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Measuring the entanglement complexity of collections
of open curves in 3-space has been an intractable,
yet pressing mathematical problem, relevant to a
plethora of physical systems, such as in polymers
and biopolymers. In this manuscript, we give
a novel definition of the Jones polynomial that
generalizes the classic Jones polynomial to collections
of open curves in 3-space. More precisely, first we
provide a novel definition of the Jones polynomial
of linkoids (open link diagrams) and show that
this is a well-defined single variable polynomial
that is a topological invariant, which, for link-type
linkoids, coincides with that of the corresponding
link. Using the framework introduced in (Panagiotou
E, Kauffman L. 2020 Proc. R. Soc. A 476, 20200124.
((doi:10.1098/rspa.2020.0124)), this enables us to
define the Jones polynomial of collections of open
and closed curves in 3-space. For collections of
open curves in 3-space, the Jones polynomial has
real coefficients and it is a continuous function of
the curves’ coordinates. As the endpoints of the
curves tend to coincide, the Jones polynomial tends
to that of the resultant link. We demonstrate with
numerical examples that the novel Jones polynomial
enables us to characterize the topological/geometrical
complexity of collections of open curves in 3-space for
the first time.

1. Introduction
Many physical systems, such as polymers and
biopolymers, textiles and chemical compounds are
composed by filamentous structures, that can be

2022 The Author(s) Published by the Royal Society. All rights reserved.
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modelled by mathematical curves in 3-space, whose entanglement complexity determines their
mechanical properties and function [1–8]. Measuring multi-chain entanglement in such systems
has remained an open problem for many decades [2,9,10]. In this paper, we introduce the first
rigorous measure of complexity of collections of open curves in 3-space, via a traditional invariant
of knots and links, the Jones polynomial. More precisely, the novel Jones polynomial that we
introduce here generalizes the traditional Jones polynomial, so that it is applicable to collections
of open curves in 3-space and gives a continuous measure of linking complexity which reduces
to a topological invariant for closed curves.

Collections of simple closed curves in 3-space (links) can be classified upon deformations
without allowing cutting and pasting (topological equivalence). Topological invariants are
functions defined on links that are invariant under Reidemeister moves and can be used
to characterize the complexity of simple closed curves in 3-space. The notion of topological
equivalence, however, is not useful for systems of open curves in 3-space, since any collection
of open curves is topologically equivalent to any other. Instead of topological invariants,
to characterize the topological complexity of open curves in 3-space, we seek measures of
topological complexity that are continuous functions in the space of configurations. Until recently,
the only measure of topological entanglement that could be applied to one or two open curves
in 3-space to give a continuous measure of single or pairwise topological complexity, was the
Gauss linking integral [11–15]. It was not until [16], where the necessary framework to define
the Jones polynomial of a single open curve in 3-space was introduced, based on the notion
of knotoids (open ended knot diagrams) and their Jones polynomial. The Jones polynomial of
an open curve is a polynomial with real coefficients that are continuous functions of the curve
coordinates. This new framework also allowed to define Vassiliev measures of open curves in
3-space and to derive closed formulae for the second Vassiliev measure of single open curves in
3-space [17]. These advances led to immediate applications in materials and biology to obtain
novel understanding of such physical systems, rigorously and without any closure scheme for
the first time [18–20]. However, extending the Jones polynomial to collections of open curves in
3-space has not been possible, even though one would think it would be straightforward, as the
definition of the classical Jones polynomial applies to both knots and links. The reason for this is
that an appropriate definition of the Jones polynomial of linkoids (open ended link diagrams) is
missing. This will be fully addressed in this manuscript.

The theory of knotoids was introduced by Turaev [21] as a means to study parts of knot
diagrams with the aim to characterize knot complexity. Knotoids on a surface are open ended
knot diagrams and many analogous ideas of classical knot theory are applicable to the study
of knotoids [22–25]. The Jones polynomial of knotoids follows from that of knots with a simple
modification. The modification relies on assigning a value to states containing an open arc in the
bracket expansion. The notion of knotoids can be naturally extended to multi-component cases,
which we call linkoids (these can be seen as open link diagrams). Even though the definition
of the Jones polynomial of knots extends naturally to that of links, the definition of the Jones
polynomial of linkoids does not follow directly from that of knotoids and remains elusive. The
difficulty consists of the fact that the states resulting from linkoids may contain several non-
intersecting open arcs, which may connect endpoints of different components, and it has been
unclear how to deal with those in the polynomial. One way to deal with this is to introduce
more variables to keep track of the connections [26]. Such definitions, however, do not satisfy
an important property, which prevents them to be used in giving an appropriate definition of
the Jones polynomial of open curves in 3-space, as we will see later. In this manuscript, we
will provide a novel definition of the bracket polynomial that can properly account for those
states and which satisfies an important desired property, which enables the definition of a single
variable Jones polynomial of linkoids and the Jones polynomial of collections of open curves in
3-space.

More precisely, in this paper we provide the first rigorous definition of the Jones polynomial
of linkoids which has the property that the Jones polynomial of a link-type linkoid is equal to the
Jones polynomial of the corresponding link. We use the framework introduced in [16] to define
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the Jones polynomial of a collection of open curves in 3-space [16]. Namely, any projection of a
collection of open curves in 3-space to a plane corresponds to a linkoid diagram, whose Jones
polynomial is now well defined. We define the Jones polynomial of the collection of open curves
in 3-space as the average of the Jones polynomials in a projection over all possible projection
directions. We prove that for a collection of open curves in 3-space, the newly introduced Jones
polynomial is a polynomial with real coefficients which are continuous functions of the curve
coordinates. We also prove that, as the endpoints of the curves move to coincide and form a link
in 3-space, the Jones polynomial of the collection of open curves tends to that of the resulting
link. We stress that the latter is possible only via the Jones polynomial of linkoids definition we
introduce in this manuscript. The Jones polynomial introduced here provides a holistic definition
of a Jones polynomial which applies to open and closed curves of single or multi-component
systems. Our theoretical results are accompanied by an illustrative example of an open borromean
ring in 3-space.

The contents of this paper are summarized as follows: in §2, we give the definitions for linkoid
diagrams and linkoids and also make precise the notion of trivial linkoids, proper linkoids and
link-type linkoids. In §3, we provide all the necessary framework and then define the Jones
polynomial of linkoids and we study its properties. In §4, we give the definition of the Jones
polynomial of a collection of open curves in 3-space and we study its properties. Finally, in §5, we
present the conclusions of our results.

2. Linkoids
As mentioned in the previous section, the Jones polynomial of collections of open curves in 3-
space will be defined via projections of the curves, which can be seen as linkoids. Even though
we think of linkoids as projections of open curves, linkoids have been typically studied as
diagrammatic objects. In this section, we present the definitions of linkoids and linkoid diagrams,
originally defined in [22–25], as well as the definition of link-type linkoids. We denote a surface,
which a linkoid diagram lies on, by the symbol Σ . In this manuscript, Σ = S2 =R

2 ∪ ∞.

Definition 2.1. (Linkoid diagram) A linkoid diagram L with n ∈N components in Σ is a generic
immersion of

⊔n
i=1[0, 1] in the interior of Σ whose only singularities are transversal double points

endowed with over/undercrossing data. These double points are called the crossings of L. The
immersion of each [0, 1] is referred to as a component of the linkoid diagram and the images of 0
and 1 under this immersion are called the foot and the head of the component, respectively. These
two points are distinct from each other and from the double points; they are called the endpoints
of the component. The diagram L has a total of 2n endpoints. A natural orientation is assigned for
each li from the foot to the head.

For a linkoid diagram L with n components, we may introduce a convention to index all the
feet by odd numbers i ∈ {1, 3, . . . , 2n − 1}, and the corresponding heads by even numbers i + 1 ∈
{2, 4, . . . , 2n}. Thus, a component of L is denoted by l(2j−1,2j) such that j ∈ {1, 2, . . . , n} where the
index 2j − 1 indicates the foot and the index 2j indicates the head of the component.

Some examples of labelled knotoid and linkoid diagrams are given in figure 1.

Definition 2.2. (Linkoid) A linkoid is an equivalence class of linkoid diagrams up to
the equivalence relation induced by the three Reidemeister moves and isotopy. The three
Reidemeister moves, denoted by Ω1, Ω2, Ω3, are defined on linkoid diagrams and referred to
as Ω-moves. It is forbidden to pull the strand adjacent to an endpoint over/under a transversal
strand. These moves are called forbidden linkoid moves, and denoted by Φ+ and Φ−, respectively.

The Ω1, Ω2, Ω3 moves and the forbidden linkoid moves, Φ+ and Φ− are shown in figure 2. In
this manuscript, we consider the following definition of a trivial linkoid:

Definition 2.3. (Trivial linkoid) A trivial linkoid is one which consists of a collection of disjoint
circles and/or straight segments. By disjoint we mean that there is no apparent crossing among
the components of the linkoid.
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Figure 1. Examples of knotoid and linkoid diagrams with labelled components.

Ω1

Ω2

Ω3

Φ+ Φ–

Ωi=1,2,3 moves

forbidden linkoid moves

Figure 2. TheΩ-moves and forbidden moves on a linkoid diagram. Note that these arcs are considered as parts of a larger
diagram.

Figure 3. Examples of trivial linkoids consisting of two circles and two straight segments. Even though these are not equivalent,
they will all be considered to represent the trivial linkoid with four components. Note that these are all link-type linkoids of the
type of trivial links.

For a linkoid of one component, this definition coincides with that of a trivial knotoid.
However, according to our definition of a trivial linkoid, definition 2.3, all the linkoids shown
in figure 3 are equivalent, even though we cannot go from one diagram to the other without a
forbidden linkoid move. Thus, when we refer to trivial linkoids, we refer to a collection of classes
of linkoids with no crossings.

Definition 2.4. (Link-type linkoid and proper linkoid) A linkoid is said to be of link-type
if there exists a diagram in its equivalence class in which it is possible to draw a closure arc
connecting the pair of endpoints (from the head to the foot) per component without introducing
additional double points (crossings) to the diagram or between the closure arcs. A linkoid that is
not of link-type is called a proper linkoid.

Remark 2.5. The trivial linkoids shown in figure 3 are all of trivial link-type.
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Figure 4. (Left) A linkoid diagramwith three components, l(1,2), l(3,4) and l(5,6). (Right) One of the 64 possible states in the state
sum expansion of the diagram. Clearly, this state is crossingless and contains three disjoint segments, namely (1, 3), (2, 6) and
(4, 5). Note that even though the number of long segments is the same as the number of components of the original linkoid,
there has been a rearrangement in the pairing of endpoints per segment.

Remark 2.6. For knotoids (linkoids with one component), another way to distinguish between
proper knotoids and knot-type knotoids is by checking whether there exists a diagram in which
the two endpoints lie in the same region. This definition is consistent with definition 2.4. Note that,
if for any diagram of the knotoid it is impossible to draw a closure arc without introducing new
crossings, it follows that the endpoints must lie in different regions of the diagram. The converse
is also true.

Remark 2.7. Note that any pure braid (in a pure braid, the beginning and the end of each strand
are in the same position) can be thought of as a link-type linkoid. Indeed, the closure arcs of a pure
braid do not intersect any other arc, a trait similar to the closure arcs of a ink-type linkoid.

3. The Jones polynomial of linkoids
In this section, we will define the Jones polynomial of linkoids. As we mentioned in the
introduction, this will be later seen as the Jones polynomial of a projection of a collection of open
curves in 3-space. However, it is also of interest in the study of linkoids in general. We will define
the Jones polynomial of linkoids as the normalized Kauffman bracket polynomial of linkoids.

The smoothing skein relations of the classic bracket polynomial are shown in equation (3.1), as
follows:

(3.1)

Definition 3.1. (State of a linkoid diagram) A state S of a linkoid diagram L with n components
is an assignment of a choice of smoothing at each crossing. This results in a diagram without any
apparent crossing with disjoint circles and n long segments. Each long segment is labelled by the
two endpoints that it connects.

Upon recursively smoothing a linkoid diagram using the skein relations in equation (3.1), we
obtain states without any apparent crossing. Figure 4 shows an illustrative example of a linkoid
diagram with three components and one of its corresponding states.

Example 3.2. To motivate the relations that will enable us to evaluate the bracket polynomial
on states involving multiple long segments, we focus on the particular example of the linkoid
diagram shown in figure 5. Note that this linkoid diagram represents a link-type linkoid,
corresponding to the Hopf link. It is natural to require that the bracket (and consequently the
Jones) polynomial of the linkoid in this example reflects the entanglement present in the Hopf
link. Note that the open Hopf-type linkoid is equivalent to a Hopf link with two ε > 0 infinitesimal
segments removed. Thus, it is natural to require that the bracket polynomial of the Hopf-type

linkoid is in fact equal to that of the Hopf link, which is equal to = −A4 − A−4. This would
in fact generalize the corresponding property of knot-type knotoids for the bracket (or Jones)
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1 3

42

Figure 5. An oriented link-type linkoid with two components, corresponding to the Hopf link.

polynomial. In the following, it will be shown that this is also a necessary property to satisfy in
order to define the Jones polynomial of open curves in 3-space in a way that it is well-behaved
and satisfies some important properties.

Consider the oriented linkoid consisting of two components, as shown in figure 5. By
smoothing the crossings in the linkoid diagram using the bracket polynomial definition for
knotoids (see equation (3.1)), we get the following expansion:

(3.2)

where d= −A2 − A−2.
The final expression in equation (3.2) is a summation of bracket polynomials of states of the

linkoid diagram with two long segments each. Note that the Kauffman bracket polynomial of
knotoids can evaluate the bracket of an open arc, simply by setting but in linkoids
we will have more than one long arc in a state, as shown in equation (3.2). Moreover, even
though each of the states consist of two long segments, the segments connect different endpoints
of the original components, as shown in equation (3.2). For this reason, even though the Jones
polynomial of links only accounts for the number of components in a state, this will not work
for linkoids. For example, if we assign the same value to both of the cases in equation (3.2), say

, then , which is different
from the bracket polynomial of the Hopf link, even if we set t= d.

In this manuscript, we introduce a new definition of the Jones polynomial of linkoids
that overcomes these problems. The section is organized as follows: §3a sets the framework
for analysing states of linkoids, §3b gives the novel Jones and Kauffman bracket polynomial
definitions and §3c proves theorem 3.12.

(a) Segment cycles of a linkoid state
The definition of the Jones polynomial that is introduced in §3b relies on assigning a value to
the trivial states that result after smoothing all the crossings in a linkoid diagram. Circles in a
state will contribute a factor d|circ|−1, where |circ| is the number of disjoint circles in the state,
but arcs will contribute a factor d|cyc|, where |cyc| is the number of segment cycles in the state.
A segment cycle is composed by the arcs of a state that form a component upon concatenation
of their endpoints according to the original head/foot pairing. See figure 7 for two states that
correspond to one and two segment cycles, respectively. This section focuses on the detailed
mathematical framework leading to the definition of segment cycles and some of their properties.
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Let L be a linkoid diagram with n ∈N components and let G be the set containing all the
endpoints (heads and feet) of L. In a smoothed state of L, the pairwise connections between
vertices in G may turn out to be different from the original (2j − 1, 2j) pairing, where j ∈
{1, 2, . . . , n}. To keep track of how the different vertices get permuted in a state, we introduce
the definition for pairing combination.

Definition 3.3. (Pairing combination and head–foot pairing) Let S2n denote the symmetry
group of degree 2n, where n ∈N. A pairing combination is any element J ∈ S2n which can be
expressed as the product of n disjoint two-cycles. In particular, the element,

Γ = (1 2)(3 4) · · · (2n − 1 2n) =
n∏

i=1

(2i − 1 2i), (3.3)

is defined to be the head–foot pairing in S2n. In this notation, a bracketed sequence of numbers
signifies a permutation in S2n which are also called two-cycles.

Note that any linkoid defines a head–foot pairing (see definition 2.1) by the connectivity of its
components. Whereas, a state of a linkoid diagram, S, defines a pairing combination, JS, which
may or may not be a head–foot pairing.

For any endpoint, we introduce the concept of orbit to form a collection of all the other
endpoints that it is related to under a repeated application of the composition function Γ ◦ J. This
captures all the arc endpoints connected to a given endpoint, either through the initial head–foot
pairing, or through smoothings of crossings.

Definition 3.4. (Orbit of an endpoint) Given an endpoint a ∈G, and an arbitrary pairing
combination, J on G, the set OrbJ(a) of a is defined to be the orbit of the composition function
Γ ◦ J. Symbolically, OrbJ(a) is given as

OrbJ(a) = {x ∈G|x= (Γ ◦ J)m(a), m ∈Z}. (3.4)

This enables us to define the segment cycle in terms of pairing combinations and orbits, as
follows:

Definition 3.5. (Segment cycle) Given a pairing combination, J on G, the segment cycle of an
endpoint a ∈G is defined as follows:

Seg(a) = OrbJ(a)
⊔

OrbJ
(
Γ (a)

)
, (3.5)

where OrbJ(a) is the orbit of the point a and OrbJ(Γ (a)) is the orbit of the point Γ (a) under the
action of the pairing combination J. Note that for any point a ∈G, Γ (a) ∈G always belongs to the
same segment cycle. Thus, a segment cycle always contains an even number of elements.

Remark 3.6. Let S denote a state of L with associated pairing JS, and let Seg(a) be a segment
cycle in L, such that |Seg(a)| = 2k. Then, we can represent Seg(a) by a circle decorated with the 2k
endpoints of L (see figure 6), following the order in which they appear in the cycle (see figure 6).
Note that the arcs connecting two adjacent points in this circle alternate between the functions, JS
and Γ . Any two points connected by JS belong to the same component of the state S and any two
points connected by Γ belong to the same component in L.

Example 1 (cont.) Consider the linkoid diagram and the particular state (say S) as shown in
figure 5. In this example, the set G of all endpoints is {1, 2, 3, 4}. Note that the open arc components
of a linkoid diagram L define a head–foot pairing, while the states of L can define other pairing
combinations. For example, let us denote by s1, s2 the final states of equation (3.2). Then, s1 defines
the pairing combination Js1 , which can be represented by the permutation (1 3)(2 4) ∈ S4 and s2
defines the pairing combination Js2 , which can be represented by the permutation (1 2)(3 4) ∈
S4. The states s1 and s2 are explicitly shown in figure 7.

For each of the permutations, Js1 and Js2 , we can construct the corresponding set of segment
cycles. Note that a segment cycle can be represented as a decorated circle. Corresponding to Js1

and Js2 , the possible segment cycles are shown in figure 7.
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Γ(a)

Γ(J(a))

J(Γ(J(a)))

Γ(J(Γ(J(a))))

J(a)

a

Figure 6. Representation of the segment cycle of a ∈ G in terms of a decorated circle. Let us consider a circle and let
a ∈ G be the initial point on the circle. The remaining 2k − 1 endpoints can be uniquely added into the circle in the order
J(a),Γ (J(a)), J(Γ (J(a))), . . . , up toΓ (a). Note that the arcs connecting two adjacent points in this circle alternate between
the functions, J (solid) andΓ (dashed). Any two points connected by J belong to the same component of the state S and any
two points connected byΓ belong to the same component in L. (The dotted line in the figure indicates the continued process
of adding points.)

1

2

3

4

1 3

2 4

JS2
 = (1 2)(3 4)

JS1
 = (1 3)(2 4) JS1

(4) = 2

JS2
(1) = 2 JS2

(3) = 4

JS1
(1) = 3

Γ�������

1

1 3

Figure 7. (Top) The connections among endpoints due to state s1, corresponding to the pairing combination Js1 =
(1 3)(2 4) ∈ S4, and the resultant segment cycle. (Bottom)The connections amongendpoints due to state s2, corresponding
to the pairing combination Js2 = (1 2)(3 4) ∈ S4, and the resultant distinct segment cycles.

Remark 3.7. Note that for a linkoid with n components, the total number of distinct segment
cycles in a state always lies between 1 and n. Indeed, if the resulting long arcs are the same as
the original arcs, then each one defines a segment cycle. On the other hand, if all the long arcs
have been relabelled so that we can concatenate them all together, according to their original
head/foot pairings, then they will form one segment cycle. A formal proof of this result is given
in proposition A.9 in appendix A.

(b) The Jones polynomial of linkoids
In the previous section, we showed that open segments in a smoothed state of a linkoid can be
grouped into segment cycles. We also saw the analogy between segment cycles and decorated
circles. In this section, we use these concepts to define the bracket polynomial of linkoids and the
Jones polynomial of linkoids (as the normalized bracket polynomial).

Definition 3.8. (Bracket polynomial of a linkoid) Let L be a linkoid diagram with n components.
The bracket polynomial of the linkoid is completely characterized by the following skein relation
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and initial conditions:

(3.6)

where |cyc| denotes the number of distinct segment cycles. In other words, |cyc| = |G/RG |, where
RG is the equivalence relation induced on G by G = 〈Γ ◦ J〉 × 〈Γ 〉, where J is the pairing defined
by the indices a, b, c, d, . . . p, q.

The bracket polynomial of L can be formulated as the following state sum expression:

〈
L
〉
:=

∑

S

Aσ (S)d|S|circ+|S|cyc−1, (3.7)

where S is a state corresponding to a choice of smoothing over all double points in L; σ (S) is the
algebraic sum of the smoothing labels of S; |S|circ is the number of disjoint circles in S and |S|cyc is
the number of distinct segment cycles in S.

The bracket polynomial of linkoids has the following properties:

(i) It preserves the underlying skein relation used in the computation of bracket polynomial
of knots and knotoids.

(ii) If L is a link diagram, the novel definition of the bracket polynomial (see definition 3.8)
coincides with the traditional Kauffman bracket polynomial of L. Indeed, the states of L
have no long segments. Therefore, |S|cyc = 0 and

〈L〉 =
∑

S

Aσ (S)d|S|circ−1.

(iii) If L is a knotoid diagram, then the novel definition of the bracket polynomial (see
definition 3.8) coincides with the Kauffman bracket polynomial of knotoids. Indeed, for
a knotoid, |S|cyc = 1 for all states and

〈L〉 =
∑

S

Aσ (S)d|S|circ−1d1 =
∑

S

Aσ (S)d|S|circ .

(iv) For a trivial linkoid (see definition 2.3) with n components,

〈L〉 = dn−1.

Indeed, for a trivial linkoid with n components, there are no rearrangements in the pairing
of endpoints since there are no crossings to be resolved. Therefore, there is only one state
in the state sum which has the original n segments and their endpoints intact and

〈L〉 =A0 × d0−1 × dn = dn−1.

(vi) For link-type linkoids the bracket polynomial coincides with that of the corresponding
link upon the closure of endpoints (see theorem 3.12).

In the following, the bracket polynomial turns into an invariant for oriented linkoids with a
normalization by the writhe giving rise to a definition for the Jones polynomial of linkoids with
the substitution of A= t−1/4. The writhe, Wr(L), of an oriented linkoid diagram L is the algebraic
sum of signs (positive or negative) of crossings of L.
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1

3

4 4
1

(a) (b)

2

32

Figure 8. Two non-equivalent, proper linkoids. Their Jones polynomials in terms of the variable A are (a) −A4 − A2 and
(b)−A−2 − A−4.

Definition 3.9. (Jones polynomial of a linkoid) The normalized bracket polynomial of an
oriented linkoid diagram L is defined as

fL = (−A3)−Wr(L)〈L〉, (3.8)

where Wr(L) is the writhe of the linkoid diagram and 〈L〉 is as seen in definition 3.8. This gives the
Jones polynomial of a linkoid with the substitution A= t−1/4.

Example 3.10. The Jones polynomial (definition 3.9) distinguishes non-equivalent linkoids in
S2 and for proper linkoids, this measure is not that of any link. For example the Jones polynomial

of the linkoid given in figure 8a is equal to = −A4 − A2 whereas, the Jones polynomial of the

linkoid given in figure 8b is equal to = −A−2 − A−4.

Proposition 3.11. The Jones polynomial of a linkoid (see definition 3.9) is a topological invariant of
linkoids.

Proof. The above claim is proved by verifying invariance of the Jones polynomial of linkoids
under each of the three Reidemeister moves, which are discussed as follows:

Reidemeister move I: in a linkoid diagram, L, consider a region that resembles . Let M

denote the same linkoid except at that particular region, which now resembles . The Jones
polynomial of L is equal to the Jones polynomial of M, as shown below:

(3.9)

Reidemeister move II: in a linkoid diagram, L, consider a region that resembles . Let M

denote the same linkoid except at that particular region, which now resembles . Note that

Wr(L) =Wr(M), since the regions and contribute zero writhe, respectively. The Jones
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polynomial of L is equal to the Jones polynomial of M, as shown below:

(3.10)

Reidemeister move III: since the traditional bracket polynomial skein relations are preserved in
our new Jones polynomial definition, the proof of invariance under Reidemeister move III follows
in a way similar to the above two cases. �

The Jones polynomial of linkoids (see definition 3.9) has the following properties:

(i) The Jones polynomial of a linkoid is a topological invariant of linkoids and it satisfies the
Jones polynomial skein relations:

t−1fL+ − tfL− = (t1/2 − t−1/2)fL0 ,

where the linkoids L+, L− and L0 are identical almost everywhere except at one crossing,
as shown below:

(ii) If L is a link diagram, then the new definition of the Jones polynomial (see definition 3.9)
gives the traditional Jones polynomial of the link. Indeed, for a link L, there is no long
segment. Therefore, |S|cyc = 0 and

fL = (−A3)−Wr(L)
∑

S

Aσ (S)d|S|circ−1d0.

(iii) If L is a knotoid diagram, the Jones polynomial of L (see definition 3.9) coincides with the
Jones polynomial of knotoids. Indeed, if L has only one component, then |S|cyc = 1 (only
one long segment) for all states and

fL = (−A3)−Wr(L)
∑

S

Aσ (S)d|S|circ .

(iv) For a trivial linkoid (see definition 2.3) with n components,

fL = dn−1.

Indeed, in that case there are no rearrangements in the pairing of endpoints since there
are no crossings to be resolved. Therefore, there is only one state in the state sum which
has the original n segments and their endpoints intact. Since there are no crossings, the
writhe is zero and this allows us to express the Jones polynomial as

fL = (−A3)0A0 × d0−1 × dn = dn−1.

(v) For link-type linkoids the Jones polynomial coincides with that of the corresponding link
(see theorem 3.12).

Example 3.2 (cont.) Let us return to the example of a linkoid diagram with two components,
as given in figure 5. Here, the set G of endpoints is equal to {1, 2, 3, 4}. The final step of the state
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sum expansion of its bracket polynomial (see equation (3.2)) involves the bracket polynomials

of the two states and . These give rise to the segment cycles shown in figure 7.
More precisely, let us call the states by s1 and s2, respectively, and their respective pairing
combinations as Js1 and Js2 . Note that Js2 = Γ = (1 2)(3 4) implies that there are two distinct
segment cycles corresponding to s2, namely Seg(1) = {1, 2} and Seg(3) = {3, 4}. Whereas, the
action of Js1 = (1 3)(2 4) on G gives Seg(1) = {1, 2, 3, 4} =G. Therefore, there is only one distinct
segment cycle corresponding to s1.

Using definition 3.8, the final step of equation (3.2) can be simplified as follows:

(3.11)

Note that the above expression matches the bracket polynomial for the Hopf link, i.e.

. The writhe of the diagram in figure 5 is . Therefore, the Jones
polynomial of the linkoid is evaluated as follows:

(3.12)

which is equal to that of the Hopf link. In fact, we will prove that a similar result follows for the
case for any link-type linkoid.

(c) The Jones polynomial of link-type linkoids
In this section, we will prove that the Jones polynomial of link-type linkoids is equal to the Jones
polynomial of the corresponding link.

Theorem 3.12. Let L be a link-type linkoid with n components and Lc be the corresponding link (the
link that results from connecting the head to the foot of each component in a way that no new crossing is
created). Then, the Jones polynomials of L and Lc are equal, that is fL = fLc .

Proof. By the definition of L and Lc, we note that L can be created from Lc by omitting n arcs
(closure arcs). These arcs connect the endpoints 2j − 1 and 2j for each component l(2j−1,2j) of
L, where j ∈G= {1, 2, . . . , n}. Let us construct a decoration on Lc by L, by keeping track of the
endpoints of L with labels. Thus Lc is a union of L with closure arcs.

The closure arcs in L do not create any new crossings, hence the total number of double points
in Lc is the same as that in L. Therefore, Wr(L) =Wr(Lc). In the following, we show that the bracket
polynomials, 〈L〉 and 〈Lc〉, are also equal.

We know that the states of a link or a linkoid diagram are completely determined by the choice
of smoothing at the crossings of the diagram. Since L and Lc have identical crossings, for each
state S of the linkoid diagram L, there exists a state Sc in the link diagram Lc, such that their
smoothing labels are equal, that is, σ (S) = σ (Sc). By definition, the contribution of S in the state
sum expression of 〈L〉 is Aσ (S)d|S|circ+|S|cyc−1, where |S|circ is the number of disjoint circles and |S|cyc

is the number of segment cycles formed by the disjoint long segments in the state S. Similarly,
the contribution of Sc in the state sum expression of 〈Lc〉 is Aσ (S)d|Sc|circ−1. We prove that these two
terms are equal by showing that |S|circ + |S|cyc = |Sc|circ.
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Since the closure arcs of L in Lc do not introduce crossings, the state S can be obtained from
Sc, by omitting the closure arcs. Thus, for a decorated Lc, Sc will also be decorated with an even
number of labels on each circle (since any closure arc has two endpoints and closure arcs are
disjoint). Note that if a circle in Sc is not decorated, then it corresponds to a circle in S. Let us
express the total number of circles in Sc as |Sc|circ = |Sc|(circ,u) + |Sc|(circ,d), where |Sc|(circ,u) and
|Sc|(circ,d) denote the number of undecorated and decorated circles, respectively. Thus, |S|circ =
|Sc|(circ,u). Therefore, we need to prove that |S|cyc = |Sc|(circ,d).

Once all the circles that do not involve endpoints are taken care of in both S and Sc, we are left
with n long segments in S and a total of |Sc|(circ,d) decorated circles in Sc. Since S is formed by Sc
by removing the closure arcs, a decorated circle in Sc with 2k labels gives rise to k long segments
in S. We show that these k long segments form a segment cycle.

Note that for a decorated circle in Sc, two adjacent labels are either endpoints of a closure arc,
or a new connection formed by the smoothings. So, any two adjacent labels in a decorated circle
in Sc that do not belong to a closure arc are related by the pairing combination JS in S and any two
adjacent labels in the decorated circle in Sc that belong to the same closure arc are related by the
trivial pairing, Γ . Then, the corresponding k long segments in S define a segment cycle. These k
long segments cannot overlap with any other decorated circle of Sc because it will violate the fact
that all the decorated circles of Sc are disjoint. Therefore, for every decorated circle in Sc there is a
unique collection of long segments in S such that these long segments form a segment cycle. This
implies, |Sc|(circ,d) = |S|cyc. Therefore, 〈L〉 = 〈Lc〉. �

4. The Jones polynomial of open curves in 3-space
Consider a collection of m ∈N open or closed curves in 3-space in general position. Any (regular)
projection of these curves can give rise to a different linkoid diagram based on the choice of
the direction of projection. Note that with probability one, a projection will be generic. We use
the framework introduced in [16] and definition 3.8, to rigorously define the bracket and Jones
polynomials of a collection of m ∈N open curves in 3-space. We define the Jones polynomial as
the normalized bracket polynomial.

Definition 4.1. Let L denote a collection of m ∈N open curves in 3-space. Let Lξ denote the
projection of L on a plane with normal vector ξ . The normalized bracket polynomial of L is
defined as

fL = 1
4π

∫
ξ∈S2

(−A3)−Wr(Lξ )〈Lξ 〉dS. (4.1)

where each Lξ is a linkoid diagram and its bracket polynomial can be calculated by using
definition 3.8. Note that the integral is taken over all vectors ξ ∈ S2 except a set of measure zero
(corresponding to the irregular projections). This gives the Jones polynomial of a collection of
open curves in 3-space with the substitution A= t−1/4.

This new definition of the Jones polynomial of collections of open or closed curves in 3-space
generalizes all the previous definitions of the Jones polynomial, so that it satisfies the following
properties:

(i) The Jones polynomial defined by equation (4.1) does not depend on any particular
projection of the collection of open or closed curves.

(ii) For a collection of open curves this polynomial is not the polynomial of a
corresponding/approximating link, nor that of a corresponding/approximating linkoid.

(iii) The Jones polynomial of a collection of open curves in 3-space has real coefficients. It is
not a topological invariant, but it is a continuous function of the curve coordinates (see
proposition 4.2).

(iv) For a collection of closed curves in 3-space (a link), the Jones polynomial defined in
equation (4.1) gives the traditional Jones polynomial and it can be computed from a single
projection, i.e. fL = fLξ

where ξ ∈ S2 is any projection vector.
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(v) As the endpoints of a collection of open curves in 3-space tend to coincide, the Jones
polynomial tends to that of the corresponding link.

(vi) For a linkoid of one component (a knotoid), the Jones polynomial of definition 4.1 gives
the Jones polynomial defined in [16].

In the case of polygonal curves in 3-space, the Jones polynomial attains a simpler expression.
Without loss of generality, suppose that all the curves have n edges each. Then, there exists a
finite number (say k ∈N) of distinct linkoid types (Li) which may occur in any projection of the
collection of open curves, L. Therefore, equation (4.5) can also be expressed as the following finite
sum:

fL =
k∑

i=1

pifLi , (4.2)

where pi denotes the geometric probability that a projection of L gives the linkoid Li.

Proposition 4.2. Let L denote a collection of simple open curves in 3-space. Then, fL is a continuous
function of the coordinates of L.

Proof. Let us approximate L by a set of polygonal curves of n edges each, we denote L(n). Then

fL(n) =
k∑

i=1

pifL(n)
i

, (4.3)

where L(n)
i , i= 1, . . . , k are the possible linkoids that can occur in all projections of L(n) and pi the

corresponding geometric probabilities. The geometric probability pi can be expressed as

pi =
2A0

4π
, (4.4)

where A0 is the area on the sphere corresponding to vectors ξ ∈ S2 such that the projection of L(n)

along such vectors results in the linkoid L(n)
i . A0 is a quadrangle bounded by great circles defined

by the edges and vertices of the polygonal curves in L(n). Thus it is a continuous function of the
coordinates of L(n) (see proof of lemma 3.1 in [16]). The result follows as n goes to infinity. �

Corollary 4.3. Let L denote a collection of open curves in 3-space. As the endpoints of the curves tend
to coincide to form a link Lc, fL tends to fLc

Proof. The result follows by proposition 4.2, definition 4.1 and theorem 3.12. �

The statement below follows as a corollary from the properties of the Jones polynomial of open
and closed curves in 3-space that we have established so far.

Corollary 4.4. The Jones polynomial is a continuous function in the space of all simple curves (open or
closed) in 3-space.

In a similar way, we can define the Kauffman bracket polynomial of a collection of open curves
in 3-space, as follows:

Definition 4.5. Let L denote a collection of n ∈N open curves in 3-space. Let Lξ denote the
projection of L on a plane with normal vector ξ . The bracket polynomial of L is defined as

〈L〉 = 1
4π

∫
ξ∈S2

〈Lξ 〉 dS, (4.5)

where each Lξ is a linkoid diagram and its bracket polynomial can be calculated by using
definition 3.8. Note that the integral is taken over all vectors ξ ∈ S2 except a set of measure zero
(corresponding to the irregular projections).
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Properties of the bracket polynomial of collections of open curves in 3-space:

(i) The bracket polynomial defined in equation (4.5) does not depend on any particular
projection of the collection of curves.

(ii) For an open curve this polynomial is not the polynomial of a corresponding/approximating
link, nor that of a corresponding/approximating linkoid.

(iii) The bracket polynomial defined in equation (4.5) is not a topological invariant, but it is a
continuous function of the curve coordinates for both open and closed curves in 3-space.

(iv) As the endpoints of a collection of open curves in 3-space tend to coincide, the bracket
polynomial tends to that of the corresponding link.

(v) For a linkoid of one component, the bracket polynomial of definition 4.5 gives the bracket
polynomial defined in [16].

Example 4.6. Consider a set of open borromean rings realized in 3-space by the following three
lists of coordinates:

R = [[0, 0, 0], [1, 1, 0], [2, 2, 0.5], [3, 3, 0.5],

[4, 4, 0], [5, 5, 0], [6, 6, 0.5], [7, 7, 0.5],

[8, 7, 0.5], [9, 5, 0.2], [9, 3, 0.2], [8, 0, 0.2], [8, -1, 0.2],

[6, -1.5, 0], [4, -2, 0], [2, -1.5, 0]]

B = [[1, 0, 0.5], [4, 0, 0], [5, 1, 0], [ 5, 4, 0.5], [4, 5, 0.5],

[3, 6, 0], [2, 7, 0], [-1, 6, 0], [-1, 3, 0.5]]

K = [[6, 0, 0.5], [7, 6, 0], [6, 7, 0], [ 3, 7, 0.5], [2, 6, 0.5],

[2, 3, 0], [3, 2, 0], [4, 1, 0.5]]

where R, B and K denote the red, blue and black curves, respectively. The list R can be updated
by an additional element (say r) by using the following parametrization:

r = r1 + s(r2 − r1),

where 0 ≤ s≤ 1 and r1 and r2 are, respectively, the last and the first points in R, i.e. r1 = R[−1] and
r2 = R[0]. Using the same parameter s, the lists B and K can each be updated by an additional
element.

Let us denote a configuration of the system of open borromean rings by w(s), where s is
the value of the concerned parameter. Clearly, the initial configuration of the system of open
borromean rings can thus be denoted as w(0). As we start updating the lists R, B and K by the
above parametrization, the endpoints of each component of w(0) move closer and closer in
time, eventually attaining the configuration of the closed borromean rings, namely w(1). The
coefficients of the Jones polynomial change with the deformation and are continuous functions of
the chain coordinates. The Jones polyomials of the collection of curves from the initial to the final
stage, along with some intermediate steps, are presented in figure 9 and their explicit expressions
are given as follows:

fw(0) = −0.26t−3 + 1.49t−2 + 1.84t−3/2 + 0.16t−1 − 0.38t−1/2

+ 0.72 + 0.67t1/2 − 0.18t − 0.22t3/2 + 0.22t2 − 0.07t3

fw(0.22) = −0.59t−3 + 2.15t−2 + 1.83t−3/2 − 0.81t−1 − 1.02t−1/2

+ 1.39 + 1.59t1/2 − 0.21t − 0.53t3/2 − 0.27t2 − 0.08t3

fw(0.44) = −0.92t−3 + 2.83t−2 + 1.67t−3/2 − 1.86t−1 − 1.53t−1/2

+ 2.27 + 2.39t1/2 − 0.45t − 0.85t3/2 + 0.53t2 − 0.16t3
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the Jones polynomial of an open borromean system in time
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Figure 9. The Jones polynomial of a system of open borromean rings in 3-space as the endpoints move closer in time to
ultimately give rise to the closed borromean rings in 3-space. The coefficients of the Jones polynomial are a continuous function
of the chain coordinates.

fw(0.67) = −0.98t−3 + 2.95t−2 + 1.45t−3/2 − 2.04t−1 − 1.4t−1/2

+ 2.60 + 2.22t1/2 − 0.68t − 0.78t3/2 + 0.86t2 − 0.27t3

fw(0.68) = −0.98t−3 + 2.94t−2 + 1.43t−3/2 − 2.02t−1 − 1.39t−1/2

+ 2.60 + 2.19t1/2 − 0.68t − 0.77t3/2 + 0.88t2 − 0.28t3

fw(0.70) = −0.98t−3 + 2.96t−2 + 1.38t−3/2 − 2.04t−1 − 1.34t−1/2

+ 2.66 + 2.11t1/2 − 0.74t − 0.75t3/2 + 0.96t2 − 0.31t3

fw(0.89) = −0.99t−3 + 2.98t−2 + 0.18t−3/2 − 2.06t−1 − 0.17t−1/2

+ 3.86 + 0.35t1/2 − 1.9t − 0.15t3/2 + 2.74t2 − 0.9t3

fw(1) = −t−3 + 3t−2 − 2t−1 + 4 − 2t + 3t2 − t3

Note that fw(0) is a new polynomial representing the particular configuration of the open
borromean ring in 3-space. This is a polynomial with real coefficients, while fw(1) is the integer
polynomial invariant of the borromean ring. We note that, as the endpoints of the open link tend
to coincide, the coefficients of the powers of t that compose the borromean ring tend to their
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corresponding integer values, while the coefficients of the powers of t that are not part of the
borromean ring, tend to zero.

5. Conclusion
In this manuscript, we introduced the first measure of topological complexity of collections of
open curves in 3-space, based on a novel Jones polynomial. The classical Jones polynomial is a
special case of this novel Jones polynomial. For collections of open curves in 3-space, the novel
Jones polynomial is a polynomial with real coefficients, which are continuous functions of the
curve coordinates and, as the endpoints of the curves tend to coincide, it tends to the integer
coefficient, Jones polynomial invariant of the resulting link.

The definition of the Jones polynomial of open curves in 3-space is based on a novel definition
of the Jones polynomial of linkoids that we introduced in this manuscript as well. This novel
Jones polynomial of linkoids is the only such definition that satisfies the basic property that the
polynomial of a link-type linkoid is that of corresponding link. This polynomial thus generalizes
the Jones polynomial of knotoids, while maintaining its properties. This new definition of the
Jones polynomial of linkoids will enable to properly define other invariants of linkoids as well in
the future.

We demonstrated with numerical examples how the novel Jones polynomial of open curves in
3-space can be useful in practice to characterize multi-chain complexity for the first time. This
enables the rigorous characterization of multi-chain entanglement in many physical systems
obtained either from experiments or simulations, such as polymers and biopolymers, where
entanglement is arguably an important factor of mechanics and function, which has been elusive.
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Appendix A
In §3a, we introduced the definitions of orbits and segment cycles in the context of linkoid states.
In this section, we provide a few supplementary remarks about some interesting properties of
these structures. We also prove the result that the number of segment cycles in a state is bounded
between 1 and n in proposition A.9. Let L denote a linkoid with n components and G be the set of
the endpoints of its components. Note that for any linkoid, there is an associated trivial pairing Γ

and for any state of the linkoid, there exists a pairing combination J.

Remark A.1. (Inverses of pairing combinations and their compositions) For any element a ∈G,
if J(a) = b, then J2(a) = J(b) = a. Therefore, J−1(a) = J(a). Similarly, Γ −1(a) = Γ (a). We combine these
two results to conclude that (Γ ◦ J)−1 = J−1 ◦ Γ −1 = J ◦ Γ . Also, (Γ ◦ J)0 = IdG, i.e. the identity map
on the set G.

RemarkA.2. (Orbit of an endpoint is a non-empty set) ∀a ∈G, OrbJ(a) 
= ∅ since, a= (Γ ◦ J)0(a) ∈
OrbJ(a).

Proposition A.3. For a ∈G, Γ (a) /∈ OrbJ(a).

Proof. Note that OrbJ(a) is a finite set because the set |G| = 2n< ∞. Therefore, ∃m ∈N such that
(Γ ◦ J)m(a) = a.
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Suppose Γ (a) ∈ OrbJ(a). Then, ∃k<m ∈N such that, (Γ ◦ J)k(a) = Γ (a). We know,

(Γ ◦ J)m−1(a) = α for some α 
= a


⇒ J(Γ ◦ J)m−1(a) = Γ (a)


⇒ J(Γ ◦ J)m−1(a) = (Γ ◦ J)k(a)

(A 1)

This restricts k to lie between m − 1 and m. Note that, k cannot be m − 1 since J being a pairing
combination can never map an endpoint to itself. Therefore, there exists no k ∈N that ensures
Γ (a) ∈ OrbJ(a). �

Proposition A.4. Let a, b ∈G where G is the set of all endpoints of an n component linkoid diagram, L.
Let a pairing combination, J be defined on G. If b ∈ OrbJ(a), then OrbJ(b) = OrbJ(a).

Proof. We have, b ∈ OrbJ(a) 
⇒ b= (Γ ◦ J)m(a), where m ∈Z.
Any x ∈ OrbJ(b) can be expressed as x= (Γ ◦ J)p(b) for some p ∈Z. Substituting b, we get x=

(Γ ◦ J)p(Γ ◦ J)m(a) = (Γ ◦ J)p+m(a) 
⇒ x ∈ OrbJ(a).
For any y ∈OrbJ(a), we can express y= (Γ ◦ J)q(a) for some q ∈Z. This expression can be

manipulated to give y= (Γ ◦ J)q−m(Γ ◦ J)m(a) = (Γ ◦ J)q−m(b) 
⇒ y ∈ OrbJ(b).
Therefore, OrbJ(b) = OrbJ(a). �

Proposition A.5. For a pairing combination, J, defined on G, we have Γ (OrbJ(a)) = OrbJ(Γ (a)),
where a ∈G.

Proof. We prove the proposition by showing element-wise containment.
Let,

x ∈ Γ (OrbJ(a))

⇐⇒ x= Γ (Γ ◦ J)m(a) for some m ∈Z

⇐⇒ x= Γ (Γ ◦ J)mΓ (Γ (a))

⇐⇒ x= Γ (Γ (J ◦ Γ )m)(Γ (a))

⇐⇒ x= (J ◦ Γ )m(Γ (a))

⇐⇒ x= (Γ ◦ J)−m(Γ (a))

⇐⇒ x ∈ OrbJ(Γ (a)) (A 2)

Therefore, Γ (OrbJ(a)) = OrbJ(Γ (a)). �

Proposition A.6. Let a, b ∈G. If b ∈ Seg(a), then Seg(b) = Seg(a) and they will correspond to the same
decorated circle.

Proof. We have, b ∈ Seg(a) 
⇒ either b ∈ OrbJ(a) or b ∈ OrbJ(Γ (a)).
If b ∈ OrbJ(a), then we know from proposition A.4 that OrbJ(b) = OrbJ(a)

⇒ Γ (OrbJ(b)) = Γ (OrbJ(a)) 
⇒ OrbJ(Γ (b)) = OrbJ(Γ (a)).
Therefore, Seg(b) = Seg(a).
If b ∈OrbJ(Γ (a)) = Γ (OrbJ(a)), then Γ (b) ∈ OrbJ(a). By proposition A.4,
OrbJ(Γ (b)) = OrbJ(a) 
⇒ Γ (OrbJ(Γ (b))) = Γ (OrbJ(a)) 
⇒ OrbJ(b) = OrbJ(Γ (a)).
Therefore, Seg(b) = Seg(Γ (b)) = Seg(a). �

In the following example, we construct the segment cycle that results due to the state in
figure 10.

Example A.7. Consider the linkoid diagram and the particular state (say S), as shown in
figure 10. Here, the set G of all endpoints is {1, 2, 3, 4, 5, 6}. The pairwise connections among
these endpoints in the state S can be represented by the bijective map, JS : G→G, which can
be represented as a permutation JS = (1 3)(2 6)(4 5). Using this map, the segment cycle of
the endpoint labelled 1 turns out to be the entire set G. Note that this is the only distinct segment
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2 1
3

4

2 1
3

45 65 6

Figure 10. (Left) A linkoid diagramwith three components, l(1,2), l(3,4) and l(5,6). (Right) One of the 64 possible states in the state
sum expansion of the diagram. Clearly, this state is crossingless and contains three disjoint segments, namely (1, 3), (2, 6) and
(4, 5). Note that even though the number of long segments is the same as the number of components of the original linkoid,
there has been a rearrangement in the pairing of endpoints per segment.

1

JS(6) = 2

JS(4) = 5

JS(1) = 3

Γ(3) = 4Γ(5) = 6

Figure 11. Representation of the segment cycle in terms of a decorated circle for the state S in figure 10 with JS =
(1 3)(2 6)(4 5).

cycle that results from the action of JS on G and it can be represented as the decorated circle shown
in figure 11.

Recall that Γ ◦ J ∈ S2n. Thus, 〈Γ ◦ J〉 is a cyclic subgroup of S2n. Also, 〈Γ 〉 is a cyclic subgroup
of S2n. It follows that their direct product, G = 〈Γ ◦ J〉 × 〈Γ 〉, is a subgroup of S2n. The following
remark uses these facts to provide alternative definitions for orbits and segment cycles in terms
of equivalence classes under group actions.

Remark A.8. (Orbits and segment cycles as equivalence classes) The orbit of an endpoint can
be also defined as the equivalence class of the endpoint (as an element of G) under the equivalence
relation R〈Γ ◦J〉 on the set G. Similarly, the segment cycle of an element a ∈G can be defined as the
orbit of a under the action of G as shown below:

Seg(a) = OrbG(a) := {y ∈G|∃(g, h) ∈ G|y= (g, h) 
 a}, (A 3)

where 
 means the group action such that (g, h) 
 a= g(h(a)), the image of a with respect to the
composition function g ◦ h. The quotient set G/RG , where RG is the equivalence relation induced
by G, gives the set of all segment cycles. The cardinality of this set gives the total number of
distinct segment cycles due to the pairing combination J.

Proposition A.9. The number of segment cycles |S|cyc, in a state S, is bounded by: 1 ≤ |S|cyc ≤ n.
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Proof. For a pairing combination JS corresonding to a state S of a linkoid diagram, remark A.8
implies:

G = 〈Γ ◦ JS〉 × 〈Γ 〉
⊇ 〈id〉 × 〈Γ 〉
= {id} × {id, Γ }
= {

(id, id), (id, Γ )
}

:=H. (A 4)

Therefore, the equivalence relation RG on G implies:

OrbG(a) ⊇ OrbH(a)

= {
(id, id) 
 a, (id, Γ ) 
 a

}

= {
id

(
id(a)

)
, id

(
Γ (a)

)}

= {
id

(
id(a)

)
, id

(
Γ (a)

)}

= {
a, Γ (a)

}
for any element a ∈G. (A 5)

Thus, the minimum cardinality of the segment cycle of a point a ∈G is equal to 2. When JS
is the trivial pairing combination Γ , the set G is equipartitioned into n classes (segment cycles).
Therefore, the maximum number of distinct segment cycles that can occur for a linkoid state is n.

Equation (A 5) also implies that OrbG(a) 
= ∅ for all pairing combination JS. Therefore, the total
number of segment cycles corresponding to a state S can never be zero. Note that in the cases
where OrbG(a) =G, the total number of segment cycles corresponding to the state is equal to 1.

Thus, we have the bound: 1 ≤ |S|cyc ≤ n. �
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