stage in the binary’s evolution is the scalar field

instability induced? Is it due to the orbital angular momen-

tum at the late inspiral or is it due to the angular momentum

of the remnantBH?Aswe discussed in Sec. II B, a necessary

(but not sufficient) condition for the tachyonic instability to

occur is for the GB invariant to become negative outside the

BH horizon in the β < 0 case; see Eq. (8). To address these

questions, we inspect the behavior of the GB invariant at

different stages throughout the evolution.

In Fig. 4, we show a close-up of the GB invariant’s (top

panel) and the scalar field’s (bottompanel) profiles along the

z-axis, parallel to the orbital angular momentum, at different

time snapshots throughout the evolution. In Fig. 5, we show

theGB invariantG togetherwith snapshots of the scalar field

Φ in the xz-plane, perpendicular to the orbital plane of the

binary. The snapshots correspond to time instants during the

inspiral (top left), half an orbit before merger (top right), at

the formation of the common apparent horizon (CAH)

(bottom left) and about 200M after the merger (bottom

right). The color map represents the scalar field amplitude

and is shared among all panels, while the contours are

isocurvature levels jGM4j ¼ f1; 10−1; 10−2; 10−3g, with

positive (negative) values of G in black (red). We also show

the location of the individual BHs using their apparent

horizons, represented as ellipses with center, semimajor

and semiminor axes given by the centroid, maximum

and minimum radial directions as obtained with the

AHFINDERDIRECT thorn [110,111]. We do not show the

evolution of G in the equatorial plane because, we did not

observe negative regions forming on this plane throughout

the entire simulation.

FIG. 4. Profiles of the GB invariant (top panel) and of the scalar

field (bottom panel), corresponding to SetupA in Table I, along the

z-axis in a close-up region near the CAH. The curves correspond to
different times throughout the evolution. The shaded region

indicates the CAH, shown t ¼ 100M after its formation when

the final BH has relaxed to its stationary state. The GB invariant

becomes negative during the BHs’ last orbit before merger, and

settles to its profile around the final rotatingBHwith dimensionless

spin Èf ¼ 0.68. In response, the scalar field becomes unstable.

FIG. 5. Snapshots of the scalar field,Φ, and the GB invariant in

the xz-plane corresponding to Setup A in Table I. The color map

indicates the amplitude of the scalar field. The isocurvature

contours of the GB invariant correspond to jGM4j ¼ 1 (solid

line), jGM4j ¼ 10−1 (dashed line), jGM4j ¼ 10−2 (dot-dashed

line), jGM4j ¼ 10−3 (dotted line), black (red) lines correspond to

positive (negative) values of G . We show the inspiral (top left),

half an orbit before merger (top right), formation of the first CAH

(bottom left) and about 200M after the merger.
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During the early inspiral, the GB invariant is positive

around the individual, nonspinning BHs, and the scalar

field remains small across the numerical grid as can be seen

in the top left panel of Fig. 5. However, about half an orbit

before merger, we see the formation of regions between the

two BHs where the GB invariant is negative; see top right

panel of Fig. 5 and top panel of Fig. 4, t ¼ 904M curve. By

the time t ¼ 904M, the effective mass squared defined in

Eq. (8) has become negative and this, we re-emphasize, is a

necessary, but not sufficient condition for the tachyonic

instability to occur.

As the BHs merge and the system settles to a final,

rotating BH, the GB invariant remains negative along the

z-axis, which now coincides with the remnant BH’s

rotation axis. This is illustrated in the bottom panels of

Fig. 5, which correspond to the instant of the formation of

the CAH (bottom left) and to about 200M after the merger

(bottom right). In response, the scalar field grows expo-

nentially as can be seen in its profiles shown in the bottom

panel of Fig. 4 for different times after the CAH has

formed. The scalar field assumes a predominantly dipolar

spatial distribution along the BH’s spin axis, a consequence

of the regions where the GB invariant is negative. We note

that the scalar field continues to grow instead of settling to a

stationary bound state because the magnitude of the

coupling is larger than the critical value for spin-induced

scalarization for the final BH with spin Èf ¼ 0.68; see

Table I.

To verify that the regions of negative GB curvature

before the merger can induce the instability, we repeated

the simulation of Setup A with a smaller initial BH

separation of d ¼ 6M and a large-in-magnitude coupling

constant β ¼ −103; see Setup A1 in Table II. Although this

choice of coupling, with jβj ≫ jβc;fj ¼ jβcð1; 0.68Þj, may

appear unphysical
2
it has the desired effect of being able to

cause the instability before the merger and with a short

timescale; both effects are controlled by jβj. This can be

seen in Fig. 6, where we show the evolution of the scalar

field multipoles, and in Fig. 7, where we show the field’s

profile along the rotation axis. Indeed, shortly after the GB

invariant becomes negative, the scalar field grows expo-

nentially and exceeds the magnitude of its background

fluctuations at about t ¼ 20M before the CAH is first

found.

In summary, if jβj is large enough, the BHs’ late inspiral
and merger may be affected by the sGB scalar field.

However, for jβj-values near the scalarization threshold,

the inspiral and merger of initially unscalarized BH

binaries, and their GW emission, are identical to that of

GR and imprints of the sGB scalar field only appear during

the late ringdown. Such effects may be very difficult (if not

impossible) to detect, and this is what we refer to as stealth

scalarization.

B. Spin-induced dynamical descalarization

In this section, we present our key results obtained with

simulation Setup B in Table II (see Sec. III C), illustrated in

Fig. 2(b). The setup corresponds to two initially rotating,

FIG. 6. Evolution of the l ¼ m ¼ 0 (solid line), l ¼ 2, m ¼ 0

(dashed line) and l ¼ m ¼ 2 (dot-dashed line) scalar field

multipoles for the coupling β ¼ −103; cf. Setup A1 in Table II.

We rescale the multipoles by the extraction radius rex ¼ 50M and

shift them such that ðt − rex − tMÞ=M ¼ 0 indicates the time of

merger determined by the peak in the gravitational waveform. For

comparison, we also show the formation of the CAH (dotted

line). We observe that the scalar field grows exponentially about

20M prior to the merger.

FIG. 7. Same as Fig. 4, but for Setup A1 in Table II. We see that

the GB invariant (top panel) becomes negative and triggers the

excitation of the scalar field (bottom panel) before the formation

of the CAH, indicated by the gray region.

2
Such a large value of jβjmay be unphysical because the phase

space of nonlinear BH solutions (i.e., including backreaction) has
a band structure [69]: given a fixed value of M there is a
maximum value of jβj for which scalarized BHs exist. The
domain of existence of scalarized BHs depends on fðΦÞ, the BH
mass, and its spin. Thus, if this β is physical requires a careful,
nonlinear analysis. Here, we focus only on the scalarization
threshold.
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scalarized BHs (whose spin is antialigned with the orbital

angular momentum) that produce a unscalarized remnant

with a spin magnitude below the scalarization threshold for

any choice of the coupling constant.

In Fig. 8, we show snapshots of the scalar field and the

GB invariant in the xz-plane, perpendicular to the binary’s

orbital plane, during the inspiral (top left), half an orbit

before the merger (top right), at the merger (bottom left)

and about t ¼ 100M after the merger (bottom right). We

illustrate the location of the BHs by their apparent horizons.

The color-coding represents the amplitude of the scalar

field and is shared among all panels. The contours represent

the isocurvature lines jGM4j ¼ f1; 10−1; 10−2; 10−3g, with
positive (negative) values shown in black (red). The spin

magnitude of the two inspiraling BHs is sufficiently large to

yield a GB invariant that has negative regions outside the

BHs’ horizon. Combined with our choice of jβj, the BHs

sustain a scalar field bound state, as shown in the top left

panel of Fig. 8 and the BHs carry a scalar “charge” during

the inspiral. As the BHs merge, they form a single, rotating

BH which has a spin aligned with the orbital angular

momentum and a magnitude of Èf ¼ 0.48. For this spin

magnitude, the GB invariant is positive everywhere outside

the BH’s horizon, as shown in the bottom row of Fig. 8. As

a consequence, the effective mass-squared becomes pos-

itive everywhere in the BH’s exterior and the scalar field

bound states are no longer supported. That is, the scalar

field dissipates, and the BH dynamically descalarizes, in

agreement with the no-hair theorem of Ref. [69].
3

These phenomena can also be seen in Fig. 9, where we

show the profiles of the GB invariant (top panel) and of the

scalar field (bottom panel) along the z-axis (parallel to

orbital angular momentum) for several instants during the

evolution. The shaded region indicates the apparent horizon

of the final BH. The GB invariant remains negative outside

the individual BHs during their (late) inspiral. Only when

the CAH first forms, does the GB invariant become positive

everywhere outside the remnant BH’s horizon At this point,

the effective mass-squared becomes positive, the tachyonic

instability that kept each BH scalarized switches off, and

the scalar field dissipates as shown in the bottom panel

of Fig. 9.

FIG. 8. Snapshots of the scalar field, Φ, and the GB invariant,

G , in the xz-plane, corresponding to Setup B in Table II. The

color map represents the amplitude of the scalar field. The

isocurvature contours indicate the magnitude of the GB invariant

with jGM4j ¼ 1 (solid line), jGM4j ¼ 10−1 (dashed line),

jGM4j ¼ 10−2 (dot-dashed line), jGM4j ¼ 10−3 (dotted line),

with positive (negative) values shown in black (red). We show the

inspiral (top left), half an orbit before merger (top right), 10M
after the CAH formation (bottom left) and about 100M after the

merger (bottom right).

FIG. 9. Profiles of the GB invariant (top panel) and of the scalar

field (bottom panel) for Setup B in Table II along the z-axis. The
lines correspond to different times during the evolution. The

shaded region indicates the CAH, shown 100M after its for-

mation. The GB invariant becomes positive outside the horizon

when the CAH is first formed. Consequently, the scalar field

magnitude decreases and the remnant BH descalarizes.

3
One might wonder if the final rotating BH may become

superradiantly unstable due to the presence of an effective mass
for the scalar field Φ. While the necessary conditions are satisfied
[112–114], the instability for a BH of Èf r 0.5 would evolve on

e-folding timescales much longer than those studied here
[115,116]; see Ref. [73] for a comparison against spin-induced
scalarization. Moreover, if backreaction of Φ onto the metric was
included, the BH mass and spin would decrease until the
superradiance condition is saturated and the instability is turned
off. Then, the scalar decays and the end-state is a BH with no
scalar field.
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Does the presence of scalar charges during the inspiral

produce scalar radiation? The answer is affirmative as can be

seen inFig. 10wherewe show the time evolution of the scalar

field monopole (top panel) and quadrupole (middle panel).

For comparison,we also display the gravitational quadrupole

waveform of the background spacetime (bottom panel). The

scalar field monopole quantifies the development of the

combined scalar charge of the BH binary measured on

spheres of radius rex ¼ 100M, i.e., enclosing the entire

binary. The total scalar charge remains approximately con-

stant during the inspiral as the coupling is close to its critical

value. Its magnitude increases about 10M before the merger

which coincides with the formation of a joined region in

which theGB invariant is negative due to the proximity of the

two BHs As the BHs merge into a single rotating remnant

with a spin below the threshold for the spin-induced

scalarization, the scalar charge decays as illustrated in the

inset of Fig. 10 (top panel). Because the scalar charges

anchored around each BH follow the holes’ orbital motion,

they generate scalar radiation. In general, one would expect

the scalar dipole to dominate the signal, as is also the case for

shift-symmetric sGB gravity [37,38,41]. In the simulations

shown here, however, the scalar dipole is suppressed due to

the symmetry of the system (equal mass and spin of the

companions), and the l ¼ m ¼ 2 multipole dominates.

The scalar waveform is displayed in the middle panel of

Fig. 10 and shows the familiar chirp pattern: its amplitude and

frequency increase as the scalar charges inspiral (following

the inspiraling BHs in the background), and culminates in a

peak as the BHs merge. The phase of the scalar field

quadrupole clearly tracks its gravitational counterpart.

Therefore, we deduce that the morphology (phase evolution)

of the observed scalar quadrupole radiation is a result of the

orbital dynamics of the system. A sufficiently large magni-

tude of the coupling constant may lead to an additional

scalarization of the l ¼ 2 mode, which would become

manifest as an exponential growth of the signal superposed

with the chirp. This situation is analogous to the evolutions

with positive coupling shown in our previous work [45].

After the merger, the scalar quadrupole exhibits a

quasinormal ringdown pattern, i.e., an exponentially

damped sinusoid, shown in the inset of Fig. 10 (middle

panel). Here, in contrast to Ref. [45], descalarization occurs

due to the vanishing of negative GB regions outside the

remnant BH (because its final spin is jÈfj < 0.5), rather

than due to a reduction of positive curvature (because of an

increase in mass). We note that the scalar field rings down

on similar timescales as the GW signal shown in the bottom

panel of Fig. 10 for comparison. Therefore, one might

expect a modification to the GW ringdown if backreaction

onto the spacetime is included.

V. DISCUSSION

In this paper, we continued our study of dynamical

scalarization and descalarization in binary BH mergers in

sGB gravity by extending our previous work [45]. The

latter focused on a positive coupling constant between the

scalar field and the GB invariant, yielding dynamical

descalarization in binary BH mergers. As a natural con-

tinuation, here we studied a negative coupling for which the

BHs’ spins play a major role in determining the onset of

scalarization. In particular, we have shown that the merger

remnant can either dynamically scalarize or dynamically

descalarize depending on its spin and mass.

Spin-induced dynamical scalarization occurs when the

merger remnant grows a scalar charge during coalescence

due to the large spin of the remnant. In cases like this, the

initial binary components lack a charge because their spins

are not large enough to support one [73–78]. However, after

the objects merge, the remnant BH spins faster than either

component, allowing for a charge to grow.We found that it is

possible for the scalar charge to grow as early as 1–2 orbits

before a CAH has formed if the coupling jβj is extremely

large. This occurs because there are spacetime regions before

merger (and near the poles of the future remnant) with a

negative GB invariant, and a sufficient large value of jβj
allows bound states to form fast enough.We also found that if

the coupling jβj is close to the threshold, then scalarization

occurs only in the late ringdown, because of the timescale

required for the bound states to form.

Is such spin-induced scalarization detectable with current

or future GW observatories? For values of jβj near the

scalarization threshold the instability timescale is large and

the effects of the scalar field growth would only appear at

FIG. 10. Evolution of the scalar field monopole (top panel) and

quadrupole (middle panel) and gravitational quadrupole (bottom

panel) for Setup B in Table I. The waveforms are rescaled by

the extractions radius rex ¼ 100M and shifted in time such that

ðt − rex − tMÞ=M ¼ 0 at the merger. In the insets we show the

absolute values of the multipoles, in logarithmic scale, during the

merger and ringdown.
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timesmuch later than themerger and,more importantly, after

the start of the ringdown. Hence, the inspiral-merger-ring-

down of such a binary would be indistinguishable from one

inGR, and scalarizationwould be a hiddenor “stealth” effect,

i.e., the remnantBHwould acquire a charge, but its formation

would not lead to an easily measurable effect. For instance,

during the GW ringdown, which is dominated by the

fundamental ðl; mÞ ¼ ð2; 2Þ quasinormal mode (QNM)

frequency, we know that at a spin of È ≈ 0.68, the decay

time is approximately τ ≈ 12.3M [117]. Hence, after 100M
from the peak in the waveform, the dominant mode has

decayed by roughly expð−t=τÞ ≈ expð−100=12.3Þ ≈ 10−4.

If the dominant QNM frequency begins to be modified only

after 100M, the GW has decayed so much that detecting this

change or constraining it would be essentially impossible.

Is there no hope to detect such late times scalarization?Not

necessarily. Ifwewere to include the scalar field backreaction

onto the spacetime, one could entertain the possibility that the

late time growth of the scalar field (in particular ofΦ22) and

the subsequent readjustment of the spinning remnant BH to

its scalarized counterpart could result in a secondGWsignal.

Confirming this possibility and, if confirmed, characterizing

such a GW signal is left for future work.

Spin-induced dynamical descalarization occurs when the

merger remnant loses its scalar charge during coalescence

due to the low spin of the remnant. In cases like this, the

initial binary components are spinning fast enough that

each of them has a scalar charge and the remnant

descalarizes if it has spin Èf ≤ 0.5. Here, we demonstrated

this effect in a example in which the initial binary

components have their spin angular momenta antialigned

with the orbital angular momentum. The merger produces a

remnant BH with Èf ¼ 0.48, for which no scalar field

bound states are supported and the field is radiated away

shortly (∼10M) after the CAH formation.

Is such spin-induced descalarization detectable with

current or future GW observatories? For such descalariza-

tion to be detectable, one must first detect that the binary

components were scalarized during the inspiral. Our

simulations showed that the scalar charges lead to scalar

quadrupole radiation because of the highly symmetric

configurations (equal mass, equal spin magnitude) we

chose to evolve. More realistic astrophysical configurations

(with unequal masses and unequal spin magnitudes) forces

the binary to emit scalar dipole radiation. Such emission of

dipole or quadrupole radiation accelerates the inspiral, and

thus affect the GW phase at −1PN and 0PN respectively, as

shown in shift-symmetric theories [34–39]. These effects in

the inspiral are observable and can thus be constrained with

current ground-based [8,22–25] and future detectors

[118,119] within the parametrized post-Einsteinian frame-

work [120–123], provided the binary is of sufficiently low

mass such that enough of the inspiral is observed [119]. In

fact, a constraint of this type was recently obtained using

the GW190814 event [124] in [21].

Let us then assume, for the sake of argument, that some

future event reveals a scalar charge in the inspiraling binary

components. Our results then indicate that descalarization

may be detectable, if there is enough signal-to-noise ratio in

the merger and ringdown [41,42]. This is because this

process occurs at the same time and with the same time-

scales as the GW merger and ringdown, see Fig. 10. Future

work could study the backreaction of the scalar field onto

the metric to determine the magnitude of these modifica-

tions in the transient phase, without which one cannot

assess detectability confidently. Our results indicate that

descalarization might be best probed with a full inspiral-

merger-ringdown analysis of the GW signal.
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APPENDIX A: FULL SUITE OF SIMULATIONS

We ran a larger series of simulations, listed in Table II, of

equal-mass BH binaries with varying initial spin that show
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a qualitatively same behavior as the runs presented in the

main text. In particular, we simulated a series of initially

spinning, unscalarized black holes that formed a scalarized

remnant with larger spin. We also list example simulations

in which one or both initial BHs are scalarized and they

merge into an unscalarized remnant.

APPENDIX B: VALIDATION TESTS

To validate our code, we performed a suite of conver-

gence tests. We ran Setup B, our numerically most

demanding setup, at a lower resolution of dxlow ¼ 0.8M
and a higher resolution of dxhigh ¼ 0.625M. The runs in the

main text use a medium resolution of dxmed ¼ 0.7M. The

grid setup is the same across all simulations, see Sec. III.

We estimated the order of convergence n and its associated

convergence factor Qn,

Qn ¼
ðdxlowÞn − ðdxmedÞn
ðdxmedÞn − ðdxhighÞn

: ðB1Þ

We computed the n and Qn for the gravitational

waveform, Ψ4;22, of the background spacetime and for

the scalar charge. We show the corresponding convergence

plots in Fig. 11. For Ψ4;22, we find fourth order conver-

gence, and we estimate the numerical (truncation) error to

be Ψ4;22=Ψ4;22 ≤ 0.8%. For the scalar field charge, Φ00,

we also find fourth order convergence. performed a con-

vergence test on its l ¼ m ¼ 0 multipole. We show our

result in the right panel of Fig. 11.

We find a cumulative error ΔΦ00=Φ00 ≤ 30% in the late

inspiral. The numerical error in the merger and ringdown is

ΔΦ00=Φ00 ≤ 15%. As we restrict this work to a qualitative

FIG. 11. Convergence plots for the l ¼ m ¼ 2 mode of the

gravitationalwaveform (left panel) and thel ¼ m ¼ 0mode of the

scalar field (right panel). In both panels, we show the difference

between the low and medium resolution run (solid line) and the

medium and high resolution run (dashed line). The latter is rescaled

by Q4 ¼ 1.94, indicating fourth order convergence. The lines are

shifted in time such that ðt − rex − tMÞ=M ¼ 0 indicates the timeof

merger and they are rescaled by the extraction radius rex ¼ 100M.

TABLE II. List of our complete series of simulations. We denote the initial separation d=M withM being the total

mass, È1 and È2 are the initial dimensionless spin parameters of each BH, and Èf is the final dimensionless spin

parameter of the remnant. We use s̄ and s to denote unscalarized and scalarized states, respectively, and the subscript
↑ (↓) indicates spin aligned (antialigned)with the orbital angularmomentum. The coupling chosen for each simulation

is given by β, whereas βc;1 and βc;f denote the critical couplings for the component/remnant BHs respectively.

Setup d=M È1 È2 Èf β βc;1 βc;f Process

A 10 0 0 0.68 −14.30 … −12.96 s̄þ s̄ → s↑
A1 6 0 0 0.68 −1000 … −12.96 s̄þ s̄ → s↑
A2 10 0.6 0.6 0.85 −2.9 −10.55 −3.01 s̄↑ þ s̄↑ → s↑
A3 10 0.6 0.6 0.85 −12.0 −10.55 −3.01 s↑ þ s↑ → s↑
A4 10 0.0 0.6 0.77 −12.0 −10.55 −5.59 s̄þ s↑ → s↑
B 10 −0.6 −0.6 0.48 −11.50 −10.55 … s↓ þ s↓ → s̄↑
B2 10 0.4 −0.6 0.64 −12.0 −10.55 −21.50 s̄↑ þ s↓ → s̄↑

FIG. 12. Hamiltonian constraint along the z-axis during the

late-inspiral (solid black), half an orbit before merger (dashed

red), at the time of merger from the peak of the gravitational

waveform (dash-dot blue) and 100M after merger (dotted green).

The shaded region indicates the CAH, shown 100M after merger.
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analysis, this error does not affect the main results of the

paper. Further quantitative work, such as forecasting con-

straints on the theory would require this issue to be

addressed.

Finally, in Fig. 12, we show the Hamiltonian constraint

H along the z-axis for Setup B at different time instants.

The constraint violation remains below 10−5 outside the

BH horizon through the simulation.
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