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Virtual Reality (VR)-based training has gained attention from the scientific community in the Architecture,
Engineering, and Construction (AEC) industry as a cost-effective and safe method that eliminates the safety risks
that may impose on workers during the training compared to traditional training methods (e.g., in-person hands-
on training, apprenticeship). Although researchers have developed VR-based training for construction workers,
some have recruited students rather than workers to understand the effect of their VR-based training. However,
students are different from construction workers in many ways, which can threaten the validity of such studies.
Hence, research is needed to investigate the extent to which the findings of a VR-based training study are
contingent on whether students or construction workers were used as the study sample. This paper strives to
compare the effectiveness of VR-based training on university students’ and construction workers’ knowledge
acquisition, trust in the robot, and robot operation self-efficacy in remote operation of a construction robot.
Twenty-five construction workers and twenty-five graduate construction engineering students were recruited to
complete a VR-based training for remote operating a demolition robot. We used quantitative analyses to answer
our research questions. Our study shows that the results are dependent on the target sample in that students
gained more knowledge, whereas construction workers gained more trust in the robot and more self-efficacy in
robot operation. These findings suggest that the effectiveness of VR-based training on students may not neces-
sarily associate with its effectiveness on construction workers.

1. Introduction the studies have concentrated on safety training (specifically, hazard

identification) [10-14], there are also many studies on VR-based

Since the 1990s, many researchers have recognized the potential of
Virtual Reality (VR) in the education realm and have advocated for its
increased usage in training applications[1,2]. Over time, VR has gained
increased attention and has been implemented to support learning
programs in a variety of domains including healthcare (robotic surgery)
[3,4], aerospace and aviation [5], manufacturing [6-8], and mining [9].
Similarly, VR-based training has received considerable recognition from
construction industry researchers in applications that involve educating
construction workers. Several VR-based training programs have been
developed and empirically compared to traditional training methods
such as lecture-based, video-based, and hands-on training. While most of
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training for task execution [15-18], equipment operation [19-23],
and ergonomic behavior [24,25].

Empirical results have shown a series of advantages of VR-based
training over traditional training methods. First, VR-based training
can provide a safe environment for workers to fail without being
exposed to dangers [26,27]. VR-based training can also prepare the
trainees to respond to more complex and/or dangerous situations by
creating simulations that would be too dangerous, or expensive, or even
unfeasible to simulate in real-world conditions [28]. Next, VR-based
training provides an interactive training experience for the workers in
contrast to the traditional passive methods based on audio, text, or
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images [11]. Another advantage of VR-based training over current in-
person training methods is that it is a one-time development effort
and is cost-effective while increasing workforce training consistency,
applicability, and efficiency. In contrast, lecture-based training sessions
require a trainer and the necessary equipment to provide the trainees
with hands-on experience [29]. Nevertheless, VR-based training has
some limitations, such as the potentially time-consuming, expensive,
and challenging process of developing realistic virtual environments and
its needs for computational power and equipment to run the training.

While researchers have studied the effect of VR-based training on
construction workers, some researchers have used undergraduate and
graduate students as the subject population in evaluating the effective-
ness of VR-based training. Generally, these studies have explored the
effectiveness of VR-based training on various measures such as knowl-
edge acquisition, task performance, self-efficacy, hazard identification,
and safety behavior [18,30,31]. Although all these studies have
mentioned the student sample population type as a limitation of their
study or have considered their research a pilot study to gather initial
data/feedback, the generalizability of these findings to the professional
population (e.g., construction workers) has not been explored among
the research community. VR-based training may have a different impact
on construction workers compared to students, thus, it is essential to
identify how the effectiveness of VR-based training differs between these
two populations.

Furthermore, researchers and engineers in the AEC industry have
been developing an increased interest in new automation and robotic
systems over the past decades. These new technologies may address the
industry’s established challenges, including low productivity rate, skil-
led labor shortages, and safety hazards [32]. Nevertheless, interacting
with these new technologies can create new hazardous issues on con-
struction sites given their unstructured working environment [33].
Additionally, construction workers might not trust automation or robots
because of their fear that these technologies will replace them [34].
They might perceive traditional solutions as a better fit than robots to
the dynamic and uncertain working conditions on construction sites
[34,35]. Thus, Human-Robot Interaction (HRI) is a crucial area to be
investigated for the successful adoption of construction robots.

As construction tasks become automated [36], VR-based training
plays a pivotal role in preparing construction workers for the future of
work. This training method has the capability to allow workers to build
trust in the robot and their ability (self-efficacy) so that they are pre-
pared to remote operate the robot safely and effectively on construction
sites. Researchers have strived to understand the impact of VR-based
training for construction workers to interact with these new technolo-
gies [22,37]. They have also used virtual environments to understand
how to effectively measure and enhance human-related factors in HRI
such as trust in automation/robot, robot operation self-efficacy, situa-
tional awareness, and mental workload [38-40]. However, even though
the research is intended to draw conclusions about training for con-
struction workers (e.g., how much training could help construction
worker population), researchers usually do not recruit their samples
from this population. Instead, most researchers recruited students for
their studies [12,15,18]. Accordingly, it is unclear if their results would
generalize to the actual target population: construction workers.

The use of students as a convenience sample would, in theory, be
acceptable if students do not differ from construction workers in their
response to VR-based training. However, to the extent of our knowledge,
no research has directly compared the effect of VR-based training on
learning in construction workers versus students. This comparison is
important for several reasons. If students show a larger effect of VR-
based training on learning than construction workers, for example,
then the previous work using students could be systematically over-
estimating the effect of VR-based training. In contrast, if students show a
smaller effect of VR-based training on trust in the robot than workers, for
example, research concluding that there is little or no effect, would
underestimate results obtained if construction workers were used in the
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study.

Accordingly, we conducted a study to directly compare the effect of
VR-based training in construction workers vs graduate construction
engineering students on several relevant outcome variables. Specif-
ically, we answer three research questions, one for each outcome of
interest:

1. How does VR-based training affect knowledge acquisition for con-
struction engineering students, compared to construction workers?

2. How does VR-based training affect construction engineering stu-
dents’ robot operation self-efficacy, compared to construction
workers?

3. How does VR-based training affect construction engineering stu-
dents’ trust in the robot, compared to construction workers?

Section 2 of this paper provides a literature review of existing studies
of VR-based training from a range of knowledge acquisition and trust in
automation literature. Section 3 presents study’s methodology,
including the VR-based training, the experimental procedure, and
analysis methods, followed by the study’s results. After a discussion, the
conclusions and future directions section is presented.

2. Literature review
2.1. Knowledge acquisition

In the past two decades, VR-based training has been promoted in the
construction industry due to its interactive and realistic simulations and
has gained popularity as an alternative training method to safely
educate construction workers, especially in hazard identification and
construction safety [10,13,41]. Even though the existing research field
in VR-based vocational education in the AEC industry essentially posi-
tions VR as a valuable tool [42], only a few studies have explicitly
focused on training for machine operation [18,42]. Across the existing
studies, VR-based training methods have been increasingly recom-
mended over existing common training methods (i.e., lecture-based
training, or 2D visual slides) as VR-based training is cost-effective and
allows workers to practice skills at their own time and pace [29,43,44].
Additionally, it offers researchers a powerful alternative that can make
the training more accessible and eliminate the need to transition the
training from on-site to off-site locations. Studies [11,28,45] have dis-
cussed that VR-based training has caused higher knowledge retention
and a higher skills to identify hazards that appear in real-world job sites.

Existing studies suggest that the improved outcomes of VR-based
construction safety training are mainly due to two reasons, both of
which are aligned with Pantelidis’ [46] guidelines for using VR as an
educational method. First, the immersive nature of VR hardware, i.e.,
simulations, creates an illusion of a construction site in a non-physical
risk-free environment that allows trainees to acquire “hands-on experi-
ence” with construction equipment that can be dangerous in case of
failures at construction sites [47-49]. Multidisciplinary teams can now
generate simulations that conform the research findings on cognitive
development and adult learning theories to ensure construction
workers’ higher degrees of knowledge acquisition [50,51]. VR-based
training can also reduce error rates by making normally invisible haz-
ards visible (such as electricity). Second, VR-based training also en-
hances construction workers’ attentiveness and involvement as it
requires them to interact in real-time with the content and does demand
active involvement, unlike the conventional methods of learning
through audio, text, or images [11].

While some researchers have evaluated the influence of VR-based
training on construction workers as the core population of their exper-
iments, others have recruited students as participants [10,12,18,52,53].
The findings of some of these studies (e.g., [12,18,53]) have shown that
knowledge gain for students in VR-based training was higher compared
to video-based or lecture-based training, but the differences between the
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two training methods were not significant (Table 1). In contrast, Dzeng
and colleagues [52] found that students participated in VR-based hazard
identification training scored significantly higher than the students
participating in traditional lecture-based training with a large effect size
(d = 2.2) (Table 1). Similarly, results from Jeelani and colleagues [10]
reveal that students who participated in personalized VR-based safety
training can identify significantly more hazards after the training with a
very large effect size (t (52) = 20.02, p < 0.01, d = 2.76) (Table 1).

As some researchers have noted as limitations of their studies, these
findings with students may not be applicable and generalizable to the
professional labor population. VR-based training may have a different
impact on construction workers’ knowledge acquisition rather than the
level of knowledge gained by university students. In this regard, it is
essential to investigate and understand the difference in knowledge
acquisition between students and construction workers with VR-based
training methods.

2.2. Trust in the robot & robot operation self-efficacy

The construction industry has recently experienced a growth in the
number of robots and autonomous systems being used on-sites [54].
Reports have predicted the possibility of automation for half of the
current construction tasks, and>7,000 new construction robots will be
deployed on construction sites worldwide by 2025 [55]. Despite the
enthusiasm that automation and robotics would reduce human risk and
increase speed, efficiency, and profits, there are also concerns that
interaction with new technologies may create new safety challenges. To
avert this, the inclusion of robots on construction sites to execute
dangerous tasks requires a high level of collaboration between humans
and robots. As the interaction between humans and robots becomes
more common, trust in robots and self-efficacy becomes essential factors
in making human and robot collaborations successful, especially in high-
risk construction sites such as working at heights and demolition sites
[56]. Therefore, construction workers will need to develop trust in the
automation or robotic system.

A well-recognized definition of trust in human-robot interaction is:
“the attitude that an agent [e.g., automation, a robot, or a human] will
help achieve an individual’s goals in a situation characterized by

Table 1
Studies on Effectiveness of VR-based training on students’ knowledge
acquisition.

Study  Number of Education Objective Effect
participants Level Size (VR
(groups) Group)
[12] 32 (16 VR vs 16 Undergraduate Effectiveness of a d=0.72
video-based) & Graduate VR-based safety
training compared
to the video-based
training in precast/
prestressed industry
[53] 32 (16 VR vs 16 Graduate Effectiveness of a -
video and value stream
lecture-based) mapping-based VR
training compared
to the traditional
personalized
training
[10] 52 (all VR) Undergraduate Personalized hazard d=2.76
recognition and
management VR-
based training
[52] 98 (40 VR vs 58 Undergraduate Effectiveness of VR- d=22
traditional based hazard
course) identification

training compared
to the traditional
lecture-based
training

Advanced Engineering Informatics 55 (2023) 101837

uncertainty and vulnerability” [57]. The use of VR-based training to
enhance trust in different fields of automation has been well studied, e.
g., drivers’ and pedestrians’ trust in autonomous vehicles [58-61].
However, trust in Human-Robot Interaction (HRI) in construction ap-
plications is understudied and limited to the study of perceived safety in
HRI teams (related to the physical partition between humans and robots
and its influences on fostering team identification and trust) [62]. Re-
searchers have employed virtual environments and recruited university
students to validate their frameworks and examine the results [62].
However, it is not clear how the results of these studies can be extrap-
olated to construction workers who interact with automation and ro-
botic systems on actual construction sites.

Self-efficacy is defined as a human-related characteristic and refers
to an individuals’ confidence about their performance skills in a task
[63]. In this sense, robot use self-efficacy is related to the workers’
confidence about their ability to use a robot [64]. Although studies
investigating the connection between self-efficacy and learning effec-
tiveness in VR-based training are scarce in the field of HRI (human-robot
interaction), existing studies [65,66] have found that self-efficacy and
trust in automation or robots are correlated. Song et al. [22] studied the
effectiveness of VR-based crane operator training (i.e., overhead,
container, and tower cranes) using 108 technical high school students
(who were preparing for the national crane operation certification test)
as the sample. They have found a significant difference (improvement)
in participants’ self-efficacy between pre-training (M = 4.36, SD = 1.95)
and post-training (M = 5.5, SD =1.33), t(107) = — 5.98, p < 0.001) for
all three types of crane operation training. They showed that VR-based
training effectively enhances competence in crane operation skills and
may be generalizable for young apprentices. However, this may not be
applicable to workers who have significant crane operation experience
[22].

While the research community is diving deeper into understanding
human trust and self-efficacy in collaborative interaction with con-
struction robots, VR-based training, and virtual environments are used
as a simulation platform, and students are recruited as the sample
population. Investigating the difference in the effect of VR-based
training on students’ and workers’ trust in the robot and robot opera-
tion self-efficacy might shed light on the generalizability of the findings
to the professional population in future studies. As of this date, to the
extent of our knowledge, the research community in the AEC industry
has not strived to identify if the results of VR-based training, studied on
the student sample population, are transferrable to the construction
worker population. Hence, we investigate the effectiveness of the same
VR-based training on construction workers’ and university students’
trust in the robot and robot operation self-efficacy.

3. Methods
3.1. VR-based training

We have selected a remote-operated demolition robot named Brokk.
as the test case in our study. Remote-operated demolition robots have
been employed on construction sites to enhance safety and productivity
for dangerous, complex tasks. Indeed, workers are routinely exposed to
hazardous work conditions during demolition tasks such as collapses,
extreme weather conditions, dust, and radioactivity contamination [67].
We have used the model Brokk110, which is equipped with a 360-degree
working radius in our empirical study [68]. The worker role in this
interaction is “operator” since the worker controls the robot directly.
The team composition is one human to one robot since only one worker
operates this robot. Participants in our study can operate the robot
through a manual controller consisting of buttons, joysticks, and a small
monitor to show the robot’s settings and status. The physical proximity
in this interaction is collocated, and the temporal proximity is syn-
chronous since the worker and the robot work simultaneously.

We have taken multiple phases to design our VR-based training so
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that the structure and content of the program target the crucial human-
related factors that workers need to remote-operate the robot safely and
effectively. First, we conducted a focus group interview with six expert
trainers to confirm that the learning content was generalizable across
trainers. A professional trainer also trained our research group via the
in-person hands-on training to record subjects covered in a standard
training section. Next, using the demolition robot’s manuals and infor-
mation collected during the training session and during the focus
groups, we developed the training modules. We developed these mod-
ules based on adult learning theories in general and andragogy princi-
ples in particular, given that the median age of construction workers in
North American is 42.9 years [69]. We have also reviewed the design of
previous VR-based training programs and integrated useful features of
those training in our design. The in-depth discussion on utilizing adult
learning theory and useful components of previous VR-based training
programs in our VR-based training can be found in [29,37,51].

The VR-based training has been developed utilizing the Unity3D
game engine equipped with an NVIDIA GeForce GTX 1080 graphics
card. Trainees experience a simulated construction site, including con-
struction equipment and virtual workers. Importantly, trainees can
experience working in different working conditions such as various
weather conditions or terrain types to gain a realistic experience of the
real-world construction site. We have developed this simulation based
on C# coding scripts attached to each virtual object. Trainees experience
our VR-based training using HTC Vive Head Mounted Display (HMD)
controllers. HMD provides trainees with a full-immersive sense of
presence in the environment; trainees can use controllers to interact
with objects in the virtual environment to complete the learning mod-
ules. For a realistic encounter, we programmed the actual controller of
the robot (using Arduino Pro micro serial connection) to operate the
simulated robot in the virtual environment. Trainees also use the Virtuix
Omni VR treadmill, which provides a controller-free navigation tool to
walk/run in the virtual environment. Expert trainers/operators gave us
iterative feedback to ensure that we were not missing any critical con-
tent, including approval of the final version of our learning modules. We
also ran a pilot study with construction workers to verify the simulation
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of the demolition robot, identify any user experience issues with this
population, and forestall any technological issues regarding the hard-
ware and software.

The resulting VR-based training is composed of seven learning
modules, each of which is followed by a diagnostic assessment that
evaluates whether the worker understood the contents of the learning
module before the worker is allowed to move on to the next one.
Trainees could choose the language they are comfortable with, as
learning contents were developed in English and Spanish. It takes about
120 min to complete all seven learning modules. The VR-based training
strived to introduce the robot’s objective and applications (module 1),
operational safety points by interacting with the robot in the simulated
construction sites (module 2) (Fig. la), how to utilize the robot’s
controller to remote-operate the robot (module 3), how to start the robot
(Module 4), and how to position the robot’s arm system to remote
operate safely (Module 5) (Fig. 1b), how to move the robot, and use the
outriggers (Module 6) (Fig. 1c), and how to demolish concrete blocks
using the hammer (Module 7) (Fig. 1d). Trainees obtained the essential
learning material to remote operate the robot by completing the exer-
cises. We developed this training to understand the impact of VR-based
training on construction workers’ knowledge acquisition, safety
behavior, operational skill sets, trust in the robot, robot operation self-
efficacy, mental workload, and situational awareness in interacting
with robots compared to the traditional in-person training. An in-depth
description of how each learning module is designed to enhance the
factors mentioned above in workers can be found in [29,37,51].

Our VR-based training provides a realistic simulation of the con-
struction site and the robot where moving objects and workers are
around the robot, which represents the perils of remote operating the
robot on construction sites. Physics and the robot simulations result in
realistic movement of the robot so the trainees can experience robot
failures and consequences of poor strategies. Our previous studies have
revealed that the same VR-based training builds significantly higher
trust in the robot, robot operation self-efficacy, safety behavior, opera-
tional skills, and situational awareness in construction workers
compared to those who experienced the in-person training [29,37].

©

C)

Fig. 1. (a) lustration of risk zone boundary (b) Illustration of the safe position of robot (c) Practicing moving and utilizing robot’s arm system (d) Demolition of

concrete blocks.
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Therefore, our VR-based training program can be an appropriate plat-
form for experiencing the realistic remote-operation of the robot.

3.2. Participants

A total of 50 individuals participated in this study. We recruited
twenty-five construction workers (24 males, 1 female) for the experi-
ment from on-campus construction projects at the University of South-
ern California. Regarding the objective of the training to prepare
construction workers to remote operate a demolition robot, the inclu-
sion criteria were being an experienced construction worker over 18
years old. In addition, twenty-five graduate construction engineering
students (21 males, 4 females) at the University of Southern California
(studying either Master of Civil Engineering with focus on Construction
Engineering or Advanced Design & Construction Technologies) have
participated in the experiment. These students have participated
voluntarily responding to our invitation email sent to the construction
engineering graduate students’ community. This recruitment strategy
aligns with the strategies used by empirical studies that have recruited
students as their sample population. Table 2 indicates the participants’
demographic details based on their age, language, educational attain-
ment, and experience level in the construction industry. It is vital to
mention that recruited participants did not have any experience with the
selected demolition robot.

3.3. Experimental procedure

Prior to receiving the training, the participants were first requested
to complete a demographics survey that contained questions about age,
gender, preferred language, education level, and work experience in the
construction industry. This survey also contained questions related to
previous experiences with video games and VR-based training. The de-
mographic survey is provided in Appendix A.

After filling out the demographic survey, the participants answered a
knowledge assessment survey containing 32 questions related to the
robot and the required safety checks that are needed prior and during
the operation of the robot. These questions were validated by an expert
trainer and covered critical aspects of the safe and effective operation of
the robot. Specifically, the questions focused on aspects such as the
components of the robot, controller functions and start-up, workplace
inspection, safety checks, risk zones, power cable management, robot
and arm positioning, and demolition practices. A professional trainer
validated the knowledge assessment to confirm the inclusion of the
essential content for operating the robot safely and effectively. The

Table 2
Demographics across samples.
Demographics Construction Construction
workers students
Language
English 12 (24 %) 25 (50 %)
Spanish 13 (26 %) 0 (0 %)
Age groups
18-29 9 (18 %) 25 (50 %)
30-39 7 (14 %) 0 (0 %)
40-49 2 (4 %) 0 (0 %)
50-69 7 (14 %) 0 (0 %)
Education levels
Less than a high school diploma 9 (18 %) 0 (0 %)
degree
High school diploma degree 12 (24 %) 0 (0 %)
College degree 4 (8 %) 25 (50 %)
Construction Experience
<5 years 12 (24 %) 25 (50 %)
5-10 years 6 (12 %) 0 (0 %)
>10 years 7 (14 %) 0 (0 %)
Video games experience 3(6 %) 24 (48 %)
VR-based training experience 0 (0 %) 5 (10 %)
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knowledge assessment survey is included in Appendix B.

After finishing the knowledge assessment survey, the participants
were asked to complete two surveys that assess trust in the robot and
robot operation self-efficacy. Trust was measured with a modified
version of the automated trust scale [70], which was used to assess the
participant’s attitudes towards the robot. The survey contained 21
statements related to the participant’s opinions on the reliability,
integrity, and safety of the robot, and their opinion on the robot’s impact
on their careers. The survey was based on a 5-point Likert scale ranging
from completely disagree to completely agree. Examples of the senten-
ces in the survey include “I can trust the robot,” “The robot is reliable,”
and “The robot provides safety/security”. We developed the robot
operation self-efficacy survey based on the modification of the validated
robot use self-efficacy scale [64]. It consisted of two sentences (“I am
confident in the robot,” and “I feel confident around the robot™) evalu-
ating participants’ self-efficacy and confidence in their ability to remote
operate the robot. Similar to the trust in the robot survey, participants
were requested to rate using a 5-point Likert scale ranging from
completely disagree to completely agree. The trust in the robot and
robot operation self-efficacy surveys are provided in Appendix C.

Finally, after the surveys mentioned above were complete, partici-
pants experienced the VR-based training. After completing the training,
they answered the knowledge assessment, and trust in the robot and
robot operation self-efficacy surveys, again.

3.4. Analysis

The collected data from pre- and post-training assessments were
utilized to identify the effect of VR-based training on construction en-
gineering students compared to construction workers on three depen-
dent variables: knowledge acquisition, trust in the robot, and robot
operation self-efficacy. For each of the outcomes, we conducted 2 x 2
mixed factorial ANOVAs with time (pre- vs post-training) as the within-
subject factor and population type (students vs workers) as the between-
subject factor. A mixed factorial ANOVA test compares the mean dif-
ferences of a dependent variable (e.g., knowledge level, trust in the
robot, robot operation self-efficacy) between groups that have been split
into two factors (i.e., independent variables), each with two levels
(population type: students vs workers, time: pre- vs post-training). This
test aims to understand the effect of the two independent variables by
calculating the probability (p-value) of incorrectly rejecting the null
hypothesis. The null hypothesis in this test is that there is no statistically
significant difference in terms of the change in the dependent variable
(e.g., knowledge, trust, self-efficacy) from pre-to-post training between
students and workers. It is vital to mention that normalized gain has
been selected in comparing the change in dependent variables from pre-
to-post training. Since the scores have upper limits, using raw changes
does not account that the group with lower pre-test ratings have more to
gain than the group with higher pre-test rating. Therefore, the normal-
ized gain, independent of population type and pre-test ratings, provides
a less biased comparison between students’ and workers’ rating
changes. We also conducted separate paired sample t-tests to test
whether the pre-to-post training change was significant in each sample.
A paired sample t-test compares the means of two measurements (e.g.,
knowledge, trust, self-efficacy) taken from the same group (e.g., stu-
dents or workers). The null hypothesis in this test represents that there is
no statistically significant difference in mean measurements from pre-to-
post training in each population group. The p-value reveals the proba-
bility of incorrectly rejecting this null hypothesis. Additionally, we ran
independent sample t-tests to test whether there is a significant differ-
ence between students’ and workers’ ratings (e.g., knowledge, trust,
self-efficacy) in each pre- and post-training condition. This statistical
test provides the probability of incorrectly rejecting the null hypothesis
(no statistically significant differences in measures between students
and workers). In quantitative studies, it has been recommended to
report both substantive significance (effect size) and statistical
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significance (p value). Therefore, this study reported both the p value
and effect size. It is critical to provide effect sizes, i.e., the magnitude of
the differences between groups, because merely providing p values can
only inform whether an effect exists or not but will not reveal the size
and strength of the effect. Additionally, it has been argued that statis-
tically significant result can be achieved using a large sample size
whereas effect size is independent of sample size thereby its useful to
show the size of a difference between two measures. We used Cohen’s
(1988) guidelines in this study, which suggest (d = 0.2) as small, (d =
0.5) as medium, and (d > 0.8) as large effect size. Cohen’s d is an
appropriate effect size for the comparison between two means which
considers both the deviations and variations.

4. Results

Table 3 presents the means and standard deviations of participants’
ratings in knowledge level, trust in the robot, and robot operation self-
efficacy assessments. First, an ANOVA revealed a significant interac-
tion, such that the knowledge acquisition gain from VR-based training
was significantly greater for construction students than for construction
workers (F(1,47) = 5.582, p = 0.022, Cohen’s d > 1.0): the average gain
for students was 70.32 (out of 100), whereas, for construction workers,
it was only 60.21 (Fig. 2). Students had higher scores on the knowledge
test than workers in at both pre- (t(47) = 2.718, p = 0.009, Cohen’s d >
1.0) and post-test (t(47) = 5.222, p < 0.001, Cohen’s d > 1.0). However,
paired sample t-tests revealed significant improvement in knowledge
from pre- to post-test for both students and workers: from pre- (M =
16.9, SD = 9.5) to post-test (M = 87.3, SD = 9.7) for students (t(24) =
32.9,p < 0.001, d = 6.58) and from pre- (M = 9.7, SD = 9.1) to post-test
(M = 69.9, SD = 13.3) for workers (t(23) = 16.04, p < 0.001, d = 3.3).

An ANOVA also revealed a significant interaction for trust in the
robot, which actually increased significantly more pre- to post-test for
workers (1.38 out of 5) than for students (1.06; F(1,47) = 4.23, p =
0.045, Cohen’s d > 1.0) (Fig. 3). Additionally, independent sample t-
tests showed that, while students had significantly higher trust in the
robot (3.30 out of 5) than construction workers (2.81 out of 5) at pre-test
(t(1,47) = 3.604, p < 0.001, Cohen’s d > 1.0), the difference between
samples was reduced to non-significant after the training (t(1,47) =
1.079, p < 0.286, Cohen’s d > 1.0). However, paired sample t-tests
revealed significant increases in trust from pre- to post-test for both
students and workers: from pre (M = 3.30, SD = 0.55) to post-test (M =
4.36, SD = 0.56) for students (t(24) = 11.55, p < 0.001, d = 2.31), and
from pre- (M = 2.81, SD = 0.37) to post-test (M = 4.20, SD = 0.50) for
workers (t(23) = 10.69, p < 0.001, d = 2.19).

A paralle]l ANOVA revealed a significant interaction for robot oper-
ation self-efficacy, which -even more so than trust- increased signifi-
cantly more from pre- to post-test for workers (1.62 out of 5) than for
students (0.98; F(1,47) = 7.634, p = 0.008, Cohen’s d > 1.0) (Fig. 4).
Also like with trust in the robot, independent sample t-tests showed that,
while students had significantly higher self-efficacy (3.32) than con-
struction workers (2.79) at pre-test t(1,47) = 2.678, p = 0.010, Cohen’s
d > 1.0), the difference between samples was reduced to non-significant
after the training (t(1,47) = -0.613, p = 0.542, Cohen’s d = 0.613).
However, again, paired sample t-tests revealed significant increases in
self-efficacy from pre- to post-test for both students and workers: from
pre- (M = 3.32, SD = 0.69) to post-test (M = 4.30, SD = 0.68) for stu-
dents (t(24) = 7.00, p < 0.001, d = 1.40), and from pre- (M = 2.79, SD =

Table 3
Means and standard deviations of measures based on population groups.
Measures Students Workers
Pre-training Post-training Pre-training Post-training
Knowledge level 16.9 (9.5) 87.3 (9.7) 9.7 (9.1) 69.9 (13.3)
Trust in the robot 3.30 (0.55) 4.36 (0.56) 2.81 (0.37) 4.20 (0.50)
self-efficacy 3.32(0.69) 4.30 (0.68) 2.79 (0.69) 4.42 (0.65)
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0.69) to post-test (M = 4.42, SD = 0.65) for workers (t(23) = 8.618,p <
0.001, d = 1.76).

5. Discussion
5.1. Knowledge acquisition

The results of our study indicate that after experiencing VR-based
training, both students and construction workers gained significant
knowledge, which might suggest a similarity between these two popu-
lation types. However, the statistical result from the ANOVA reveals that
students gained significantly more knowledge than construction
workers. Additionally, looking at the normalized knowledge acquisition
reveals that construction workers gained only 66.7 % of the knowledge
they could have learned, while students gained the higher 84.7 % of
what they could have learned considering their base knowledge. Thus,
our findings show that the effectiveness of VR-based training on con-
struction workers’ knowledge acquisition is not the same as students.
Since it is common in research to use students instead of construction
workers as the sample population to study the effectiveness of VR-based
training in knowledge acquisition, our findings show that while student
samples may be more convenient, accessible, and cost less than
recruiting actual construction workers, generalizing about construction
workers from studies using students can lead to conclusions that either
under- or over-estimate the impact of VR-based training on knowledge
acquisition. Therefore, researchers need to be cautious in generalizing
results from one population to another. The findings of our study suggest
that, compared to students, training construction workers might not
improve their knowledge as much. Thus, the results from these studies
[10,12,52,53] might not be generalizable to the construction worker
population. Additionally, the independent-samples t-test indicates that
students had a significantly higher base knowledge both before and after
experiencing the training than construction workers. These differences
in the knowledge levels between students and workers in pre- and post-
training might emanate from demographic variables such as students
having a higher degree of education and being more experienced in
using technologies (more technology-savvy); however, our sample size
was not powered enough to investigate how demographic variables
moderate the effect. Nevertheless, if the difference in knowledge
acquisition is derived from demographic differences, it further re-
inforces that the researchers should not use students as the sample
population to draw conclusions about construction workers, and they
need to be cautious in generalizing their results. Also, our findings are in
alignment with previous research, which has indicated that VR-based
training might be beneficial for less experienced trainees, such as stu-
dents (young generations), compared to the more experienced con-
struction workers [28].

The impact of the VR-based training program based on the data
collected from a student population had a larger effect size than in prior
studies also conducted with students (see Table 1). Such differences
could be explained by several factors, such as the characteristics of the
student sample across these studies, the choice of data collection tools,
or the differences in the programs studied. Yet, our results showed that
even when the VR-based program, measures, and the data collection
procedures were identical across the two different populations (i.e.,
students and construction workers), the results were contingent on the
population. Indeed, the effect sizes obtained from paired sample t-tests
indicate that the size of knowledge gain relative to variation among the
students was twice as large as the size of knowledge gain relative to
variation in the construction workers experiencing the same program.
This result suggests that although both students and workers experience
significant knowledge gains by taking the training program, the
magnitude of VR-based training’s impact on students’ knowledge
acquisition is more significant than its impact on construction workers.
Hence, using students rather than workers in a program aiming to target
workers can lead to overestimating the impact of such a program. Taken
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together, our study highlights the importance of collecting data from the
targeted population to obtain more accurate estimate of the impact of a
program for the end-users.

5.2. Trust in the robot & self-efficacy

Our results in this study indicate that construction workers gain more
trust in the robot and robot operation self-efficacy than students after
experiencing VR-based training. Despite initially lower trust and self-
efficacy among construction workers and students because workers
and students no longer differ significantly in trust or self-efficacy after
training, the training seems to be able to bring workers on par with
students in terms of trust and self-efficacy. The difference in trust and
self-efficacy at pre-test might be driven by the demographic differences
between the two samples (and, likely, the populations they are sampled
from). All the students who participated in this study were master’s
students in construction engineering and between 18 and 29 years old.
However, the construction worker participants were from a wide range
of age groups, from 18 to 29 to 60 and older. Our results support con-
clusions from prior work that younger adults are more eager to engage
with robots than older adults [71]. Thus, younger adults in general,
especially those with higher education, may have higher trust in the
robot and self-efficacy even before experiencing the training.

Although our results show higher levels of trust in the robot and self-
efficacy for students before the training than for construction workers,
importantly, we show a larger gain from pre- to post-training in both
trust and self-efficacy for construction workers than for students. These
findings suggest that the previous work using students could be sys-
tematically underestimating the effect of VR-based training on these
kinds of outcomes for construction workers. That is, given our findings,
construction workers might have demonstrated even larger increases in
trust and self-efficacy in the prior work if they had been sampled
(instead of students). For example, Song et al. [22] studied the effec-
tiveness of VR-based crane operator training (i.e., overhead, container,
and tower cranes) using 108 technical high school students. They found
that their VR-based training could significantly improve students’ self-
efficacy (Cohen’s d = 1.88); however, they state that their results may
not be applicable to workers with significant experience. Based on the
Cohen’s d measure, we can claim that our student population (Cohen’s
d = 1.40) has a similar effect size with Song et al.’s findings on students
(Cohen’s d = 1.88). Thus, it is possible that since Song and colleagues
found significant improvement in self-efficacy in students, if our dif-
ferences between samples in self-efficacy are representative of pop-
ulations differences, their findings could possibly also be applicable to
workers in the construction industry.

As robotics become more common in construction, researchers strive
to understand the hurdles to robotics and automation adoption in the
construction industry; thus, human-related factors in HRI, such as trust
in the robot and robot operation self-efficacy, might become of even
greater interest. Our study’s findings contribute to the question of the
extent to which results from student samples generalize to the con-
struction worker population. If our differences between samples in trust
and self- efficacy are representative of population differences, given the
effect of our training went from large (in students) to even larger (in
construction workers), then their observed gains could conceivably go
from small (in students) to potentially significant (in construction
workers). Such smaller effects observed in prior among students may
therefore be underrepresenting gains in trust and self-efficacy possible
with VR-based training among construction workers, at least with well-
developed VR platforms and modules.

5.3. Limitations
While this study has significant implications for the research com-

munity, some limitations do exist. The current sample of students
showed much larger effects of our VR-based training than prior studies
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reported. Our larger effect size among students may be due to de-
mographic differences among students, or that the design of our VR-
based training was perhaps more effective. Furthermore, our study
has, at best, only a moderate sample size even though we observed quite
large differences between our samples, and the effects were highly sig-
nificant. Additionally, our sample size was not powered enough to sta-
tistically investigate how demographic variables (e.g., education level,
video game experience) moderate the effectiveness of VR-based training
among students and construction workers. Future studies with larger
sample sizes might explore the reason behind the similarities and dif-
ferences in VR-based training effectiveness among different population
types. Regarding trust in the robot and self-efficacy, while realistic
simulation of the construction site and the robot were included in VR-
based training and the trainees were able to experience robot failures
and consequences of poor strategies, we cannot be certain that VR-based
training results in the same level of trust gains if the actual robot is used.
Hence, future studies should test if working with the actual robot after
the VR-based training has different results in terms of trust in robots and
robot operation self-efficacy. Moreover, the findings of this study are
limited to our specific VR-based training. Although the results may not
be generalizable to all VR-based training studies, our research indicates
that there might be significant differences between the effectiveness of
VR-based training on construction workers and student populations.
Thus, caution on population type is necessary for interpreting the
results.

6. Conclusion

The present study contributes to existing research on VR-based
training within the construction industry. We construct on previous
research that explored the application of VR-based training for con-
struction workers by asking the extent to which the results from student
samples generalize to the construction workers population. Findings
from this study suggest that VR-based training can lead to a significantly
larger increase in knowledge acquisition for construction students than
workers. In contrast, VR-based training improved trust in the robot and
robot operation self-efficacy significantly more for construction workers
than students.

These results call in to question the extent to which studies based on
student samples can appropriately generalize to construction workers,
which are usually the intended population for the training. If a similar
difference between construction workers and students occurred with
other VR-based trainings as observed for ours, given that their training
appeared to be less effective than ours, no effect of VR-based training
might have been observed if they had done the study with construction
workers instead of students. Indeed, our effect of VR-based training went
from very large (in students) to smaller (in construction workers);
accordingly, it is possible that the effect of other researchers’ VR-based
training could go from small (in students) to non-significant (in con-
struction workers). This suggests that, while they observed significant
knowledge acquisition through VR-based training among students, their
findings might not replicate using a sample of construction workers. This
raises the possibility that VR-based training intended for construction
workers may not actually be able to significantly improve knowledge
among workers in this population. On the other hand, the larger gains
that we observed for trust and self-efficacy among construction workers
than students suggest that prior work examining these outcomes may
have underestimated the effectiveness of VR-based training on con-
struction workers, at least for these ancillary outcomes. Either way,
future research should be cautious -given our findings- when general-
izing from samples of construction students to populations of con-
struction workers.
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