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ARTICLE INFO ABSTRACT

Keywords: Despite the increased interest in construction robotics both in academia and the industry, insufficient attention
COllabOra_ﬁve tasks has been given to aspects related to Human-Robot Interaction (HRI). Characterizing HRI for construction tasks
Construction ) can help researchers organize knowledge in a structured manner that allows for classifying construction robotics
?;X‘zi’;j;bm Interaction (HRI) applications and comparing and benchmarking different studies. This paper builds upon existing taxonomies and

empirical studies in HRI in various industries (e.g., construction, manufacturing, and military, among others) to
propose a multidimensional taxonomy to characterize HRI applications in the construction industry. The tax-
onomy design followed a systematic literature review in which common themes were identified and grouped into
16 categories. The proposed taxonomy can be used as a foundation for systematic reviews and meta-analyses of
HRI applications in construction and can benefit the construction industry by informing the design of collabo-

rative tasks performed by human-robot teams.

1. Introduction

Especially in the last two decades, robots have become more com-
mon in supporting on-site and off-site construction tasks. Many studies
focus on the development of construction robotics applications, focusing
primarily on the technical aspects of the development of robots or the
impacts of their applications on productivity, quality, and safety (e.g.,
[1-3]). However, these studies put less emphasis on the interactions
between humans and robots during task execution. Understanding and
properly designing robots and tasks in construction with an emphasis on
Human-Robot Interaction (HRI) is important because it can promote a
safer, healthier, and more productive task environment. Furthermore,
deploying collaborative robotics on work sites has the potential to take
advantage of the strengths of humans (e.g., creativity, decision-making
capabilities, flexibility, adaptability) and robots (e.g., precision, power,
tirelessness) to reduce or eliminate specific health and safety risks
associated with a task while potentially increasing the productivity and
quality of work [4,5].

However, the experience from more automated industries such as
manufacturing and aerospace shows that proper consideration must be
given to the various aspects of the interaction, especially when

collaborative robotics is implemented. For example, human factors such
as trust in automation, situation awareness, and mental workload were
shown to have major implications during the implementation of intel-
ligent systems on the performances of the humans involved in the tasks
[6,7]. The same is true about task design since the implementation of
technology changes the way a task is performed [8]. Given its unstruc-
tured and dynamic nature, at least for the near future, the construction
industry is likely to rely more heavily on collaborative teams of humans
and robots rather than on full automation, and, for that, properly
designing robots and tasks to support HRI is key. For example, existing
research on robotic applications in earth-moving and mining operations
shows that before fully autonomous machines can be deployed on-site,
incremental improvements must be made to the machines and their
control mechanisms [9]. In these applications, the commonly used
operation methods are manual operation, remote operation, tele-
operation, assisted teleoperation, and fully autonomous operation, all of
which require some level of human intervention [9].

Significant variability is found in the development and deployment
of robotic systems in construction, both in terms of the used terminology
and system design approaches, which hinders the standardization and
comparison of HRI studies in construction. Therefore, a unifying
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taxonomy for the construction industry is important for several reasons.
First, standard terminology may support improved communications
between designers and developers [10]. Second, the lack of a knowledge
structure capable of classifying existing studies may complicate the
comparability and generalizability of research results. A taxonomy may
support the design of human-robot systems by helping researchers and
engineers to identify key factors that influence the behavior of these
systems [11]. The proposition of taxonomies in the field of HRI is not
new, and, to date, many examples exist in the literature [12-15]; how-
ever, currently, there is no unifying multidimensional taxonomy readily
available for HRI applications in the construction industry.

Many recent studies have reviewed and categorized specific aspects
of HRI applications in the construction industry. Examples exist in the
classification of the levels of human-robot collaboration [16] and the
types of robot-environment interaction [17], reviews of robotic appli-
cations in construction [18,19], and robot learning modalities [20],
among others. However, although these studies make important con-
tributions to the body of knowledge of construction robotics, they tend
to categorize each application according to only the selected feature
reviewed in the study. Alternatively, many multidimensional HRI tax-
onomies are available in applications from other industries [12-15];
however, their direct applicability in construction contexts may be
limited due to the lack of specific task and environmental character-
izations of construction. By revisiting these classifications and orga-
nizing this knowledge into a multidimensional taxonomy that also draws
from results in other industries, it is possible to categorize a given
application using a variety of factors and identify relationships among
them. It can also support understanding how certain classes of appli-
cations address specific issues in construction. For example, one can look
at which safety mechanisms are usually deployed for robots with a given
level of autonomy for a specific task type or which traits are needed for a
particular team composition in a given environment.

This paper proposes a comprehensive multidimensional HRI taxon-
omy focusing on construction tasks. The proposed taxonomy, structured
around three dimensions (i.e., team, task, and environment), is based on
a systematic literature review of HRI applications in various industries
(e.g., construction, manufacturing, military, aerospace, among others)
and includes both taxonomic categories from existing taxonomies and
proposed new categories from the results of the literature review. The
proposed taxonomy aims to (1) identify the main factors that affect the
interactions between humans and robots in the completion of a physical
task in a team context, (2) identify how other fields conceptualize and
enact HRI and which characteristics of HRI can be adapted to the con-
struction industry to improve current practices, and (3) develop a tax-
onomy that can assist researchers in considering relevant factors related
to the individual and shared characteristics of humans and robots, tasks,
and environments, for the design and operation of construction robotics.
The proposed taxonomy also aims to serve as a foundation for reviews
and meta-analyses focusing on HRI in construction applications and may
allow the comparison of different studies in the field and the identifi-
cation of current research gaps and trends.

2. Literature review - existing taxonomies in HRI

Existing taxonomies in HRI cover a broad range of topics in various
fields. In some cases, the taxonomy discusses HRI on a higher level that
considers a wide range of categories and factors (multidimensional
taxonomies) that characterize the agents, the task, and the environment
and that may be applied in diverse fields [12-14]. Commonly, these
multidimensional taxonomies use the results of one-dimensional tax-
onomies that focus on specific aspects of the interaction, including
technological factors [21], psychosocial factors [22], safety [23], task
allocation [24], and training [25], among others.
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2.1. One-dimensional taxonomies and factors influencing their designs

2.1.1. Technical factors

Various studies have proposed architectures, algorithms, user in-
terfaces (UI), control mechanisms, sensors, and end-effectors that
expand the current capabilities of existing robots and, therefore, have
the potential to support the development of new robots. Relative to the
design of UI, existing studies have proposed taxonomies focusing on
usability guidelines for teleoperated systems [26]. Other applications
have focused on developing kinematics, robot mobility, and end-
effectors. For example, taxonomies exist on the use of individual robot
motion to shape the collective behavior (motion and path planning) of
groups of robots [27]. Researchers often study how humans perform
specific tasks to propose taxonomies upon which robot motion can be
based. Robot grasping is a field that has benefitted a lot from this
approach, and several taxonomies have been proposed using human
grasping as a starting point (e.g., [28]). Other examples include whole-
body pose taxonomies for humanoid robots in which human body pose is
used as a reference to enhance humanoid stability (e.g., [29]). Next, the
main functions of collaborative robots used to ensure human physical
and psychological safety in HRI have also been organized in a taxonomy
[23]. Finally, regarding robot social traits and communication skills,
which make the interaction more natural for the human interacting with
the robot, existing taxonomies have considered the robot’s social
awareness through the robot’s social sensitivity, social insight, and
communication [30].

2.1.2. Human factors

The automation research community tends to criticize technology-
centered taxonomies due to their diminished consideration of the
human factors involved in the interaction because a more human-
centered design can better inform the system’s overall design [31].
Taking human factors into consideration allows the design of intelligent
systems that effectively execute their assigned tasks without creating
health and safety risks to the humans directly involved in the task or to
the humans who may be near the robots. Existing reviews show a variety
of human factors that are commonly studied in human-robot collabo-
ration applications, which involve both physical (e.g., fatigue, ergo-
nomics, and workload) and psychosocial factors (e.g., trust, cognitive
workload, risk cognition, perceived safety, and emotions) [32]. Many
studies have assessed the effects of the levels of robot automation on
human performance, situation awareness, and mental workload [7], and
the influence of individual, team, system, task, and environmental fac-
tors on human situation awareness, decision-making, and action [33].
Well-being and performance have been characterized based on the
evaluation metrics used to assess human factors, including trust, anxi-
ety, workload, and ergonomics [34]. Finally, trust in the robots has also
been studied, with existing taxonomies focusing on trust failures and
mitigation strategies to repair trust in HRI applications [22].

2.1.3. Team factors

Many studies have focused on the aspects that directly influence
team dynamics in HRI, including team composition, communication
strategies, safety, control sharing, and collaboration levels during task
execution (e.g., [35,36]). Team composition has been studied from
various perspectives that consider a wide range of possible human-robot
team configurations (e.g., [12-14]). Team composition and the levels of
collaboration among humans and robots have also been used to specify
the safety layers required in collaborative tasks involving teams of
humans and robots [15]. Finally, control-sharing mechanisms and the
levels of robot autonomy have been commonly used as a basis for tax-
onomy development. For example, in the construction industry, the
characterization of human-robot collaborative teams has been
approached through the consideration of the level of robot autonomy
and human effort [16] and, in the automotive industry, the roles of users
(humans) and the driving automated system have been used to describe
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the levels of driving automation [37].

2.1.4. Task factors

On many occasions, aspects related to the task are used in the designs
of taxonomies and human-robot systems. Most commonly, these tax-
onomies characterize different task types and, in some cases, define
degrees of task criticality (e.g., [12-14]). In some cases, task types and
their requirements, difficulty, and speed have been used in taxonomies
related to robot-assisted training [25]. Other taxonomies have focused
on subtask allocation in multi-robot teams [24]. Finally, task classifi-
cations (i.e., divisible vs. interactive, agonistic vs. antagonistic) have
been used to characterize interactive behaviors in human-robot teams,
which include cooperation, collaboration, and competition [38].

2.1.5. Environmental factors

Finally, some studies focused on the interactions of the agents,
humans or robots, with the environment where the tasks occur. The
environmental difficulty, mission complexity, and human interface have
been used in the military domain to characterize the autonomy levels of
unmanned systems [39]. This study recognizes the challenges associated
with the characterization of environmental difficulty, which is a result of
the influence of other factors in the models, and the interdependencies
among them, as is the case with the dynamics of the environment,
weather, mobility, navigation, and operational factors [39]. Attempts to
characterize the interaction between robots and the environment also
exist, which accounts for different robot-environment configurations
that include single or multiple robots (working as a team or indepen-
dently) and single or multiple environments [17].

2.2. The development of multidimensional HRI taxonomies

The first attempt to organize the state of the art in the fields of
Human-Computer Interaction (HCI), Human-Machine Interaction
(HMI), and Human-Robot Interaction (HRI) into a multidimensional
taxonomy dates to 2000 and aimed to classify existing studies in these
fields based on application, research approach, system autonomy,
interaction distance, and interaction media [40]. Although this first
taxonomy listed a series of applications in various fields, it was intended
to be a research taxonomy. Therefore, its application to inform the
design of HRI systems was limited. Next, a more comprehensive tax-
onomy based on the current state of research (meta-survey) in the field
of HRI was proposed [35] and extended two years later to reflect the
changes that occurred during this timeframe [12]. These taxonomies
[12,35] focused heavily on the level of interaction among teams, as well
as some aspects of the task and its social nature, the team, and the robot.

Although this updated taxonomy [12] is comprehensive in that it
considers a relatively broad range of factors involved in various types of
interactions between humans and robots, some limitations to its appli-
cability exist. Among the main criticisms of this taxonomy is the fact that
it lacks a structure showing the relationships among the categories
because some of the categories refer to context-level variables (e.g., task
type) while others refer to local dynamics (e.g., interaction types), which
is important given that context level variables affect many of the local
dynamics [14]. To model these relationships, a taxonomy with three
levels of depth: context model, local dynamics model, and effects, was
proposed [14]. These levels were used to describe the three components
of HRI: task, team, and environment, and included the contributions of
various existing taxonomies in the field, along with proposed new cat-
egories. As presented by the authors, limitations of this taxonomy
include the fact that some categories are not completely developed due
to the paper’s length and scope restrictions, and a more extensive
characterization is needed [14].

Similarly, another recent taxonomy is structured in a hierarchical
(top-down) approach that starts at a macroscopic level, defined as the
interaction context, goes through the robot’s characterization, and ends
at the microscopic level defined by the team classification [13].
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Although straightforward and simple to use, this taxonomy is too gen-
eral to appropriately characterize collaborative construction tasks in a
construction site. The reason is that it includes various fields of appli-
cations, and, for robot task specifications and morphology, it considers
categories that are rare or unlikely to be found on construction sites. For
example, cognitive and emotional stimulation are listed under robot task
specification, and it puts too much emphasis on robot morphology.

2.3. Gap analysis

Although we presented several taxonomies that consider HRI more
generally or by focusing on specific aspects of the interaction, except for
the works of [16,17], none of the listed taxonomies consider the speci-
ficities of construction sites and, for that, a direct application of these
existing taxonomies in HRI studies in construction may be limited. As
presented, construction sites are dynamic and unconstrained environ-
ments, with multiple crews simultaneously working around a fixed
product, which still poses several challenges to deploying robots and
automation on-site. Each of the two existing taxonomies proposed for
the construction industry focuses on a single aspect of the interaction,
namely the level of robot autonomy and human effort in Liang et al. [16]
and the robot-environment interaction in Tan et al. [17]. As a result,
although these taxonomies can characterize well the aspects of the
interaction they reviewed, they cannot be used to characterize other
aspects of the interaction that are not included in their designs. For
example, it is not possible to completely characterize aspects related to
team composition and safety mechanisms if these taxonomies are used
alone.

Directly applying existing multidimensional taxonomies from other
industries (e.g., [12-15]) may also be insufficient due to the lack of a
complete characterization of tasks and environments in the construction
context in these taxonomies. For example, Yanco and Drury [12]
included task type in their proposed taxonomy but did not include any
specific category related to the environment. For task type, although the
authors provided some examples of what a task type could be, they did
not include a list of task type options, which was left to the user of the
taxonomy depending on the specific application. The authors
mentioned, however, that the description of the task type must be done
to characterize the system’s design and use, which may also allow an
implicit representation of the robot’s environment [12]. The taxonomy
in Onnasch and Roesler [13], on the other hand, included some task
types that exist in construction applications (i.e., transportation,
manipulation, precision, and physical load reduction) but also included
physical, emotional, and cognitive stimulation, which may not be useful
in construction contexts. The taxonomy also included a categorization of
the setting in which the interaction takes place, but it only included two
options, namely field and laboratory. Although these two classes provide
some generic categorization, it oversees some other potential settings
where construction may take place, including, for example, on-site,
offsite, and outer space settings. Finally, Parashar et al. [14] listed
“construction” as a task type, but it is too generic to describe any specific
application in construction. For the characterization of the environment,
the authors did not include a classification of the task setting but rather
only described the spatial distribution of the team (i.e., proximal,
remote, or hybrid).

By revisiting existing taxonomies and reviewing key developments in
the field of HRI in various industries, this study proposes a new HRI
taxonomy specific to construction applications. This taxonomy is ex-
pected to provide a common terminology that can be used to classify HRI
applications, allow for a more direct comparison of different HRI
studies, and inform the design of human-robot systems with a focus on
construction applications.

3. Methods

This section describes the methods used for paper retrieval, selection,
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and classification during the development of the taxonomy proposed in
this paper.

3.1. Database choice

The research approach used in this paper is qualitative, and the pa-
per’s structure follows the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) checklist [41]. Two search en-
gines were used, Web of Science™ and SCOPUS, and the selection of the
included papers followed a predefined inclusion criteria flowchart.
These two search engines were selected because they index millions of
journal and conference papers from major publishers in the fields of
interest in this study, including Elsevier, Springer, IEEE, Taylor &
Francis, ACM, and Sage.

3.2. Paper retrieval process

A group of 12 combinations of keywords, frequently used in the field
of HRI, was used in the retrieval processes. Other than “human-robot”,
the keywords “teams”, “multiple”, “interaction”, “collaboration”, “co-
ordination”, “cooperation”, “communication”, and “interface” were
combined and used. The selection of the keywords was based on the
findings of an initial search on papers in the HRI field, where it was
identified that common relationships between humans and robots were
described as “interaction”, “collaboration”, “coordination”, “coopera-
tion”, “communication”, and “interfaces”. To include studies that
considered the relationships between humans and robots in a team or
multi-agent context, which is likely to be found in construction appli-
cations, the research team narrowed down the search criteria by
including the keywords “team” and “multi”. The search was based on the
combined keywords in the titles, abstracts, and keywords of the studies
indexed in the databases. Table 1 lists the combinations of keywords
used in the search engines.

The search criteria did not include any restriction on a specific in-
dustry or a time frame; therefore, the retrieved papers ranged from 1985
to 2022 and were from different industries (e.g., construction,
manufacturing, healthcare, military, aerospace, transportation, enter-
tainment, and education). Only the papers in English were included. The
results from both search engines were merged, and duplicates were
removed both automatically and manually. Initially, 7794 papers were
retrieved from the two search engines, out of which 2471 were dupli-
cates, resulting in a final set of 5323 papers.

3.3. Inclusion criteria and paper selection

The study’s inclusion and exclusion criteria were developed and
refined based on the proposed taxonomy aims and the PRISMA guide-
lines. The inclusion criteria considered whether the papers: (a)

Table 1
Combination of keywords used in the searches.

Combination of keywords

human-robot* AND team* AND interact*
human-robot* AND team* AND collab*
human-robot* AND team* AND coordinat*
human-robot* AND team* AND cooperat*
human-robot* AND team* AND communicat®
human-robot* AND team* AND interface
multi* AND human-robot* AND interact*
multi* AND human-robot* AND collab*
multi* AND human-robot* AND coordinat*
multi* AND human-robot* AND cooperat*
multi* AND human-robot* AND communicat*
multi* AND human-robot* AND interface

Note: The wildcard character (*) is used to replace characters in the search terms
in the search engines; e.g., robot* will retrieve results that include the terms
robots, robotics, among others.
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presented an empirical study, (b) described a physical task, and (c)
involved the interaction between human(s) and embodied robot(s) and
excluded papers that did not follow these criteria and proposed studies
with no validation. These criteria were important because the con-
struction industry is task-oriented, and the transition phase from the
current mostly non-automated to the future fully automated construc-
tion operations is likely to be characterized by high levels of collabo-
ration between humans and robots [9,42,43]. Based on the criteria, out
of the 5323 papers from the initial search, 4209 papers were excluded
solely based on the information presented in their titles and abstracts,
which resulted in 1114 papers to be included for further review and
identification of common themes in HRI in various industries. For this
set of papers (1114), the raters read the abstracts, methods, and dis-
cussion sections of each paper, as well as analyzed figures and graphs, to
evaluate whether enough information about the team, the task, and the
environment could be extracted to allow for subsequent characterization
of the paper using the proposed taxonomy. For example, we excluded
papers in which the scope was to test or validate a new control algorithm
or end-effector, and only limited information about the team or the task
could be extracted. We also excluded studies that may have over-
simplified the robot or the task to study a specific human factor (e.g.,
trust in the robot) in a way that only limited information could be
extracted about the robot or the task. For each paper, two raters voted to
either include or exclude it. If both raters agreed on including or
excluding the paper, that decision was final; when one rater voted to
include the paper and the other to exclude it, both raters would present
the reasons for their decisions and make a final decision about including
or excluding the paper. By using this process, we narrowed down the set
of papers to 326 papers for full review and validation of the proposed
taxonomy through interrater agreement.

3.4. Taxonomy development

3.4.1. Information gathering

While reviewing the set of 1114 papers, the five raters involved in the
process (three Ph.D. students in civil engineering, one postdoctoral
researcher in education, and one undergraduate student in civil engi-
neering) listed some of the key terms that were included in the reviewed
papers in existing HRI applications in various domains. For each of these
terms, the raters also included an accepted definition encountered in the
literature (for example, “Situation awareness is the perception of the ele-
ments in the environment within a volume of time and space, the compre-
hension of their meaning, and the projection of their status in the near future”
(p. 792) [44]). These definitions were used to characterize the identified
terms’ scopes, create a shared understanding among the raters, and
reduce duplicity when multiple terms were used to define the same
concept. Also, these definitions were used to group the key terms by
considering the similarities of their contents.

3.4.2. Taxonomy design

The taxonomy design followed both a bottom-up and a top-down
approach. In the bottom-up approach, the list of key terms identified
by the raters was grouped around major themes in HRI based on their
definitions and the relationships the key terms had with each other. The
taxonomy design also followed a faceted approach, in which more
flexibility is given to include new factors and future adaptations of the
taxonomy [45]. In a broader sense, hierarchical relationships were
identified to reduce the number of categories in the initial versions of the
taxonomy.

The raters identified the categories, factors, and levels included in
the proposed taxonomy based on the selected key terms and the
reviewed papers’ contents. For the taxonomy presented in this study, a
category is defined as a set of related factors or levels that characterize
one dimension of the human-robot interaction (e.g., human traits, level
of robot autonomy); a factor is an element of a category that may, or may
not, be exclusive (e.g., the human traits category includes the non-
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exclusive elements mental workload, situation awareness, ergonomics, and
trust in automation, and the setting category includes the exclusive fac-
tors on-site, off-site, outer space, laboratory, and simulation); and a level is a
value in a continuum of possible states within a category (e.g., in the
level of robot autonomy category, the autonomy of a robot ranges from
teleoperated to fully autonomous). In addition, these categories were
grouped according to the three components of an interaction: team, task,
and environment, as in the model proposed by Parashar et al. [14]. Team,
task, and environment are commonly defined as the three components of
the interaction in human-robot interaction [8], and in Parashar et al.
[14], this definition is represented explicitly in the taxonomy structure.

In the top-down approach, existing HRI, HCI, and HMI taxonomies
were reviewed and compared to the initial draft of the proposed tax-
onomy to refine it. In this process, some categories were adapted to
reflect well-accepted classifications identified in the literature review.
Such adaptations included changing the names of certain categories,
adding new categories, adding or deleting factors under certain cate-
gories, and reorganizing categories and factors to better reflect the state
of the art in existing HRI taxonomies.

3.4.3. Taxonomy testing and validation

Nine rounds of the interrater agreement were completed to produce
the final version of the taxonomy proposed in this paper. In each round,
randomly selected sets of 10 to 50 papers from the 326 papers included
in the review were coded individually by each of the five raters and the
kappa coefficient of agreement (K), more specifically, the Randolph’s
free-marginal multi-rater kappa [46], was used to compute the inter-
rater agreement. The Randolph’s free-marginal multi-rater kappa was
selected because it does not require the raters to assign a predetermined
number of cases to each category. In the proposed taxonomy, some
categories included non-exclusive factors, and some reviewed papers did
not provide enough information about all the categories included in the
proposed taxonomy. Thus, not defining how many factors needed to be
selected from each category in the proposed taxonomy was necessary. As
five raters were involved in this process, there was a need to ensure that
their agreement on the classification of the papers was consistent. This
was meant to ensure that the meaning of each of the categories, factors,
and levels was clear to all the raters and to identify potential problems
with any of the proposed categories, factors, and levels, which resulted
in modifications to the taxonomy between rounds of interrater agree-
ment. After nine rounds of interrater agreement, the K values for all the
included categories were considered appropriate (see Section 5.1), and
the interrater agreement iterations stopped. Next, to validate the final
version of the proposed taxonomy, 97 construction papers were
randomly selected and classified using the proposed taxonomy. These
papers represented a variety of construction robotics applications that
were used to illustrate each of the factors and levels included in the
proposed taxonomy.

3.4.4. Taxonomy usage and comparison to existing taxonomies

Finally, the raters coded and compared two recently published HRI
studies in the construction domain to illustrate (1) the shortcomings of
current taxonomies in completely characterizing HRI applications in the
construction industry; (2) how the proposed taxonomy could be used in
practice; and (3) the strengths of using the proposed taxonomy, such as
identifying essential aspects of robot deployment in the construction
industry. The selected studies [47,48] represented recent applications of
HRI in the construction industry and were selected to illustrate all cat-
egories included in the proposed taxonomy, as well as variations in the
classifications within these categories. Four existing taxonomies were
also selected to characterize one of the selected studies [47]; two of the
existing taxonomies focused on construction applications [16,17], and
the other two were recent multidimensional HRI taxonomies [13,14].
The selection of the two taxonomies in construction was because, to the
best of the authors’ knowledge, these were the only two taxonomies
purposefully developed for HRI applications in construction, and the
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two general taxonomies selected represented the efforts of recent studies
in the field of HRI and resulted from an in-depth review of existing
taxonomies.

4. A taxonomy for human-robot interactions in construction

Following the process explained in the Methods section, the authors
developed the proposed taxonomy for human-robot interaction in con-
struction applications. The taxonomy is structured around three di-
mensions: Team, Task, and Environment, which are representative of
interactions between humans and robots [14]. Each of these dimensions
is further subdivided into the categories that compose them, and, for the
case of the Team dimension, there are three major groups for the iden-
tified categories: Human, Robot, and Shared Characteristics among
them, which characterizes the agents of the interaction at the individual
and group levels. The selected dimensions represent the components
included in the definition of physical human-robot interaction, in which
human(s), robot(s), and the environment(s) interact to create a dynamic
system that can accomplish a task [49]. A more detailed description of
each category and its factors or levels is presented in the following
sections. Fig. 1 presents the proposed taxonomy’s structure and exam-
ples of construction applications for each of its factors and levels.

4.1. Team

In the context of HRI, a team can be defined as humans and robots
collaborating to complete a common task [50]. The team dimension
aims to identify individual and shared characteristics among agents
(robots) and experts (humans) during HRI. Individual characteristics
include human traits and robot traits, and shared characteristics include
team traits that cannot be analyzed at the individual level.

Human

4.1.1. Human traits

HRI research largely considers four human traits: mental workload,
situation awareness, trust in automation, and ergonomics. Mental
workload can be described as an individual’s amount of cognitive work
required to complete a task [51]. It can be perceived as the operator’s
performance or physiological activity to fulfill the environmental de-
mand [52]. Situation awareness (SA) is defined as a person’s ability to
perceive, comprehend, and project the conditions of the elements in the
environment in a given time and space [44]. Trust in automation can be
defined as the belief that an agent will assist a human in accomplishing
his/her goals in an uncertain situation [53]. This factor includes several
variations, including rapport building, i.e., behaviors and social cues
that help develop harmonious team relationships and establish trust and
confidence [54]. Finally, (physical) ergonomics focuses on the design of
the tasks and the robots to minimize the negative effects of inappro-
priate postures and loads during task execution on the workers’ safety
and health.

In construction applications, mental workload has been used to assess
cognitive task demand in situations characterized by adverse conditions
[55] and to adjust the robot’s behavior dynamically to reduce the
cognitive demand of the humans involved in the task [47]. Situation
awareness has been commonly studied to improve operators’ safety and
task performance levels, especially by deploying new technologies that
increase operators’ situation awareness levels [56-58]. Given that
working alongside a robot may be a new experience for most con-
struction workers, trust in automation has also been the object of interest
in many studies in construction. It has been studied from the perspective
of being influenced by the worker’s perceived safety when working with
arobot [59] and from the perspective that sensors can provide real-time
measurements of the levels of trust of the human in the robot [60]. Er-
gonomics has been approached from the design and planning of human-
robot collaborative tasks that minimize the physical load that the human
is exposed to [61] and from the design of collaborative robots that adapt
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Human Traits

Mental Workload [47,55,63,64]

Situation Awareness [56-58,63]
Trust in Automation [59,60,63]

Ergonomics [61,62]

Human Role

Operator [48,64,113,153]
Supervisor [65,66,102]
Collaborator [42,47,61]
Cooperator [67,97]
Bystander [68,159]

Human Characteristics

- Robot Characteristics

[l shared characteristics

Robot Traits

Robot Situation Awareness [69,83,98,99]
Anticipation [68,71,99]

Adaptation [47,93,97]

Decision-Making [57,97]

Motion Planning [67,75-77]

Mobility [47,48,67,109]

Manipulation [62,64,67,91,112]

Level of Robot Autonomy

Teleoperation [55,63,78,113,120]
Shared Control [42,80,91]

Full Autonomy [42,81-84]

Sliding Autonomy [57]

Robot Type

Stationary Robots [62,85,86]
Mobile Robots [47,48,87,88]
Swarm Robots [83,89]
Humanoid Robots [84,91]
Exoskeletons [93,94,100]

Safety Mechanisms

Controls-Based [61,67,96]
Motion-Planning-Based [97,98]
Prediction-Based [68,99]
Hardware-Based [1,48,100]
Psychological Factors-Based [47,59)

Team Traits

Team Situation Awareness [67]
Shared Situation Awareness [83]
Shared Mental Models [47,102]
Fluency [67,83]

Interaction Efficiency [42,48]

Team Composition

1 Human to 1 Robot [48,62,96,110,112]
>1 Humans to 1 Robot [42,47]

1 Human to >1 Robots [61,84,91,102]
>1 Humans to >1 Robots [106]

Input Interfaces

Physical Input [48,64,65,107,108]
Non-Physical Input [47,69,99,109]
Multimodal Input [62,91]

Feedback Interfaces

Physical Feedback [93,110,111]
Non-Physical Feedback [57,59,64,65,99]
Multimodal Feedback [96,107,112,113]

Time-Space Proximity

Synchronous & Collocated [47,48,62]
Synchronous & Non-Collocated [84,96,112]
Asynchronous & Collocated

Asynchronous & Non-Collocated [57,84,114]

Task Type

I

|

1

i | surveying & Marking [115-117]

. | Surveillance & Progress Monitoring

| or1g119]

: Earth & Foundation Works [3,64,71,82,120]
i | Transportation & Lifting [69,87,121,122]
: Concreting & Asphalting [123,124]

E Bricklaying & Stone Works [62,125,126]
! Steel & Wood Works [127-129]

! 3D Printing [2,83]

' | Cutting, Bending, & Shaping [84]

| Positioning of Components [81]

i | Assembling of Components [91,130]

i | Welding & Joining [131,132]

i | Spraying, Coating, & Painting [67,96]

] Mechanical, Electrical & Plumbing [133,134]
i | Glazing & Facade Installation [112]

i Interior & Exterior Finishing [135]

. | service, Maintenance, & Inspection

| 1136137

i | Demolition, Renovation, & Recycling

i (48,138)

|

Task Planning

Offline [61,99,140]
Online [98,102,142]
Hybrid [65,108,143]

Task Training and Learning

Human Training [48,63]

Robot Model Learning [47,99,109,144]
Robot Reinforcement Learning [68,146,147]
Robat Learning from Demonstration
[71,135,148]

ENVIRONMENT

Setting

On-site [56,67,96,149]
Off-site [150]

Laboratory [48,64,109,112]
Simulation [48,55,59,99,107]
Quter Space [91,151]

Robot Location

Underground [152]
Indoors [47,62,67,91]
Qutdoors [48,82,113,153]
Air [83,119,154]
Suspended [85,96]
Water [88,155]

Fig. 1. Proposed taxonomy for Human-Robot Interaction in construction.
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their behaviors to minimize the effects of worker’s fatigue during task
execution [62]. Finally, mental workload, situation awareness, trust in
automation, and self-efficacy have been studied during training sessions
for construction workers interacting with robots [63]. It is important to
mention that the purpose of this category is not to include all possible
human factors but rather to include the main factors of interest in HRI
studies identified during the review process.

4.1.2. Human role

This category describes the roles that humans assume in different
contexts. Five possible human roles based on the definitions presented
by Onnasch and Roesler [13] were considered, i.e., operator, supervisor,
collaborator, cooperator, and bystander. In the operator role, the human
directly controls what the robot does during the task (e.g., [48,64]). In
the supervisor role, the human monitors and instructs the robot but does
not directly control every action of the robot (e.g., [65,66]). Putting the
robot and human on the same hierarchical level, a human collaborator
works alongside the robot to complete a task in a way that the actions of
one team member depend on the other team member’s actions (e.g.,
[471). Alternatively, a human cooperator also works alongside the robot
to complete a task, but the actions of the human and the robot do not
depend on each other as they work on independent aspects of the task (e.
g., [67]). Finally, the human bystander role does not involve direct
interaction between the human and the robot to complete a task, but
because they share the same space, the human needs to consider the
robot’s actions to avoid collisions (e.g., [68]).

Robot

4.1.3. Robot traits

Designing the robot with the appropriate capabilities required by the
application is key to promoting a more fluid interaction and achieving
task goals. In tasks characterized by higher levels of collaboration, for
example, the abilities to perceive and comprehend the environment,
communicate intentions, make decisions, plan, and learn can promote
joint actions [50]. The purpose of this category is not to include all
possible capabilities a robot can have but rather to include the main
traits that can be used to promote a smoother interaction between
humans and robots. The traits considered here are the ones that some-
how mimic human-like cognitive and physical abilities and, thus, may
resemble a more natural interaction that is likely to take place in tasks
developed by teams of humans only. Five cognitive abilities and two
physical abilities as robot traits were included in the proposed
taxonomy.

To perceive the environment, the robot may use different sensors
that can detect the locations of humans and objects, temperature
changes, harmful substances, and vibrations, among other things. Thus,
robot situation awareness (e.g., [69]) is included as the ability of the robot
to perceive, understand, and predict the status of elements in the envi-
ronment in the future [70]. Other factors related to cognition include the
ability to anticipate human intentions, which is accomplished through
understanding explicit and implicit cues as it occurs in human-human
interactions. Anticipation (e.g., [71]), defined as the ability to under-
stand non-verbal visual cues to anticipate human action, can promote a
more natural interaction between humans and robots by enabling the
robot to anticipate human intention and behave in a way that humans
can predict its intentions [72]. Adaptation (e.g., [47]), i.e., the ability of
a robot to adjust its behavior in response to changes in the task state,
human physiological state, or human non-verbal cues, is required to
work efficiently as a team. Adaptation is an important trait in collabo-
rative robotics applications because it can adjust the robot’s behavior to
reduce human physical and psychological discomforts during task
execution.

Next, decision-making (e.g., [57]) is the robot’s ability to use infor-
mation from its internal memory and the current states of the environ-
ment as detected by its sensors to change its representation of the world
and make decisions [73]. The ability to make decisions can enable the
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robot to plan its motions (i.e., motion planning, also known as path
planning), which is defined as the ability to generate a path between two
robots’ configurations while avoiding collisions with objects in the
environment [74]. In construction, existing applications involve finding
paths between two distinct locations in the environment (e.g., [75]) and
determining the motion sequences of the robot’s end-effectors (e.g.,
[76,771). Finally, mobility and manipulation are two key physical robot
traits for construction applications. In on-site construction applications,
the robot will likely need to move to perform its tasks around the
building and need manipulators to handle materials and tools. Mobility
(e.g., [47,48]) refers to the ability of a robot to change its location in the
environment. Alternatively, manipulation refers to the ability of a robot
to manipulate objects and materials using its arms and end-effectors,
which can have an end fixed in the environment [62] or be attached
to a mobile platform [64].

4.1.4. Level of robot autononty

Robots can have different levels of autonomy depending on the
design of the robot itself and the task at hand. The category of Level of
Robot Autonomy (LoRA) is commonly used in existing HRI taxonomies,
and its importance derives from the fact that it relates to the amount of
required user intervention during task execution [35]. Despite the ex-
istence of a variety of LoRA classifications in the literature, in which the
number of possible levels may vary from two to ten [7,12,16,21,40], the
proposed taxonomy adopted Yanco and Drury’s [12] four levels of robot
autonomy. Thus, in the present taxonomy, the four possible levels of
robot autonomy include teleoperation, shared control, full autonomy, and
sliding autonomy. The decision to select Yanco and Drury’s [12] levels of
autonomy was that it provides a balance between a too-general classi-
fication that would not provide enough information about the level of
robot autonomy (e.g., “without autonomy” vs. “with some autonomy”
[40]) and a too detailed classification (e.g., with ten possible levels
[7,21]) that could make it harder for the users of the taxonomy to
characterize the robots correctly.

In teleoperation applications (e.g., [55,78,79]), the robot is controlled
by a human operator through a cord or wirelessly [18] to assist the
human during the task [21]. In such applications, the human operator is
responsible for sensing the environment (with or without the help of the
robot) and planning the tasks [21], which can occur with the robot being
operated in direct line-of-sight (remote control) or not (teleoperation)
[18]. It is important to note that although there is a distinction between
remote control and teleoperation, the same term (teleoperation) is used to
describe both modes of operation in the taxonomy. In shared control, the
robots (e.g., [42,80]) possess certain degrees of autonomy and share
control of the task with the human involved in the interaction in a way
that the robot performs some tasks while the humans perform other
tasks [35]. Next, robots with full autonomy (e.g., [81-83]) are robots that
do not require human intervention to sense the environment, plan, and
implement the task [21]. Finally, sliding autonomy (e.g., [57]), also
called adjustable autonomy or mixed-initiative [12], represents the sit-
uations in which the level of autonomy of the system varies during task
execution because of the dynamic conditions of the task or the envi-
ronment. The main difference between semiautonomous robots and
robots that can vary their autonomy levels is that while the former
systems operate at a fixed level of autonomy, the latter can vary their
autonomy levels during task execution [12].

4.1.5. Robot type

Given the variety of applications in construction, a wide range of
construction robots exist. In most cases, these robots are specialized in a
single task, i.e., Single-Task Construction Robots (STCR) [19], but ex-
amples exist of construction robots that can perform more than a single
task, which can be accomplished by changing the robot’s end effectors
or by using a more flexible robot such a humanoid or robotic arm that
can perform multiple tasks (e.g., [84]). The proposed taxonomy clas-
sifies construction robots into five types: stationary robots, mobile robots,
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swarm robots, humanoid robots, and exoskeletons. The first type, stationary
robots, also known as industrial robots, include robots connected to fixed
base structures. Examples include robotic arms fixed to the floor or other
structures, robots connected to rails and gantry cranes, cable robots, and
additive manufacturing robots (e.g., [62,85,86]). Although off-site ap-
plications of stationary robots are more common in construction, on-site
applications also exist, e.g., on-site factories. Alternatively, mobile robots
are robotic systems capable of moving around the environment, which
can be achieved through driving on wheels or tracks (e.g., [47,481),
walking (e.g., [84]), flying (e.g., [87]), or swimming/floating (e.g.,
[88]). Given the nature of on-site tasks, usually characterized by a fixed
product (e.g., building, bridge) on which moving crews perform their
tasks, mobile robots find a wide range of applications in construction
sites.

Next, swarm robots are multi-robot systems (composed of mobile
robots such as drones) that perform tasks at high levels of collaboration
and coordination (e.g., [83,89]). Although these systems are composed
of many mobile robots, the proposed taxonomy classifies robot swarms
as a different robot type because the robots in these systems are orga-
nized to function as a unity. Humanoid robots, defined as robots that
resemble the human body in terms of their appearance, function, and
motion capabilities [90], are robots that usually possess a high number
of joints and degrees of freedom that make them flexible enough to
execute a variety of tasks (e.g., [84,91]). Humanoid robots, although
still rare in construction applications, have the potential to reduce the
need and associated costs of employing a different STCR for each task
that is automated in construction robotics applications. Finally, exo-
skeletons are wearable robots that increase human physical strength and
endurance, thus allowing their wearers to lift and carry heavy loads
[92]. In most cases, they are employed to increase the weight a human
can safely handle and improve the worker’s body postures during task
performance (e.g., [92-94]).

4.1.6. Safety mechanisms

Given that in many construction robotics applications humans and
robots share the same workspace or work in relative proximity, human
safety considerations must be included in the design of the robots and
the tasks. In this category, safety is considered from two perspectives:
physical safety, which focuses on eliminating or minimizing the adverse
effects of physical contact between humans and robots, and psycho-
logical safety, which focuses on minimizing the psychological discom-
forts caused by interactions between humans and robots [95]. Although
safety is sometimes studied as a human factor (e.g., [32]), in which cases
it is approached from the perspective of [human] perceived safety, this
taxonomy included safety mechanisms as a category of the robot. This is
because the safety mechanisms described in this category focused more
heavily on adjustments of the robot’s behavior to minimize both phys-
ical and psychological safety risks that can negatively affect the human
involved in the interaction. The safety features included in the proposed
taxonomy are based on the survey of safety methods in HRI presented by
Lasota et al. [95] and the 5-categories taxonomy described in Zacharaki
et al. [23].

The first category, controls-based safety mechanisms, includes mech-
anisms that monitor the human or the robot and change the robot’s
motions through low-level controls prior to (pre-collision methods) or
after (post-collision methods) a collision has been detected [95]. Pre-
collision methods are usually based on setting limits to the robot’s
operational parameters (e.g., velocity, acceleration, and force), moni-
toring speed and separation between humans and robots, or using the
potential field approach in which repulsive vectors change the robot’s
motions when a potential collision is detected [95] (e.g., [61,67,96]).
Alternatively, post-collision methods detect and localize collisions after
they happen, which is usually done by onboard sensing. Then, the sys-
tem reacts by moving the robot away from the collision or by reasoning
whether the collision was intentional before reacting [95] (e.g., [67]).
Next, motion-planning-based safety mechanisms use motion planners to
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change the robot’s motions in response to changes in task conditions
[95]. These changes may involve the robot navigating in an area in
which humans are located (i.e., human-aware navigation) or an area
with static or moving objects (e.g., other robots, equipment, furniture,
walls) (e.g., [97,98]). Motion-planning-based safety mechanisms usu-
ally work well in quasi-static task conditions in which using the current
state of the task provides enough information that the robot can base its
decisions; however, in more dynamic task conditions, this approach may
not be sufficient [95].

In prediction-based safety mechanisms, humans and robots anticipate
the motions and actions of other team members to dynamically adjust
their behaviors and ensure safety during task execution [95] (e.g.,
[68,99]). Next, Hardware-based safety mechanisms include selecting user-
friendly materials for the robots, using force-torque sensors in the ro-
bots’ joints and end-effectors, and using panic buttons to minimize the
physical safety risks associated with the interaction [23]. In construction
applications, the use of lightweight materials for exoskeletons (e.g.,
[100]) and the inclusion of emergency stops buttons in robotic cells,
control boxes, and robot’s bodies are some examples (e.g., [48]). Finally,
given that recent developments in collaborative robotics have empha-
sized the importance of psychological safety in the design and deploy-
ment of robots, the proposed taxonomy also included psychological
factors-based safety mechanisms. In most cases, the applications are
based on adjusting the robot’s behavior to reduce human psychological
discomfort and stress during human-robot interaction [95]. It can be
accomplished through training the robot to perceive and interpret
human non-physical cues that may indicate discomfort during the
interaction or adjust the robot’s behavior during task execution to
reduce the mental workloads imposed on the humans based on physi-
ological measurements (e.g., [47,59]).

Shared characteristics

4.1.7. Team traits

At the team level, shared characteristics such as team traits include
factors that cannot be completely characterized if only one of the parties
(human(s) or robot(s)) is included. As with robots, some of these traits
belong to the realm of cognition, while others include observable effects
during task execution. In the discussion of shared traits related to
cognition, team situation awareness, shared situation awareness, and shared
mental models (SMM) are included. At the team level, SA can be viewed
from two perspectives: Team and Shared SA. As presented by Endsley
et al. [101], team situation awareness (e.g., [67]) relates to each team
member possessing the required levels of SA to fulfill their tasks, while
shared situation awareness relates to the team members possessing the
same levels of SA that are needed for shared responsibilities (e.g., [83]).
Next, the concept of shared mental models (e.g., [102]) refers to the
mechanisms by which team members share an understanding of the task
requirements, which, in turn, helps them to predict their teammates’
actions and needs, thus facilitating action coordination [103]. Besides
the cognition-based traits, other team traits included in this taxonomy
are fluency and interaction efficiency. Fluency (e.g., [67]) is defined as the
ability of a team to work together at high levels of coordination and
adaptation [104]. Finally, it is possible to use a variety of metrics to
assess the interaction efficiency in HRI tasks (e.g., [671]), which is typically
measured in terms of the time required to complete a task, productivity,
performance, number of errors during task execution, among others
[105]. Again, the purpose of this category is not to include all possible
team traits but rather to include the most relevant traits identified
following our methodology.

4.1.8. Team composition

Team composition is another team trait influencing HRI and has been
approached from various perspectives in many taxonomies. Examples
include the use of the “ratio of people to robots” and the “level of shared
interaction among teams”, which represents the combinations of
humans and robots and how these combinations relate to controlling the
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robots [35], the “composition of robot teams”, which indicates whether
a team of multiple robots is homogeneous or heterogeneous [12], and
team composition as a direct comparison between the number of
humans and the number of robots involved in the interaction [13]. In the
present taxonomy, a simplification of the team composition classifica-
tion presented in Parashar et al. [14] is used. Put simply, four classifi-
cations are possible: single human to single robot (e.g., [48]), multiple
humans to single robot (e.g., [471), single human to multiple robots (e.g.,
[84,1021), and multiple humans to multiple robots (e.g., [106]).

4.1.9. Input interfaces

In the proposed taxonomy, the category input interfaces describe the
mechanisms and devices that humans use to communicate intentions or
control the robots. These can be done through three modalities: physical
input, non-physical input, and multimodal input. Physical input, which is
characterized by the direct contact of humans with the robot or its
controllers through the sense touch, includes the use of robots’ control
boxes, joysticks, levers, computer keyboards and mice, tablets, haptic
devices, hand guidance, among others (e.g., [48,64,65,107,108]). Non-
physical input, characterized by non-physical communications from the
human to the robot, usually includes speech commands, gesture recog-
nition, and the interpretation of physiological signals by the robots (e.g.,
[47,69,99,109]). Finally, multimodal input is characterized by using
multiple input interfaces, which can be accomplished by combining
multiple physical interfaces, multiple non-physical interfaces, or a blend
of physical and non-physical interfaces to communicate the intentions of
the human to the robot (e.g., [62,91]).

4.1.10. Feedback interfaces

In the proposed taxonomy, the category feedback interfaces describe
the mechanisms and devices that humans use to receive feedback from
the robot, which can also be done through three modalities: physical
feedback, non-physical feedback, and multimodal feedback. Physical feed-
back, which is characterized by mechanisms and devices that provide
feedback information from the robot to the human through haptic
sensation (tactile or kinesthetic), includes force, torque, vibration, and
tilt mechanisms, among others (e.g., [93,110,111]). Non-physical feed-
back, which is characterized by non-physical communications from the
robot to the human, includes the use of computer screens and head-
mounted displays that provide visual information from the robot or
site in the form of images (photographs and videos), text, and graphs,
speakers and headphones that provide sound feedback in the forms
sounds, beeps, and alarms, among others (e.g., [57,59,64,65,99]).
Finally, multimodal feedback is characterized by using multiple feedback
interfaces, which can be accomplished by combining multiple physical
interfaces, multiple non-physical interfaces, or a blend of physical and
non-physical interfaces to provide information about the robot, the task,
and the environment to the human (e.g., [96,107,112,113]).

4.1.11. Time-space proximity

The definition of time-space proximity in the proposed taxonomy
considers how close the interaction takes place in terms of time and
space and uses the classifications provided by Yanco and Drury [35]. In
terms of physical location, the interaction is classified under collocated,
when humans and robots are in the same place, or non-collocated, when
they are not. Alternatively, temporal proximity considers whether
humans and robots use computing resources simultaneously, which
makes the interaction synchronous when they do and asynchronous
when they do not. In the proposed taxonomy, physical and temporal
proximity are combined into four possible classes: synchronous and
collocated (e.g., [47,48,62]), synchronous and non-collocated (e.g.,
[96,112]), asynchronous and collocated, and asynchronous and non-
collocated (e.g., [57,84,1141).
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4.2. Task

The task dimension includes the characteristics of the developed task
considering its type, planning, and the mechanisms used to teach it to
humans and robots.

4.2.1. Task type

The task type is a high-level representation of a task [12,25]. Task
type identification is an essential part of HRI studies because it supports
determining the outline of a study, which includes steps such as deter-
mining system requirements and creating a design roadmap [13]. For
the proposed taxonomy, 18 task types are included, namely surveying
and marking [115-117], surveillance and progress monitoring [118,119],
earth and foundation works [3,64,71,82,120], transportation and lifting
[69,87,121,122], concreting and asphalting [123,124], bricklaying and
stone works [62,125,126], steel and wood works [127-129], 3D printing
[2,831, cutting, bending, and, shaping [84], positioning of components [81],
assembling of components [91,130], welding & joining [131,132], spraying,
coating, and painting [67,96] mechanical, electrical & plumbing [133,134],
glazing and fagade installation [112], interior and exterior finishing [135],
service, maintenance, and inspection [136,137], and demolition, renovation,
and recycling [48,138]. These task types were selected based on existing
reviews of robotic construction task types [16,18,19,43] and the raters’
literature review results.

4.2.2. Task planning

In the context of HRI, task planning refers to the processes of task
breakdown and task allocation between the team members. Task plan-
ning has been a topic of interest in HRI research, especially as part of the
efforts to increase the coordination of the actions of multi-agent teams
during task execution. Unfortunately, no single task planning approach
works well in all cases since task planning depends on several factors,
such as task type, robot design, and the dynamics of the environment.
Considering existing HRI approaches in the literature related to task
planning and design (e.g., [24,139]), this taxonomy uses the classifica-
tion presented in Parashar et al. [14], in which task planning is classified
under three possible types: offline, online, and hybrid. In general, when
the environment is deterministic and known, offline task planning (e.g.,
[99,140]) generates a static task sequence that can be implemented by
the agents [141]. Alternatively, when dynamic and unknown conditions
are present in the environment, online planning (e.g., [98,142]) can be
used to change the agents’ actions because of new information being
provided to the team. Finally, hybrid task planning (e.g., [143]) is a mix
of offline and online task planning in which an initial task sequence is
defined (offline), but if the system realizes it will lead to task failure
during task execution, it replans the task sequence (online) [141].

4.2.3. Task training and learning

In HRI research, task training represents a key component of the
development of autonomous robots and collaborative human-robot
teams [8]. The present taxonomy approaches training and learning
from two perspectives: human training and robot learning. In human
training, the application focuses on mechanisms and best practices for
the development of skills and knowledge for humans operating or
collaborating with robots, which can employ lecture-based, hands-on
demonstrations or computer-based methods such as Virtual Reality (VR)
and Augmented Reality (AR) (e.g., [48,63]). Alternatively, in robot
learning, the application focuses on teaching the robots how to plan or
perform tasks and how to respond to the stimuli from the environment in
which it is located. In the proposed taxonomy, robot learning is classi-
fied into three main types: model learning, reinforcement learning, and
learning from demonstration. In model learning (e.g., [47,99,109,144]),
the robot learns a model from measured data and uses this model to
predict information about the environment or its effects on the envi-
ronment [145]. In reinforcement learning (e.g., [68,146,147]), the robot
interacts with its environment using a trial-and-error approach that
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allows it to learn optimal behaviors that are associated with a policy that
aims to maximize a given reward function [145]. Finally, in learning from
demonstration (LfD) (e.g., [71,135,148]), instead of being pre-
programmed to learn how to perform a given task, the robot learns a
task from human demonstration, which can be given by kinesthetic
teaching, teleoperation, or passive observation [20].

4.3. Environment

In the proposed taxonomy, the environment dimension characterizes
the location and setting where the construction tasks are performed.

4.3.1. Task setting

Focusing specifically on HRI applications within the construction
industry, the task setting was divided into five general categories. On-site
studies involve applications of robots and automated systems at oper-
ating job sites (e.g., [56,149]). Off-site investigations focus on applica-
tions in which automated or robotic systems are employed in factories
and warehouses in locations other than the final installed location of the
built structures (e.g., [150]). Next, a laboratory represents a highly
controlled environment that limits the influence of naturally occurring
phenomena (i.e., environmental noise, weather, non-participant human
interaction) (e.g., [64,109]). Due to advancements in visualization and
simulation technologies, researchers can also use simulations to study the
interactions between workers and the proposed robots in virtual envi-
ronments (e.g., [55,59]). Finally, given the increasing research interest
in construction on the surfaces of the Moon and Mars, the proposed
taxonomy lists outer space as another environment. However, current
studies focusing on outer space applications are usually done in labo-
ratories [91] or simulations [151].

4.3.2. Robot location

Although the category task setting characterizes the general setting
where the task takes place, more information is needed to completely
characterize the relationships between the team, task, and environment.
Robot location characterizes with more detail where the task takes place
(setting) and may define some of the requirements for the robot and the
task. The category considers six possible robot locations that may
happen in each setting: underground, indoors, outdoors, air, suspended,
and water. A robot is located underground when it is performing tasks
such as tunneling or foundation works below ground (e.g., [152]). A
robot is indoors when performing building construction tasks, e.g.,
bricklaying [62] or painting [67], in an enclosed space protected from
weather conditions. A robot is located outdoors when it is performing
tasks such as excavation and transportation (e.g., [82,153]), in which
cases it is exposed to the weather. A robot is in the air when it is a flying
robot (e.g., drone), for which most applications involve progress
monitoring and surveillance (e.g., [83,119,154]). A robot is suspended
when it is lifted by a crane, cables, or other lifting equipment to perform
tasks such as 3D printing, demolition, facade cleaning, or inspection (e.
g., [85,96]). Finally, a robot is in/on the water when it is a swimming or
floating robot that perform tasks underwater, on the water’s surface, or
inside wet pipes (e.g., [88,155]).

5. Results and discussion
5.1. Interrater agreement of the categories in the proposed taxonomy

Table 2 presents the results of the interrater agreement calculated
using Randolph’s kappa (K) for each of the categories in the proposed
taxonomy during the interrater agreement process described in Section
3.4.3.

Table 2 shows that the interrater agreement for all categories in the
taxonomy was in the range of 0.62 < K < 0.92. Kappa values range
between -1 and 1, with -1 indicating complete disagreement, 0 indi-
cating agreement not higher than chance, and 1 indicating perfect
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Table 2
Interrater Agreement for the Taxonomy Categories.

Category Randolph’s Kappa (K)
Task Setting 0.92
Task Type 0.91
Robot Location 0.88*
Robot Type 0.87
Team Composition 0.87
Human Traits 0.80
Input Interfaces 0.80
Feedback Interfaces 0.78
Time-Space Proximity 0.77
Human Role 0.76
Level of Robot Autonomy 0.76
Task Training and Learning 0.70
Safety Mechanisms 0.68*
Task Planning 0.67
Team Traits 0.64
Robot Traits 0.62

" These K values were computed for the interrater agreement among three
raters instead of the five raters mentioned in Section 3.4.3 because these
categories were added after a subsequent update of the taxonomy.

agreement among raters. According to Fleiss et al. [156], values of K <
0.40 are poor, values in the range of 0.40 < K < 0.75 are intermediate to
good, and values of K > 0.75 are excellent. Table 2 shows that the cat-
egories with the lowest interrater agreement were some of the categories
with non-exclusive factors, i.e., robot traits and team traits, for which K =
0.62 and K = 0.64, respectively. The other non-exclusive category,
human traits, obtained a higher interrater agreement value, K = 0.80.
The explanation for this result is twofold. First, the number of factors in
each of these three categories is different, with human traits having a
smaller number of factors than both team traits and robot traits. While
human traits has four factors, team traits has five factors, and robot traits
has seven factors. Second, another possible explanation is related to the
fact that studies that consider the effects of the human factors included
in the human traits category usually refer to these factors explicitly in the
body of the texts and usually measure them subjectively or objectively
(e.g., mental workload, trust, situation awareness). Alternatively, the
factors included in the team traits and robot traits categories were usually
inferred by the raters using the information provided in the paper, which
was not necessarily based on variables being measured in the studies.
For example, in each application, it was possible that a robot had none to
all the factors listed under robot traits. On some occasions, one rater
could select a given factor while another rater would not, thus reducing
the interrater agreement. Alternatively, for categories that included
exclusive factors or levels, the interrater agreement values were usually
higher, e.g., K = 0.91 and K = 0.92 for task type and task setting,
respectively, and K = 0.87 and K = 0.88 for team composition and robot
location, respectively, which can be explained by the limit imposed on
the number of factors or levels to be selected, i.e., 1, in studies that only
describe one experiment.

Many reasons can be listed to explain the source of disagreement
among the raters during the paper classification process. First, classi-
fying the papers using the proposed taxonomy is a subjective process
based on the interpretation of each rater of the information provided in
each paper. Each study presented the information with different levels of
detail, and, on many occasions, the raters based their classifications on
information extracted from figures and tables and not directly
mentioned in the text. The classification process was also based on the
interpretation of each rater of the definitions for each factor/level
included in the taxonomy. As presented, the authors created a document
in which each factor/level was defined using an accepted definition
found in the literature. However, even then, the understanding of these
definitions may have varied among raters during the classification
process. Finally, another source of disagreement came from studies in
which more than a robot or task is described. In such cases, a rater might



P.B. Rodrigues et al.

have emphasized a robot or task more than another, which was also a
source of disagreement among the raters.

5.2. Classification of construction applications using existing taxonomies

As mentioned, to the best of the authors’ knowledge, there are only
two HRI taxonomies tailored for the construction industry. In both cases,
the proposed taxonomies focus on a single aspect of the interaction: the
level of robot autonomy and human effort in Liang et al. [16] and the
robot-environment interaction in Tan et al. [17]. To illustrate their
applicability in the construction industry, we classified the study pre-
sented by Liu et al. [47], in which the authors proposed a system that
uses the worker’s electroencephalogram (EEG) signals to evaluate task-
related cognitive loads and adjust the robots’ behavior to respond to
these loads during task execution in a bricklaying context using an un-
manned ground vehicle (UGV) (Husky A 200). Fig. 2 (a) shows this
study’s classification using the taxonomy proposed by Liang et al. [16],
and Fig. 2 (b) shows the classification of the same study using the tax-
onomy proposed by Tan et al. [17]. The factors shown in red in Fig. 2 (a)
and (b) represent the selected classifications of the paper using the
taxonomies.

Given the specific focus of both taxonomies, shown in Fig. 2 (a) and
(b), it is easy to see that neither one of them can completely characterize
HRI applications in construction, which is not necessarily a drawback of
the studies, but just a consequence of the fact that these studies focused
on a single aspect of the interaction. Next, to illustrate why existing
general taxonomies in HRI are limited in completely characterizing
applications in the construction industry, two general-purpose taxon-
omies in HRI were selected to classify the study presented in Liu et al.
[47]. Fig. 3 shows the classification of [47] using the taxonomy pro-
posed by Onnasch and Roesler [13], and Fig. 4 shows the classification
of [47] using the taxonomy proposed by Parashar et al. [14]. The factors
shown in red in Fig. 3 and Fig. 4 represent the selected classifications of
the paper using the taxonomies.

Overall, although the taxonomy proposed in Onnasch and Roesler
[13] (Fig. 3) correctly classified the robot task specification, i.e., trans-
port, it did so because “transport” is listed as one of the general task
types for robots, not necessarily because it includes a variety of con-
struction task types. For example, if the robot used in the task performed
such tasks as 3D printing, assembly, or site monitoring, it would not be
possible to find an appropriate match to characterize the robot task type.
In terms of the field of application, there is no option that appropriately
characterizes the application other than describing any given con-
struction task as a “service”. In terms of task setting, although this
specific study takes place in a laboratory, it would not be possible to
describe whether the application is on-site or off-site in case one of these
settings was being used. The characterization of the robot morphology
as “technical”, as opposed to anthropomorphic and zoomorphic, also
does not add much to the description of the robot in the context of
construction application since most robots in construction are machine-
like robots that would be classified as “technical” under the possible
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options in this taxonomy. For the remaining categories, some of which
are included in the proposed taxonomy in this paper, there are not any
criticisms; however, categories such as human, robot, and team traits, task
training and learning, and safety mechanisms are not included in [13],
which may also limit a complete characterization of some of the key
aspects of the interaction in a construction context.

The classification of the study presented by Liu et al. [47] using the
taxonomy proposed by Parashar et al. [14] (Fig. 4) also has some
shortcomings due to the taxonomy’s focus on HRI applications in any
industry. Although this taxonomy includes the three components of HRI:
team, task, and environment, there is not much characterization of the
team members, human(s) and robot(s), at the individual level. Charac-
terizing the team members is key because it informs the traits needed for
more effective collaboration in a given context or application. Also, the
application type, classified as “construction”, is too generic to charac-
terize any specific application in construction appropriately. The setting
and the safety mechanisms associated with the task are not character-
ized under any of the included categories in this taxonomy, which are
shortcomings of this taxonomy in characterizing construction applica-
tions because these categories influence many aspects of the interaction
and the overall requirements of the task. This taxonomy provides,
however, a more detailed characterization of the dynamics of the
interaction, both in terms of taskwork and teamwork, and proposes
interesting relationships among some categories of the taxonomy under
the “effects” of the interaction, although, as mentioned by the authors in
the text, they could not be extended due to limitations in the length and
scope of the paper.

5.3. Classification of existing construction applications using the proposed
taxonomy

Next, two studies were selected to demonstrate the usage of our
proposed taxonomy to summarize various aspects of a given application
and compare different studies. Fig. 5 and Fig. 6 present the classifica-
tions of the selected studies presented in Liu et al. [47] (the same study
used in Section 5.2) and Adami et al. [48], respectively. Adami et al.
[48] investigated the effectiveness of Virtual Reality- (VR) based
training on construction workers’ knowledge acquisition, operational
skills, and safety behavior when operating a remote-controlled demoli-
tion robot (Brokk 110) as compared to traditional hands-on training
with an experienced trainer. The study by Liu et al. [47] was summa-
rized in Section 5.2. The factors shown in red in Fig. 5 and Fig. 6
represent the selected classifications of the paper using the taxonomies.

Fig. 5 and Fig. 6 show that the proposed taxonomy could be used to
classify both studies, even though the objectives and contexts of the
studies were different. Liu et al. [47] developed and validated new
methods to control the robot’s behavior during task performance.
Alternatively, Adami et al. [48] made no modifications to the robot, and
the emphasis of the study was on how different construction workers’
training modalities affect the overall performance of the workers when
dealing with the actual robot on-site.

Level of Robot Autonomy and Human Effort

Manual
Preprogramming
Adaptive Manipulation
Imitation Learning
Improvisatory Control
Full Autonomy

Robot-Environment Interaction

One Robot, One Environment
Robot Team, One Environment
Multiple Robots, One Environment
One Robot, Multiple Environments
Robot Team, Multiple Environments

(a)

(b)

Fig. 2. Classification of Liu et al. [47] using the taxonomy proposed by (a) Liang et al. [16] and (b) Tan et al. [17].
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Tactile Approaching
Acoustic Passing
Visual Avaidance
None

Fig. 3. Classification of Liu et al. [47] using the taxonomy proposed by Onnasch and Roesler [13].

A few notes about the study presented in Fig. 5 (classification of Liu
et al. [47]) include selecting fluency as a team trait due to the coordi-
nation of the actions of humans and robots during the task and selecting
shared mental models because the robot kept a mental model of the
human during task performance to adjust the frequency of blocks that
are delivered to the worker in response to changes in the workers’
cognitive load levels. Human traits only included mental workload
because the study specifically addressed this trait. As the robot was fully
autonomous, multiple traits were included, namely the ability to move
(mobility), to make decisions (decision-making), and to increase or
decrease its speed as the workers’ cognitive load levels changed during
task execution (adaptation). The input interface was non-physical because
the robot received the EEG signals wirelessly and without any human
intervention, and the feedback interface was multimodal because the
worker could directly see the robot and pick blocks from the robot. The
human role was collaborator because both human and robot had a single
goal, and the actions of the human depended on the robot’s actions. The
selected safety mechanism was psychological-factors-based because the
adjustment of the robot’s behavior aimed at minimizing the adverse
effects of cognitive loads, which can be associated with the development
of stress, for example. Bricklaying was selected as the task type because
the team’s common goal was to build the wall. Finally, model learning
was selected for task training and learning because the authors described
the training and testing of a classification model used by the robot in the
study.

Alternatively, in Fig. 6 (classification of Adami et al. [48]), interaction
efficiency was selected as a team trait because the study assessed how well
the workers could control the robot. The other team traits were not
selected because the robot had no sensors that allowed it to perceive the
environment or teammate. As for human traits, situation awareness was
selected because some of the performance metrics in the study involved
assessing how well the worker conducted the safety checks in the ma-
chine before and during operation. The selected robot traits were mobility
and manipulation because the robot could move using its tracks (mobile
robot) and use its end-effectors to break objects. The input interface was
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considered physical because the workers used a control box with buttons
and levers to control the robot (operator role for the human), and the
feedback interface was considered multimodal because the operator was
close to the robot and was able to see, touch, and hear it. The control box
had an emergency stop button, and thus, the safety mechanism of the task
was considered hardware-based. Human training was selected under task
training and learning because the focus of the study was to assess the
effectiveness of human training modalities in the selected task type, i.e.,
demolition. Finally, two task settings were selected, i.e., simulation and
laboratory, because the VR-based training was done in a simulated
environment, and the hands-on training was conducted outside the
laboratory.

5.4. Discussion of results

When compared to the taxonomies presented in Fig. 3 and Fig. 4, the
proposed taxonomy, as shown in Fig. 5 and Fig. 6, more appropriately
defined the task settings, robot locations, robot types, and task types
because the proposed taxonomy in this study focuses specifically on
construction applications. The proposed taxonomy also includes some
categories not included in the other two [13,14], as is the case with
safety mechanisms, for example. For the two taxonomies that were
developed in the construction context (Fig. 2 (a) and (b)), although they
characterize well the aspect of HRI they selected to study, neither of
them can be used to characterize an HRI study more generally because
they only considered a single aspect of the interaction, i.e., level of robot
autonomy and robot-environment interaction, respectively. Also, the
proposed taxonomy emphasizes the characteristics of the agents
involved in the interaction both at an individual level (robot and human)
and at the team level. The results presented in Fig. 5 and Fig. 6 show that
the proposed taxonomy allowed for a succinct description of different
applications that can be used to characterize a given study or to compare
different studies. Additionally, by providing a summarized classification
of many studies, the taxonomy can inform researchers and professionals
during the design of robots and tasks by listing commonly used human,
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Fig. 4. Classification of Liu et al. [47] using the taxonomy proposed by Parashar et al. [14].

robot, team, and task traits associated with a given application. In this
sense, the designers can get insights from similar or not-so-similar ap-
plications and propose modifications that improve the interaction.
Finally, this succinct characterization of studies may allow researchers
and professionals to identify relationships among the categories
included in the taxonomy from the results of the classified studies.

The proposed taxonomy is the product of a review effort that
included results from taxonomies, classifications, and literature reviews
of HRI applications in various industries, including construction,
manufacturing, military, aerospace, and healthcare. As presented, many
classifications and taxonomies in HRI currently exist; however, they may
not be able to characterize HRI applications in construction completely.
First, the identified taxonomies focusing on construction applications
are unidimensional [16,17]. Although they provide an in-depth char-
acterization of the categories they describe, they cannot be used to
characterize other aspects of the interaction. A potential solution would
be to use many unidimensional taxonomies, each focusing on a different
aspect of the interaction, to characterize the interaction in a construc-
tion application completely. This solution, however, has some short-
comings. For example, although reviews of the use of robotics in
construction exist [18,19,43], none of these reviews were intended to be
used as a taxonomy for robot types or construction task types because
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these studies may have focused on a specific class of robots (e.g., single-
task construction robots [19]) or may have selected some applications
while intentionally leaving others out [18,43]. The proposed taxonomy
reviewed these studies and compiled their results and others to propose
new categorizations for both robot types and task types that were not
readily available in the literature. Additionally, directly drawing from
the results of unidimensional taxonomies from other industries for the
categories that are still not available in construction would not solve the
problem because the application’s nature and conditions might be
different for some categories, thus requiring adaptations for construc-
tion applications. For example, the characterization of the task envi-
ronment is the object of research in the military domain [39]; however,
directly applying these results in construction applications would not
suffice simply because the characterization of the environment in the
military domain needs to consider the elements that influence the safety
of operations in the face of the existence of the enemy. Alternatively,
although a characterization of the environment in the construction
domain also needs to consider the safety of operations, this is done
because many construction tasks are intrinsically risky and may be un-
safe to operators, not because there are enemies around.

Second, for multidimensional taxonomies in HRI, although they are
available to virtually any HRI application in various industries [12-15],
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they may not be able to completely characterize construction applica-
tions unless additions and modifications are made to the categories of
the taxonomies. For example, for task specification, Onnasch and
Roesler [13] included tasks that may be found in construction (e.g.,
transportation, manipulation, precision, and physical load reduction)
but also included physical, emotional, and cognitive stimulation, which
may not be relevant for construction tasks. Parashar et al. [14] listed
“construction” as a potential task focus, but that characterization is not
enough in a construction-specific classification. Malik and Bilberg [15]
used the ISO 15066 definitions to categorize safety implications in ap-
plications involving collaborative industrial robots, but a direct appli-
cation of this categorization to some construction robots is not possible
because the included safety mechanisms only consider collaborative
industrial robots. Some categories, however, can be directly applied
from one industry to another, and the proposed taxonomy benefited
from this fact for some of the included categories (e.g., team composi-
tion, human roles, and time-space proximity).

5.5. Limitations

Even though an attempt was made to make the proposed taxonomy
as comprehensive as possible by drawing relevant results from existing
HRI, HCI, and HMI studies and taxonomies, some aspects of HRI in
construction may have been intentionally or unintentionally overlooked
in the proposed taxonomy. During the design of the proposed taxonomy,
the categories that were considered more relevant and thus included in
the taxonomy’s final design were the ones that more strongly related to
the three dimensions of HRI (i.e., team, task, and environment). Thus,
the proposed taxonomy purposefully did not include technical aspects
such as the types of sensors, end-effectors, and control mechanisms that
the robots may use, for example. Depending on the needs of the user of
the taxonomy, these categories and others may be necessary, in which
cases the taxonomy will need to be adapted before it can be used. As
presented, since the taxonomy was structured using a faceted approach,
it is easy to include new categories and factors depending on the needs of
a specific study. Future adaptations and new versions of the proposed
taxonomy are also easy to produce, which can result from the need to
include some of the overlooked categories or new developments in
construction robotics.

In addition, it is possible that some studies may not be entirely or
appropriately characterized by the proposed taxonomy, given their
scopes and objectives. For example, applications that focus exclusively
on developing new control algorithms or end-effectors (e.g., [1-3]) may
not describe some aspects of the team and task organization in enough
detail that would make using the proposed taxonomy informative. In
such cases, it is better to apply the proposed taxonomy only after the
new algorithm or end-effector has been tested (either virtually or
physically) in a context that allows the proper characterization of all the
dimensions of HRI (i.e., team, task, and environment). It should be noted
that, for the design of such tests, the proposed taxonomy may be used to
inform the designers about relevant features that may be included and
analyzed in the tests. For example, one can look at how the new control
algorithm or end-effector affects the human factors included in the
taxonomy or how they impact the decision-making dynamics in the team
and the roles humans and robots may assume in the task.

Differences may exist in some of the definitions and assumptions
made in the taxonomy compared to other studies in the literature. For
example, the definition of what is considered a robot may vary between
different studies. Some researchers consider robots only equipment that
have a minimum level of autonomy, referring to remotely operated and
teleoperated equipment as machines (e.g., [113,120]). Other studies
consider that remotely operated and teleoperated equipment without
autonomy is a class of robots (e.g., [48,111]). The proposed taxonomy
followed the latter school of thought and included remotely operated
and teleoperated equipment without autonomy as robots. The same is
true for exoskeletons and drones, which may be referred to as tools or
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machines in some applications (e.g., [157,158]) and as robots in other
applications (e.g., [83,93,100,159]) based on their levels of autonomy.
During the review process, there were also cases in which the same term
was used to refer to two different concepts, as was the case with the term
“teleoperated” being used to refer to remotely controlled (i.e., operated
in the operator’s direct line-of-sight) (e.g., [48,64]) and teleoperated
robots (i.e., controlled with the help of a screen or display) (e.g.,
[84,99,120]). The proposed taxonomy differentiated between the two
terms when describing the level of robot autonomy but referred to both
cases as “teleoperated” to simplify the overall structure of the taxonomy.
To reduce the likelihood that a definition or concept may be mis-
interpreted when using the proposed taxonomy, the description of the
categories and their associated factors include an accepted definition of
the term as found in the literature. Finally, the proposed taxonomy
received input from civil engineers, architects, and HCI/HRI pro-
fessionals during its design but did not receive input from professionals
such as roboticists or industrial engineers, for example.

6. Conclusions

This paper presented the development of a multidimensional HRI
taxonomy tailored for construction tasks. The proposed taxonomy draws
from existing results in HRI, HMI, and HCI in various industries and is
structured under three dimensions: team, task, and environment. Its
development was based on the premise that, in collaborative robotics
applications, humans and robots work together as a team and interact
with their environment to perform a given task. Due to the specificities
of the construction industry, it was deemed necessary to propose a
taxonomy focusing on key aspects of construction tasks, which was not
readily available in existing HRI taxonomies proposed for other in-
dustries. As presented, the proposed taxonomy can support the com-
parison of existing HRI applications in the construction industry, as well
as support informed decisions in the design of construction robots or
construction tasks that involve teams of humans and robots. Finally, the
taxonomy is also expected to serve as a guide for comparing HRI studies
in the construction domain.
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