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Abstract

We prove a vertex isoperimetric inequality for the n-dimensional Hamming ball
B, (R) of radius R. The isoperimetric inequality is sharp up to a constant factor
for sets that are comparable to B,(R) in size. A key step in the proof is a local
expansion phenomenon in hypercubes.

Mathematics Subject Classifications: 05C35

1 Introduction

Isoperimetric inequalities allow to control the boundary size or surface area of bodies in
terms of their volume. The classical isoperimetric inequality states that in Euclidean spaces,
balls have the smallest surface area per given volume. Such inequalities are fundamental
in geometry, and are deeply related to many areas of mathematics and physics.
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Institute of Technology, and was supported in part by ISF grant nos 409/16, 936/16.
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In this paper, we consider discrete spaces. For a graph G = (V, E) and a subset X
of vertices, the verter boundary' X of X is the set of vertices in V' \ X which have
a neighbor in X. The vertex isoperimetric problems for graphs concern the minimum
possible vertex boundary size of X given its size.

We focus on the vertex isoperimetric problem for Hamming balls. The n-dimensional
Hamming ball B,(r) of radius r is the graph with vertex set B, (r) consists of all subsets
of [n] of size at most 7, and two subsets are adjacent if they differ by exactly one element.

We establish the following approximate isoperimetric inequality for Hamming balls.

Theorem 1 (Isoperimetric inequality for Hamming balls). For every p € (0,1/2), there
is a positive integer ng so that the following holds. For every n = ng, R < n/2, and
A C Bu(R), if

1B (Lon])| < [A] < [Bn(R)| = [Bn(Lon))l

then the vertex boundary of A in the Hamming ball B, (R) satisfies

3/2
p .
0 A > —— Al |B.(R)\ Al).
Theorem 1 is sharp up to a constant factor depending only on p for A that are
comparable to B,(R) in size.

Proposition 2. For every e € (0,1/2) and n, R € N such that en < R < n/2, and for
every o € (g,1 — ¢), there exists M C B,(R) of size |a|B,(R)|| such that

|08, (M| < O: (1/v/n) min(|M], |B,(R) \ M]).

Our results are discrete analogs of an isoperimetric inequality in Gaussian space. To
illustrate the analogy, we recall the following classical isoperimetric inequalities. The
n-dimensional hypercube @, is the n-dimensional Hamming ball B,(n) of radius n.

1. (The Gaussian isoperimetric inequality [ST74, Bor75]) Among all sets of a given
standard Gaussian measure in R”, half-spaces minimize the Gaussian boundary
measure.

2. (Harper’s theorem [Har66]) Among all vertex subsets of @), of the size |B,,(R)|, the
Hamming ball 5,,(R) has the smallest vertex boundary in Q,,.

Harper’s theorem can be seen as a discrete analog of the Gaussian isoperimetric inequality.
Indeed, by viewing a subset of [n] as its indicating vector, the Hamming ball B,,(R) can be
thought of as a half-space whose bounding hyperplane has a normal vector vy := (1,...,1).

We are concerned with the discrete space B, (R). Its Gaussian analog should concern
a half-space H C R" endowed with the conditional Gaussian measure. It is known
that the minimizers of the boundary measure are sets of the form H N M where M is

! Another interpretation of the term “boundary” for graphs is the edge boundary: the set of edges
exiting X.
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‘ Gaussian ‘ Discrete
R" H Qn B,(R)
H HnNM | B,R) ?

Space
Minimizer

Table 1: Gaussian isoperimetric problems and their discrete analogs.

another half-space whose bounding hyperplane is perpendicular to that of H (see [Lee06,
Proposition 5.1]).

Which vertex subsets have the smallest vertex boundary in B,,(R)? From Table 1 the
answer should be a discrete analog of H N M. Theorem 1 and Proposition 2 answer this
question approximately. Indeed one of the examples in Proposition 2 is defined by

M :={X € B,(R): |XNn{1,....n/2}| <|X]/2},

which can be seen as the intersection of the half-space B, (R) with another half-space
whose bounding hyperplane has a normal vector vy := (1,1,...,1,—1,—1,...,—1), where
vy has equal number of 1’s and —1’s. As in the Gaussian analog, the two normal vectors
v1 and vy are orthogonal.

The key ingredient in the proof of Theorem 1 is a local expansion statement for
hypercubes concerning the lower shadow 9, A and the upper shadow 9} A of A C S, (r)
in @),, defined by

o, A= (0, NS, (r—1) and 9 A:= (0, A)NS,(r+1).

To put it in context, we recall the normalized matching property of hypercubes, which can
be proved by a simple double counting argument.

Proposition 3 (Normalized matching property). Suppose r and s are two positive integers
andn =r+s. For every A C S,(r), its lower and upper shadows satisfy

0, Al >

T1|A| and |0 Al > —— | A O

s+ r+1

Although Proposition 3 is much weaker than the Kruskal-Katona theorem [Kru63,
Kat68] or a weak form due to Lovéasz [Lov93, Ex. 13.31(b)], the normalized matching
property is essentially sharp. For example, the lower shadow of Ay := {X € S, (r): 1 € X}
has size = | Ay, and the upper shadow of A; := {X € S,(r): 1 € X} has size * |A,|.

The two sets Ay and A; are very different. It is natural to ask if the two inequalities
in Proposition 3 can be essentially sharp for the same A. Certainly, when A = @ or
A = S, (1), equalities hold for both inequalities. However, we dash the hopes of a non-
trivial set that behaves like both A, and A;. We abbreviate dg, by 0, throughout the
article.

Theorem 4 (Local expansion). Suppose r,s are two positive integers and n = r + s. For
every A C S, (r) of size oc(:f), the vertex boundary of A in Q,, satisfies

0, A] > (Sil+ri1)|¢4|+\/ga(l—a)<7;>. (1)
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Remark 5. This phenomenon is reminiscent in the sum-product theorem of Bourgain,
Katz and Tao [BKT04]. Given a subset A of a finite field F,, the sum set A+ A =
{a+0b: a,b € A} could have size comparable to A if A behaves like an arithmetic pro-
gression, and the product set A- A = {a-b: a,b € A} could have size comparable to A
if A behaves like a geometric progression. However, the sum-product theorem indicates
that a “non-trivial” A cannot simultaneously behave like an arithmetic progression and a
geometric progression.

Our proof of Theorem 4, given in Section 3, is inspired by the work of Christofides,
Ellis and Keevash [CEK13]. They established a vertex isoperimetric inequality for the
graph S, (r) with the vertex set S, (r), where two subsets are adjacent if their symmetric
difference has size two. Their inequality is an approximate version of a folklore conjecture
[BL04, Conjecture 1] reported by Bollobéds and Leader. Using a construction in [CEK13],
we show that Theorem 4 is sharp for r;s > en up to a constant factor depending only on
€ and a.

Proposition 6. For every e € (0,1/2) and n,r,s € N and r,s > rqg such thatn =r + s
and r,s > en, and for every « € [0,1], there exists C C S, (r) of size ()] such that

r S

el < (g )0 v (1),

2 Isoperimetric inequality for Hamming balls

We need the following simple estimate of |S,,(r)| in terms of |B,(r)|. We postpone its
proof to Appendix A

Lemma 7. For every 0 < r <n,

1S(r)|  |Salr+ 1
Bu(r)| ~ [Bu(r + 1)1

If in addition n > 3 and r < n/2, then
Sn(r)| = [Bn(r)] /v/n.

The next technical lemma readily gives a lower bound on the vertex boundary in
Hamming balls.

~—

\Y

Lemma 8. For every n, R € N such that R < n, and every nonempty A C B,(R), set
£ i ro:=min{r < R: |B,(r)| > ¢|Al}, c:=1 !
= Tg:= < R: |B, > ) =1— .
1Bu(R)|/|A] — €

2n
If n > 80 and R < n — roy, then the vertex boundary of A in the Hamming ball B,(R)
satisfies

2¢./r
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Proof. We may assume that ry > 1 and ¢ > 0; otherwise the vertex isoperimetric inequality
would become trivial. Because ro < R < n — rg, we know that R > 1 and

ro < /2. (2)

By our choice of ry, we get
[Bn(ro — 1] < e] Al (3)

Our goal is prove

R
2
S bz 2V gy, @

5
r=0

where

by .= |0, ANS,(r)] for 0 <r < R.

We shall analyze the distribution of A under the partition B,(R) = U™, S.(r). To that
end, we set A, .= ANS,(r) for 0 <r < R.

Claim 1. If |Ag| = (1 — 1.94¢) | A|, then (4) holds.
Proof of Claim 1. From Proposition 3, we know that
R

_ St
‘aﬂAR‘ = n—R+1 |AR|7
which implies that
bt > |05 An| — [Anoal > —— | Azl — (|4 - | A)
" n—R+1
n+1 n+1
__nT Al [ (1 —1.948) — 1 .
n—R%—l‘AR, Al (n—R+1( 94¢) )‘A’

Using ¢ = R/(2n) and the assumptions that n > 3 and R > 1, we can simplify the
coefficient of | 4| above as follows:

n+1 on —1.94(n+1)  0.06n— 1.94
— (1 =-194¢) -1 = =
n—R—i—l( 94e) n—R+1 ¢ n—R—i—l8

Because n > 80, one can check that

0.06n — 1.94 S 0.06n — 1.94 S V2n
n—R+1 = n ~ 5n’

which implies that

R

V2 (2) 2,/

S b2 b > T A > 20 . 0
e on 5Y0)
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Because of Claim 1, hereafter we only consider the case that
[Agr| < (1 —1.94¢) | A]. ()
In particular (5) implies that |B,(R —1)| > |A| — | Agr| > €|A|, and so
1<ro<R-1

Claim 2. At least one of the following holds:

R-1
Z |, — ai1| = 4e/7, (6a)
r=r0

a, <1—-3¢/7, forrg<r<R-1, (6Db)

where the density of A, is defined by «,. := |A,| / [S.(r)].

Proof of Claim 2. For the sake of contradiction assume that neither (6a) nor (6b) holds.
The negation of (6a) implies that a,v — a, < 4¢/7 for all g < r,7’ < R. The negation of
(6b) means that «,» > 1 — 3¢/7 for some rq < ' < R — 1. Therefore

ap > ap —4c/T>1—¢, forrog<r<R,

which implies that

(3) 1
A . |Sp(r)] > (1 —¢) (|IBu(R)| — |Bu(ro—1)]) = 1—c<
Al > ;m |Sn(r)] ) (1Bn(R)| = |Bu(ro — 1)]) BB/ IA ==
contradicting the definition of c. ]

The proof proceeds by analyzing two different scenarios arising from (6a) and (6b) —
the former deals with sets A, whose densities are not equally distributed, whereas the
latter deals with sets A, whose densities are not very close to 1.

Case 1. Suppose (6a) holds. For every ry < r < R, since R < n — rg, we know that
1Sy ()| = |Sn(ro)]- Since ro < R < n—rg, and in particular 7o < n/2, and the assumption
that n > 3, Lemma 7 gives |S,(ro)| = |Bn(ro)| /v/n. Because |B,(ro)| > €|A|, we know
that

\/2 7

Sa(r)] = €| A /\/_ fo e|A| > \/_ e|lAl, forry<r<R.
By Proposition 3, for every 0 < r < R — 1, we have

r+1

by = [0, Aria| = | A] > IAr+1! A = (i1 = ) [Su(r)]

7°+1 / ‘8+A } ‘ArJrl‘ 2

r| — ‘Ar+1’ = (ar - ar+1) ’Sn<7n + 1)’ .
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Combining the last three inequalities, for every ro < r < R — 1, we obtain

7/
r05|.A|.
om

maX(bra br—l—l) 2 |a7" - ar—i—ll

Summing over r implies (4):

R R—1
1 7 ) 2¢
> bz 5 Y il o) > (Dar ar+1|) ATV A IRV

r=rQ

T=T0

Case 2. Suppose (6b) holds. By Proposition 3, we know that

for0<r<R-1

. :‘8;Ar|—;].4r\20, for 1 <r <R.
n—r+1

Using 4" and 0,7, we can estimate b, and b, 1 more precisely:

_ r+1
b, > ‘8n44r+1}_|-’47"|_ n— ‘AT+1’+ 7"+1 “AT’7
7“ / 8+-’4 -’4-7“ - - Ar )
o> [0FA] = M| = 2 A
which implies for 0 < r < R — 1 that
n—r r+1 n—r r+1

b, +

- +
bro1 2 ——0ny + — =0,

Summing over rp — 1 < r < R — 1, we obtain

& i G = on-r r+1
b, > b, ) "
IILEIDY +Z L e
r=0 r=ro—1 =70 r=ro—1
R-1 R-1
n—r r+1 n—r+1 r+1
> —0, of > 0, o
R R
r=rg— r=rg

From Theorem 4, we know that

(6b) 3¢ n
- + > " q_ > = /- )
02 [ (e AL S s A

For ro <r < R — 1, because R < n — ry, we obtain

n—r+1_+r+1+ . n—r r
n n
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Therefore we obtain

R
3¢
UL SlFHE
r=0 =70
which implies (4) through the following fact:
— (35)
S AL = Al — [ Ag| — [Balro — 1)] > 0.94¢ |A]. O

r=rg

Proof of Theorem 1. Suppose p € (0,1/2), R <n/2 and A C B, (R) such that

1Bu(Lpon])| < A < |Bu(R)| — |Ba(Lon))] - (7)
We break the proof into two cases.

Case 1. Suppose |A| < |B,(R)| /2. We would like to apply Lemma 8 to A. Recall the
definitions of ¢, ry and ¢ in Lemma 8:

1
Bn(R)| /Al — ¢

e:=R/(2n), ro:=min{r < R: |B,(r)| ><c|A|}, c:=1-

Because R < n/2, we have € € (0,1/4), and so
1 3

2-1/4 T

c>1-—

Moreover, the assumption (7) implies that |B,(R)| = 2 |B,(|pn|)|. Hence R > pn and
e > p/3.

Let r; be a positive integer to be chosen later. By Lemma 7, we have

p p (ISlenDl \"
141> 218Ul > & (o ) g ) -

> 2(122) Bl .

Because p € (0,1/2), for some r; depending only on p, we have

elAl = |Bu(lpn) —r1)]-

Therefore rq > |pn| — r1. For n > ngy, where ng depends only on p, Lemma 8 yields

_ 3/2
|05, (r)A| = —£€|A\ 6—“”3 LlA =L

> 1577 Al
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Case 2. Suppose |A| > |B,(R)| /2. Set
A¢:=B,(R)\ A and A :=A°\9,A.

We would like to apply Lemma 8 to A’. The parameters in Lemma 8 are

1
e:=R/(2n), ry:=min{r < R: |B,(r)|>e|Al}, :=1- )

Note that |A'| < |A°| < [B,(R)|/2. In this case,
1 3

T2-1/4 T

d>1

We may assume that |0p,(r)A| < |.A°| /2, because otherwise we are done. Thus

/ (& 1 C 1
A = 1A% = [0, A] > 5 1A = S(BA(R) = |A) > 5 [BalLpn])].

N | —

Similarly to Case 1, r{, > |pn| — rq for some 75 depending only on p. Lemma 8 yields

2¢ \/h 6 \/|pn] —rap 2 p¥2—0(/n) , .
|05, A'| > %~ e | A w3l = (A ommAl)
Observe that 0, (r) A’ C 05, (r)A. Indeed, if v € 0p,(r)A’ then v ¢ A" U A which implies
v € 0, (r)A. Thus

> Y-
35

2 03/2 B 0(1/71) c
}5’Bn(R)A| = gT (’A ’ - |aBn(R)AD :

For n > ng, where ny depends only on p, we can rewrite the above

1 3p3/2 _ O(l/n) |Ac| - p3/2
1+ O(1/y/n) 35 NG -

|aBn(R)A| 2 18\/5

|A°) . O

3 Local expansion estimate

Our proof of Theorem 4 is by induction, and its outline is similar to the proof in [CEK13].
However ours differs in one key aspect — we need to choose “where to apply induction”,
whereas in [CEK13] this was immaterial. Besides there are several other technical difficulties
we need to overcome.

We shall utilize the following criterion for two interlacing real-rooted quadratic polyno-
mials.

Proposition 9. Let p;(z) = 2+ Byz+C) and py(z) = 2>+ Box+Cy be two monic quadratic
polynomials with real coefficients. Suppose p;(x) has two distinct real roots x; < xj for
1 € {1,2} ]f 171_ < [EQ_, JZT < l’;— and (Cl — 02)2 + (Bl — Bg)(Bng — BQCl) < 0, then
T, <axf.
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Proof. Notice that py(x) = pa(x) at & = x¢ := —(C1 —Cs)/(B1— Bs). Since p1(xo) = pa(xo)
and

B C1 —Cy 2 Ci1 —Cy B (Cl — 02)2 + (Bl — Bg)(Bng — BQCl)
p1($0)_<Bl—B2> _B1<Bl—Bg>+Cl_ (Br = By)?

we know that z;, < x¢ < z7. O

<0,

Proof of Theorem 4. Without loss of generality, we assume
a:=[A[/[Bu(r)| € (0,1);

because (1) would follow from Proposition 3 immediately when o € {0,1}. We may
also assume that r < s, since Theorem 4 is symmetric with respect to r and s. Indeed,
if we replace A C S,(r) by A" = {[n]\ X: X € A} C S,(n — r), then |A] = |A'| and
|0, Al = |0, A’|, while the right hand side of (1) is invariant under this replacement.

For the r = 1 base case, we know 0, A and 9;" A precisely:

0-A=8,(0) and 9FA={X €8,(2): XN (UA) %} .

Estimate |0,.A| as follows:

s T n n n—an n—1 1
|a”“4’_(r+1+s+1)|“4|:(0)+(2>_( p >_( 2 +E)Om

=(1-a) (%nQ—i—l) > (1—04)2\/gn2 \/5(1—04)04712 n 1a(1—a)n.

n —

For the inductive step, let » > 2. We first choose where to apply induction. Since each
set in A has size 7, by the pigeonhole principle, some element of [n] appears in at least

TAl=~- a(:) = a(::ll) sets of A. Without loss of generality, we may assume that n is

this element. Decompose the projection of A onto [n — 1] into two families:
Ay ={XCn-1:XeA} and A ={XC[n-1]: XU{n} e A}.

Thus, Ay C Sp1(r), A1 € S,a(r — 1), and |A] > a("~]). We set some notation.

-1 -1
aO;:|A0|/(”r ) and o ::|A1|/(:L_1).

As |A| = [Ag| + | A, we have a(") = ap(".") + a1 ("_}), which implies

Notation. Set

s r
a=—ag+ —a. (8)
n n

Since |A;| > a(:fj), we know that oy > «, and hence oy < o < aq. Set

r = 01 — . (9)

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(1) (2022), #P1.15 10



Because 0 < ag < a7 < 1, we know that
n
0<z<z", wherez":=—(1-a).
s
The following constants arise from the induction hypothesis.

n—1 n—1 ; S T S0
C .= = _— = — =
r(s—1) (r—1)s’ r+1 s+1

It is easy to check:

c<cy <. (10)

Two estimations. By the induction hypothesis, we estimate the vertex boundary of Ajg:

(")

e () gy ooy
_ (7‘:1 + g) a0 + coao(1 - ag) (11)

S n r S t n (1 )s
= a——a Cox —«
r+1 s+1 0 0 070 i

Similarly, we estimate the vertex boundary of A;:
’anflAl ‘
Now, we can bound |0,.A| from below in two ways:

00 Al = [0p-1Ao| + [On-1A4], (13a)
|00 A] = (051 AL + |01 Ao | + | A] .- (13b)

S r r t r
> 1-— . 12
<r+1+s+1) a1+na1+cla1( al)n ( )

On the one hand, (13a) holds because
Op 1A C{X €0, A:ng X} and {XU{n}:Xe€d, 1 A}C{X€d,A:neX}.
On the other hand, (13b) holds because

{Xu{n}: Xe€o,1 A} C{X €0, A:ne X},

O (A C{XedfA:ing X}, and A C{Xe€d, AindX}.

n

Combining (13a), (11) and (12), we obtain the first estimation:

|0, Al s r (s r ) t s r
> —(oq — 1—ag)— 1—ay)—
(2) 1 + s 1 Qo + S + n(Oq ap) + cov( aO)n + o ( ozl)n

1
&9 (7" Tt 1) ot~ [” + eoao(l = ao)s + cran (1 — ar)r|. (14)
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From Proposition 3, we get

—1 s—1s n
or10] > o Mol = r+1ﬁa°(r)’

which together with (13b) and (12) yields the second estimation:

S S n T r +t n (1 )r+3—15 +7“
> a a cla -« —Q «Q
r+1 s+1 ! ! 1= Y —I—lno not

(&

To simplify notation, denote by L;(x) and Ly(z) the expressions in the last brackets of
(14) and (15) respectively:

|On Al

(")

t+r T
> — O —|— Oél + —(Oél — Oé()) —|—ClO[1(1 — O[1>—
n n

(8,9)

r 1
(r+1+3+1)a+ﬁ{(t+r)ﬂf+01a1(1—0‘1)r - (15)

Ll(I) =txr+ SCQOéo(l — Oé()) + 7”010[1(1 — Oél),
LQ(I’) = (t + T) T + 7’61041(1 — Oél).

It suffices to show that for all & € (0,1) and z € [0, 2*],
max(Li(x), Ly(z)) = nea(l — a) =: Q.

Verification. Using (8) and (9), we can express ap, @ in terms of a and z:

ag = ap(x) = a — "z and a; = ap(x) = a+ 2. (16)
n n

Thus we can view Ly and Ls as quadratic functions of x with coefficients determined by
r,s and a:

Li(z) = tx + scg (a—£x> <l—a+zx)+rcl <a+£x> <1—a—£x>,
n n n

Ly(x) = (t+7)x+rc (a%—%x) <1—a—%x).

We first study the evaluations of L;(x) at z = 0 and = = z* respectively. Observe that

Ly(0) = scpar(l — @) + reya(1l — ) (g) (r+s)ca(l —a) =Q.

If Ly (x*) > Q, we are done because the leading coefficient of L(x) is —r?scy/n* —rs®cy /n?,
which is negative, and so L;(z) > @ for x € [0, z*]. Hereafter we may assume that

Claim 1. If Li(2*) < @, then oo < (t +r)/(sc).
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Proof of Claim 1. Because ag(2*) = a — £(1 — ) and a;(z*) = 1, we have

Li(z")—Q =t <Z(1 - 04)> + s¢o (a - 2(1 — a)) (1 —a+ T(l - a)) —nca(l — a),

s
which after multiplying s/(n(1 — «)) equals:
t+ co(na —r) — sca = (neg — sc)a — (reg — t).
Because ncy — sc = nc — sc = rc > 0, from the last inequality above, we know that

rcg —t
oa << ——.
ncy — Sc

The claim is implied by the following inequality involving constants determined by r and

s only.
rcg —t t+r
< .

(17)

ncy — Sc sc

We carry out the routine verification of (17) in Appendix B. L]

Next we study the evaluations of Ly(x) and the following variation of Lo(x) at o =0
and z = x™:

Ly(z):=({t+r)z+rcag(l —aq) = (t+7r)z+7rc (oz+%:c> (1 —a— %:{;) :

Using the fact that 0 < ay(z) < 1 for z € [0, 2*], we observe that

Ly(x) > Ly (z) for z € |0,z
Using the fact that a;(2*) = 1 and Claim 1, we observe that
Ly(x™) =Ly (2") = (t+r)a” = (t + 7“)%(1 —a) >nea(l —a) =Q.

Because the leading coefficient of Ly(z) is —rcs?/n?, which is negative, we may assume
that

Ly(0) < Q.

Claim 2. There exist two roots 7 and x] of L(x) = Ly(z) such that 7 <0 < z] < x*,
and there exist two roots z; and x5 of Ly (z) = Q such that 0 < 2; < 2* < x7, and
moreover T, < z; (see Figure 1).

Proof of Claim 2. Note that L,(z) — Lo(x) is a quadratic polynomial in z with leading
coefficient —r%sy/n?, which is negative, and moreover L;(0) > Ly(0) and Ly(z*) < Ly(z*).
We know that L;(z) — Ly(z) has two roots z; and z] such that z; < 0 < z{ < z*. Note
that the leading coefficient of L, (z) — @Q is —rs?c/n?, which is negative, and moreover
Ly (0) < Q < Ly (x*). We know that L, () — Q has two roots x; and zj such that
0<zy <a*<u1j.
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n
Pi(z) = " (Li(x) — Lo()) = 2° + Byx — (4,
n® ,__ )
Py(z) __E(Lz(ﬁ)_Q) = 1" — By + (b,
where
By = (1 —2a)+ oo (1-a)
Ly “ rscy’ 1= &)
2 t 2
By = 2(1—2@)4—L:_T), Cy = “a(l - a).
s rsic rs

To prove x, < x7, by Proposition 9, it suffices to check
(Ol + 02)2 < (B1 + BQ)(BQCl — Bng),

which is equivalent to the following inequalities:

<n2 + "2>2a2(1 —a)?< (Tﬂ(l Cogy 4 L +T)> (n4(t+r) " ) a(l - ),

r2  rs rs rSsco rs?c r3s2c r2s2¢q

which after multiplying both sides by r*s3/(n%a(1 — «)) is equivalent to:

t 1 t 1
foz(l—oz)< (1—2a—l— +r+_)( —Hn——).

r sc Co re Co

We have successfully eliminated x and reduced the problem to a quadratic inequality

of a:
t 1 t 1 t 1
—fa2+2(i+ +r——)o¢—(1+ +T+—)(+r——><07
T 2r rc Co sc Co rc Co
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which is ensured if its discriminant is negative. Finally, we note that the negativity of the
discriminant is equivalent to

s t+r 1\? s t+r 1 t+r 1
(—+ ——> <—<1+ +—)( ——). (18)
2r rc Co T sc Co rc Co

We carry out the routine verification of (18) in Appendix B. ]

Recall that Lo(x) > Ly (z) for x € [0,2*]. In particular Lo(zy) > Lj (z5) = Q,
which implies that Lo(zy) > @ for x € [z, ,2*] by the concavity of Ly(z). Particularly
Ly(zf) = Ly (x]) > @, which implies that L,(x) > Q for z € [0, z]] by the concavity of
Ly(z). Since z; < z; from Claim 2, we get the desired inequality max(L;(z), La(z)) > Q
for all € [0, z*] for the inductive step. O

4 Sharpness

A random variable H is said to have the hypergeometric distribution with parameters
r,m,n, written as H ~ $)(r;m, n), if its probability mass function is given by

Pr(H—k):{(?)(’i_?)/(’Z) k= 0,1,

0 otherwise.

We need the following simple fact about hypergeometric distribution. We shall use the
inequality (*") > 2%™/(2y/m) (see, for example, [MNO09, Proposition 3.6.2] for a proof).

Proposition 10. If H ~ $(r; |[n/2],n), then for all k € N,

Pr(H:k)go( L)

r(n—r)

Proof. Put m := |n/2|. Using (7) < (Ln%J) = O(2"/4/n), we compute

= ()T ()~ (G <o(5220) o

Now we are ready to prove Propositions 2 and 6.

Proof of Proposition 2. Given ¢ € (0,1/2) and « € (¢,1 — ). Consider n, R € N such
that en < R <n/2. Set Y :={1,...,[n/2]}, and for all integers k, put

C(k) == {X € Bu(R): |[XNY|<|X|/2+Fk}.

Because C(k) = @ for k < —R/2, and C(k) = B, (R) for k > R/2, we can take M such
that C(k — 1) € M C C(k), for some integer k, and |M| = |« |B,(R)||. Note that

O, M C {X € Bo(R): |XNY|—[|X|/2] € {k.k+1}}.
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Thus we estimate the size of dp,(r) M by

|8BH(R)M‘ < ZPI‘(H,« — LT‘/2J c {k, k+ 1}) (Z)

r=0
By Proposition 10, we know that, for R/2 < r < R,

n

r(n—r)

Pr(H, — |r/2] € {k:,k:+1}):0( ):06 (1/v/n).

Thus we further estimate the size of dp,(r)M by

where Ry := |R/2]. By Lemma 7, we know that

B,(R)| S IS.(R)] (1)  (n—Ro)n—Ro—1)...(n—R+1)

R
R R—Rg 9 en/2 1
< | ————— < | = < — ] .
“Grm) <) =o(&)

Thus |0p,(mM| < 0= (1/v/n) |By(R)| < O (1/y/n) min(JM], |B,(R) \ M]). a

Proof of Proposition 6. Given ¢ € (0,1/2) and « € [0, 1], consider n,r, s € N such that

[Bu(Ro)| _ ISu(Ro)l _ (o) R(R—1)...(Ro+1)

r+s=n and en<rs<(l—e)n.
Set Y :={1,...,|n/2]} and for all integers k,
Ck)={X eS8, (r): | XnY|<r/2+k}.

Because C(k) = @ for k < —r/2, and C(k) = §,(r) for k > r/2, we can take C such that
C(k—1) CC CC(k), for some integer k, and |C| = [« |S.(r)|]. Set

CH={XeS,(r+1): [XNY|<r/2+k—1}.

Because 0, CT™ C C(k — 1) C C, Proposition 3 gives that
s
r+1

| <« == joret| < = lel

Note that
8:{C\C+ C{X eSS, (r+1): | XNnY|—=|r/2| e{k,k+1}}.

The right hand side of the above has size

Pr(Hyp € {[r/2] + K, |r/2] + k+1}) <r Z 1), where H, 1 ~ 9(r + 1;[n/2],n).
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Thus by Proposition 10, we can estimate |0;7C| as follows:

prel <l o (=) (10) <raeo-avm ()

The lower shadow of C can be estimated similarly:

0, ¢C| < s+L1 IC|+ O, (1/v/n) (:) O
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A  Proof of Lemma 7

Proof of Lemma 7. Observe that for every k£ < r, we have

(Z) _k+1 n—r (kil) < (kil)

[T A CH R EH)

r+1 r+1

which implies that

[Su(r)| o [Snll1/2])]
1Ba(r)] ~ IBa(ln/2])

Case: n is even. We know that

Sullof2 = () and B2 =2 5 ().

Since (n%) > 2"/(v/2n) and n > 3, we get

[Sn((n/2])] 1 1 1

Bu((n/2)| ~ 27 (7) + 127 Va2t 1j2” i

Case: n is odd. We know that

Sullof2Dl = (o, "y )t IBalof2D] =2

Since ((n—q)/Z) = %((n’r{)lm) >2"/1/2(n+1) and n > 3, we get

Sn([n/2])] ((n—q)/z) S 2 1

Bu(n2)l 2 amiD) - v

B Verification of (17) and (18)

Proof of (17). Eliminating the denominators, (17) is equivalent to the following inequalities
sc(reo —t) < (t+7r)(ncg — sc) <= rsc(co+ 1) < (t+ r)nco.
Recall ¢ < ¢ from (10). Because ¢(co + 1) < co(c+ 1), it suffices to check

1 1 r
rs(c+ 1)< (t+rn <= e<t|-+-)+-.
ros s
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Recall that

n 1 1 S T
c = —_— = -4+ - and t= - 20
rs r S r+1 s4+1

It suffices to check the following is non-negative:

s r 11y r\* /1 1
- S+-)+-) (=42,
r+1 s+1 r oS s ro s
which after multiplying r?(r + 1)2s(s + 1)? equals

(s —r)°
+(7r +2)(s —7)*
+(r + 172+ 9r + 1) (s —7)?
+r(4r® + 17 + 107 + 1) (s — r)?
+r(r+1)%(r* + 3r* = 3r — 1)(s — 7)
+(r = 2)r*(r + 1),

which clearly is non-negative for » > 2 and s > r.

Proof of (18). After expanding both sides a bit, (18) is equivalent to

52 t+r 1 s\ [t+r 1 s rt+r) s t+r 1
— 4 —— 42 ——)<(2+ +— - =
4r2 rc cg T re ¢ r c o rc o

52 INt+r r+s\ [(t+r 1
= —<((r+- + - =,
4r2 r c rco re o

which after multiplying both sides by 7? and expanding the right hand side is equivalent to

2

s (r+10)(t+r)?* (s=r){t+r) rr+s)

< + - —

4 c? cco CO
(FPtt4r)(t+r) N s(t+7) N rt+r) (1 1Y r(rts)
n c2 cco c c 2

Using ¢ < ¢o from (10), it suffices to check the following is positive:

(rPt+t+r)t+r) siE+r) rr+s)
c? - 2

(r2t+t+r)(t+7°)+st—r2 s

2 2 Vi
@ cg 4

s
2 4
which after substituting ¢ = (r +s)/(rs) and ¢2 = (r + s — 1)/(r(s — 1)) equals

(r’t+t+7r)(t+r)rs N (st —1?)r(s —1) B 52

r+s r+s—1 4’
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which after multiplying 4(r + 1)%(s + 1)*(r + s)(r + s — 1) equals

(4r® +3r +6r —1)(s — r)°
+(4r° + 32r +32r% + 5177 — 2r — 1)(s — 1)°
+(247% 4 1007° 4 122r* 4 160r° 4 3r* — 14r 4 1)(s — r)*
+(52r" 4 152r% 4 208r° 4 232r* — 12r® — 597 — 21 + 1)(s — 1)?
+r (4877 + 11275 + 163r° + 156r* — 4813 — 96r% — 117 + 4)(s — r)?
+r?(r + 1)3(16r° 4 32r% — 231 — 14r 4+ 5)(s — 1)
+2r8(r + 1)4,

which clearly is positive for » > 2 and s > r.
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