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Abstract

Chronic pain caused by injury or disease of the nervous system (neuropathic pain) has been
linked to persistent electrical hyperactivity of the sensory neurons (nociceptors) specialized to
detect damaging stimuli and/or inflammation. This pain and hyperactivity are considered
maladaptive because both can persist long after injured tissues have healed and inflammation
has resolved. While the assumption of maladaptiveness is appropriate in many diseases,
accumulating evidence from diverse species challenges the assumption that neuropathic pain
and persistent nociceptor hyperactivity are always maladaptive. We review studies indicating that
persistent nociceptor hyperactivity has undergone evolutionary selection in widespread, albeit
selected, animal groups as a physiological response to increase survival long after bodily injury,

using both highly conserved and divergent underlying mechanisms.
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Neuropathic pain and nociceptor hyperactivity persisting chronically

are nearly always assumed to be maladaptive

Evolutionary medicine recognizes that some disease symptoms commonly assumed to be
maladaptive, such as diarrhea and fever, are in fact evolutionary adaptations promoting survival
and reproductive success — notwithstanding the distress they cause [!l. One malady almost
universally considered maladaptive is chronic neuropathic pain (see Glossary) >3], which
contrasts with acute pain that has clear protective functions. In humans and rodents, many
examples of neuropathic pain have been linked to persistent electrical hyperactivity in primary
nociceptors (Figure 1, Box 1) [reviewed by 4521 Because nociceptor activation evokes conscious
pain in humans [»7], and because nociceptor activity is sufficient and sometimes necessary for
behaviors in rodents that indicate pain [#1!1, continuing hyperactivity in nociceptors is recognized
as a major source of persistent mammalian pain. Importantly, nociceptor hyperactivity is often
generated “spontaneously” at “ectopic” sites near axonal injury or in nociceptor cell bodies rather
than in the peripheral terminals where normal activation occurs (Figure 1), and both it and the
associated pain sometimes persist after apparent healing of an initiating injury. In principle,
persistent hyperactivity may have many different causes, both extrinsic (Figure 2A) and intrinsic
(Figure 2B) to the nociceptor. Extrinsic (often inflammatory) and intrinsic (cell-autonomous)
alterations overlap and work cooperatively. For example, transient exposure to serotonin may
trigger an intrinsic hyperactive state that lasts minutes or hours after the signal is removed, but
prolonged or repeated exposure to serotonin or other inflammatory signals may sustain
hyperactivity for long periods or induce a much more persistent, memory-like hyperactive state
[12-151 Here we review evidence from mammals and invertebrates indicating that persistent

nociceptor hyperactivity can be evolutionarily adaptive.



Primary nociceptors and evolution

Because nociceptors detect injury, and injury affecting survival and reproduction can occur in any
animal, cells with this function should be widespread. Indeed, nociceptors have been identified in
diverse animals, including roundworms, fruit flies, leeches, snails, squid, fish, birds, rodents, cats,
pigs, monkeys, and humans !'%!7], Nociceptors thus provide an opportunity for broad comparative
studies into evolutionary selection pressures for nociceptive plasticity and the roles of shared and
divergent physiological and molecular mechanisms. Adding to the evolutionary interest of
nociceptors, adaptive responses to injury or the threat of injury may have antedated the earliest
animals, shaping core mechanisms later used for nociception and neural function [3-20]
Nociceptors probably evolved early and perhaps multiple times, and thus they may be especially

useful for defining ancient and more recently evolved mechanisms for adaptive injury responses.

Taxa in which persistent nociceptor hyperactivity may not be

functionally important

Insight into the adaptive roles of a physiological trait can be gained by comparing the animal
groups and ecological conditions in which the trait is prominent with those in which it appears to
be weak or absent. We begin with nociceptors exhibiting limited evidence of persistent

hyperactivity after bodily injury.

Nematodes
Caenorhabditis elegans has polymodal nociceptors that repeatedly respond to noxious
mechanical or heat stimuli and receive neuromodulatory input to prevent habituation to noxious

stimuli Y, However, C. elegans neurons primarily signal by graded depolarizing responses rather

than action potentials (APs, see Figure 1) 22 and neither persistent depolarization nor AP



generation has not been reported in nematode nociceptors after injury. The short lifespan of C.
elegans (about 20 days), tiny body size, and rarity of survivable injuries from predators within their

soil habitat [231 might explain a lack of persistent nociceptor alterations in these animals.

Insects
Larvae of the fruit fly Drosophila melanogaster show behavioral sensitization after tissue injury,
including a lowering of threshold for heat- or mechanically induced defensive rolling following UV

irradiation of the epidermis [24#2°1. Behavioral sensitization was linked to various molecular
changes ?°l, and accompanied by an increase in the range of temperatures that evoked
continuing generation of APs in heat-sensitive nociceptors 7). “Spontaneous” pain produced by

continuing activity in heat-sensitive nociceptors resulting from a lowering of temperature threshold
after injury has been implicated in rodents 28 (see also Figure 2B). However, for heat allodynia in
Drosophila, UV-induced hypersensitivity of defensive behavior was recently found to depend
more on alterations in central neurons than nociceptors 2%, suggesting that heat-dependent

nociceptor hyperactivity may contribute little to the behavioral alterations. Results from adult
Drosophila also show that alterations in the central nervous system (CNS) can mediate injury-
induced hypersensitivity of a defensive behavior without obvious contributions from injured

primary nociceptors 3% Amputation of one leg lowered the threshold for jumping escape to heat

stimulation for at least 3 weeks. Initial nociceptor activation was necessary for inducing permanent
central alterations (excitotoxic loss of GABAergic inhibitory neurons) and sensitization to heat test
stimuli. However, no nociceptor alterations were reported other than the death of all nociceptors
in the amputated limb. The use of amputation in this study highlights an unusual feature of
Drosophila nociceptors that may be important for the evolution of injury-induced persistent
nociceptor hyperactivity. Unlike in leeches, Aplysia, squid, and vertebrates, where nociceptor cell

bodies occur within centrally located ganglia, Drosophila nociceptor cell bodies are located just
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beneath the epidermis where they can easily be killed by even superficial tissue injuries. This
anatomical feature in insects should prevent effective nociceptor sensitization at a site of injury,
which is consistent with the lack of enhanced sensory activity recorded from nerves innervating a

previously injured region in larvae of the moth Manduca sexta B34,

Mole-rats

Most investigations of persistent nociceptor hyperactivity have used laboratory rats, Rattus
norvegicus, and mice, Mus musculus, which show robust, complex alterations of both behavior
and nociceptor function after injury. Quite different nociceptive reactions have been found in
naked mole-rats (Heterocephalus glaber), which show distinctive traits related to their

subterranean existence 2. Two differences have been found between nociceptors of naked

mole-rats and laboratory rodents that are consistent with limited injury-induced nociceptor

hyperactivity in mole-rats.

First, mole-rats have far fewer cutaneous nociceptors. In most mammals, the skin is innervated
by ~4 times as many unmyelinated C-fibers as myelinated A-fibers, and most cutaneous C-fibers
are nociceptors 33l In adult naked mole-rats, the ratio of cutaneous C- to A-fibers is ~1:1 34351,
Fewer nociceptors in a subterranean animal might represent an evolutionary response to reduce
the energy costs of maintaining defensive neurons that are less useful in an environment where
predation is reduced, as has been suggested for a central defensive neuron, the Mauthner cell,

in a cave fish species 36371,

Second, nociceptors in naked mole-rats exhibit adaptations that limit their ability to drive pain
under inflammatory conditions. Presumed nociceptors in mammals are often identified by

sensitivity to capsaicin, the pain-evoking ingredient of chili peppers, and by expression of the



capsaicin receptor, transient receptor potential vanilloid 1 (TRPV1). In other mammals, TRPV1+
nociceptors are important for driving inflammatory pain. Unexpectedly, in naked mole-rats the
synapses of TRPV1+ sensory neurons are distributed randomly throughout the dorsal spinal cord

341 rather than being concentrated in the superficial dorsal horn of the spinal cord that is critical

for relaying nociception in other mammals. Another adaptation is related to acid sensitivity. Tissue
injury and inflammation are accompanied by tissue acidosis, and most mammals utilize a plethora
of acid-sensitive receptors and ion channels to activate nociceptors and drive inflammatory pain

381 However, naked mole-rats live in large colonies in poorly ventilated burrows, and thus

experience high CO- levels. CO. can produce carbonic acid, releasing protons that activate acid
receptors of naked mole-rats and other rodents. Surprisingly, acid fails to evoke APs or
consequent pain behavior in naked mole-rats. This is because a mutation in voltage-gated Na*
channel Nay1.7 enables protons to block the channel and prevent AP generation under acidic
conditions 3%, A third adaptation is reduced function of the naked mole-rat tropomyosin receptor
kinase A (TrkA) for nerve growth factor (NGF), which is released in mammals during injury and
inflammation. This TrkA hypofunctionality results in an absence of NGF-induced hyperalgesia in
naked mole-rats and might also contribute developmentally to the reduced nociceptor number.
These adaptations in the naked mole-rat and additional adaptations in related mole-rats (%! should
reduce the likelihood of persistent nociceptor hyperactivity being induced by injury and
inflammation (although this prediction has yet to be tested directly). Loss of nociceptor
hyperactivity might have been promoted during evolution by the relative safety from predation

afforded by subterranean environments.

Taxa in which persistent nociceptor hyperactivity is likely to be

functionally important



All the species (including humans) in which persistent nociceptor hyperactivity has been observed
after nerve or tissue injury have probably been subject to high levels of predation in their recent
evolutionary history, and this hyperactivity is generated both near a site of injury and sometimes

also in nociceptor cell bodies that lie in central ganglia distant from the body surface (Figure 1).

Gastropod molluscs

The marine snail, Aplysia californica, lacks a shell and is one of the larger invertebrates, reaching
weights of ~1 kg in its 2-year lifespan. Identified Aplysia nociceptors are activated preferentially
by pinching or crushing stimuli and are unresponsive to chemical or thermal stimuli. Hyperactivity
lasting days to months after experimental injury (nerve crush or wounding that transects major
nerve branches) is expressed as reduced AP threshold and afterdischarge (Figure 1C)

generated in nociceptor peripheral terminals 1, the injured axon %, and the cell body 3. The

function of nociceptor cell body hyperactivity in Aplysia is, via afterdischarge, to amplify the
number of APs reaching central synaptic terminals, thereby enhancing defensive behavioral

responses “4. Many invertebrates, including Aplysia and leeches, lack image-forming eyes and
depend upon chemical and mechanical senses to detect predatory threats. In Aplysia, nociceptive
sensitization after injury not only increases nociceptor responses to noxious stimuli, but also
reduces nociceptor mechanical threshold into the innocuous range **!, which may promote

escape at the first contact with soft, slowly moving carnivorous gastropods that prey upon Aplysia

[46]

Cephalopod molluscs
Nociceptors that respond to intense mechanical stimuli and fail to respond to heat have also been
identified in the squid Doryteuthis pealeii. Activity recorded in fin-innervating nerves showed that

nociceptors are activated by forces that can damage the fin, and, following noxious activation, the



nociceptor mechanical activation threshold decreased dramatically (~50 fold) [’!. Two findings in

this study were unexpected. First, injury produced either experimentally to the fin in vivo or more
naturally to various body regions (caused by attacks from other squid) produced spontaneous
activity (Figure 1D) lasting at least 24 hours after injury. This remains the only reported
invertebrate example of injury-induced spontaneous activity in primary afferent neurons. Second,
after injury to one side of the animal, both nociceptor sensitization to mechanical stimulation and
spontaneous activity were found in nociceptors innervating the contralateral fin. This generalized
hyperactivity contrasts with hyperactivity in mammalian nociceptors that is usually restricted to

neurons near an injury site.

Mammals
Most studies of persistent nociceptor hyperactivity have utilized rat or mouse neuropathic pain

models [reviewedby 4,521 Hyperactivity can manifest in nociceptors that normally are electrically silent

as increased generation of APs evoked by extrinsic signals or generated by intrinsic alterations
(including spontaneous activity) (Figures 1C, 1D, 2A, 2B, Box 1). Cell body hyperactivity is
typically assumed to be an uncommon and less important parallel to hyperactivity generated in
peripheral terminals. The more severe an injury is, however, the more likely peripheral nerve
branches are to be crushed or cut, disconnecting the affected nociceptors from their normal
sources of excitation. Peripherally disconnected nociceptors may still contribute ongoing
information about injury because sensory receptors and ion channels accumulate at the tips of
cut axons, which along with other alterations, can impart sensitivity, hyperexcitability, and

spontaneous activity to axons at the injury site *8-°0. Ongoing pain in humans from peripheral
injury or neuropathy Y can be eliminated rapidly by blocking peripheral nerve conduction with a

voltage-gated sodium channel (Nay) inhibitor, lidocaine, which also can partially ameliorate pain

from amputation 21, In addition, persistent spontaneous activity may be generated in the cell body



(33541 For example, lidocaine delivered directly to human dorsal root ganglia (DRG) innervating
an amputated limb at concentrations that block local AP generation without blocking conduction
through the ganglia rapidly and reversibly relieved phantom limb pain > (Figure 3), providing
strong evidence for the clinical importance of spontaneous activity generated in sensory neuron
cell bodies. Spontaneous activity also occurs in cultured DRG neurons from cancer patients with
neuropathic pain who have undergone thoracic vertebrectomy surgery that removes DRGs 6!,
An experimental advantage of cell-body generation of hyperactivity in mammalian (and
gastropod) nociceptors is that the mechanisms can be investigated more directly than is possible

in less accessible compartments of the nociceptor.

Evidence that pain-like behavior associated with nociceptor

hyperactivity is adaptive in cephalopod molluscs

As mentioned, injury to different parts of the body surface of squid induces long-lasting nociceptor
spontaneous activity, which was suggested to drive a state of generalized hypervigilance 4771,
The adaptiveness of this state was tested by examining the effects on survival of squid in staged
interactions with fish that are their natural predators (Figure 3) 8. A relatively minor injury, distal
amputation of one of a squid’'s eight arms, produced immediate defensive behavior and
sensitization of responses to tactile and visual stimuli, but no lasting effects on motor function 71,
When exposed to predatory sea bass (Centropristis striata), squid with minor amputation injury
were more likely to be attacked than uninjured squid, but they also began their escape behavior
sooner than uninjured squid 8. Briefly blocking nociceptor activation/sensitization during
amputation by transient delivery of an anesthetic dose of MgCl; resulted in injured squid later
failing to show early responses to approaching sea bass and being less likely to escape. This

result demonstrates how nociceptive sensitization enhances evolutionary fitness by increasing



survival during predatory encounters and, combined with earlier electrophysiological
observations, it suggests that persistent nociceptor spontaneous activity can drive a hypervigilant
state that protects animals from attack during periods of increased vulnerability. Analogous results
were found in mice experiencing chronic pain in a spared nerve injury model (Figure 3). When
neuropathic mice had to choose between long and short routes to a food reward, they were more
likely than healthy mice to avoid the short route if it exposed them to the smell of fox urine,
suggesting that continuing awareness of their injury influenced their behavioral choices during

elevated predatory risk 1*°. Persistent injury-induced hypervigilance may be expressed as anxiety

(601 which is a common comorbidity of chronic pain in humans and rodents 611,

Are the hypervigilant states driven by nociceptor hyperactivity in cephalopods associated with
motivational properties of affective pain in mammals? This question has not yet been addressed
experimentally in squid, but a study with octopus [%?! using another noxious stimulus, acetic acid,
shows that nociceptive states with pain-like aversive and cognitive features occur in a
cephalopod. Octopuses remembered a chamber in which an arm was injected with acetic acid
and subsequently avoided it (conditioned place aversion). When acetic acid injection was followed
by lidocaine injection into the same site immediately prior to placement in a different chamber,
octopuses later chose to spend time in the chamber associated with lidocaine’s block of ongoing
nociceptive activity (conditioned place preference). Thus, the octopus’s voluntary behavior
revealed a pain-like link between flexible cognitive processing (including complex associative
learning, memory, and decision making) and a potent aversive state induced by noxious
stimulation. Although recordings could not be made from primary afferent neurons in the octopus
arm, downstream electrical activity recorded in a central pathway from the injected arm to the
brain continued for at least 30 minutes after acetic acid injection. The immediate block of this

activity by lidocaine injected into the acetic acid injection site is consistent with ongoing nociceptor
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activity generated at an injury site driving pain-like motivational and cognitive processes that
enable place aversion and place preference in octopuses. These findings %! parallel observations
in rodents where spontaneous nociceptor activity is associated with a tonic aversive state that

can be revealed in place preference or aversion experiments.

Anatomical features and electrophysiological specializations of

mammalian nociceptors foster persistent hyperactivity after injury

Spontaneous activity generated in mammalian nociceptor cell bodies and continuing long after
peripheral injury might function, like the spontaneous activity in squid “7>8 to drive painful
hypervigilance after injuries severe enough to increase an individual’s vulnerability to attack by
predators or conspecifics (631, In mammals, primary sensory neuron cell bodies are likely to survive

serious peripheral injury because they are protected, not only by their central location far from
their receptive fields (Figure 1A), but also by the bone and dura covering sensory ganglia. The
cell bodies also are uniquely exposed to injury signals (Figure 2) that can induce or persistently
drive hyperactivity. These signals may be conducted electrically or conveyed by axonal transport
from the nociceptors’ peripheral processes, or come from molecules both in the cerebrospinal
fluid and in the blood (because of the absence of an effective vascular permeability barrier in the
ganglia), from resident or infiltrating immune cells, and potentially from molecules received by
sensory neuron presynaptic terminals within the CNS from postsynaptic neurons and glia 6364,
While these features have many explanations, plausible functions are to enable nociceptors to
survive peripheral injury, integrate information about injury severity in tissues that may have been
disconnected from the CNS, and continue to inform the CNS about persistent peripheral

dysfunction.
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One criterion proposed for a biological process to be an adaptation is that it employs complex,
complementary mechanisms for a plausible function 5. Assuming persistent hyperactivity of

mammalian nociceptors has a protective function after injuries severe enough to induce
neuropathic pain, this criterion is met for hyperactivity generated in the cell body. In terms of
membrane potential, there are only three possible alterations that can result in AP generation in
the absence of excitation from fast synaptic potentials (which mammalian nociceptors do not
receive) or sensory receptor potentials (Figure 1B, which are unlikely to be generated in the cell
body): depolarization of resting membrane potential (RMP) to reach AP threshold,
hyperpolarization of AP threshold to reach RMP, and enhancement of depolarizing spontaneous
fluctuations of RMP (DSFs, Figure 1D) to bridge the gap between RMP and AP threshold (Figure
2B). Recordings from rodent nociceptors in a variety of different persistent pain models showed

that all three properties are altered to promote spontaneous activity (66671 [68] [69]  Spontaneous

activity and all three contributing electrophysiological alterations also were found in probable
nociceptors isolated from human cancer patients suffering from neuropathic pain caused by

compression of spinal nerve roots %79 Importantly, these coordinated effects occurred almost

exclusively in nociceptors taken from ganglia innervating dermatomes reported by the patients to

have ongoing pain.

RMP, action potential threshold, and DSFs in nociceptors each involve numerous ion channels,
and the interactions between membrane potential, channel activity, and associated intracellular
signaling are highly complex. Although spontaneous activity in mammalian pain models might be
a purely pathological side effect of various insults to the body and nervous system, the intricate,
functionally cohesive electrophysiological alterations that underpin spontaneous activity suggests
that many damaging conditions can recruit a persistent, specialized state that was selected during

evolution to ensure that nociceptor hyperactivity continues after injury severe enough to produce
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physical impairment detectable by predators and competitors. Continuing pain would promote
protective behavior (including hypervigilance, sometimes manifested in mammals as anxiety [61])
during increased vulnerability and risk of attack, which could be chronic for severe injuries such

as amputation (Figure 3) (63,

Shared signaling mechanisms support nociceptor hyperactivity in a

gastropod mollusc and in rodents

From an evolutionary perspective, persistent nociceptor hyperactivity is interesting because it is
found in two distantly related animal phyla (chordates and molluscs), suggesting common
functions and potentially ancient mechanisms. However, even within placental mammals,
nociceptor physiology shows clear divergences, raising questions about whether fundamental
hyperactivity mechanisms are shared across the enormous phylogenetic distances between

invertebrates and mammalls .

Nociceptors in rodents and Aplysia share fundamental mechanisms important for synaptic
plasticity Y1 and hyperactivity. In Aplysia, long-lasting hyperactivity in dissociated nociceptors
induced by serotonin was found to require local protein synthesis 2. Persistent axonal
hyperactivity induced by nerve injury or nerve depolarization using elevated extracellular K* to
mimic the depolarization produced by axotomy 2, or serotonin application to a nerve 1'%, also
required protein synthesis, which was controlled by the mechanistic target of rapamycin (mTOR)
pathway. Detailed studies in mice showed that activity-dependent mRNA translation regulated by
mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) phosphorylation of eukaryotic
translation initiation factor 4E (elF4E) is necessary for nociceptor hyperexcitability after peripheral

nerve injury or inflammatory signals 7374, Aplysia has MNK1 and elF4E proteins ["*], with
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conservation of the elF4E serine residue that is phosphorylated by MNK1 and required in mice
for nociceptor hyperactivity induced by inflammatory mediators 731, A selective MNK inhibitor
potently inhibited the axonal hyperexcitability induced by depolarization of an Aplysia nerve, as
did general inhibitors of tyrosine receptor kinases (known upstream activators of MNKs) and of

extracellular receptor kinases (ERKs, which activate MNKs) 7>,

A cell signal that plays prominent but complex roles in persistent hyperexcitability in Aplysia
nociceptors is cyclic adenosine monophosphate (cCAMP) 76781 Cyclic AMP has long been known
to increase mammalian nociceptor excitability 7! and cAMP signaling is essential for maintaining
rat nociceptor hyperactivity months after spinal cord injury, via protein kinase A % exchange
protein activated by cAMP (EPAC) 8, and indirect positive feedback through depolarization and
consequent C-Raf and ERK signaling, plus a reduction of adenylyl cyclase’s sensitivity to
inhibition by opioids Y, Thus, MNK-dependent protein synthesis, ERK signaling, which is
upstream of MNK ©®2 and cAMP signaling all are major contributors to nociceptor hyperactivity in

species whose last common ancestor lived ~600 million years ago.

Continuing evolution of nociceptor phenotypes in mammals may

explain unique aspects of human neuropathic pain
The last common ancestor of placental mammals, including rodents and primates, lived ~65
million years ago [#3, far more recently than when molluscs and chordates diverged 7%, During

this period several notable differences emerged between human and rodent nociceptors that may
contribute to the prominence of neuropathic pain in our species. Rodent nociceptors are typically
divided into two classes, peptidergic and non-peptidergic. Peptidergic nociceptors express TrkA

into adulthood and contain neuropeptides such as calcitonin gene-related peptide (CGRP); they
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typically innervate deeper tissues and connect to neurons in lamina | of the spinal dorsal horn.
Non-peptidergic nociceptors innervate the skin, do not express TrkA in adulthood, and connect to
neurons in lamina Il of the dorsal horn. The two classes appear specialized for thermal and
mechanical pain, respectively [4 although genetic tools are revealing finer functional
subdivisions within each class. Unexpectedly, in adult humans, all nociceptors express TrkA and
most express CGRP, suggesting that human nociceptors are generally peptidergic 18>8l All

human nociceptors also express TRPV1, which can be sensitized by diverse inflammatory
mediators such that their temperature activation threshold sometimes falls into the range of core

body temperature (Figure 2B). TRPV1 is only expressed by ~half of rodent nociceptors 7. Thus,
human nociceptors appear more polymodal than rodent nociceptors, and possibly than other
primate nociceptors [8688-901 Thijs would make them sensitive to a broader range of inflammatory
mediators, which can persist long after nerve injury %l thereby increasing extrinsically driven

nociceptor hyperactivity and inducing intrinsic hyperactivity (Figure 2).

Human nociceptors seem unusually excitable compared with other animals. DRG neurons

cultured after recovery from organ donors exhibit a greater density of tetrodotoxin (TTX)-sensitive

and TTX-resistant Nay current than rodent nociceptors 1. RNA sequencing and functional

experiments suggest that Nav1.7 (SCN9A) expression is higher in human than rodent nociceptors

921 Accordingly, a greater ratio of TTX-sensitive to TTX-resistant current has been observed in
human nociceptors, and the TTX-sensitive current is activated at more hyperpolarized potentials

91 Furthermore, a lack of use-dependent inactivation of TTX-resistant currents in human
nociceptors Yl should promote spontaneous activity, as observed in cultured DRG neurons from
neuropathic pain patients 1*¢7%, Electrophysiological differences are not limited to Nay currents.

Different densities and kinetics of voltage-gated calcium (Cay) currents suggest that activity-
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dependent increases in intracellular Ca?* and consequent cell signaling effects may be smaller in

human than rodent nociceptors [*31. If human evolution led to a greater propensity towards chronic
pain P4, perhaps via continuing nociceptor hyperactivity, then smaller Ca?* responses could help

protect against toxicity from excessive Ca?* accumulation during continuing hyperactivity.

Concluding remarks and future perspectives

In humans and rodents, persistent nociceptor hyperactivity is a major source of chronic
neuropathic pain. Finding that persistent nociceptor hyperactivity both in mammals and molluscs
is induced by injuries sufficiently severe to damage nerves indicates it might have a common
function in diverse animal species. Evidence from squid and mice suggests that persistently
enhanced vulnerability resulting from injury-induced physical impairment can be compensated for
by behavioral alterations, including hypervigilance, driven by prolonged nociceptor hyperactivity.
The lack of clear evidence thus far for injury-induced persistent nociceptor hyperactivity in naked
mole-rats, Drosophila, and C. elegans suggests that a protective hypervigilance function has not
been evolutionarily significant in some lineages (e.g., because of limited predation or short
lifespans), and/or that alternative mechanisms (e.g., hyperexcitability in central neurons) were
preferentially selected. In rodent and human nociceptors, synergistic electrophysiological
alterations underpinning spontaneous activity are consistent with hyperactivity functioning
biologically to drive persistent hypervigilance. Future perspectives emphasize further exploration
of functional and mechanistic differences between species having and lacking persistent
nociceptor hyperactivity (see Outstanding Questions). Also needed is expanded investigation
across diverse taxa into common mechanisms (such as those shared by Aplysia and mice) as
well as divergent mechanisms driving persistent hyperactivity. Finally, unexpected molecular

differences between nociceptors in humans and other mammals encourage further study into the
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possibility that very recent evolution of human nociceptors increased their susceptibility to
persistent hyperactivity, and thus that humans potentially are more prone than other animals to

chronic pain.
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Box 1. Hyperactivity and hyperexcitability are not the same.

The terms hyperexcitability and hyperactivity are rarely distinguished, but hyperactivity is more
important physiologically and probably evolutionarily. In studies of neuronal plasticity involving
alterations of AP function, the most common experimental indicator of an altered
electrophysiological state is modified electrical excitability — either hyperexcitability or
hypoexcitability. Hyperexcitability is demonstrated when electrical stimulation more readily
triggers an AP. Experimental injection of depolarizing current through a recording pipette, either
in a series of increasingly depolarizing current steps or in response to a smooth depolarizing
ramp of current, is often used to reveal that an AP is generated by stimulation with less injected
current (sometimes referred to as a decrease in rheobase) or is triggered at a more negative
membrane potential. Under natural conditions, hyperexcitability would make it more likely that a
physiological stimulus such as a sensory generator potential (Figure 1) or synaptic potential

would reach AP threshold and produce activity.

For most neurons in the animal kingdom, the frequency and pattern of APs (i.e., electrical
activity) are the critical physiological endpoints of excitability. These both determine a neuron’s
immediate effect on its postsynaptic targets and produce activity-dependent synaptic plasticity
to modify the effects of its subsequent activity. Hyperexcitability usually promotes hyperactivity,
but many other intrinsic and extrinsic states of a neuron and its inputs will determine whether a
neuron is hyperactive and what its level and pattern of activity are. As shown with examples in
Figure 2, numerous drivers of hyperactivity in mammalian nociceptors may contribute after
bodily injury, including intrinsic hyperexcitability, intrinsic hypersensitivity to extrinsic excitatory
chemical signals, increased exposure to extrinsic excitatory signals, hyposensitivity to inhibitory

signals, and decreased exposure to extrinsic inhibitory signals.
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Evolutionary selection could change any or all of the intrinsic and extrinsic drivers of persistent
nociceptor hyperactivity to make some species more or less likely to experience persistent pain-
related states driven by continuing activity of nociceptors. The accessibility of nociceptors in
diverse animal taxa enables direct inquiry into potentialy adaptive functions of persistent
nociceptor hyperactivity, as well as into similarities and differences in the underlying

mechanisms.
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Glossary

Afterdischarge: APs generated in response to a preceding AP or burst of APs, prolonging the
electrical activity.

Depolarizing spontaneous fluctuation (DSF): brief, intrinsically generated depolarizing
fluctuations of RMP that in nociceptors under hyperexcitable conditions may intermittently reach
AP threshold.

Hyperactivity: state of increased discharge of APs resulting from drivers intrinsic or extrinsic to
a neuron.

Hyperexcitability: electrophysiological state in which the likelihood of generating at least one AP
by depolarizing stimulation is increased.

Hypersensitivity: state of increased responsiveness to a given sensory stimulus or chemical
signal. In contrast, increased responsiveness to an electrical signal is termed hyperexcitability.
Neuropathic pain: pain produced by injury or disease of any part of the nervous system.
Nociceptor: a primary sensory neuron that is selectively activated by stimuli causing actual or
impending tissue injury, or by signals reliably associated with tissue injury (e.g., inflammatory
signals).

Resting membrane potential (RMP): electrical potential difference across the plasma
membrane in the absence of APs, sensory potentials, or synaptic potentials. If DSFs occur, they
are considered transient components of RMP.

Sensitization: a state in which a neuron, neuronal pathway, or animal exhibits increased
responsiveness to sensory stimuli or chemical signals (including electrically driven chemical
signals). The term often is used more broadly to indicate any increase in responsiveness.

Spontaneous activity: (formally) ongoing generation of action potentials by a cell without

concurrent extrinsic sources of depolarization (. Because it is usually impractical to identify
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background excitatory or sensitizing contributions to ongoing activity, ongoing activity generated
in neurons in the absence of sensory generator potentials or synaptic potentials is commonly

referred to as spontaneous activity.
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Figure Legends

Figure 1. Nociceptor hyperactivity. (A) Schematic of a primary nociceptor in vertebrates,
gastropod molluscs, and leeches. The cell body is centrally located and distant from peripheral
terminals where survivable injury and inflammation are most likely. In vertebrates, the cell body
is in a ganglion near the central nervous system (CNS). In molluscs and leeches, nociceptor cell
bodies are in ganglia within the CNS. (B) Normal nociceptive activity initiated by noxious
stimulation of peripheral terminals, which produces a depolarizing sensory generator potential
that reaches threshold for action potentials (APs) that are conducted to the CNS. (C) lllustration
of sensitization of nociceptive activity evoked by the same noxious stimulus as in panel B, with
the evoked hyperactivity following injury caused by a larger sensory generator potential,
increased terminal excitability, and afterdischarge triggered by the evoked APs. Experimentally,
injection of pulses or ramps of depolarizing current (usually into the cell body) is often used to
reveal hyperexcitability (see Box 1). (D) Spontaneous activity after injury, defined as ongoing
activity generated (sometimes by depolarizing spontaneous fluctuations, DSFs) in the absence

of concurrent extrinsic stimulation of a neuron [®¢l. However, “spontaneous activity” commonly

describes any activity occurring without evident ongoing noxious stimulation, including
potentially common cases where intrinsic (cell autonomous) hyperexcitability and unobserved
inflammatory signals combine to drive ongoing hyperactivity. Spontaneous activity and/or
afterdischarge have been found in peripheral terminals, injured axons, and cell bodies of
mammals and molluscs. In mammals, nociceptor hyperactivity can induce prolonged

hyperresponsiveness of central nociceptive and pain pathways (termed central sensitization).

Figure 2. Sources of nociceptor hyperactivity following injury. (A) In mammals, numerous

extrinsic chemical signals have been found to excite and/or sensitize nociceptors, promoting
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physiologically significant hyperactivity and pain °°1. Hyperactivity can also be promoted by
reducing ongoing inhibition from other chemical signals (disinhibition). Few injury- and
inflammation-related extrinsic chemical signals that affect nociceptor activity have been
identified in other animal taxa, but they are likely to exist [°*°7]. (B) In principle, nociceptor

hyperactivity can be promoted by intrinsic hyperexcitability via any or all of the listed
electrophysiological alterations ©67°1. Hyperactivity may also be promoted by increasing a
nociceptor’s intrinsic sensitivity to excitatory or sensitizing sensory stimuli or chemical signals,
and by decreasing intrinsic sensitivity to inhibitory chemical signals. Abbreviations: AP, action
potential; ATP, adenosine triphosphate, DAMPs, damage-associated molecular patterns; DSF,
depolarizing spontaneous fluctuation; GABA, gamma-aminobutyric acid; GDNF, glial-derived
neurotrophic factor; GPCR, G protein-coupled receptor; IL-1B, interleukin-13; IL-10, interleukin
10; LPS, lipopolysaccharide; MIF, macrophage migration inhibitory factor; NGF, nerve growth
factor; PAMPs, pathogen-associated molecular patterns; RMP, resting membrane potential;
TNFa, tumor necrosis factor a; TRP, transient receptor potential; VGPC, voltage-gated

potassium channel; VGSC, voltage-gated sodium channel; VIP, vasoactive intestinal peptide.

Figure 3. Evidence that persistent nociceptor hyperactivity can be adaptive. (A) Squid
survival after injury. Peripheral tissue injury (minor amputation) causes long-lasting nociceptor
hyperactivity expressed over much of the body surface /! (red). In staged encounters with fish
predators, nearly half of injured squid survived, despite being selectively targeted, as they
benefitted from escalated escape behavior 8. More uninjured squid survived, while waiting
longer to initiate escape behavior. Far fewer squid survived that were injured without nociceptive
sensitization and persistent nociceptor hyperactivity (because transient block of nociceptor

activity during amputation eliminated persistent hyperactivity), indicating the survival benefit of

persistent nociceptor hyperactivity after injury. Persistent hyperactivity also increased protective
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reflex sensitivity (hyperreflexia) 1. (B) Avoidance of a predator cue by mice with neuropathic
pain. Mice with a spared nerve injury model exhibit nociceptor hyperactivity (red) in the hindpaw
8] and DRG [®?1. When exposed to fox urine, injured mice chose a route that took them farther
from the predator odor °!. This suggests an injury state involving persistent nociceptor

hyperactivity that causes hypervigilance and increased risk aversion. (C) Speculative benefit of
chronic nociceptor hyperactivity in ancestral humans at high risk for predation after amputation
injury. The top two rows parallel the arguments illustrated in the experiments in panel A. The
bottom row shows that transient blockade of DRGs in amputees blocked ongoing pain 53],
consistent with spontaneous activity in DRGs persistently driving painful hypervigilance that

might be protective for an individual in the vicinity of highly threatening predators.
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Outstanding Questions

Outstanding Questions

What types of animals exhibit persistent nociceptor hyperactivity, and do species that
display relatively little inflammatory or neuropathic pain, such as naked mole-rats, lack

persistent nociceptor hyperactivity after injuries that damage nerves?

To what extent are biophysical and molecular mechanisms (intrinsic and extrinsic) that
drive persistent nociceptor hyperactivity conserved across vertebrate and invertebrate

species, and between mammalian species?

Do conserved cell signaling mechanisms underlying persistent hyperactivity in diverse
species also contribute to synaptic potentiation and growth (sprouting) of peripheral and
central nociceptor branches that also can enhance the effects of nociceptor activity and

resulting pain?

To what extent are properties of human nociceptors that differ from rodent nociceptors

shared with primates having differing degrees of phylogenetic separation from humans?

Are the high excitability of human nociceptors and unusually extensive polymodality
evident in their transcriptomes linked to exceptional susceptibility of humans to persistent

nociceptor hyperactivity and consequent pain?

Many clinical conditions in humans can cause neuropathy, altered sensory function, and
chronic pain (e.g., diabetes, various kinds of chemotherapy, radiculopathy, postherpetic
neuralgia). Do some or all such conditions involve the accidental recruitment of a
persistent nociceptor hyperactivity state that evolved originally as an adaptation to severe
peripheral injury, or do purely pathological effects of neuropathy on nociceptors (such as
metabolic impairment) account entirely for most cases of persistent hyperactivity

encountered clinically?
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Highlights

Injury to the nervous system can generate chronic pain driven by persistent hyperactivity of

nociceptors, sensory neurons specialized to detect damaging stimuli.

Recent evidence argues against the near-universal assumption that nociceptor hyperactivity and

resulting chronic pain are always maladaptive.

Widespread conservation of mechanisms of nociceptor function and hyperactivity are well

documented, as well as distinct adaptations to divergent nociceptive needs.

Persistent nociceptor hyperactivity could have evolved to drive painful hypervigilance during
persistent physical impairment, enhancing survival by decreasing subsequent risk of predatory or

aggressive attack.

Differences between rodent and human nociceptors suggest that human nociceptors are
unusually excitable and sensitive to diverse noxious stimuli, perhaps associated with exceptional

susceptibility of humans to persistent pain.
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(A) Extrinsic sources of nociceptor hyperactivity (mammalian signal examples)
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Temporary relief from pain
Implication: Spontaneous activity may
promote painful hypervigilance






