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RAINBOW ODD CYCLES
⇤
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Abstract. We prove that every family of (not necessarily distinct) odd cycles O1, . . . , O2dn/2e�1
in the complete graph Kn on n vertices has a rainbow odd cycle (that is, a set of edges from distinct
Oi’s, forming an odd cycle). As part of the proof, we characterize those families of n odd cycles in
Kn+1 that do not have any rainbow odd cycle. We also characterize those families of n cycles in
Kn+1, as well as those of n edge-disjoint nonempty subgraphs of Kn+1, without any rainbow cycle.
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1. Introduction. Given a family E of sets, an E-rainbow set is a set R ✓ [E

with an injection � : R ! E such that e 2 �(e) for all e 2 R. The term rainbow set
originates in viewing every member of E as a color and every e 2 R as colored by
�(e). When we speak of a rainbow set, we often keep in mind the injection �, and we
say that �(e) 2 E is represented by e in R.

Remark. Throughout we use the term “family” in the sense of “multiset” allowing
repeated members.

A recurring theme in the study of rainbow sets is finding an E-rainbow set satisfy-
ing a property P, assuming that every member of E satisfies P and that E is large. A
classic result of this type is Bárány’s colorful Carathéodory theorem [5]: every family
of n + 1 subsets of Rn, each containing a point a in its convex hull, has a rainbow
set satisfying the same property. An application mentioned in [5] is a theorem due
to Frank and Lovász on rainbow directed cycles. Other results of this type are about
rainbow matchings. For example, improving a theorem of Drisko [7], Aharoni and
Berger [1, Theorem 4.1] proved that 2n� 1 matchings of size n in any bipartite graph
have a rainbow matching of size n. In [4] the examples showing sharpness of this
result were characterized, and in [3] the theorem was given a topological proof. A
more general context is that of independent sets in graphs; see, e.g., [2, 10, 9].
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In this paper we study conditions for the existence of rainbow cycles, with or
without a parity constraint on their lengths. Hereafter a cycle is viewed as a set of
edges. Our main result is the following.

Theorem 1.1. Every family of 2dn/2e � 1 odd cycles in the complete graph Kn

on n vertices has a rainbow odd cycle.

Put more explicitly, the theorem states that when n is odd, every family of n
odd cycles in Kn has a rainbow odd cycle; when n is even n � 1 odd cycles su�ce.
The case of n odd is relatively easy, and the main e↵ort goes into the even case. The
proof is done in section 2 via a characterization of families of n� 1 odd cycles in Kn

without any rainbow odd cycle. In particular, when n is even, n� 1 odd cycles in Kn

cannot form the characterized family.
In section 3 we deal with rainbow cycles of general length. The fact that n cycles in

Kn have a rainbow cycle is easy, and the main result is a characterization of families
of n cycles in Kn+1 without any rainbow cycle. In section 4, we consider rainbow
cycles in edge-disjoint families; our result in this case turns out to be a rediscovery,
with a short proof, of a theorem of [8]. In section 5 we conclude with a generalization
to matroids and a result on rainbow even cycles.

2. Rainbow odd cycles. We start with an observation which yields Theo-
rem 1.1 in the case of n odd.

Proposition 2.1. Every family of n odd cycles in Kn has a rainbow odd cycle.1

Proof. Let R be a maximal rainbow forest. Since R has fewer than n edges, one
of the odd cycles, say O, is not represented in R. By the maximality of R, no edge
in O connects two components of R. Thus O is contained in a connected component
T of R. Since O is of odd length, one of its edges does not obey the bipartition of T .
Adding that edge to T yields a rainbow subgraph that supports an odd cycle.

A Hamiltonian cycle on n vertices repeated n � 1 times shows the sharpness of
Proposition 2.1 only for n odd. This example can be generalized as follows.

Definition 2.2. A family O of cycles is a pruned cactus if all the cycles in O are
identical to a fixed cycle on |O|+ 1 vertices, or O can be partitioned into two pruned
cacti O1,O2 such that [O1 and [O2 share exactly one vertex.2

Given a pruned cactus O, by our recursive definition, one can check that O has
no rainbow cycle, and the underlying graph [O contains exactly |O|+ 1 vertices (see
Figure 1). A key result towards the proof of Theorem 1.1 is that the converse is also
true for O composed of only odd cycles. For technical reasons, we shall switch from
now on to cycles in Kn+1 rather than Kn.

Theorem 2.3. If a family of n odd cycles in Kn+1 has no rainbow odd cycle, then
it is a pruned cactus.

Clearly, the cardinality of a pruned cactus composed solely of odd cycles is even.
Therefore, when n is even, n � 1 odd cycles cannot form a pruned cactus, and so
Theorem 1.1 follows from Theorem 2.3.

For the inductive proof of Theorem 2.3, we need the following technical lemma.

1A reworded version of Proposition 2.1, suggested by the first author, appeared as Problem 3 of
Day 1 in the 12th Romanian Master in Mathematics, RMM 2020.

2A cactus graph is a connected graph in which two cycles have at most one vertex in common.
A pruned cactus O is named after the fact that [O is a 2-edge-connected cactus graph.
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RAINBOW ODD CYCLES 2295

Fig. 1. Underlying graphs of two pruned cacti. The one on the right is composed of odd cycles.

Lemma 2.4. Let O := {O1, . . . , On} be a family of odd cycles in Kn+1 without
any rainbow odd cycle, and denote K := {O1, . . . , Ok}, where k < n. Suppose that Q
is a (k + 1)-vertex subgraph of [K and V ✓ V (Q) such that every pair of vertices in
V can be connected by a K-rainbow even path in Q. Then

(a) No edge in Ok+1, . . . , On has both endpoints in V .
Moreover, let ⇡ be the contraction3 that replaces V (Q) with a single vertex v̄, and
suppose that Pk+1, . . . , Pn are, respectively, subgraphs of Ok+1, . . . , On such that each
Pi avoids the vertices in V (Q) \ V . Denote P̄ := {⇡(Pk+1), . . . ,⇡(Pn)}. Then the
following holds.

(b) There is no P̄-rainbow odd cycle in ⇡(Kn+1).
(c) If P̄ is a pruned cactus of odd cycles, then [ P̄ is spanning in ⇡(Kn+1), and

no Oi \ Pi contains an edge of the form uv with u 62 V (Q) [ V (Pi) and
v 2 V \ V (Pi).

Proof. Note that any edge in Ok+1, . . . , On with both endpoints in V can be
completed to an O-rainbow odd cycle by a K-rainbow even path in Q.

Assume for the sake of contradiction that there is a P̄-rainbow odd cycle C in
⇡(Kn+1). Edges of the form uv̄ after the contraction correspond to edges of the form
uv with v 2 V before the contraction. Hence, prior to the contraction, C was either
itself an (O \K)-rainbow odd cycle (which does not exist) or an (O \K)-rainbow odd
path between a pair of vertices in V , which can be completed to an O-rainbow odd
cycle by a K-rainbow even path in Q.

To prove (c), suppose that the family P̄ is a pruned cactus of odd cycles. Notice
that ⇡(Kn+1) has n+ 1� |V (Q)|+ 1 = n� k + 1 vertices, and the underlying graph
[ P̄ of the pruned cactus P̄ has |P̄| + 1 = n � k + 1 vertices. Thus [ P̄ is spanning
in ⇡(Kn+1), and so v̄ is on [ P̄. Finally, suppose on the contrary that some Oi \ Pi

contains an edge uv with u 62 V (Q) [ V (Pi) and v 2 V \ V (Pi). Since v̄ = ⇡(v) is
on ⇡(Pi) and u is not on ⇡(Pi), one can find a P̄-rainbow even path from v̄ to u, in
which ⇡(Pi) is not represented. This P̄-rainbow even path can then be completed by

3A contraction operation removes all edges between any pair of contracted vertices.
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2296 R. AHARONI, J. BRIGGS, R. HOLZMAN, AND Z. JIANG

the edge ⇡(uv) = uv̄ to a {⇡(Pk+1), . . . ,⇡(Pi�1),⇡(uv),⇡(Pi+1), . . . ,⇡(Pn)}-rainbow
odd cycle. However this contradicts (b) with uv, which is an edge of Oi that avoids
V (Q) \ V , playing the role of Pi.

The last ingredient is a corollary of Rado’s theorem for matroids [11] that gives
a necessary and su�cient condition for a family of connected subgraphs to have a
rainbow spanning tree.

Theorem 2.5 (Rado’s theorem for matroids). Given a matroid with ground set
E, for every family {E1, . . . , Em} of subsets of E, there exists a rainbow independent
set of size m if and only if rank(EI) � |I| for every I ✓ [m], where EI is shorthand
for

S
i2I Ei.

Corollary 2.6. For every family {E1, . . . , Em} of connected subgraphs (viewed
as edge sets) in Km+1, the family has a rainbow spanning tree if and only if |V (EI)| �
|I|+ 1 for every I ✓ [m].

Proof. The “only if” direction is easy to check. For the “if” direction, it su�ces to
verify the rank inequalities in Rado’s theorem for matroids. Recall that, in a graphic
matroid, rank(E) = |V (E)|� c(E) for every edge set E, where c(E) is the number of
connected components of E. Pick an arbitrary I ✓ [m]. Because each Ei is connected,
we can partition I into sets I1, . . . , Ic, where c := c(EI), such that EI1 , . . . , EIc are
the connected components of EI . Since |V (EIj )| � |Ij |+1 for all j 2 [c], we have the
desired inequality

rank(EI) = |V (EI)|� c(EI) =
cX

j=1

�
|V (EIj )|� 1

�
�

cX

j=1

|Ij | = |I|.

Proof of Theorem 2.3. We do this by induction. The base case n = 2 is trivial.
Suppose n � 3, and let O = {O1, . . . , On} be a family of odd cycles in Kn+1 without
any rainbow odd cycle. We break the inductive step into three cases.

Case 1. There exists a proper subfamily K of O such that |V ([K)|  |K|+ 1.
Since there is no K-rainbow odd cycle, by the induction hypothesis K is a pruned

cactus. By passing to a subfamily of K, we may assume without loss of generality
that K = {O1, . . . , Ok}, for some k < n, and O1, . . . , Ok are identical to a fixed odd
cycle O on k + 1 vertices. Note that every pair of vertices in V (O) can be connected
by a K-rainbow even path in O. By Lemma 2.4(a), for every i 2 {k + 1, . . . , n}, the
arcs of Oi defined by its vertices shared with O are of length � 2. Since Oi is odd,
there exists an odd arc, call it Pi. In case Oi and O are vertex-disjoint, set Pi := Oi.

Let ⇡ be the contraction of V (O) to a single vertex v̄. By our choice of Pi, for
each i > k, ⇡(Pi) is an odd cycle, and so Lemma 2.4(b) and the inductive hypothesis
imply that the family P̄ := {⇡(Pk+1), . . . ,⇡(Pn)} is a pruned cactus.

Claim. For every i > k, Pi = Oi, in other words, Oi and O share at most 1
vertex.

Assume for contradiction that Pi 6= Oi for some i > k. Let uv be an edge in Oi\Pi

with u 62 V (Pi) and v 2 V (Pi). Note in addition that u 62 V (O) by Lemma 2.4(a),
while v 2 V (O), which conflicts with Lemma 2.4(c).

Claim. For every i, j > k, if ⇡(Oi) = ⇡(Oj), then Oi = Oj.

Suppose on the contrary that ⇡(Oi) = ⇡(Oj) and Oi 6= Oj for some i, j > k.
Let vi, vj be, respectively, the vertices of Oi, Oj shared with O. Then there exists an
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RAINBOW ODD CYCLES 2297

{Oi, Oj}-rainbow cherry with endpoints vi, vj and a center not in V (O), which can
be completed to an O-rainbow odd cycle by a K-rainbow odd path in O.

By Lemma 2.4(c), v̄ 2 V ([ P̄), implying that [O is connected. By the last claim,
for i > k, the multiplicity of every Oi in O is equal to the multiplicity of ⇡(Oi) in P̄,
which, by the fact that P̄ is a pruned cactus, is |Oi|� 1. Together, this means that O
is a pruned cactus, as desired.

Case 2. Every odd cycle Oi is Hamiltonian.
Let S be an O-rainbow star of maximum size, say k, and let c be its center.4 With-

out loss of generality, we may assume that the cycles represented in S are O1, . . . , Ok.
We may further assume that the cycles in O are not identical for otherwise O is already
a pruned cactus.

Claim. The size k of S satisfies 3  k < n.

Because the cycles in O are not identical, there is a vertex v in [O of degree at
least 3. A quick argument shows an O-rainbow star of size 3 centered at v, meaning
that k � 3. Negation of the second inequality means that c is connected in S to all
other vertices of the graph. Suppose O1 is represented by cv in S. In the absence of
an O-rainbow triangle, no edge of O1 has both endpoints in V (Kn+1)\{c, v}. Because
|V (Kn+1) \ {c, v}| = n � 1 � 2, it is impossible for O1 to be Hamiltonian given that
cv is already in O1.

Let V be the set of leaves of S. Since O has no rainbow triangle, the cycles
Ok+1, . . . , On do not connect pairs of vertices of V . By the maximality of S, these
cycles enter and exit c through V . Therefore, for every i > k, V partitions Oi into
arcs of length at least two, and at least one of these arcs, call it Pi, is odd and does
not contain c.

Let ⇡ be the contraction that replaces V (S) by a single vertex v̄. As in Case 1,
the family {⇡(Pk+1), . . . ,⇡(Pn)} is a pruned cactus of odd cycles.

Since k � 3, V partitions On into at least 3 arcs, one of which is next to Pn and
does not contain c. Hence On \ Pn contains an edge uv with u 62 V (S) [ V (Pn) and
v 2 V \ V (Pn), which contradicts Lemma 2.4(c).

Case 3. For every proper subfamily K of O, |V ([K)| > |K| + 1, and some Oi is
not Hamiltonian.

Without loss of generality, assume that On does not contain some vertex v. Set
V := V (Kn+1) \ {v}. We apply Corollary 2.6 to the family of subgraphs O1[V ], . . . ,
On�1[V ] induced by V , and obtain an {O1, . . . , On�1}-rainbow tree T that spans V .
Since On is of odd length, one of its edges does not obey the bipartition of T . Adding
that edge to T yields a rainbow subgraph that supports an odd cycle.

3. Rainbow cycles. Here is a cheap bound on the size of the family that ensures
a rainbow set with a certain property.

Proposition 3.1. Given a ground set E and a property P ✓ 2E with ? 62 P that
is closed upwards, every family of m+1 subsets E1, . . . , Em+1 of E with each Ei 2 P

has a rainbow set in P, where

m := max {|F | : F ✓ E and F 62 P} .
Proof. Take R to be a rainbow subset of E not in P of maximum size. Since

R 62 P, |R|  m and some Ei is not represented in R. Because Ei 2 P, Ei 6= ?,
and moreover because P is closed upwards, Ei 6✓ R. Take e 2 Ei \ R and define
R

0 := R [ {e}, which is rainbow. By the maximality of R, we know that R0 2 P.

4A star of size k is a set of k � 2 edges, sharing one vertex that is called the center of the star.
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For rainbow cycles, simply note that a subgraph of Kn without cycles, that is, a
forest, contains at most n� 1 edges.

Proposition 3.2. Every family of n cycles in Kn has a rainbow cycle.

The sharpness of Proposition 3.2 is witnessed by a pruned cactus. But there is a
more general construction showing this.

Definition 3.3. A family O of cycles is a saguaro if the family O is already a
pruned cactus, or the family O can be partitioned into three subfamilies O1, {O} ,O2

such that O1 and O2 are two vertex-disjoint saguaros, and O is an even cycle along
which its vertices alternate between V ([O1) and V ([O2).

One can inductively check that if O is a saguaro, then O has no rainbow cycle,
and |V ([O)| = |O| + 1. We prove that this recursive construction is an exhaustive
characterization of families of n cycles in Kn+1 without any rainbow cycle.

Theorem 3.4. For every family O of n cycles in Kn+1, no rainbow cycle exists
if and only if the family is a saguaro.

Our proof strategy parallels the proof of Theorem 2.3, with a few detours. A
complication arises when an even cycle, after contracting its maximum independent
set, becomes a star. To handle this problem, we shall use the following proposition.

Proposition 3.5. Let v be a vertex of Km+1, and let E := {E1, . . . , Em} be a
family of subgraphs of Km+1, where each Ei is either a star centered at v or a cycle.
Suppose that E has no rainbow cycle, and every star in E is edge-disjoint from all the
other members of E. If E1 is a star, then there are ` cycles in E avoiding v, for some
0 < ` < m, whose union with E1 contains at most `+ 2 vertices.

Proof. Let R be a maximal {E2, . . . , Em}-rainbow tree containing v. We may
assume that such a tree exists, since otherwise E2, . . . , Em are cycles as required.

Without loss of generality, assume that E2, . . . , Ek are represented in R, where
k = |V (R)|. Since E1 is edge-disjoint from Ei for i 6= 1, it is edge-disjoint from R.
Furthermore, since E has no rainbow cycle, R does not contain any leaf of E1. Since
a star has at least two edges, it follows that k  m� 1.

Claim. For every i > k, Ei is a cycle that is vertex-disjoint from R.

The fact that Ei is a cycle follows from the maximality of R and the requirement
that every star in E is edge-disjoint from all other members of E. The disjointness
from R follows from the assumption that E has no rainbow cycle.

Let ` = m � k. By the claim, Ek+1, . . . , Em are the desired ` cycles since their
vertex sets, as well as that of E1, are contained in (V (Km+1) \ V (R)) [ {v}, which is
of size m+ 1� k + 1 = `+ 2.

Unlike in a pruned cactus, not every cycle in a saguaro is repeated more than
once. We say an `-cycle is common in the family if it is repeated exactly `� 1 times.
We shall use the following technical lemma that is analogous to Lemma 2.4.

Lemma 3.6. Let O := {O1, . . . , On} be a family of cycles in Kn+1 without any
rainbow cycle, and denote K := {O1, . . . , Ok}, where k < n. Suppose that Q is a
(k + 1)-vertex subgraph of [K, and V ✓ V (Q) such that every pair of vertices in V

can be connected by a K-rainbow path of length at least 2 in Q. Then
(a) No edge in Ok+1, . . . , On has both endpoints in V .

Moreover, let ⇡ be the contraction that replaces V (Q) by a single vertex v̄, and suppose
Pk+1, . . . , Pn are, respectively, subgraphs of Ok+1, . . . , On such that each Pi avoids the
vertices in V (Q) \ V . Denote P̄ := {⇡(Pk+1), . . . ,⇡(Pn)}. Then the following holds.
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(b) There is no P̄-rainbow cycle in ⇡(Kn+1).
(c) If P̄ is a saguaro of cycles, then [ P̄ is spanning in ⇡(Kn+1). Moreover, for

every ⇡(Pi) that is common in P̄, Oi \ Pi does not contain any edge of the
form uv with u 62 V (Q) [ V (Pi) and v 2 V \ V (Pi).

We leave the proof to the readers as it is similar to that of Lemma 2.4.

Proof of Theorem 3.4. The “if” direction is easy to check. We show the “only
if” direction by induction. The base case n = 2 is trivial. Suppose n � 3, and
O := {O1, . . . , On} is a family of cycles in Kn+1 without any rainbow cycle. We break
the inductive step into three cases.

Case 1. There exists a proper subfamily K of O such that |V ([K)|  |K|+ 1.
LetK be maximal with this property. Without loss of generality,K = {O1, . . . , Ok},

where k := |K| < n. Set V := V ([K). By the induction hypothesis, K is a saguaro.
In particular, as can be observed in any saguaro, |V | = k+1 and every pair of vertices
in V can be connected by a K-rainbow path of length at least 2. For every i > k, by
Lemma 3.6(a), the arcs of Oi defined by its vertices on V are of length at least 2. If
there exists an arc of length � 3, choose one such arc and denote it by Pi. If there is
no such arc, set Pi := Oi. In case Oi avoids V , also set Pi := Oi.

Let ⇡ be the contraction that replaces V by a single vertex v̄. Then ⇡(Pi) is
a cycle, with one possible exception: the vertices of Oi alternate between V and
V (Kn+1) \ V . In the latter case, Pi = Oi and ⇡(Pi) is a star centered at v̄ (with at
least 2 edges).

We next break the current case into two subcases.

Subcase 1.1. For every i > k, ⇡(Pi) is a cycle.
Lemma 3.6(b) and the inductive hypothesis imply that the family P̄ := {⇡(Pk+1),

. . . ,⇡(Pn)} is a saguaro. By Lemma 3.6(c), v̄ 2 V ([ P̄). As can be observed in any
saguaro, there is a common cycle in P̄ that contains v̄. Let this cycle have length `+1,
and assume without loss of generality that it appears in P̄ as ⇡(Pk+1), . . . ,⇡(Pk+`).

Claim. For every i 2 {k + 1, . . . , k + `}, Pi = Oi.

Suppose on the contrary that Pi 6= Oi for some i 2 {k + 1, . . . , k + `}. Then one
of the two edges in Oi, say uv, adjacent to Pi, satisfies u 62 V and v 2 V (Pi) \ V ,
contradicting Lemma 3.6(c).

Since ⇡(Ok+1), . . . ,⇡(Ok+`) are the same cycle of length ` + 1, the union of
O1, . . . , Ok+` contains k+`+1 vertices. By the maximality property of K, it therefore
follows k + ` = n, in other words, ⇡(Ok+1), . . . ,⇡(On) are the same cycle.

Claim. The cycles Ok+1, . . . , On also coincide.

The reason is that if Oi 6= Oj for some i, j > k, then there exists an {Oi, Oj}-
rainbow cherry with endpoints in V that can be completed to an O-rainbow cycle by
a K-rainbow path.

As in the parallel stage of the proof of Theorem 2.3, the last claim implies that
O is a saguaro.

Subcase 1.2. For some i > k, ⇡(Pi) is a star centered at v̄.
Without loss of generality ⇡(Pk+1) is a star centered at v̄. Recall that each

member in P̄ is either a star centered at v̄ or a cycle. Moreover Lemma 3.6(b) implies
that P̄ has no rainbow cycle.

Claim. Every star in P̄ is edge-disjoint from all the other members of P̄.

Indeed, assume that for some i, j > k we have an edge uv̄ shared by ⇡(Pi) and
⇡(Pj), where ⇡(Pi) is a star centered at v̄. Then in Oi the vertex u has two neighbors
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in V and in Oj it has at least one neighbor in V . Hence there is an {Oi, Oj}-rainbow
cherry with endpoints in V and center u, which can be completed to an O-rainbow
cycle by a K-rainbow path.

By Proposition 3.5 it follows that there exist ` cycles in P̄ avoiding v̄, say
⇡(Pk+2), . . . ,⇡(Pk+`+1), whose union with ⇡(Pk+1) contains at most ` + 2 vertices,
one of them being v̄. Note that if ⇡(Pi) is a cycle avoiding v̄, then Pi = Oi. Hence
the union of O1, . . . , Ok+`+1 contains at most (k + 1) + (` + 1) vertices. To recon-
cile this with our choice of K, the only way out is that k + ` + 1 = n and none of
⇡(Pk+2), . . . ,⇡(Pn) contains v̄. Thus all of Ok+2, . . . , On avoid V , and so the union of
these n� k � 1 cycles contains at most n� k vertices. By the induction hypothesis,
the subfamily {Ok+2, . . . , On} is a saguaro of cycles that avoids V . Recall that the
vertices of Ok+1 alternate between V and V (Kn+1) \ V . Therefore O is a saguaro.

Case 2. Every cycle Oi is Hamiltonian.
Let S be an O-rainbow star of maximum size, say k. Without loss of generality,

assume that the cycles represented in S are O1, . . . , Ok. Denote K := {O1, . . . , Ok}.
As in the proof of Theorem 2.3, using the fact that O has no rainbow cycle, we can
deduce that k < n. As there, if k = 2, then all the cycles in O are identical, so we
may assume k � 3.

Let c be the center of S and V the set of its leaves. Notice that every pair of
vertices in V can be connected by a K-rainbow cherry. For an arbitrary i > k, by
Lemma 3.6(a), V is an independent set of Oi, and so k  (n+ 1)/2.

Suppose for a moment that k = (n+ 1)/2. Since n� k = k � 1 � 2, there are at
least 2 cycles in O \K, and there is a vertex u 62 V (S). Note that V partitions both
Ok+1 and Ok+2 into arcs of length 2. The two arcs through u obtained, respectively,
from Ok+1 and Ok+2 yield an {Ok+1, Ok+2}-rainbow cherry with endpoints in V and
center u, which can be completed to an O-rainbow square by a K-rainbow cherry in S.

Therefore k < (n + 1)/2. Now, for every i > k, one of the arcs, call it Pi,
of Oi defined by V is of length at least 3. By the maximality of S, Pi does not
contain c. Let ⇡ be the contraction that replaces V (S) by v̄. Again the family
P̄ := {⇡(Pk+1), . . . ,⇡(Pn)} is a saguaro of cycles. Say ⇡(Pn) is a common cycle in
P̄. Note that On is partitioned into at least 3 arcs by V because |V | = k � 3. Thus
one of the two edges in On, say uv, adjacent to Pn satisfies u 62 V (S) [ V (Pn) and
v 2 V \ V (Pn), which contradicts Lemma 3.6(c).

Case 3. For every proper subfamily K of O, |V ([K)| > |K| + 1, and some Oi is
not Hamiltonian.

The analysis of the last case can be taken almost verbatim from the proof of
Theorem 2.3.

4. Edge-disjoint families. Here we continue to pursue a rainbow cycle, but
make the additional assumption that our family consists of pairwise disjoint sets of
edges. In terms of colors, this amounts to the natural restriction that every edge of
the underlying graph gets just one color.5

For a family E of n disjoint edge sets in Kn, we no longer need to assume that
each set in E is a cycle in order to guarantee a rainbow cycle. The following trivial
observation holds.

5When an edge gets two colors, one may or may not want to consider this a rainbow cycle of
length 2 (a digon). In this paper we consider only cycles of length 3 or more. If digons are allowed,
then the restriction to edge-disjoint families serves to avoid this trivial kind of rainbow cycle.
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Proposition 4.1. Every family of n edge-disjoint nonempty subgraphs of Kn has
a rainbow cycle.

The sharpness of the above is witnessed by a family of single edges forming a
spanning tree. But there is a more general construction showing this.

Definition 4.2. A family E of graphs is a linkleaf if it is an empty family (which
we consider as having a ground set of one vertex), or the family E can be partitioned
into three subfamilies E1, {E},E2 such that E1 and E2 are two (possibly empty) vertex-
disjoint linkleaves, and E is a nonempty bipartite graph with respect to the bipartition
V ([E1), V ([E2).

We prove below that this recursive construction is a characterization of families
of n edge-disjoint nonempty subgraphs of Kn+1 without any rainbow cycle.

Theorem 4.3. For every family E of n edge-disjoint nonempty subgraphs of Kn+1,
no rainbow cycle exists if and only if the family is a linkleaf.

The main part of the proof consists of the following lemma.

Lemma 4.4. Let E be a family of n edge-disjoint nonempty subgraphs of Kn+1,
where n � 1. If E has no rainbow cycle, then E has a monochromatic cut, that is, a
partition V ([E) = V1 [ V2 such that exactly one member of E has an edge (or more)
from V1 to V2.

Proof of Theorem 4.3 assuming Lemma 4.4. The “if” direction can easily be ver-
ified from the construction. For the “only if” direction we use induction. The base
case n = 0 is trivial. Let E be a family of n � 1 edge-disjoint nonempty subgraphs of
Kn+1 without any rainbow cycle. By Lemma 4.4, there exists a partition of V (Kn+1)
into V1, say of size k+ 1, and V2, say of size `+ 1, where k+ ` = n� 1, and a unique
member E of E having an edge or more from V1 to V2. Since E has no rainbow cycle,
by Proposition 4.1, at most k of the subgraphs have an edge or more in V1 and at
most ` of them have an edge or more in V2. Because the total number of members of
E is k + `+ 1, exactly k of them are contained in V1, exactly ` of them are contained
in V2, and E has only edges from V1 to V2. It follows from the induction hypothesis
that E is a linkleaf.

Proof of Lemma 4.4. Assume for the sake of contradiction that the family E :=
{E1, . . . , En} has neither a rainbow cycle nor a monochromatic cut. Pick an arbitrary
edge ei from Ei for each i, and let T be the rainbow set {e1, . . . , en}. Since T contains
no cycle, T must be a rainbow spanning tree.

We form a digraph D with vertex set [n], in which an arrow goes from i to
j, for i 6= j, if some edge of Ej reconnects T \ {ei}. Due to the nonexistence of
monochromatic cuts in the family, for every i, some edge in Ej , for some j 6= i,
reconnects T \ {ei}. Thus the minimum out-degree of D is at least 1.

Without loss of generality, let 1 ! 2 ! · · · ! k ! 1 be a minimum circuit in D.
As such, let fi be an edge in Ei that reconnects T \ {ei�1}, for each i 2 [k], under
the convention that e0 := ek. Write Oi for the unique cycle formed by adding fi to
T . Certainly ei�1 is in Oi, and moreover ei is in Oi as Oi cannot be rainbow. By the
minimality of the circuit, for each i, j 2 [k] with i 6= j and i 6= j�1 (mod k), we have
i 6! j in D, which means that fj does not reconnect T \ {ei}, and so ei 62 Oj .

To summarize, for each i, j 2 [k], ei 2 Oj if and only if i = j or i = j�1 (mod k).
Set O := O1 4 · · ·4Ok, where 4 stands for symmetric di↵erence. Note that

{f1, . . . , fk} ✓ O ✓ (T \ {e1, . . . , ek}) [ {f1, . . . , fk} .
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By the first inclusion O is nonempty, and by the second inclusion, it is rainbow. Since
every vertex has even degree in O, it contains a rainbow cycle.

Remark. It has come to our attention that Theorem 4.3 already appeared in [8],
and very recently it was generalized for binary matroids by Bérczi and Schwarcz [6].
We still include our proof as it is elementary and transparent, and moreover it can
be easily adapted for binary matroids. In the adapted proof, the binary-ness of
the matroids is only needed in the last step of Lemma 4.4 to show O, a symmetric
di↵erence of circuits, is a disjoint union of circuits. The rest of our argument works
over arbitrary matroids.

5. Concluding remarks.

5.1. Rainbow spanning in matroids. Proposition 2.1 can be seen as a special
case of the following rainbow result for matroids.

Proposition 5.1. Let M be a matroid of rank n, and let e be an element in the
ground set E of M . For every family {A1, . . . , An} of subsets of E, if each Ai contains
e in its closure, then the family has a rainbow set that contains e in its closure.

Proof. Let R be a maximal rainbow set such that R [ {e} is independent in M .
If e 2 R we are done, so assume e 62 R. As the rank of M is n, we know that |R| < n,
and hence some Ai is not represented in R. Denote by span(·) the closure operator in
M . Since e 2 span(Ai)\span(R), there exists a 2 Ai \span(R). The set R0 := R[{a}
is then a rainbow independent set, and by the maximality of R, we have that R0[{e}
is dependent, which implies e 2 span(R0).

To see that Proposition 2.1 follows from Proposition 5.1, note that for every
edge set O whose vertex set is contained in [n], O contains an odd cycle if and
only if e0 2 span(A), where e0, e1, . . . , en form the standard basis of Fn+1

2 and A :=
{e0 + ei + ej : {i, j} 2 O}. This observation allows us to go back and forth between
odd cycles in Kn and subsets of E that contain e0 in their closures, where

E :=
�
(x0, x1, . . . , xn) 2 Fn+1

2 : x1 + · · ·+ xn = 0
 

is the ground set of a binary matroid of rank n.

5.2. Rainbow even cycles. Perhaps surprisingly, the analog of Proposition 2.1
and Proposition 3.2 for even cycles is false. Figure 2 shows a family of 6 squares
(4-cycles) on 6 vertices without a rainbow even cycle. By gluing copies of this con-
struction, so that every new copy shares one vertex with the union of the previous
ones, we get a family of roughly 6n/5 squares on n vertices without a rainbow even
cycle.

Fig. 2. A family of 6 squares on 6 vertices without any rainbow even cycle.
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To get an upper bound on the number of even cycles needed to guarantee a
rainbow even cycle, we observe that each connected component of a graph without
even cycles is a cactus graph.6 Note that the densest cactus graph on n vertices
is a triangular cactus graph7 (with one bridge if n is even). Thus the maximum
number of edges in a graph on n vertices without even cycles is b3(n� 1)/2c. From
Proposition 3.1 we have the following rainbow result.

Proposition 5.2. Every family of b3(n � 1)/2c + 1 even cycles in Kn has a
rainbow even cycle.

This upper bound is not sharp: for example, 4 even cycles on 4 vertices always
have a rainbow even cycle.8 We leave the determination of the exact number needed
in general (between roughly 6n/5 and 3n/2) as an open problem.

Acknowledgments. We thank the anonymous referees for the suggestions which
improved the clarity of the paper.
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