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A B S T R A C T   

Virtual Reality (VR)-based training has gained attention from the scientific community in the Architecture, 
Engineering, and Construction (AEC) industry as a cost-effective and safe method that eliminates the safety risks 
that may impose on workers during the training compared to traditional training methods (e.g., in-person hands- 
on training, apprenticeship). Although researchers have developed VR-based training for construction workers, 
some have recruited students rather than workers to understand the effect of their VR-based training. However, 
students are different from construction workers in many ways, which can threaten the validity of such studies. 
Hence, research is needed to investigate the extent to which the findings of a VR-based training study are 
contingent on whether students or construction workers were used as the study sample. This paper strives to 
compare the effectiveness of VR-based training on university students’ and construction workers’ knowledge 
acquisition, trust in the robot, and robot operation self-efficacy in remote operation of a construction robot. 
Twenty-five construction workers and twenty-five graduate construction engineering students were recruited to 
complete a VR-based training for remote operating a demolition robot. We used quantitative analyses to answer 
our research questions. Our study shows that the results are dependent on the target sample in that students 
gained more knowledge, whereas construction workers gained more trust in the robot and more self-efficacy in 
robot operation. These findings suggest that the effectiveness of VR-based training on students may not neces
sarily associate with its effectiveness on construction workers.   

1. Introduction 

Since the 1990s, many researchers have recognized the potential of 
Virtual Reality (VR) in the education realm and have advocated for its 
increased usage in training applications[1,2]. Over time, VR has gained 
increased attention and has been implemented to support learning 
programs in a variety of domains including healthcare (robotic surgery) 
[3,4], aerospace and aviation [5], manufacturing [6–8], and mining [9]. 
Similarly, VR-based training has received considerable recognition from 
construction industry researchers in applications that involve educating 
construction workers. Several VR-based training programs have been 
developed and empirically compared to traditional training methods 
such as lecture-based, video-based, and hands-on training. While most of 

the studies have concentrated on safety training (specifically, hazard 
identification) [10–14], there are also many studies on VR-based 
training for task execution [15–18], equipment operation [19–23], 
and ergonomic behavior [24,25]. 

Empirical results have shown a series of advantages of VR-based 
training over traditional training methods. First, VR-based training 
can provide a safe environment for workers to fail without being 
exposed to dangers [26,27]. VR-based training can also prepare the 
trainees to respond to more complex and/or dangerous situations by 
creating simulations that would be too dangerous, or expensive, or even 
unfeasible to simulate in real-world conditions [28]. Next, VR-based 
training provides an interactive training experience for the workers in 
contrast to the traditional passive methods based on audio, text, or 

* Corresponding author. 
E-mail address: becerik@usc.edu (B. Becerik-Gerber).  

Contents lists available at ScienceDirect 

Advanced Engineering Informatics 

journal homepage: www.elsevier.com/locate/aei 

https://doi.org/10.1016/j.aei.2022.101837 
Received 10 April 2022; Received in revised form 24 November 2022; Accepted 28 November 2022   

mailto:becerik@usc.edu
www.sciencedirect.com/science/journal/14740346
https://www.elsevier.com/locate/aei
https://doi.org/10.1016/j.aei.2022.101837
https://doi.org/10.1016/j.aei.2022.101837
https://doi.org/10.1016/j.aei.2022.101837
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2022.101837&domain=pdf


Advanced Engineering Informatics 55 (2023) 101837

2

images [11]. Another advantage of VR-based training over current in- 
person training methods is that it is a one-time development effort 
and is cost-effective while increasing workforce training consistency, 
applicability, and efficiency. In contrast, lecture-based training sessions 
require a trainer and the necessary equipment to provide the trainees 
with hands-on experience [29]. Nevertheless, VR-based training has 
some limitations, such as the potentially time-consuming, expensive, 
and challenging process of developing realistic virtual environments and 
its needs for computational power and equipment to run the training. 

While researchers have studied the effect of VR-based training on 
construction workers, some researchers have used undergraduate and 
graduate students as the subject population in evaluating the effective
ness of VR-based training. Generally, these studies have explored the 
effectiveness of VR-based training on various measures such as knowl
edge acquisition, task performance, self-efficacy, hazard identification, 
and safety behavior [18,30,31]. Although all these studies have 
mentioned the student sample population type as a limitation of their 
study or have considered their research a pilot study to gather initial 
data/feedback, the generalizability of these findings to the professional 
population (e.g., construction workers) has not been explored among 
the research community. VR-based training may have a different impact 
on construction workers compared to students, thus, it is essential to 
identify how the effectiveness of VR-based training differs between these 
two populations. 

Furthermore, researchers and engineers in the AEC industry have 
been developing an increased interest in new automation and robotic 
systems over the past decades. These new technologies may address the 
industry’s established challenges, including low productivity rate, skil
led labor shortages, and safety hazards [32]. Nevertheless, interacting 
with these new technologies can create new hazardous issues on con
struction sites given their unstructured working environment [33]. 
Additionally, construction workers might not trust automation or robots 
because of their fear that these technologies will replace them [34]. 
They might perceive traditional solutions as a better fit than robots to 
the dynamic and uncertain working conditions on construction sites 
[34,35]. Thus, Human-Robot Interaction (HRI) is a crucial area to be 
investigated for the successful adoption of construction robots. 

As construction tasks become automated [36], VR-based training 
plays a pivotal role in preparing construction workers for the future of 
work. This training method has the capability to allow workers to build 
trust in the robot and their ability (self-efficacy) so that they are pre
pared to remote operate the robot safely and effectively on construction 
sites. Researchers have strived to understand the impact of VR-based 
training for construction workers to interact with these new technolo
gies [22,37]. They have also used virtual environments to understand 
how to effectively measure and enhance human-related factors in HRI 
such as trust in automation/robot, robot operation self-efficacy, situa
tional awareness, and mental workload [38–40]. However, even though 
the research is intended to draw conclusions about training for con
struction workers (e.g., how much training could help construction 
worker population), researchers usually do not recruit their samples 
from this population. Instead, most researchers recruited students for 
their studies [12,15,18]. Accordingly, it is unclear if their results would 
generalize to the actual target population: construction workers. 

The use of students as a convenience sample would, in theory, be 
acceptable if students do not differ from construction workers in their 
response to VR-based training. However, to the extent of our knowledge, 
no research has directly compared the effect of VR-based training on 
learning in construction workers versus students. This comparison is 
important for several reasons. If students show a larger effect of VR- 
based training on learning than construction workers, for example, 
then the previous work using students could be systematically over
estimating the effect of VR-based training. In contrast, if students show a 
smaller effect of VR-based training on trust in the robot than workers, for 
example, research concluding that there is little or no effect, would 
underestimate results obtained if construction workers were used in the 

study. 
Accordingly, we conducted a study to directly compare the effect of 

VR-based training in construction workers vs graduate construction 
engineering students on several relevant outcome variables. Specif
ically, we answer three research questions, one for each outcome of 
interest: 

1. How does VR-based training affect knowledge acquisition for con
struction engineering students, compared to construction workers? 

2. How does VR-based training affect construction engineering stu
dents’ robot operation self-efficacy, compared to construction 
workers? 

3. How does VR-based training affect construction engineering stu
dents’ trust in the robot, compared to construction workers? 

Section 2 of this paper provides a literature review of existing studies 
of VR-based training from a range of knowledge acquisition and trust in 
automation literature. Section 3 presents study’s methodology, 
including the VR-based training, the experimental procedure, and 
analysis methods, followed by the study’s results. After a discussion, the 
conclusions and future directions section is presented. 

2. Literature review 

2.1. Knowledge acquisition 

In the past two decades, VR-based training has been promoted in the 
construction industry due to its interactive and realistic simulations and 
has gained popularity as an alternative training method to safely 
educate construction workers, especially in hazard identification and 
construction safety [10,13,41]. Even though the existing research field 
in VR-based vocational education in the AEC industry essentially posi
tions VR as a valuable tool [42], only a few studies have explicitly 
focused on training for machine operation [18,42]. Across the existing 
studies, VR-based training methods have been increasingly recom
mended over existing common training methods (i.e., lecture-based 
training, or 2D visual slides) as VR-based training is cost-effective and 
allows workers to practice skills at their own time and pace [29,43,44]. 
Additionally, it offers researchers a powerful alternative that can make 
the training more accessible and eliminate the need to transition the 
training from on-site to off-site locations. Studies [11,28,45] have dis
cussed that VR-based training has caused higher knowledge retention 
and a higher skills to identify hazards that appear in real-world job sites. 

Existing studies suggest that the improved outcomes of VR-based 
construction safety training are mainly due to two reasons, both of 
which are aligned with Pantelidis’ [46] guidelines for using VR as an 
educational method. First, the immersive nature of VR hardware, i.e., 
simulations, creates an illusion of a construction site in a non-physical 
risk-free environment that allows trainees to acquire “hands-on experi
ence” with construction equipment that can be dangerous in case of 
failures at construction sites [47–49]. Multidisciplinary teams can now 
generate simulations that conform the research findings on cognitive 
development and adult learning theories to ensure construction 
workers’ higher degrees of knowledge acquisition [50,51]. VR-based 
training can also reduce error rates by making normally invisible haz
ards visible (such as electricity). Second, VR-based training also en
hances construction workers’ attentiveness and involvement as it 
requires them to interact in real-time with the content and does demand 
active involvement, unlike the conventional methods of learning 
through audio, text, or images [11]. 

While some researchers have evaluated the influence of VR-based 
training on construction workers as the core population of their exper
iments, others have recruited students as participants [10,12,18,52,53]. 
The findings of some of these studies (e.g., [12,18,53]) have shown that 
knowledge gain for students in VR-based training was higher compared 
to video-based or lecture-based training, but the differences between the 
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two training methods were not significant (Table 1). In contrast, Dzeng 
and colleagues [52] found that students participated in VR-based hazard 
identification training scored significantly higher than the students 
participating in traditional lecture-based training with a large effect size 
(d = 2.2) (Table 1). Similarly, results from Jeelani and colleagues [10] 
reveal that students who participated in personalized VR-based safety 
training can identify significantly more hazards after the training with a 
very large effect size (t (52) = 20.02, p < 0.01, d = 2.76) (Table 1). 

As some researchers have noted as limitations of their studies, these 
findings with students may not be applicable and generalizable to the 
professional labor population. VR-based training may have a different 
impact on construction workers’ knowledge acquisition rather than the 
level of knowledge gained by university students. In this regard, it is 
essential to investigate and understand the difference in knowledge 
acquisition between students and construction workers with VR-based 
training methods. 

2.2. Trust in the robot & robot operation self-efficacy 

The construction industry has recently experienced a growth in the 
number of robots and autonomous systems being used on-sites [54]. 
Reports have predicted the possibility of automation for half of the 
current construction tasks, and>7,000 new construction robots will be 
deployed on construction sites worldwide by 2025 [55]. Despite the 
enthusiasm that automation and robotics would reduce human risk and 
increase speed, efficiency, and profits, there are also concerns that 
interaction with new technologies may create new safety challenges. To 
avert this, the inclusion of robots on construction sites to execute 
dangerous tasks requires a high level of collaboration between humans 
and robots. As the interaction between humans and robots becomes 
more common, trust in robots and self-efficacy becomes essential factors 
in making human and robot collaborations successful, especially in high- 
risk construction sites such as working at heights and demolition sites 
[56]. Therefore, construction workers will need to develop trust in the 
automation or robotic system. 

A well-recognized definition of trust in human-robot interaction is: 
“the attitude that an agent [e.g., automation, a robot, or a human] will 
help achieve an individual’s goals in a situation characterized by 

uncertainty and vulnerability” [57]. The use of VR-based training to 
enhance trust in different fields of automation has been well studied, e. 
g., drivers’ and pedestrians’ trust in autonomous vehicles [58–61]. 
However, trust in Human-Robot Interaction (HRI) in construction ap
plications is understudied and limited to the study of perceived safety in 
HRI teams (related to the physical partition between humans and robots 
and its influences on fostering team identification and trust) [62]. Re
searchers have employed virtual environments and recruited university 
students to validate their frameworks and examine the results [62]. 
However, it is not clear how the results of these studies can be extrap
olated to construction workers who interact with automation and ro
botic systems on actual construction sites. 

Self-efficacy is defined as a human-related characteristic and refers 
to an individuals’ confidence about their performance skills in a task 
[63]. In this sense, robot use self-efficacy is related to the workers’ 
confidence about their ability to use a robot [64]. Although studies 
investigating the connection between self-efficacy and learning effec
tiveness in VR-based training are scarce in the field of HRI (human-robot 
interaction), existing studies [65,66] have found that self-efficacy and 
trust in automation or robots are correlated. Song et al. [22] studied the 
effectiveness of VR-based crane operator training (i.e., overhead, 
container, and tower cranes) using 108 technical high school students 
(who were preparing for the national crane operation certification test) 
as the sample. They have found a significant difference (improvement) 
in participants’ self-efficacy between pre-training (M = 4.36, SD = 1.95) 
and post-training (M = 5.5, SD = 1.33), t(107) = − 5.98, p < 0.001) for 
all three types of crane operation training. They showed that VR-based 
training effectively enhances competence in crane operation skills and 
may be generalizable for young apprentices. However, this may not be 
applicable to workers who have significant crane operation experience 
[22]. 

While the research community is diving deeper into understanding 
human trust and self-efficacy in collaborative interaction with con
struction robots, VR-based training, and virtual environments are used 
as a simulation platform, and students are recruited as the sample 
population. Investigating the difference in the effect of VR-based 
training on students’ and workers’ trust in the robot and robot opera
tion self-efficacy might shed light on the generalizability of the findings 
to the professional population in future studies. As of this date, to the 
extent of our knowledge, the research community in the AEC industry 
has not strived to identify if the results of VR-based training, studied on 
the student sample population, are transferrable to the construction 
worker population. Hence, we investigate the effectiveness of the same 
VR-based training on construction workers’ and university students’ 
trust in the robot and robot operation self-efficacy. 

3. Methods 

3.1. VR-based training 

We have selected a remote-operated demolition robot named Brokk. 
as the test case in our study. Remote-operated demolition robots have 
been employed on construction sites to enhance safety and productivity 
for dangerous, complex tasks. Indeed, workers are routinely exposed to 
hazardous work conditions during demolition tasks such as collapses, 
extreme weather conditions, dust, and radioactivity contamination [67]. 
We have used the model Brokk110, which is equipped with a 360-degree 
working radius in our empirical study [68]. The worker role in this 
interaction is “operator” since the worker controls the robot directly. 
The team composition is one human to one robot since only one worker 
operates this robot. Participants in our study can operate the robot 
through a manual controller consisting of buttons, joysticks, and a small 
monitor to show the robot’s settings and status. The physical proximity 
in this interaction is collocated, and the temporal proximity is syn
chronous since the worker and the robot work simultaneously. 

We have taken multiple phases to design our VR-based training so 

Table 1 
Studies on Effectiveness of VR-based training on students’ knowledge 
acquisition.  

Study Number of 
participants 
(groups) 

Education 
Level 

Objective Effect 
Size (VR 
Group) 

[12] 32 (16 VR vs 16 
video-based) 

Undergraduate 
& Graduate 

Effectiveness of a 
VR-based safety 
training compared 
to the video-based 
training in precast/ 
prestressed industry 

d = 0.72 

[53] 32 (16 VR vs 16 
video and 
lecture-based) 

Graduate Effectiveness of a 
value stream 
mapping-based VR 
training compared 
to the traditional 
personalized 
training 

– 

[10] 52 (all VR) Undergraduate Personalized hazard 
recognition and 
management VR- 
based training 

d = 2.76 

[52] 98 (40 VR vs 58 
traditional 
course) 

Undergraduate Effectiveness of VR- 
based hazard 
identification 
training compared 
to the traditional 
lecture-based 
training 

d = 2.2  
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that the structure and content of the program target the crucial human- 
related factors that workers need to remote-operate the robot safely and 
effectively. First, we conducted a focus group interview with six expert 
trainers to confirm that the learning content was generalizable across 
trainers. A professional trainer also trained our research group via the 
in-person hands-on training to record subjects covered in a standard 
training section. Next, using the demolition robot’s manuals and infor
mation collected during the training session and during the focus 
groups, we developed the training modules. We developed these mod
ules based on adult learning theories in general and andragogy princi
ples in particular, given that the median age of construction workers in 
North American is 42.9 years [69]. We have also reviewed the design of 
previous VR-based training programs and integrated useful features of 
those training in our design. The in-depth discussion on utilizing adult 
learning theory and useful components of previous VR-based training 
programs in our VR-based training can be found in [29,37,51]. 

The VR-based training has been developed utilizing the Unity3D 
game engine equipped with an NVIDIA GeForce GTX 1080 graphics 
card. Trainees experience a simulated construction site, including con
struction equipment and virtual workers. Importantly, trainees can 
experience working in different working conditions such as various 
weather conditions or terrain types to gain a realistic experience of the 
real-world construction site. We have developed this simulation based 
on C# coding scripts attached to each virtual object. Trainees experience 
our VR-based training using HTC Vive Head Mounted Display (HMD) 
controllers. HMD provides trainees with a full-immersive sense of 
presence in the environment; trainees can use controllers to interact 
with objects in the virtual environment to complete the learning mod
ules. For a realistic encounter, we programmed the actual controller of 
the robot (using Arduino Pro micro serial connection) to operate the 
simulated robot in the virtual environment. Trainees also use the Virtuix 
Omni VR treadmill, which provides a controller-free navigation tool to 
walk/run in the virtual environment. Expert trainers/operators gave us 
iterative feedback to ensure that we were not missing any critical con
tent, including approval of the final version of our learning modules. We 
also ran a pilot study with construction workers to verify the simulation 

of the demolition robot, identify any user experience issues with this 
population, and forestall any technological issues regarding the hard
ware and software. 

The resulting VR-based training is composed of seven learning 
modules, each of which is followed by a diagnostic assessment that 
evaluates whether the worker understood the contents of the learning 
module before the worker is allowed to move on to the next one. 
Trainees could choose the language they are comfortable with, as 
learning contents were developed in English and Spanish. It takes about 
120 min to complete all seven learning modules. The VR-based training 
strived to introduce the robot’s objective and applications (module 1), 
operational safety points by interacting with the robot in the simulated 
construction sites (module 2) (Fig. 1a), how to utilize the robot’s 
controller to remote-operate the robot (module 3), how to start the robot 
(Module 4), and how to position the robot’s arm system to remote 
operate safely (Module 5) (Fig. 1b), how to move the robot, and use the 
outriggers (Module 6) (Fig. 1c), and how to demolish concrete blocks 
using the hammer (Module 7) (Fig. 1d). Trainees obtained the essential 
learning material to remote operate the robot by completing the exer
cises. We developed this training to understand the impact of VR-based 
training on construction workers’ knowledge acquisition, safety 
behavior, operational skill sets, trust in the robot, robot operation self- 
efficacy, mental workload, and situational awareness in interacting 
with robots compared to the traditional in-person training. An in-depth 
description of how each learning module is designed to enhance the 
factors mentioned above in workers can be found in [29,37,51]. 

Our VR-based training provides a realistic simulation of the con
struction site and the robot where moving objects and workers are 
around the robot, which represents the perils of remote operating the 
robot on construction sites. Physics and the robot simulations result in 
realistic movement of the robot so the trainees can experience robot 
failures and consequences of poor strategies. Our previous studies have 
revealed that the same VR-based training builds significantly higher 
trust in the robot, robot operation self-efficacy, safety behavior, opera
tional skills, and situational awareness in construction workers 
compared to those who experienced the in-person training [29,37]. 

Fig. 1. (a) Illustration of risk zone boundary (b) Illustration of the safe position of robot (c) Practicing moving and utilizing robot’s arm system (d) Demolition of 
concrete blocks. 
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Therefore, our VR-based training program can be an appropriate plat
form for experiencing the realistic remote-operation of the robot. 

3.2. Participants 

A total of 50 individuals participated in this study. We recruited 
twenty-five construction workers (24 males, 1 female) for the experi
ment from on-campus construction projects at the University of South
ern California. Regarding the objective of the training to prepare 
construction workers to remote operate a demolition robot, the inclu
sion criteria were being an experienced construction worker over 18 
years old. In addition, twenty-five graduate construction engineering 
students (21 males, 4 females) at the University of Southern California 
(studying either Master of Civil Engineering with focus on Construction 
Engineering or Advanced Design & Construction Technologies) have 
participated in the experiment. These students have participated 
voluntarily responding to our invitation email sent to the construction 
engineering graduate students’ community. This recruitment strategy 
aligns with the strategies used by empirical studies that have recruited 
students as their sample population. Table 2 indicates the participants’ 
demographic details based on their age, language, educational attain
ment, and experience level in the construction industry. It is vital to 
mention that recruited participants did not have any experience with the 
selected demolition robot. 

3.3. Experimental procedure 

Prior to receiving the training, the participants were first requested 
to complete a demographics survey that contained questions about age, 
gender, preferred language, education level, and work experience in the 
construction industry. This survey also contained questions related to 
previous experiences with video games and VR-based training. The de
mographic survey is provided in Appendix A. 

After filling out the demographic survey, the participants answered a 
knowledge assessment survey containing 32 questions related to the 
robot and the required safety checks that are needed prior and during 
the operation of the robot. These questions were validated by an expert 
trainer and covered critical aspects of the safe and effective operation of 
the robot. Specifically, the questions focused on aspects such as the 
components of the robot, controller functions and start-up, workplace 
inspection, safety checks, risk zones, power cable management, robot 
and arm positioning, and demolition practices. A professional trainer 
validated the knowledge assessment to confirm the inclusion of the 
essential content for operating the robot safely and effectively. The 

knowledge assessment survey is included in Appendix B. 
After finishing the knowledge assessment survey, the participants 

were asked to complete two surveys that assess trust in the robot and 
robot operation self-efficacy. Trust was measured with a modified 
version of the automated trust scale [70], which was used to assess the 
participant’s attitudes towards the robot. The survey contained 21 
statements related to the participant’s opinions on the reliability, 
integrity, and safety of the robot, and their opinion on the robot’s impact 
on their careers. The survey was based on a 5-point Likert scale ranging 
from completely disagree to completely agree. Examples of the senten
ces in the survey include “I can trust the robot,” “The robot is reliable,” 
and “The robot provides safety/security”. We developed the robot 
operation self-efficacy survey based on the modification of the validated 
robot use self-efficacy scale [64]. It consisted of two sentences (“I am 
confident in the robot,” and “I feel confident around the robot”) evalu
ating participants’ self-efficacy and confidence in their ability to remote 
operate the robot. Similar to the trust in the robot survey, participants 
were requested to rate using a 5-point Likert scale ranging from 
completely disagree to completely agree. The trust in the robot and 
robot operation self-efficacy surveys are provided in Appendix C. 

Finally, after the surveys mentioned above were complete, partici
pants experienced the VR-based training. After completing the training, 
they answered the knowledge assessment, and trust in the robot and 
robot operation self-efficacy surveys, again. 

3.4. Analysis 

The collected data from pre- and post-training assessments were 
utilized to identify the effect of VR-based training on construction en
gineering students compared to construction workers on three depen
dent variables: knowledge acquisition, trust in the robot, and robot 
operation self-efficacy. For each of the outcomes, we conducted 2 × 2 
mixed factorial ANOVAs with time (pre- vs post-training) as the within- 
subject factor and population type (students vs workers) as the between- 
subject factor. A mixed factorial ANOVA test compares the mean dif
ferences of a dependent variable (e.g., knowledge level, trust in the 
robot, robot operation self-efficacy) between groups that have been split 
into two factors (i.e., independent variables), each with two levels 
(population type: students vs workers, time: pre- vs post-training). This 
test aims to understand the effect of the two independent variables by 
calculating the probability (p-value) of incorrectly rejecting the null 
hypothesis. The null hypothesis in this test is that there is no statistically 
significant difference in terms of the change in the dependent variable 
(e.g., knowledge, trust, self-efficacy) from pre-to-post training between 
students and workers. It is vital to mention that normalized gain has 
been selected in comparing the change in dependent variables from pre- 
to-post training. Since the scores have upper limits, using raw changes 
does not account that the group with lower pre-test ratings have more to 
gain than the group with higher pre-test rating. Therefore, the normal
ized gain, independent of population type and pre-test ratings, provides 
a less biased comparison between students’ and workers’ rating 
changes. We also conducted separate paired sample t-tests to test 
whether the pre-to-post training change was significant in each sample. 
A paired sample t-test compares the means of two measurements (e.g., 
knowledge, trust, self-efficacy) taken from the same group (e.g., stu
dents or workers). The null hypothesis in this test represents that there is 
no statistically significant difference in mean measurements from pre-to- 
post training in each population group. The p-value reveals the proba
bility of incorrectly rejecting this null hypothesis. Additionally, we ran 
independent sample t-tests to test whether there is a significant differ
ence between students’ and workers’ ratings (e.g., knowledge, trust, 
self-efficacy) in each pre- and post-training condition. This statistical 
test provides the probability of incorrectly rejecting the null hypothesis 
(no statistically significant differences in measures between students 
and workers). In quantitative studies, it has been recommended to 
report both substantive significance (effect size) and statistical 

Table 2 
Demographics across samples.  

Demographics Construction 
workers 

Construction 
students 

Language 
English 12 (24 %) 25 (50 %) 
Spanish 13 (26 %) 0 (0 %) 
Age groups 
18–29 9 (18 %) 25 (50 %) 
30–39 7 (14 %) 0 (0 %) 
40–49 2 (4 %) 0 (0 %) 
50–69 7 (14 %) 0 (0 %) 
Education levels 
Less than a high school diploma 

degree 
9 (18 %) 0 (0 %) 

High school diploma degree 12 (24 %) 0 (0 %) 
College degree 4 (8 %) 25 (50 %) 
Construction Experience 
<5 years 12 (24 %) 25 (50 %) 
5–10 years 6 (12 %) 0 (0 %) 
>10 years 7 (14 %) 0 (0 %) 
Video games experience 3 (6 %) 24 (48 %) 
VR-based training experience 0 (0 %) 5 (10 %)  
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significance (p value). Therefore, this study reported both the p value 
and effect size. It is critical to provide effect sizes, i.e., the magnitude of 
the differences between groups, because merely providing p values can 
only inform whether an effect exists or not but will not reveal the size 
and strength of the effect. Additionally, it has been argued that statis
tically significant result can be achieved using a large sample size 
whereas effect size is independent of sample size thereby its useful to 
show the size of a difference between two measures. We used Cohen’s 
(1988) guidelines in this study, which suggest (d = 0.2) as small, (d =
0.5) as medium, and (d ≥ 0.8) as large effect size. Cohen’s d is an 
appropriate effect size for the comparison between two means which 
considers both the deviations and variations. 

4. Results 

Table 3 presents the means and standard deviations of participants’ 
ratings in knowledge level, trust in the robot, and robot operation self- 
efficacy assessments. First, an ANOVA revealed a significant interac
tion, such that the knowledge acquisition gain from VR-based training 
was significantly greater for construction students than for construction 
workers (F(1,47) = 5.582, p = 0.022, Cohen’s d > 1.0): the average gain 
for students was 70.32 (out of 100), whereas, for construction workers, 
it was only 60.21 (Fig. 2). Students had higher scores on the knowledge 
test than workers in at both pre- (t(47) = 2.718, p = 0.009, Cohen’s d >
1.0) and post-test (t(47) = 5.222, p < 0.001, Cohen’s d > 1.0). However, 
paired sample t-tests revealed significant improvement in knowledge 
from pre- to post-test for both students and workers: from pre- (M =

16.9, SD = 9.5) to post-test (M = 87.3, SD = 9.7) for students (t(24) =
32.9, p < 0.001, d = 6.58) and from pre- (M = 9.7, SD = 9.1) to post-test 
(M = 69.9, SD = 13.3) for workers (t(23) = 16.04, p < 0.001, d = 3.3). 

An ANOVA also revealed a significant interaction for trust in the 
robot, which actually increased significantly more pre- to post-test for 
workers (1.38 out of 5) than for students (1.06; F(1,47) = 4.23, p =

0.045, Cohen’s d > 1.0) (Fig. 3). Additionally, independent sample t- 
tests showed that, while students had significantly higher trust in the 
robot (3.30 out of 5) than construction workers (2.81 out of 5) at pre-test 
(t(1,47) = 3.604, p < 0.001, Cohen’s d > 1.0), the difference between 
samples was reduced to non-significant after the training (t(1,47) =

1.079, p < 0.286, Cohen’s d > 1.0). However, paired sample t-tests 
revealed significant increases in trust from pre- to post-test for both 
students and workers: from pre (M = 3.30, SD = 0.55) to post-test (M =
4.36, SD = 0.56) for students (t(24) = 11.55, p < 0.001, d = 2.31), and 
from pre- (M = 2.81, SD = 0.37) to post-test (M = 4.20, SD = 0.50) for 
workers (t(23) = 10.69, p < 0.001, d = 2.19). 

A parallel ANOVA revealed a significant interaction for robot oper
ation self-efficacy, which -even more so than trust- increased signifi
cantly more from pre- to post-test for workers (1.62 out of 5) than for 
students (0.98; F(1,47) = 7.634, p = 0.008, Cohen’s d > 1.0) (Fig. 4). 
Also like with trust in the robot, independent sample t-tests showed that, 
while students had significantly higher self-efficacy (3.32) than con
struction workers (2.79) at pre-test t(1,47) = 2.678, p = 0.010, Cohen’s 
d > 1.0), the difference between samples was reduced to non-significant 
after the training (t(1,47) = -0.613, p = 0.542, Cohen’s d = 0.613). 
However, again, paired sample t-tests revealed significant increases in 
self-efficacy from pre- to post-test for both students and workers: from 
pre- (M = 3.32, SD = 0.69) to post-test (M = 4.30, SD = 0.68) for stu
dents (t(24) = 7.00, p < 0.001, d = 1.40), and from pre- (M = 2.79, SD =

0.69) to post-test (M = 4.42, SD = 0.65) for workers (t(23) = 8.618, p <
0.001, d = 1.76). 

5. Discussion 

5.1. Knowledge acquisition 

The results of our study indicate that after experiencing VR-based 
training, both students and construction workers gained significant 
knowledge, which might suggest a similarity between these two popu
lation types. However, the statistical result from the ANOVA reveals that 
students gained significantly more knowledge than construction 
workers. Additionally, looking at the normalized knowledge acquisition 
reveals that construction workers gained only 66.7 % of the knowledge 
they could have learned, while students gained the higher 84.7 % of 
what they could have learned considering their base knowledge. Thus, 
our findings show that the effectiveness of VR-based training on con
struction workers’ knowledge acquisition is not the same as students. 
Since it is common in research to use students instead of construction 
workers as the sample population to study the effectiveness of VR-based 
training in knowledge acquisition, our findings show that while student 
samples may be more convenient, accessible, and cost less than 
recruiting actual construction workers, generalizing about construction 
workers from studies using students can lead to conclusions that either 
under- or over-estimate the impact of VR-based training on knowledge 
acquisition. Therefore, researchers need to be cautious in generalizing 
results from one population to another. The findings of our study suggest 
that, compared to students, training construction workers might not 
improve their knowledge as much. Thus, the results from these studies 
[10,12,52,53] might not be generalizable to the construction worker 
population. Additionally, the independent-samples t-test indicates that 
students had a significantly higher base knowledge both before and after 
experiencing the training than construction workers. These differences 
in the knowledge levels between students and workers in pre- and post- 
training might emanate from demographic variables such as students 
having a higher degree of education and being more experienced in 
using technologies (more technology-savvy); however, our sample size 
was not powered enough to investigate how demographic variables 
moderate the effect. Nevertheless, if the difference in knowledge 
acquisition is derived from demographic differences, it further re
inforces that the researchers should not use students as the sample 
population to draw conclusions about construction workers, and they 
need to be cautious in generalizing their results. Also, our findings are in 
alignment with previous research, which has indicated that VR-based 
training might be beneficial for less experienced trainees, such as stu
dents (young generations), compared to the more experienced con
struction workers [28]. 

The impact of the VR-based training program based on the data 
collected from a student population had a larger effect size than in prior 
studies also conducted with students (see Table 1). Such differences 
could be explained by several factors, such as the characteristics of the 
student sample across these studies, the choice of data collection tools, 
or the differences in the programs studied. Yet, our results showed that 
even when the VR-based program, measures, and the data collection 
procedures were identical across the two different populations (i.e., 
students and construction workers), the results were contingent on the 
population. Indeed, the effect sizes obtained from paired sample t-tests 
indicate that the size of knowledge gain relative to variation among the 
students was twice as large as the size of knowledge gain relative to 
variation in the construction workers experiencing the same program. 
This result suggests that although both students and workers experience 
significant knowledge gains by taking the training program, the 
magnitude of VR-based training’s impact on students’ knowledge 
acquisition is more significant than its impact on construction workers. 
Hence, using students rather than workers in a program aiming to target 
workers can lead to overestimating the impact of such a program. Taken 

Table 3 
Means and standard deviations of measures based on population groups.  

Measures Students Workers 

Pre-training Post-training Pre-training Post-training 

Knowledge level 16.9 (9.5) 87.3 (9.7) 9.7 (9.1) 69.9 (13.3) 
Trust in the robot 3.30 (0.55) 4.36 (0.56) 2.81 (0.37) 4.20 (0.50) 
self-efficacy 3.32 (0.69) 4.30 (0.68) 2.79 (0.69) 4.42 (0.65)  

P. Adami et al.                                                                                                                                                                                                                                  



Advanced Engineering Informatics 55 (2023) 101837

7

16.94 

87.26 

9.71 

69.92 

0
10
20
30
40
50
60
70
80
90

100

gniniart-tsoPgniniart-erP

Students Workers

Fig. 2. Participants’ average score on the knowledge assessment.  
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Fig. 4. Participants’ average score on the robot operation self-efficacy survey.  
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together, our study highlights the importance of collecting data from the 
targeted population to obtain more accurate estimate of the impact of a 
program for the end-users. 

5.2. Trust in the robot & self-efficacy 

Our results in this study indicate that construction workers gain more 
trust in the robot and robot operation self-efficacy than students after 
experiencing VR-based training. Despite initially lower trust and self- 
efficacy among construction workers and students because workers 
and students no longer differ significantly in trust or self-efficacy after 
training, the training seems to be able to bring workers on par with 
students in terms of trust and self-efficacy. The difference in trust and 
self-efficacy at pre-test might be driven by the demographic differences 
between the two samples (and, likely, the populations they are sampled 
from). All the students who participated in this study were master’s 
students in construction engineering and between 18 and 29 years old. 
However, the construction worker participants were from a wide range 
of age groups, from 18 to 29 to 60 and older. Our results support con
clusions from prior work that younger adults are more eager to engage 
with robots than older adults [71]. Thus, younger adults in general, 
especially those with higher education, may have higher trust in the 
robot and self-efficacy even before experiencing the training. 

Although our results show higher levels of trust in the robot and self- 
efficacy for students before the training than for construction workers, 
importantly, we show a larger gain from pre- to post-training in both 
trust and self-efficacy for construction workers than for students. These 
findings suggest that the previous work using students could be sys
tematically underestimating the effect of VR-based training on these 
kinds of outcomes for construction workers. That is, given our findings, 
construction workers might have demonstrated even larger increases in 
trust and self-efficacy in the prior work if they had been sampled 
(instead of students). For example, Song et al. [22] studied the effec
tiveness of VR-based crane operator training (i.e., overhead, container, 
and tower cranes) using 108 technical high school students. They found 
that their VR-based training could significantly improve students’ self- 
efficacy (Cohen’s d = 1.88); however, they state that their results may 
not be applicable to workers with significant experience. Based on the 
Cohen’s d measure, we can claim that our student population (Cohen’s 
d = 1.40) has a similar effect size with Song et al.’s findings on students 
(Cohen’s d = 1.88). Thus, it is possible that since Song and colleagues 
found significant improvement in self-efficacy in students, if our dif
ferences between samples in self-efficacy are representative of pop
ulations differences, their findings could possibly also be applicable to 
workers in the construction industry. 

As robotics become more common in construction, researchers strive 
to understand the hurdles to robotics and automation adoption in the 
construction industry; thus, human-related factors in HRI, such as trust 
in the robot and robot operation self-efficacy, might become of even 
greater interest. Our study’s findings contribute to the question of the 
extent to which results from student samples generalize to the con
struction worker population. If our differences between samples in trust 
and self- efficacy are representative of population differences, given the 
effect of our training went from large (in students) to even larger (in 
construction workers), then their observed gains could conceivably go 
from small (in students) to potentially significant (in construction 
workers). Such smaller effects observed in prior among students may 
therefore be underrepresenting gains in trust and self-efficacy possible 
with VR-based training among construction workers, at least with well- 
developed VR platforms and modules. 

5.3. Limitations 

While this study has significant implications for the research com
munity, some limitations do exist. The current sample of students 
showed much larger effects of our VR-based training than prior studies 

reported. Our larger effect size among students may be due to de
mographic differences among students, or that the design of our VR- 
based training was perhaps more effective. Furthermore, our study 
has, at best, only a moderate sample size even though we observed quite 
large differences between our samples, and the effects were highly sig
nificant. Additionally, our sample size was not powered enough to sta
tistically investigate how demographic variables (e.g., education level, 
video game experience) moderate the effectiveness of VR-based training 
among students and construction workers. Future studies with larger 
sample sizes might explore the reason behind the similarities and dif
ferences in VR-based training effectiveness among different population 
types. Regarding trust in the robot and self-efficacy, while realistic 
simulation of the construction site and the robot were included in VR- 
based training and the trainees were able to experience robot failures 
and consequences of poor strategies, we cannot be certain that VR-based 
training results in the same level of trust gains if the actual robot is used. 
Hence, future studies should test if working with the actual robot after 
the VR-based training has different results in terms of trust in robots and 
robot operation self-efficacy. Moreover, the findings of this study are 
limited to our specific VR-based training. Although the results may not 
be generalizable to all VR-based training studies, our research indicates 
that there might be significant differences between the effectiveness of 
VR-based training on construction workers and student populations. 
Thus, caution on population type is necessary for interpreting the 
results. 

6. Conclusion 

The present study contributes to existing research on VR-based 
training within the construction industry. We construct on previous 
research that explored the application of VR-based training for con
struction workers by asking the extent to which the results from student 
samples generalize to the construction workers population. Findings 
from this study suggest that VR-based training can lead to a significantly 
larger increase in knowledge acquisition for construction students than 
workers. In contrast, VR-based training improved trust in the robot and 
robot operation self-efficacy significantly more for construction workers 
than students. 

These results call in to question the extent to which studies based on 
student samples can appropriately generalize to construction workers, 
which are usually the intended population for the training. If a similar 
difference between construction workers and students occurred with 
other VR-based trainings as observed for ours, given that their training 
appeared to be less effective than ours, no effect of VR-based training 
might have been observed if they had done the study with construction 
workers instead of students. Indeed, our effect of VR-based training went 
from very large (in students) to smaller (in construction workers); 
accordingly, it is possible that the effect of other researchers’ VR-based 
training could go from small (in students) to non-significant (in con
struction workers). This suggests that, while they observed significant 
knowledge acquisition through VR-based training among students, their 
findings might not replicate using a sample of construction workers. This 
raises the possibility that VR-based training intended for construction 
workers may not actually be able to significantly improve knowledge 
among workers in this population. On the other hand, the larger gains 
that we observed for trust and self-efficacy among construction workers 
than students suggest that prior work examining these outcomes may 
have underestimated the effectiveness of VR-based training on con
struction workers, at least for these ancillary outcomes. Either way, 
future research should be cautious -given our findings- when general
izing from samples of construction students to populations of con
struction workers. 
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