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Abstract

We study fast rates of convergence in the setting of nonparametric online regression, namely
where regret is defined with respect to an arbitrary function class which has bounded complexity.
Our contributions are two-fold:

e In the realizable setting of nonparametric online regression with the absolute loss, we
propose a randomized proper learning algorithm which gets a near-optimal cumulative
loss in terms of the sequential fat-shattering dimension of the hypothesis class. In the
setting of online classification with a class of Littlestone dimension d, our bound reduces
to d - polylogT. This result answers a question as to whether proper learners could
achieve near-optimal cumulative loss; previously, even for online classification, the best
known cumulative loss was O(v/dT). Further, for the real-valued (regression) setting, a
cumulative loss bound with near-optimal scaling on sequential fat-shattering dimension
was not even known for improper learners, prior to this work.

e Using the above result, we exhibit an independent learning algorithm for general-sum
binary games of Littlestone dimension d, for which each player achieves regret O(d3/ 4.
T/ 4). This result generalizes analogous results of Syrgkanis et al. (2015) who showed that
in finite games the optimal regret can be accelerated from O(\/T ) in the adversarial setting
to O(T'/*) in the game setting.

2111.08911v2 [cs.LG] 12 Apr 2022

To establish the above results, we introduce several new techniques, including: a hierarchical
aggregation rule to achieve the optimal cumulative loss for real-valued classes, a multi-scale
extension of the proper online realizable learner of Hanneke et al. (2021), an approach to show
that the output of such nonparametric learning algorithms is stable, and a proof that the
minimax theorem holds in all online learnable games.
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1 Introduction

The success of deep learning has increased the importance of studying the learnability of nonpara-
metric and high-dimensional models across all areas within learning theory and its applications.
In this paper our goal is to advance our understanding of learning such models in two prominent
settings, online learning and games.

In the classical setting of online learning [CBL06, SS11], a learner observes a sequence of labeled
examples (x4, ), generated adaptively by an adversary, and, at each round ¢ > 1, is asked to make
a prediction fi(x¢) about the true label y;, by choosing a hypothesis f; that depends only on the
history of previous examples. A common goal is to minimize regret: for a loss function ¢(¢,y) giving
the penalty for predicting ¢ when the true label is y, and a class F of hypotheses, the regret is the
difference between the learner’s total prediction loss, Z;jr:l 0(ft(xt),yt), and the best possible loss
in hindsight the learner could have obtained by choosing a single f* € F over all T rounds.

Online learning has been studied for various instantiations of F and ¢ as well as various con-
straints on the learner and the adversary, drawing its importance from its versatility and intimate
connections to other learning settings. Indeed, given the adversarial nature of the sequence of exam-
ples (z, y:), online learning generalizes supervised learning, where these pairs are i.i.d., while beau-
tiful connections have been forged between online learning and private learning [BLM20, ALMM19],
contextual bandits [FR20], reinforcement learning [DYM21], adversarial sampling [ABED"21],
learning of quantum states [ACH"19], and learning in games [RS13, SALS15]. In particular, online
learning is a central primitive whose study unlocks understanding in many other learning-theoretic
settings.

The starting point for our work is that, while the optimal no-regret algorithms are very well un-
derstood when the hypothesis class F is finite, low-dimensional, or parametric, our understanding
of the optimal regret bounds and the algorithms achieving them is much more limited for nonpara-
metric classes. For example, while a celebrated paper by Littlestone [Lit88] determines the optimal
regret bound of online classification in the realizable setting, namely when f* achieves 0 loss, his
algorithm is not proper, namely the hypotheses f; may not belong to the model class F (see also
[HLM21, Ang88]); the optimal regret for proper realizable learning (by a randomized algorithm)
remains elusive. In the non-Boolean setting (i.e., of regression) much less is known.

The contributions of our work, overviewed in the next section, are two-fold. First, we answer
several outstanding questions, obtaining near-optimal regret bounds for proper online learning (for
both classification and regression) in the realizable setting. Second, we use our new results to
advance our understanding of learning in games in the nonparametric setting, which has become
increasingly important due to the applications of adversarial training in robust learning, generative
adversarial networks, and multi-agent reinforcement learning. Here, our results are the first to
obtain fast rates for regret of independent learning in two-player zero-sum nonparametric games
and more generally in multi-player general-sum nonparametric games.

1.1 Model and overview of results

We consider the standard setting of online learning with absolute loss: two agents, a learner and
an adversary, interact over a total of 1" rounds, for some T € N. The learner and adversary
are given at the onset a set X and a set F consisting of [0, 1]-valued functions on X, known as
hypotheses. In the setting of proper online learning, the players perform the following for each round
1 < ¢ < T: the learner chooses a hypothesis f; € F (which may be random), and the adversary



picks (z¢,y:) € X x [0,1] (which may be random) denoting a feature z; together with its label y;.
Then the example (x4,y;) is revealed to the learner, who suffers loss |fi(z:) — y|]. We allow the
adversary to be adaptive, meaning that it can choose each example (z¢,y;) based on the history of
moves f1,..., fr—1 and (x1,y1),...,(T¢—1,%:—1). In general, the goal of the learner is to minimize
its expected regret, namely

T T
Regr :=E Z|ft($t) — Yt —}Q£Z|f($t) —yel| - (1)
t=1 t=1

In this paper we are concerned with the case when the function class F is monparametric in na-
ture, meaning that it is infinite or extremeley large; thus regret guarantees in terms of log | F| are
insufficient, and we instead aim for guarantees in terms of combinatorial complexity measures of

F.

Near-optimal cumulative loss for the realizable setting. A fundamental setting in which
online learning is studied is the realizable setting, which means that the adversary is constrained
to choose the sequence (x4,y:), 1 <t < T so that there is some f* € F so that f*(x;) = y; for

all ¢. In this case, the regret of the learner (1) reduces to E [Zle | fe(xe) — yt|} , namely the total

expected error made by the learner over all T' rounds; we call this quantity the cumulative loss of
the learner.

The study of the optimal cumulative loss for an online learner dates back to the seminal work of
Littlestone [Lit88], who showed that in the case of online classification (namely, where hypotheses
f € F map to {0,1}, and y; € {0,1} for all ), the optimal cumulative loss (also known as the
mistake bound in the binary setting) for a hypothesis class F is given by a combinatorial parameter
of F known as the Littlestone dimension, denoted Ldim(F) € N. One limitation of the result
of [Lit88] is that this mistake bound was only shown for an improper learner, meaning that the
learner’s hypotheses f; may not belong to the class F. In many settings, such as the setting of
learning in games discussed below, an improper learning algorithm is insufficient to solve the task at
hand: for instance, for learning in games, the hypothesis class F denotes the set of actions available
to the learning agent, who must choose a valid action at each time step. However, there are many
settings in which improper learners have better statistical or computational properties than proper
learners (such as [HLM15, HM16, Han16, HK16, FKLT18, Ang88, DSS14, MHS19]; see [HLM21]
for further examples). It is therefore natural to ask whether there is a similar proper-improper gap
in the setting of online realizable classification: is there a near-optimal (randomized) proper learner
for online classification in the realizable setting?

We further consider the generalization of the above question to the setting of regression, i.e.,
the general case where hypotheses f € F and labels y; are real-valued. In this case the natural
generalization of the Littlestone dimension is the sequential fat-shattering dimension (Definition
2.1). Surprisingly, prior work has not characterized the optimal cumulative loss for real-valued
hypothesis classes in terms of the sequential fat-shattering dimension, even for improper learners.

'Note that our informal usage of the term “nonparametric” differs slightly from some other instances in the
literature, such as [RST17, FK18], in which it is used to refer specifically to classes with inverse-polynomial growth in
the empirical entropy numbers. While we consider, for example, generic binary classes of finite Littlestone dimension
to be nonparametric, works such as [RST17, FK18] would not do so.



Therefore, our fully general question for the realizable setting is the following;:

What is the optimal cumulative loss (in terms of sequential fat-shattering dimension)
for realizable online regression? Can it be achieved by a (randomized) proper algorithm?

(%)

There appears to be some confusion in the literature regarding the latter part (proper learnability)
of the question (*), even for the special case of binary classification: [HLM21] states (without proof)
that “unlike the realizable setting, in the agnostic setting nearly optimal randomized proper learners
can exist.”? We show that a randomized proper learner can obtain a cumulative loss bound in the
realizable setting that is off from the optimal bound (of Ldim(F)) by only a polylog T factor.?
Furthermore, we can extend our upper bound to the more general setting of online regression:

Theorem 1.1 (Informal version of Theorem 5.15). There is a randomized proper learner that
achieves cumulative loss of O (infae[o,u {ozT + f; Sfatg(f)d5}> -poly log T in the realizable setting.
In the special case of online classification, this bound becomes O(Ldim(F)) - poly log T

We remark that randomization is necessary for proper realizable learning: there are trivial
classes, such as the class of point functions on an infinite domain, which have Littlestone dimension
1 but for which any deterministic proper learner cannot achieve any finite cumulative loss bound.
Nevertheless, we show in Proposition 4.1 that there is a deterministic improper learner that achieves
the cumulative loss bound of Theorem 1.1.

As alluded to above, we further show that the cumulative loss bound of Theorem 1.1 is opti-
mal (up to a polylogT factor) among any bound that depends only on sequential fat-shattering
dimension:

Proposition 1.2 (Lower bound). For any non-increasing function s : [0,1] — Z>o and T € N,
there is some function class F so that sfat,(F) < s(a) for all a € [0,1], but for which any algorithm
(not necessarily proper) has cumulative loss at least

1 1
0 . inf T 2
<logT ae[lln/T,l} {oz +/a s(n)dn}) .

We remark that unlike in the case of classification, the matching bound of Theorem 1.1 and
Proposition 1.2 for online regression is not instance optimal: there may be some classes F for
which an algorithm can achieve a cumulative loss much smaller than (2).* We leave the question
of determining a quantity that characterizes the optimal cumulative loss in an instance-dependent
manner to future work. Nevertheless, we believe that the bound of Theorem 1.1 is of interest for
the following reasons: first, in [BDR21], under a mild growth condition, sequential fat-shattering
dimension is shown to characterize the minimax regret in the agnostic (non-realizable) setting,
meaning it is natural to ask what its relationship to the optimal cumulative loss is in the related
realizable setting; second, the result of Theorem 1.1, for the real-valued setting (regression), is a
crucial component in the proof of our result for learning in games (Theorem 1.4 below), even for
binary-valued games (at a high level, this is the case because players can randomize their actions).

2See the bottom of page 4 in [HLM21].

3Whether such a poly log T' factor can be removed remains an open question.

“This could be the case, for instance, if for each x € X, the values {f(x) : f € F} are all distinct. Thus, after
seeing a single example (z1, f*(z1)), the algorithm knows the identity of f* and can predict correctly at all rounds
t>1.



A stable proper learner and applications. Next, we describe some applications of Theorem
1.1, culminating in our result giving fast rates for learning in games in a nonparametric setting
(Theorem 1.4). First, it is necessary to describe a strengthening of Theorem 1.1, namely that the
cumulative loss bound of Theorem 1.1 holds for a learner that produces stable predictions. Tradi-
tionally, stability of the predictions produced by an online learner, in the sense that the predictions
do not change much from round to round, has been a hallmark of online learning algorithms. In the
finite-dimensional setting, such stability is classically achieved via the use of an appropriate regu-
larizer [BT03, CBL06], but can also be obtained from the use of more unorthodox methods such
as follow-the-perturbed-leader [KV05]. Further, such stability has inspired connections between
online learning and other areas in learning theory, such as differentially private learning [BLM20],
and the study of generalization in deep neural networks [HRS15].

Despite the recent growth of work on online learning in nonparametric settings, we are not
aware of any results establishing stability of the predictions. Moreover, many of the techniques in
nonparametric settings, such as the nonconstructive approach that proceeds via application of a
minimax theorem together with symmetrization [RST15a, RST15b], seem fundamentally unable to
establish such stability bounds (see Section 1.2). Proposition 1.3 below address this deficiency of
existing work; to state the result, we introduce the following notation. For a hypothesis class F, we
denote the set of finite-support distributions on F by A°(F); elements of A°(F) will typically be
denoted with bars, e.g., f € A°(F). For fi, fo € A°(F), let % Hfl - ngl denote the total variation
distance between f1, fo, which is well-defined by the finite-supportedness of fi, fo. We remark that
the proper randomized learner of Theorem 1.1 outputs, for each round ¢, a hypothesis distributed
according to a finite-support distribution f; € A°(F).

Proposition 1.3 (Stability; informal version of Theorem 5.15). Fix anyn > 0. The proper random-
ized learner of Theorem 1.1, which chooses f; € A°(F) for each round t, may be modified to satisfy

Hft — leHl < n for allt, at the cost of a cumulative loss of%-O (infae[()’l} {aT + foll sfa@(]—")dé}).

While Proposition 1.3, which applies only to the realizable setting, is of some interest in its own
right, we believe it is most notable for its applications: broadly speaking, we use Proposition 1.3
to establish that many guarantees of online learning in the finite-dimensional non-realizable (i.e.,
agnostic) setting that make use of stability extend to the nonparametric case as well.

Application: fast rates for learning in games. An extensive line of work over the last decade
(starting with [DDK11]; see Section 1.2) has shown that minimax Q(v/T) lower bounds on regret
can be circumvented if multiple agents implement learning algorithms from a particular family in
the context of repeatedly playing a (finite) game. In Theorem 1.4 below, we show that such results
hold true in the nonparametric setting as well. To state Theorem 1.4, we introduce the following
preliminaries: we consider general-sum games with K players, who have action sets Fi, ..., Fx. For
simplicity, we restrict our attention to binary-valued games, namely where each player k’s payoff
function is of the form ¢y : F; x --- x Fxg — {0,1}. We only assume that for each player k, the
class ]:,fk = {f_r = lu(fr, f-r) : fx € Fi} has finite Littlestone dimension.’

®Some assumption on the game is necessary to guarantee existence of Nash equilibria: there is a 2-player zero-sum
game, “Guess the larger number” (GTLN), which has infinite Littlestone dimension, but which has no e-approximate
Nash equilibrium for any € < 1 (see [HLM21]). A necessary and sufficient condition for a binary-valued game and all
its subgames to contain approximate Nash equilibria is that the game not contain an embedded copy of GTLN; we
leave it as an interesting future direction to extend our results in some form to such games.



In the setting of independent learning algorithms for repeated game playing [DDK11, RS13],
the following procedure occurs over 7' rounds: for each round ¢t < T, each player k € [K] plays
a (finite-support) distribution over actions, denoted f}, € A°(F). Then each player k suffers loss
E(fu...,fx)fv(ff,m,ff{) Wk(f1,-- -, [K)] Further,ieach plfmyer l{iobservesfhe function mapping each of its
actions fr € Fy to its expected loss (under f{,..., f};_l, fli+1’ ..., [t) had it played f; it uses this
information to adapt its play in future rounds. In the setting of independent learning algorithms in
finite normal form games, the foundational work of [SALS15] showed that if each player implements
the algorithm Optimistic Exponential Weights (also known as Optimistic Hedge), then each player
k can achieve regret O(log?’/ Y| Fi| - VK - TY*). This result has since been improved multiple
times, culminating in [DFG21] which obtains regret O(K - poly(log |Fi|,log T")). Our main result
for independent learning in games is an analogue of the result of [SALS15] for the nonparametric
setting:

Theorem 1.4 (Informal version of Theorem 7.2). There is an independent learning algorithm
(Optimistic SOA-Ezperts, Algorithm 3), so that the following holds. Fiz a game G of finite
Littlestone dimension, as above. If the players repeatedly play G with each player using Optimistic
SOA-Ezperts, then each player k suffers regret O(Ldim(]:,f’“)?’/4 VK T4,

1.2 Related work

The present paper lies at the confluence of many distinct lines of work on both statistical (i.i.d.)
and adversarial (online) learning, as well as game theory, which we summarize below.

Fast rates in online & offline learning. Our two main results, Theorems 1.1 and 1.4, both
beat a Q(v/T) lower bound on regret for many hypothesis classes of interest, such as classes of
finite Littlestone dimension, by making additional assumptions about the adversary. A multitude
of such results on fast rates has been established, for both offline and online problems, over the past
two decades. In finite-dimensional online settings, fast rates (in many cases, on the order of logT")
can be obtained if the loss function has special structure, such as if it is exp-concave [CBL06], or
more generally satisfies a mizability [Vov95, HKW98, Vov01] or stochastic mizability [VEGM™15]
condition. Such results have been extended to the nonparametric setting for several special cases
of exp-concave losses, including the square loss [RS14a] and log loss [RST15b, BFR20, FKL118].
Unlike our results, these works often allow for a (arbitrary) non-realizable adversary. In the case of
a realizable adversary but for the harder case of absolute loss, the halving algorithm [SS11] obtains
logarithmic regret for finite classes F in the case of binary classification; it is generalized by the
Standard Optimal Algorithm (SOA) of [Lit88] for the infinite case.

A similarly extensive line of work has pursued fast rates in the offline setting (i.e., where the
examples (x4,44), 1 <t < T, are i.i.d. according to some distribution). It has long been known that
in the realizable setting for binary classification, excess risk of O(VCdim(F)/T) is achievable® by
a proper learning algorithm [VK06, BEHWS89], such as empirical risk minimization. This bound
has been improved by logarithmic factors several times [HLW94, Sim15, Hanl6]. This work was
generalized to the real-valued (regression) setting in [Men02], in which an analogue of Theorem 1.1
for the offline realizable setting was established. If the (non-sequential) a-fat-shattering dimension
grows as a P, p € (0,2), the rate obtained by [Men02, Theorem 4.1] for the offline setting is

5In the offline case, statistical rates are usually normalized by the number of samples T'; we follow this convention,
noting that in the online case we do not normalize by T



O(T~2/(+P)) whereas if the sequential fat-shattering dimension grows as a~?, the (normalized)
rate of Theorem 1.1 for the online setting is O(T~™n{1:1/P}) " While Proposition 1.2 shows that
the bound of Theorem 1.1 is best possible, it is unclear if this is the case for the offline rates of
[Men02]; we note, though, that [Men02] conjectured that their rates were best-possible in the offline
settting.

Local Rademacher complexities and fast rates. Extending the techniques of [Men02], sev-
eral works in the offline setting introduced local Rademacher complexities [Kolll, KP04, BKP04,
BBMO05, Menl14, RST17]; these works derive fast rates, which are often data-dependent in na-
ture, under a wider spectrum of assumptions generalizing realizability. In particular, the rates are
generally phrased in terms of a fixed point of the modulus of continuity of the local Rademacher
complexities around an optimal hypothesis. These results on local Rademacher complexities gen-
eralized and unified many previous papers (such as [SST12]) which showed that, as in the online
setting, fast rates are attainable in the offline setting under additional restrictions on the loss
function, such as smoothness. As such, it would be of great interest to have a similarly powerful
theory of local Rademacher complexities in the online setting. Initial steps toward this objective
were made in [RSS12], but the notion of local sequential Rademacher complexity from [RSS12]
seems quite limited in nature, as it does not recover most of the existing nonparametric results on
fast online rates mentioned above, as well as our own results. In the online setting, the effect of
localization can be obtained in some special cases, such as learning with square loss, by using offset
Rademacher complezities [RS14a, LRS15]; extending such techniques to our setting of realizability
with absolute loss is an interesting open problem.

Fast rates for learning in games. A parallel line of work proving fast rates for regret of online
learning assumes that the adversary for the online learning algorithm is itself the output of another
online learner, in the context of repeated game-playing. The seminal result in this direction was that
of [DDK11], which described an algorithm for learning with d experts that achieves the minimax
regret of O(y/T logd) for a (worst-case) adversary, but which obtains regret poly(log 7', log d) when
it plays against itself in a two-player zero-sum game with d actions per player. Similar results
have since been shown for various other algorithms in two-player, zero-sum games [HAM21, RS13].
For the more challenging case of multi-player general-sum games, [SALS15] showed that when
all players use any algorithm from the family of Optimistic Mirror Descent (OMD) algorithms,
each player has regret O(T' /4. log3/ 1 d). This was subsequently improved by [CP20] who showed
a regret bound of O(Tl/ 6. 10g5/ 6 d) for each player when there are only 2 players and both use
Optimistic Hedge (a special case of OMD), and then by [DFG21] which obtained a near-optimal
regret bound of O(log d - log*T ) for any number of players under Optimistic Hedge. The techniques
used to achieve these results have been successfully extended to achieve fast rates in various other
settings, including learning in games with bandit feedback [WL18, BLLW19, WLA20] and learning
in extensive-form games [FKS19]. All existing works in this direction are parametric in nature,
considering a finite expert (i.e., hypothesis) class. Our Theorem 1.4 is the first to consider such
results in the nonparametric setting.

Relation to existing work on constrained adversaries. Several of our results, such as The-
orem 1.4 and our stable path-length regret bound in Theorem 6.1 (which is used to prove Theorem
1.4) may be seen as showing that minimax regret lower bounds can be broken if certain constraints



are placed on the adversary. The work [RST11] develops a version of sequential Rademacher com-
plexity to characterize the optimal rates for online learning with constrained adversaries in a general
setting. It is shown in [RST11, Proposition 13] that this generic technique recovers the path-length
regret bound of [SALS15] for learning with d experts. This result for finite hypothesis classes is
not extended in [RST11] to the more general nonparametric setting of Theorem 6.1, though such
an extension appears possible in principle, if an appropriate Bernstein-type uniform convergence
lemma for trees could be shown. However, there is a more significant limitation of the framework
of [RST11], which is that this framework is nonconstructive in nature and thus the implied learning
algorithm is not shown to be stable in the sense of Proposition 1.3. If the learner is not stable, then
if used in a game, it does not produce stable losses for the other agents and thus it is impossible to
use the framework of [RST11] to derive Theorem 1.4.7

2 Preliminaries

Notation We use the following generic notation. Given a sequence X1, ..., X, (e.g., of sets, or
elements of sets), we will denote it by Xi.,. For a set S, let A°(S) denote the set of finite support
measures on S. For n € N, let [n] = {1,2,...,n}. For integers A € Z, we set ay = 27 to
denote the various scales our algorithms will operate at; typically (but not always) we will have
A > 1. For a function f: X — R, let ||f||,, x = supgex |f(2)], and for finite-support distributions

fi1, f2 € A°(F), let H fi— ngl denote twice their total variation distance.

2.1 Online learning: combinatorial quantities

We introduce some notation and definitions regarding the setting of online nonparametric regres-
sion. Consider sets X', ) and let V¥ denote the set of Y-valued functions on X ; usually we will have
either J = {0,1} or Y = [0,1]. Throughout the paper we will assume that F C [0,1]? is a known
hypothesis class. We first define the sequential fat-shattering dimension, which is a combinatorial
quantity that characterizes online learnability in the real-valued setting. To do so, we review some
notation (from [RST15a]) regarding binary trees. For a set Z, a Z-valued tree z is a complete
rooted binary tree each of whose nodes are labeled by an element of Z. Let d denote the depth
of the tree. For each 1 < t < d, we identify the 27! nodes of z at depth ¢ with the sequences
€1:4-1 = (€1,...,6-1) € {—1, 1}t_1; the value ¢; determines whether one must take the left or right
child at the ith step on the path from the root of z to the given vertex. We denote the label of the
vertex e1.4_1 by z¢(e1.4-1), so that z; is a function mapping {—1,1}=! — Z. The data of the tree
z consists of the d-tuple (zq1,...,24). Nodes at the final level, namely of the form (eq,...,¢€4), are
called leaves.

Definition 2.1 (Sequential fat-shattering dimension). For a class F C [0,1]* and o > 0, its -
sequential fat-shattering dimension, denoted sfat, (F), is the largest positive integer d so that there
is a complete X-valued binary tree x and a complete [0, 1]-valued binary tree s, both of depth d,

"One might hope that the constructive relaxation-based approach of [RSS12] would allow one to use the framework
of [RST11] to produce stable learners. While this is the case in some finite-dimensional settings (see Section 10 of
[RSS12]), this strategy fails in the general nonparametric setting since the basic Meta-algorithm of [RSS12] requires
the computation of a fixed point each iteration, which may be non-stable. Our analysis runs into a similar challenge
involving a per-round fixed-point operation, but we are able to overcome it using the particular structure of our
algorithm, and this technique does not appear to extend to the setting of [RSS12]; see Section 3.



so that for all k1.g € {—1,1}¢, there is some f € F so that k; - (f(x¢(k14—1)) — s¢(k14-1)) > a/2 for
all ¢ € [d]. In such a case, the class F is said to a-shatter the tree x, as witnessed by s.

To work with the sequential fat-shattering dimension at a given scale «, it is often useful to
discretize the class F in the sense given in the below definition:

Definition 2.2 (Scale-sensitive restrictions). Fix a class F C [0,1]¥ and o € (0,1). Fix (z,y) €
X x [0,1]. We define the a-restriction of F to (x,y), denoted .7-"]‘(3; ) to be the set:

Flloyy ={f € F:ly/a] = [f(x)/al}.
Equivalently, we have that f]?x’y) ={feF: f(zx)€jo,(j +1)a)}, where j = |y/a].

In the case where F is {0, 1}-valued (in which the sequential fat-shattering dimension reduces
to the Littlestone dimension), the well-known standard optimal algorithm (SOA) [Lit88] gives the
optimal cumulative loss (i.e., mistake bound) in the realizable setting. The SOA is an improper
learning algorithm, but the hypotheses it outputs nevertheless have a certain structure which will
prove useful in our setting as well; Definition 2.3 below generalizes such “SOA hypotheses” to the
real-valued setting.

Definition 2.3 (SOA hypothesis). Fix a class F C [0,1]" and a parameter o € (0,1). For each
x € X, set s, 1= sfaty(F), and for 0 < j < |1/a) 41, set s, ; := sfat, (]:|‘(xx ja)) .

The SOA hypothesis for F at scale o, denoted SOA(F,a) € [0,1]%, is defined as follows. Fix
any z € X, and let j* to be chosen as small as possible so that s, j« > s, ; forall 0 < j < |1/ +1.
Then set SOA(F,a)(x) := (7* + 1)a.

Roughly speaking, the SOA hypothesis discretizes F using the scale parameter ov and maps each
x into the bucket such that the restricted class has maximum sequential fat-shattering dimension.
Finally we introduce the notion of dual classes: for F C [0,1]%, its dual class, denoted F* C [0, 1]7,
is the class {f — f(z) : x € X}; thus F* is in bijection with X.

The binary case: Littlestone classes. Finally, we mention the specialization of the above
concepts to the binary-valued case, namely when F C {0,1}*. Here, sfat,(F) is constant as a
function of a € [0, 1], and this constant value is called the Littlestone dimension of F, denoted
Ldim(F). The scale parameter « in Definitions 2.2 and 2.3 is unnecessary, so restrictions are
denoted |, ,) and the SOA hypothesis is denoted by SOA(F).

3 Overview of techniques

The main technical innovation in our paper is a stable proper learning algorithm in the real-
izable setting, Multi-scale Proper Learner (Algorithm 2), which obtains the guarantees of
Theorem 1.1 and Proposition 1.3 (stated formally in Theorem 5.15). As mentioned previously,
the guarantee of Theorem 1.1 is new even for an improper learning algorithm in the setting of
realizable regression. We therefore begin by describing a simple improper learning algorithm,
Multi-scale Improper Learner (Algorithm 1), which obtains the optimal cumulative loss of

O (mina {aT + fol sfatn(]:)dn}>, as stated in Proposition 4.1.



3.1 A multi-scale improper learner

The starting point for the algorithm Multi-scale Improper Learner is the following simple al-
gorithm which generalizes the Standard Optimal Algorithm of [Lit88]: fix some o > 0 at the
beginning of the learning procedure, and set F' = F. For each t > 1, predict the hypothesis
SOA(F!, a). After observing each example (x, 1), if it is the case that | SOA(F?, a)(x¢) — y¢| > «,
then set FiH1 < F\‘(J‘zt’yt), and otherwise set F'™! < Ft. Tt is straightforward to show (see Lemma

A.2) that if |SOA(F,a)(xt) — yt| > «, then sfata(f't]?‘wt ) < sfatq (F'), meaning that for each

round t at which this algorithm makes a mistake larger than «, we have sfat, (FT1) < sfatq (F?).
Thus the cumulative loss for the algorithm is at most o1 + sfat,(F). Even if we optimize over
«, thus obtaining a cumulative loss of min,e(o {1 + sfato(F)}, we still do not get close to the
optimal cumulative loss. For instance, if sfat,(F) = O(a~P) for some p € (0,1), then the bound of
Proposition 4.1 is constant in the horizon T', whereas min, {aT" + a P} = ©(T?/(1+P)),

The key to obtaining better rates is to understand how to aggregate the predictions of SOA
hypotheses at multiple scales «. This is similar in spirit to the technique of chaining [Dud78],
which can be used to bound excess risk with an integral of (empirical) entropies by constructing a
multi-scale cover. In our setting, though, it is the actual predictions of an algorithm which we wish
to aggregate over multiple scales, and doing so appears to be quite different from chaining covers
at multiple scales.

In Multi-scale Improper Learner, we address this challenge as follows: for an appropriate
parameter A < log T, we maintain a total of A subclasses of F, denoted Fi,...,Fa, at each round
t. Letting ay = 27 for each \ € [A], each subclass F) is updated in response to the examples
(z¢,y¢) as described above, for the scale ay. For each round ¢, and each possible point x; € X, the
A subclasses each produce a prediction, SOA(Fy, ay)(x¢) € [0,1], for A € [A]. The main difficulty
one faces is: which of these A options should be chosen as the algorithm’s prediction for x;?

Multi-scale Improper Learner answers this question using a simple aggregation rule we call
the hierarchical aggregation rule (see Definitions 4.1 and 4.2). For any given point x;, this rule
chooses a single prediction out of the A elements gy := SOA(Fy, ay)(xz), 1 < XA < A, as follows: it
chooses g5, where A > 1 is as small as possible so that |g5 — g51| > 25 (if no such A < A exists,
set A = A). This aggregation rule satisfies the following key property (see Lemma 4.2): fix any
choice of the true label y; for the point z;, and set d; := |y; — ga| to be the algorithm’s error. Then
there is some X € [A] so that ayy > Q(d;) and | SOA(Fy, ax)(x) — ye| > ayv; the proof of this fact
requires some delicate case-work. Thus, the potential function Eﬁzl a - sfatq, (F)) decreases by
Q(d;) at each round ¢, which allows us to bound the total error over all T' rounds by the integral
apnT + fiA sfat, (F)dn.

3.2 Obtaining the optimal cumulative loss for a proper learner

We proceed to describe our proper learner (Multi-scale Proper Learner, Algorithm 2) which
obtains the same cumulative loss (up to a polylogT factor) as Multi-scale Improper Learner.
At a high level, Multi-scale Proper Learner uses the constructive framework of [HLM21] to
“make proper” our improper learning algorithm. However, the algorithm and its analysis is not
merely a case of generalizing that of [HLM21], which only treated the case of classification, to the
real-valued (regression) setting. Rather, as mentioned in Section 1.1, our proper learner improves
quantitatively upon the state of the art even in the special case of classification: we manage to
obtain a poly-logarithmic (in 7') cumulative loss for general Littlestone classes, and the previously



best known bound was O(v/T) [BDPSS09, RST15a, HLM21].

Thus, we begin by describing how we can obtain an improved cumulative loss bound for a
(randomized) proper learning algorithm for binary classification. At a high level, we build off the
approach of [HLM21]: roughly speaking, this approach maintains a multiset 7 of subclasses F! of
F, each accompanied by a weight w® > 0. At each iteration, it considers the distribution @ over
the hypotheses SOA(F?) weighted according to the values w’, and tries to find a finite-support
distribution f over hypotheses in F, whose expectation is close to that of Q). If it can find such
a distribution f € A°(F), it uses f; := f as its output on the next iteration t. If such f does
not exist, an application of the minimax theorem implies the existence of a sequence of elements
(zj,y;) in X x {0,1}, such that, when we replace the F* by the restrictions F Z'|(acj7yj) for all 7 and
j, a certain potential function of T is decreased by an appreciable amount. This potential function
can only decrease a bounded number of times, which implies that we must eventually come to a
point at which a desired f can be found.

The main limitation of the above approach that precludes a polylogT cumulative loss bound
is the notion of closeness of the weighted average (improper) hypothesis h to the randomized
(proper) hypothesis f € A°(F). In [HLM21], a certain fixed scale o was chosen, and it was shown
that we can find f so that for all (z,y) satisfying Epwg[|lh(z) — y|] < o, then Efwfﬂf(x) —yl] <
O(a). This approach leads to cumulative loss of o + O(Ldim(F)/a), which is never less than
O(y/Ldim(F) - T). To improve upon this bound, we have to find f so that for all scales o € [1/T,1],
if Epvqllh(z)—yl] < a, then E;f[|f(z)—yl] < O(«a) (step 2a of Algorithm 2). In the case that there
does not exist a f satisfying this stronger condition, then when we apply the minimax theorem,
we end with a sequence in X x {0,1} satisfying a weaker condition (Lemma 5.8). Via a careful
analysis of the potential function alluded to above, it turns out that this weaker condition is still
sufficient to ensure a decrease in the potential (Lemma 5.10).

Furthermore, because of the multi-scale nature of this argument, our application of the minimax
theorem is to a general real-valued function class, even in the case when F is binary-valued. Of
course, it is necessary to prove that the minimax theorem actually holds in such settings. We
show that it is sufficient for our needs to establish that the minimax theorem holds in general for
real-valued classes which are online learnable (i.e., have sequential fat-shattering dimension finite
at all scales). This fact, in turn, is proven in Section 8.

3.3 A multi-scale proper learner for regression

The proof of Theorem 1.1 (obtained by Multi-scale Proper Learner, Algorithm 2) follows,
roughly speaking, by combining the hierarchical aggregation of SOA hypotheses (from the improper
learner for realizable regression) with the insights from the previous section needed to obtain the
optimal cumulative loss for binary classes. In particular, the weighted average hypothesis hA formed
each round from the previous section is replaced by a weighted average of hierarchically aggregated
SOA hypotheses in the sense of Definition 4.2; the SOA hypotheses to be aggregated are collected
in a data structure we call a weighted subclass collection (Definition 5.1). The resulting algorithm
is “doubly multi-scale” in the following sense: we need to use multiple scales in the sense described
in the previous paragraph to characterize the closeness of h and f, but we also need multiple scales
to deal with the growth of sfat,(F) as o — 0. This creates additional technical challenges; see
Section 5 for details.
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3.4 Making the proper learner stable

Next we address the stability property of Multi-scale Proper Learner, namely the proof of
Proposition 1.3. We begin with the case of improper learning for binary classification, in which
case the Standard Optimal Algorithm simply outputs the hypothesis SOA(F?) at each round ¢, and
updates Fitl « ]:t|(mt7yt) if it incorrectly predicts (zy,1) (and otherwise sets F'*1 < F*). The
key insight that allows a stable improper learner here is that F* is only updated in the event of a
mistake®, and there are only Ldim(F) mistakes overall. Thus, for any n > 0, if we instead output
the uniform distribution over the past 1/n hypotheses, SOA(F?), ..., SOA(F*~(/7)) each original
mistake will incur at most 1/n7 new ones, leading to a cumulative loss of Ldim(F)/n. Further, the
total variation distance between consecutive averages of 1/n hypotheses is at most 2r. Thus, for
improper learning for classification, we immediately obtain the guarantee of Proposition 1.3. To
obtain the same cumulative loss for a proper learner (and in the regression setting), we essentially
pass the above insight into the machinery described in the previous sections. In particular, we show
that due to the fact that we only make updates to subclasses F* of the weighted subclass collection
T when F' makes a mistake, the collection 7 changes slowly (Lemmas 5.7 and 5.11), which allows
us to show that averaging over a window of 1/n rounds only degrades the cumulative loss by a
factor of 1/7.

3.5 Application: fast rates for learning in games

At last we can overview the proof of Theorem 1.4, which leans heavily on our stable proper learner
(Theorem 1.1 and Proposition 1.3). The main technical component of Theorem 1.4 is a path-length
regret bound for a stable proper learner (Theorem 6.1), which shows (for a stable learning algorithm)
that if consecutive losses fed by the adversary are close, then we can obtain improved regret (i.e.,
beating O(v/T)). At a high level, the idea of the proof of Theorem 6.1 is to use the “SOA-experts”
technique of [BDPSS09, RST15a]? which uses the existence of an online cover of bounded size for
the hypothesis class F for any data sequence x1,xa,...,z7.'" Each element of this online cover is
interpreted as an expert, which runs an instance of our proper realizeable learner (Multi-scale
Proper Learner). Typically one uses an online experts algorithm (such as exponential weights,
i.e., Hedge) to learn the best expert in this cover. In order to obtain path-length regret bounds,
we replace Hedge with Optimistic Hedge [RS13, SALS15] and use (as a black-box) the path-length
regret bound of [SALS15]. Crucially, the stability property of the output of Multi-scale Proper
Learner (Proposition 1.3) implies that (a) the outputs of the experts produce slowly-changing losses
for the Optimistic Hedge algorithm, which is necessary to get strong path-length regret bounds,
and (b) the outputs of the Optimistic Hedge are therefore slowly changing, meaning that in the
game setting, other agents’ losses are slowly changing. One additional challenge that occurs in
the proof is that because each agent is playing randomized strategies, the function class we must
work with is that which takes as input a distribution over examples X, and thus is real-valued
(even though we are in the setting of a binary game). In Lemma 7.1, we nevertheless show that
its sequential fat-shattering dimension can be bounded in terms of the Littlestone dimension of the
original binary-valued class, which allows us to use our results for proper realizable learning in the

®Some instantions of the Standard Optimal Algorithm restrict F**' <— F*|,, ,,) even if there is not a mistake at
step t, though this is not necessary.

9For the latter reference [RST15a], see in particular the version at https://arxiv.org/pdf/1006.1138v1.pdf.

19Gee also the online version of the Sauer-Shelah lemma, [RS14b, Theorem 13.7].
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real-valued setting. The full proof may be found in Sections 6 and 7.

4 A near-optimal improper cumulative loss bound

As a warm-up, we derive an optimal cumulative loss bound in the realizable setting for the easier
case of improper learning, which remained open prior to this work. As noted previously, a cu-
mulative loss bound of O (min,ejo,1) {aT + sfatq (F)}) is immediate from the definition of sfate(-),
but this regret bound is suboptimal in many cases, for instance when the sequential fat-shattering
dimension exhibits growth sfat, (F) < a~P for some p € (0,1).

To improve upon this trivial bound, it is necessary to consider the sequential fat-shattering
dimension at multiple scales «, somewhat analogously to how chaining is used to improve statistical
rates in the agnostic setting. Our techniques for doing so differ substantially from chaining since
rather than considering covers at different scales, we consider different hypotheses at different
scales. To aggregate the predictions of the hypotheses at varying scales, we introduce hierarchical
aggregation rules in Definition 4.1 below. First, we define the scales we will consider: for A € Z,
define oy := 2~*. Throughout this section, we will fix some A (which ultimately will depend on
the growth of sfat,(F) as o — 0) and consider scales aq, g, ..., a.

Definition 4.1 (Hierarchical aggregation). For a sequence of real numbers gq,...,gx € [0, 1], we
define the hierarchical aggregation rule HAgg (g1, ..., ga) € [0,1] to be gy, where \ is chosen so that
for 2 < X < ), it holds that |gy — gy _1] < 2ax_1, yet |gx — g541| > 2as, if such X exists; if no such
A exists, set A = A. We will call this value of A the cutoff point and denote it by A = A(g1,...,gn)-

The individual hypotheses referred to above (to which a hierarchical aggregation rule is applied)
will be the SOA hypotheses at differing scales (Definition 2.3), namely SOA(Fy, «y), for various
classes Fy. We next define the SOA hypothesis for a sequence:

Definition 4.2 (SOA hypotheses for sequences). Given a sequence Fi.\ = (Fi,...,Fy) of hypoth-
esis classes, define its SOA hypothesis, denoted SOA(Fi.p), as

SOA(Fi:a)(z) = HAgg(SOA(Fy, a1)(z), SOA(Fa, a2)(z), . .., SOA(Fa, ap)(z)).
We also denote the cutoff point for the sequence (SOA(F1, aq)(x),...,SOA(Fa,ap)(x)) by
AFra,2) = AMSOA(F1, 1) (), ..., SOA(Fa, ap)()).

Algorithm 1, Multi-scale Improper Learner, presents an improper proper learner that uses
the SOA hypothesis for sequences presented in Definition 4.2. The following proposition upper
bounds the number of mistakes made by Multi-scale Improper Learner.

Proposition 4.1 (Optimal cumulative loss bound for improper learning). Suppose (x4, y¢) € X X
[0,1] and y = f*(xt) for some f* € F for all t € [T]. Then the predictions g, t € [T] of
Multi-scale Improper Learner (Algorithm 1) satisfy

T 1
Z |9t —ye| < C - inf {aT +/ sfatn(]-")dn} . (3)
=1 a€l0,1] a

for some constant C'.
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Algorithm 1: Multi-scale Improper Learner

Input: Function class F C [0, 1]X , time horizon T' € N, scale parameter A € N.
1. For 1 < \ < A, initialize F) < F.
2. For 1 <t<T:

(a) Observe xy, and predict g := SOA(Fp.p)(x¢).

(b) Observe yq, suffer loss 6; := |y — SOA(F1.a)(t)].

(c¢) Set Ay, 1 <A\ <A+1, tobe A+ 1if §; < ay, and otherwise as small as possible so
that d; > avy,.

(d) Set A, 1 < A\ < A, to be the cutoff point A := A(Fy.z, 7).

(e) Update Fy .7-",\/\?3;'7%) for all X' > min{A\;, \; + 1} such that

sfatq,, (Fx |?x*t"yt) ) < sfata,, (Fa).

Proof. Choose « € [0, 1] which minimizes o7+ f; sfat, (F)dn; since we assume that sfat.(F) > 1 for
a constant ¢, we can assume that o > 1/7" with the loss of a constant factor. Set A = |log1/(2a)].
By bounding the integral in (3) below by the appropriate Riemann sum, it suffices to show that
for some constant C' > 0, we have

r A
Z |9t — yi| < Ton + CZsfatak(]-") Q.
=1 A=0
Define, for 1 <t <T +1,
A
Oy (Frn) = (T+1—1t)-an+16 ZOQ\ - sfata, (Fi).
A=1

Below we will abbreviate ®; for the value ®;(Fj.p), where Fi.5 is the sequence maintained by the
algorithm at the beginning of round ¢. It is straightforward that ®; = T'ap +16 29:1 ay -sfatq, (F).
Moreover, ®; is non-negative for all ¢t < T 4 1. We will show that &, — ®;, 1 > §; for all ¢, which
will imply the statement of the lemma.

Fix any t < T, and let Fq, ..., FA denote the subclasses maintained by Multi-scale Improper
Learner at the beginning of round ¢. We apply Lemma 4.2 for the sequence Fi, ..., Fa, 6 = d;, and
(x,y) = (2¢,y:). Note that the parameter ) in the statement of Lemma 4.2 is A, and A(Fp.p, 7) = As.
Lemma 4.2 then implies that at least one of the following holds:

e Either §; < ap, which implies that ®; — ®;,1 > ap > §;, as desired; or

e There is some X € [A] satisfying N > min{)\; + 1, \;} so that |SOA(Fy, o) () — ye| >
ay > 6;/16. By Lemma A.2, it follows that sfat,,, (}'X|((l$t' yt)) < sfatq,, (Fy), which implies
that &, — &1 > 16y, > dy, as desired.

In both cases, we thus get a decrease in the potential of at least J;, completing the proof of the
proposition. O
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Lemma 4.2 is the main technical lemma used in the proof of Proposition 4.1, used to show a
decrease in the potential function therein.

Lemma 4.2. Fiz any A € N, any sequence of subclasses Fi,...,Fa C F, and consider any
(z,y) € X x [0,1]. Set § := |y — SOA(F1.a)(2)|, and define X € {1,2,...,A} to be A+ 1 if § < ay,
and otherwise as small as possible so that § > ay. Then at least one of the below holds:

e 5 < ap and N(Fra,z) = A; or

o For some X satisfying min{\(Fr.a, z)+1,A\} <N < min{\(Fr.a,z)+1, A}, we have | SOA(Fy, ay)(z)—
y[ >y > 5/16
Proof. Set A\ = A(Fi.a,2). Note that the choice of A in the statement of the lemma ensures that
0 < 2ay. Further, by Definition 4.2, we have that SOA(F5, a5)(x) = SOA(Fi:a)(z).
We consider the following cases:

e First suppose that § < ap (i.e., A= A+ 1). If A = A, then we are done; otherwise, it must
hold that | SOA(F5, ax)(x) — SOA(F5q,a5,1)(x)| > 2a5. But 6 = |y — SOA(F5, a3) ()] <
ap < ay, meaning that | SOA(Fy,ax)(z) — y| > az > ay > 6/2 with X = X\ + 1, thus
verifying the second item in the lemma’s statement.

e In the next case, suppose that A > X\ > A+ 1. If it is not the case that | SOA(Fy, ay)(x) —
SOA(F5,1, axyq) ()| > 203, then we must have A = A and so A = A+1, which contradicts our
assumption of A < A in this case. Otherwise, | SOA(Fy, ay)(x) — SOA(F5 1, a5 1) (®)| > 2aj5
holds. Moreover we have

| SOA(F5, az)(x) =yl = 6 < 20y < 2054, = aj,
Hence |SOA(F5, 1, a5,1)(x) —y| > ay > ax,; > /2, so in this case we may again choose
N=X+1

e In the final case, A < A (and the previous cases do not apply). Thus here |y—SOA(F5, ay)(z)| =
0 > oy > a5. We consider two sub-cases:

— In the event that A > X\ — 3 (i.e., A € {\ - 3,A—2,X —1,\}), we therefore have that
d < 2ay < 16a;, meaning that, with N = X, [y — SOA(Fy, ay)(x)] > ay > /16.

— In the other subcase, we have A < X\ — 3; then we have

| SOA(Fyx, ax)(z) — SOA(Fats, arts) ()|
-1
< Y [SOA(Fy,ax)(@) = SOA(Fy 41, ax1) ()|
N=At3

<dayyz = ay/2.

It follows that | SOA(Fyxi3, axnt3)(x) — y| > ax/2 > axys > 0/16.
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5 A near-optimal proper cumulative loss bound

Throughout this section, we consider a real-valued class F C [0,1]%, so that sfat,(F) < oo for
all @« > 0. Having established a cumulative loss bound in Proposition 4.1 for improper learning
of F in the realizable setting, we turn to the more challenging case of proper learning of 7. In
addition to the ideas on hierarchical aggregation used in the case of improper learner (Section 4
above), a key tool we use is a generalization of the proper online realizable learner of [HLM21]. It is
necessary, however, to make substantial modifications to the algorithm of [HLM21]: for one, it only
applies in the setting of binary classification, but even in that setting it provides a (significantly)
suboptimal cumulative loss of O(y/Ldim(F)-T); our proper algorithm gives cumulative loss of
O(Ldim(F)-poly log(T")). Thus, we introduce new techniques to correct both of these shortcomings.

We begin by introducing some notation. Fix some scale parameter A € N (ultimately, A will be
chosen identically as in the proof of Proposition 4.1). We will consider scales a;y = 27 for A € Z.
We will primarily be considering values of A in the set [A] = {1,2,..., A} but occasionally will refer
to a for other (integral) values of \.

Definition 5.1 (Weighted subclass collection). A weighted subclass collection T is a tuple T =
(Ti,...,Ta), where for each A € [A], 7, is a multiset of tuples of the form 7, = {(Gi,w}),..., (g‘f*', wL\TA‘)},
where for each 1 < vy < |75, we have wy* > 0 and G\* C F.

We will use the letter w to denote the collection of all wy*, for A € [A] and 1 < vy < |T,|, and
the letter G to denote the collection of all G*, for A € [A] and 1 < vy < |75|. We introduce the
following notation to denote a weighted subclass collection T: we will write 7 = [G, w].!*

In words, the weighted subclass collection 7 denotes a collection of subclasses of F together with
non-negative weights for each scale \; our algorithm will use a weighted aggregation of the SOA
hypotheses of these subclasses, according to the weights wy*. For a weighted subclass collection
T, let NA(T) denote the set of sequences (vi,...,vp), where for A € [A], 1 < vy < |T,| (i.e.,

(G, w™) € T\). We will abbreviate the sequence (v1,...,vs) with the letter v, so that we have
v € NA(T). We also abbreviate the sequence (G1*,...,G*) as G., and the sequence (w}*, ..., wi*)

as wy.,. For each v € NA(T), we next define

A
) w,\
Po() =11 Smf—ar

A=1 2uy=1 W)y

It is evident from the above definition that ) Na(r) P (v) =1.
For a sequence Gi.p and (x,y) € X x [0,1], define its truncated error at the point (z,y) as

TErr(Gra, 2, y) = maX{| SOA(G1:a) (%) — yl, O‘Z\(gm,x)} :

The intuition behind the truncated error is as follows: recall that SOA(G1:1)(z) = SOA(Gi:a, axg,., ) (2),
meaning that SOA(Gy.4)(x) is, in general, only accurate up to an additive ON(Gyaw)- Thus, if it
happens that | SOA(G1:a)(2) — y| < @y(g,., »)» then this is due to “luck”; it turns out that in order

to ensure that certain potential functions always decrease it is convenient to still force us to pay
Q5(Gy.p,z) I Our error bounds when such “lucky” situations occur.

"This notation emphasizes the use of the letters G, w to denote the subclasses and weights, respectively, belonging
to T. If we WlSh to describe another weighted subclass collection, we might notate it as S = [H, z], replacing the
pairs (G\*,wy*) with the pairs (H3*, 23*).
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Now fix a weighted subclass collection T = [G, w]; we will write

TErr (T, z,y) == Z P,(v) - TErr(GY.p, 2, y)
veENA(T)
to denote the average truncated error of a element Gy, , drawn according to the distribution P, (v).
Next define for x € X,
Voter(z) := Z P, (v) - SOA(GT.A) ().
vENA(T)
For € € [0,1], define

HighVote(T,¢€) := {(z, Voter(z)) : x € X, TErr(T,z, Voter(z)) < €}. (4)

In words, HighVote(T, €) is the set of tuples (z, Voter(x)) for which the truncated error of TErr(Gy. ,, z, Voter(x))
is at most €, when v is drawn from the distribution induced by P, (v), for v € Na(T). The set
HighVote(T, €) should be interpreted as the set of tuples (z, Votes(x)) about which the hypotheses

SOA(G7.,), weighted according to v ~ Py(:), are “nearly unanimous” (up to error €) about the

label of the point x. The quantities Votes(z), HighVote(T,€) are generalizations of the analogous

quantities defined in [HLM21] to the real-valued case.

For f € F,let 0y € A°(F) denote the point mass at f. For N € N we define the class
1

Rand(}"N):{N-(5f1+~'+5fn) : f17---7fN€-7:} C A%(F), (5)

to be the collection of (uniform) averages of N hypotheses in F. We will often denote elements of
Rand(FY) with bars, e.g., given f1,..., fn, we will denote the corresponding element of Rand(F™)
by f, so that f = (6, + -+ + 7, )/N. The algorithm Multi-scale Proper Learner outputs
elements of Rand(F N ) for an appropriate integer V.

5.1 Some results on weighted subclass collections

We begin by proving some results on weighted subclass collections (Definition 5.1) and their relation
to the notions of truncated error and Highvote defined above. Lemma 5.1 shows that the prediction
made by the voting hypothesis, Voter(x), achieves the optimal truncated error up to a constant
factor (of 2).

Lemma 5.1. Fiz a weighted subclass collection T = [G,w]|. For any x € X, it holds that
TErr (T, z, Voter(x)) <2- m[(i)nl} {TErr(T,z,y)}.
ye b}

Note that the conclusion of Lemma 5.1 can be rewritten as:

Z Py, (v) - TErr(Gy.p, x, Voter(z)) <2 - min Z Py (v) - TErr(Gi.p, x, y).
veNA(T) ]

Proof of Lemma 5.1. Set yo := argminycio 1) >_yen, (7) Puw(v) - TErr(G7. 5, 2, y) and y1 = Voter ().
We assume that y; > yo (the other case y; < gy is treated in a symmetric manner). Set

S_(x) :=={v € NA(T) : SOA(G].A)(x) <1}
Si(z) :={v e NxA(T): SOA(G}.\)(z) > y1}.
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Since y; is the weighted mean of the quantities SOA(G}.\)(z) (according to the weights P, (v)),
over v € NA(T), it holds that

> Py()- |y —SOA(GA) (@) = Y Pulv)-|yr — SOA(GhA)(2)]. (6)
veS_ () veS ()

For v € 84 (z), since SOA(G{.,)(z) > y1 > yo, we have that | SOA(GY. ) ) () —yo| > | SOA(GY.\)(x)—
y1|, and thus

TEI‘I‘(gf:A, z, yO) > TEI‘I‘(gf:A, z, yl) (7)
Hence
> Py(v)- TErx(Gha,z,51) < Y Pou(v) - TErx(Gha, 2, 0)- (8)
veESY () vESY ()

Note that for any v € S_(x), if ax(gy  z) > | SOA(GY.\)(x) — y1|, we again have that

TErr(gsz’ €, ZJO) 2 TErr(gsz’ €, yl) = aj\(gf:[\,x)’

since a5y, ) is the minimum, for all y € [0, 1], of TErr(G}.,,«,y). Thus, using (6) for the first
inequality below,

Y. Pu(v)-TEr(Glp,z.91) < Y Pu(v)-|SOAGA) () =i+ Y Pu(v)- TErr(Gin, 2, 0)

veS_(x) vESY () veS_(x)
< Y Pu(v)-TEm(Glp,z,50) + Y Pulv) - TEr(Ga, z,0)
veES () veES_(x)
(9)
= Z P,(v) - TErr(Gy.z, x, v0), (10)
veNQ(T)
where (9) uses (7). Combining (8) and (10) gives the desired conclusion. O

Lemma 5.2 shows that if the truncated error TErr(7T,z,y) is large for some 7 and (z,y), then
we can get a lower bound on the weight of hypotheses (G*,w{*) in the multisets 7y for which
SOA(Gy*, ax)(x) is not close to y. This lemma will be used to show that if the truncated error for
some example (x¢,y;) is large, then we can update the classes QX* and the weights wff in a way
that decreases a certain potential function.

Lemma 5.2. Fiz a weighted subclass collection T = [G,w]. For any example (x,y) € X x [0,1], it
holds that

A I w1 SOAGY, ay) (@) —

op + ZO‘)‘ :
A=1

y| > ay] 1 .
ZW—A‘ wUA > _6 _/\2/: P TErr(gl:A7x7y)‘
va=1"A veNK(T)
(11)

Proof. Consider any v € N(T). We will assign the mass P, (v) to some tuple (G\*,wy*) € Ty,
for some A € [A] which satisfies ay + apn > Q(TErr(Gy.,,x,v)), in the following manner. Set
Ay 1= /_\(gf:A,x). Then by Lemma 4.2 with Fi.o = G}, = (G1*,...,G)*), at least one of the below
is the case:
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e [SOA(GY \)(x) —y| < ap and A\, = A; or
e For some X < A, + 1, we have | SOA(G,Y, ax)(z) — y| > ax >|SOA(GY,)(z) — y|/16.

Set X to be the value guaranteed by the second item above, in the event that it holds, and X =
otherwise. Then

axtax-1ISOAGRY ax) ()41 > ax] = max { 35 - [SOAGL) @) ~ . 3=} > 5 TER(Gin.v0)
(Note that in the event N’ =1, we have that 1[|SOA(G,),ax)(z) — y| > ay] = 0, meaning that
the left-hand side of the above expression is well-defined.) For the element v, we now assign weight
P,,(v) to the tuple (G, ,v\") € Ty, in the event that \' #L (and do not assign the weight Py, (v)
to any tuple in the event that \' =1).

Note that total weight (taken over all v € Nj(T)) that could be assigned to any tuple
(G, wi*) € Ty, for any X € [A], is at most

Wy
Z Py(u) = [ENTA TN u>\

UENQ (T):iupn=v) ZuA 1w
Thus (11) follows. U

Lemma 5.3 shows that if some SOA hypothesis corresponding to a sequence has large error on
a point (x,y), then the SOA hypothesis for the sequence must have large truncated error on (z,y).

Lemma 5.3. Fiz a sequence Fi.p and a point (x,y) € X x[0,1]. If, for some X € [A], | SOA(Fy, ay)(z)—
y| > bay, then TErr(Fia,x,y) > ay.

Proof. Fix A € [A] so that [ SOA(Fy, ay)(z)—y| > 5a,, and set A= A(Fi.p,2). Since TErr(Fia, 7,y) >
ay, the lemma clearly holds if A < A. Otherwise, we have that for all X satisfying A < X < A,
| SOA(Fr, an)(x) — SOA(Fy41,an41)(x)] < 2. Therefore

-1 -1
| SOA(Fi:)(z) — SOA(F, ) (@) < D [SOA(Fy, an)(x) — SOA(Fy1, an1)(@)] < D 20w < day,
N=X N=X

and it follows that TErr(Fi.a,x,y) > |y — SOA(Fi.a)(x)] > ay. O

Notice that Lemma 5.3 is not true if the truncated error TErr(Fj.a, x,y) is replaced with the
absolute loss |y — SOA(Fi.a)(x)]: it could be the case that for the given A in the lemma statement,
the cutoff point A(Fy.5,z) is much smaller than A but SOA(Fj.4)(z) = SOA(F5, ay)(x) happens
to be very close to y.

The next lemma shows that if a weighted subclass collection T = [G, w] is “nearly unanimous”
about the label y of a point x (in the sense of Highvote, defined in (4)), then most of the individual
(single-scale) hypotheses SOA(G}*, i) from 7 must predict (x,y) approximately correctly. It may
be seen as a sort of converse to Lemma 5.2, which shows that if the truncated error TErr(7,z,y)
is small, then many of the SOA hypotheses at individual scales must be inaccurate on (x,y).
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Lemma 5.4. Consider any weighted subclass collection T = [G,w], and (z,y) € X x [0,1]. If
(z,y) € HighVote(T, «) for some a > 0, then for all X € [A],

Sidi wy - L[ SOA(G on)(@) 9l > Bon] _ o

Y Q
ZUA 1 w)\ A

Proof. The conclusion of the lemma is immediate if o > «), so we may assume from here on that
o < Q).

By Lemma 5.3, for any v € NA(T) and X € [A] for which [ SOA(G*, ay)(z) —y| > 5ay, it holds
that TErr(Gy.,, =, y) > a. Thus, for any tuple (G\*,wy*) € Ty for which [ SOA(G*, ax)(x) — y| >
5ary there is a set S, C Na(T) (namely, the set of all u for which uy = vy) so that for all u € S,,,,

UX
TErr(G \,z,y) > ) and so that EueSUA Py(u) =

(12)

Wi
Sl wit

That (z,y) € HighVote(T, «) means that ZUENA(T) w(v) - TErr(GY.\, z,y) < a. By Markov’s
inequality, for any A for which ay > «,

> Pu(v) - L[TE(Gly, 2,y) > ay] < —.

vENA(T) A
Thus, the mass (under P, (-)) of the union of all the sets S,, is at most 2. Since the sets S,, are
pairwise disjoint, (12) follows. O

Lemma 5.5. Suppose P is a distribution supported on [0,1] so that Bz p[Z] > a for some o €
[2ax,1]. Then there is some A € [A] so that Bz p[1{Z > ay\]] > 355

Proof. Suppose for the purpose of contradiction that for all A € [A], E[1[Z > a,]] < ;724—. Then

-

SZ]P’[CM)\ < Z< a>\_1] s O)—1 T QA
A=1

A
Qa1
SQA + Z 4Aa>\
A=1

<ap+a/2 < a,

a contradiction. |

Lemma 5.6 shows that if two length-A sequences of real numbers have their first Ag positions
equal, then their hierarchical aggregations (Definition 4.1) differ by only O(ay,).

Lemma 5.6. Suppose A € N, and g1,...,9a,9],---,95 € [0,1]. Suppose g < A is such that for
all A < Xo, gx = g- Then [HAgg(g1, ..., 91) — HAgg(gy, - ... g)) < 8ay,.

Proof. Set A := \(g1,. . . ,gA) and X' := A(g},...,¢4). In particular, we have HAgg(g1,...,9a) = g5
and HAgg(q, ..., 9)) = d5- o

By symmetry, we may assume without loss of generality that A > M. If A = X < Ay, then
HAgg(g1,---,91) = 95 = g» = HAgg(gl, ...,gh), and the claim of the lemma is immediate. If

X > XN, then X < A and the definition of A, N’ gives that 95 — g;—\,+1| > 2ay > 205 > gy — Il
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and in particular |g§, — g5, +1\ # 19y — gy 41| Hence Ag < X. Thus, from here on, we may assume
that Ag < N < .
Now note that

-1 A—1
195 — D0l < D lor —aral < ) 200 <day,
A=o A=)o
and
XN -1 -1
195 — 9ol < D 1A — ghial < D 2aa < day,.
A=Xo A=Xo

Using that gy, = g),, we get that |HAgg(g1,...,9a) — HAgg(g1,- -, 90) = g5 — 95| < 8an,. O

For multisets S, S’ of tuples of the form (G, w') for G' C F, w® > 0, define

it wz]]_gz:/]_[ i it /wi,‘]]-gi/:H
A(S,S’):lz E(g7 )ES [ ]_Z(g, =S [ ].

i i (13)
HeF Z(gi’wi)esw Z(gi/7wi/)68/ wY

Note that A(S,S8’) is the total variation distance between the distributions on subclasses of F
induced by the weights w; and wy.

Lemma 5.7 shows a sensitivity-type result for the voting rule Votes(-) and for the truncated
error TErr(7,-): if two weighted subclass collections 7, 7" are such that their components 7, T
are close in the sense of (13) for each A, then the voting rules and truncated errors for 7,7 are
close.

Lemma 5.7. Fiz any A € [A] and consider weighted subclass collections T = [G,w], T" = [G','].
Then for any x € X,

A
| Voter(z) — Vote(z)| < 8- Z ax - ATy TY).
A=1

Moreover, for any pair (x,y) € X x [0,1],

A
|TErx(T, 2, y) — TErr(T, 2,y)| < 8-> an- A(Tx, T5). (14)
A=1

Proof. First we define finite-support distributions @y, @), for each X € [A], over the set of subclasses
of F, as follows: for A € [A] and H) C F, define

Ty v T v v
SN W 1[G = Hy) N SR W - 1[G = )]
ST 0 )= Z'T' o
[N A v>\1

By the definition (13), there is a coupling between @y, @', which we denote as QA((H,\,”H’A)), SO
that

QA(H)) =

D Oa(HaHY)) - 1[Ha # HY] = A(TA, TR). (15)
(HaHY)
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Next we define a distribution Q over pairs of sequences Hi:x, 7-[:1: A of subsets of F, as follows: make
independent draws (H1, H}) ~ Q1,...,(HaH ) ~ Qa. Now Q@ is the distribution of the resulting
pair (Hi.a, H}.,); this is equivalent (up to notational dlfferences) to defining Q as the product of
the distributions Q1,...,Qx. Note that the marginal (under Q) of any sequence Hi.p is simply
Y e NA(T):GY \=Hin P, (v); an analogous statement holds for the marginal of any sequence H/.,.

Given two sequences Gi.x, g;: , of subsets of F, let A (Gy.a, Q{Z ,) denote the minimum value of
A so that Gy # G (and set A*(Gi.a,G].4) = o0 if such A does not exist). Now we can compute, for
any r € X,

| Voter(z) — Voter ()]

=| Y Q(Hia, Hia) - (SOA(Hin)(z) — SOA(H])(x))
(H1:a,H] )

< Z Q(Ha:n, Hip) - | SOA(H1a)(z) — SOA(H]p)(2))]
(Hi:a,Hip)

< Z Q(HI:Aa H/I:A) -8 O[)\*(Hl:Av,Hll;A) (16)
(H11A7H/1:A)

A
<8 CA(TATY) - o, (17)
A=1

where (16) uses Lemma 5.6, and (17) uses the fact that by (15), the total mass under Q of pairs
(SOA(G1:4),SOA(G1.,)) for which A*(Gi:a,G].4) = A (and thus SOA(Gy, ay) # SOA(G), ay)), is at
most A(7y,Ty). To establish (14), we note that

| TExe(T, 2, y) — TEr(T',z,y)]

= Z Q(HI:AyH,l;A) : (TEI‘I’(Hl;A,ﬂZ‘,y) - TErr(Hlle7x7y))
(H11A7H/1:A)

< > Q(IHI:A’H&:A)"maXﬂSOA(HI:A)(x)_y|’aX(H1:A,m)}_maX{|SOA( 1:0)(®) — Yl ax gy
(H11A7H/1:A)

< Y QUiaHLy) - (max{] SOA(H1A) ) — SOAGHL) @) |oxrn s o) — O304 01}
(leAyHlle)

S Z Q(H1A7 H&A) : maX{S : ()é)\*(’}-[le”}-[’le)a 2 ) Oé)‘*(leAv,}-Lllz/\)}
(Ha:n,Hip)

1A’

>}‘

A

A=1

5.2 The proper learning algorithm

Our proper (and stable) learning algorithm, Multi-scale Proper Learner, is presented in Al-
gorithm 2. The algorithm maintains a weighted subclass collection T for each n > 1, let 7™ =
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(T{",...,T)") denote this weighted subclass collection 7 directly after round n of the outer while
loop. For each n > 1, let ¢t(n) denote the value of ¢ maintained by the algorithm at the beginning
of round n. If the round number n is clear, we will often drop the superscript n. The algorithm
repeatedly performs the following process: at each round n > 1 of the outer while loop, it first
checks if there is some randomized predictor f satisfying the condition in step 2a. If so, then it sets
ft = f, i.e., it uses this predictor f to predict the next example (x,%;) (step 2(a)i); note that there
t =t(n), so (x4, y1) = (Ty(n)> Ye(n))- The algorithm then uses (z,y;) to update 7 in step 2(a)ii,
replacing various classes Gy* in the weighted subclass collection which incorrectly predict (xy, y:)
with appropriate restrictions at the scale ay, and downweighting the corresponding weights wf\*.

The more challenging case is when the condition in step 2a is not satisfied; in this case, it turns
out that by the minimax theorem (Lemma 5.8), we can find a dataset at each scale A which satisfies
a property (step 2b of Multi-scale Proper Learner) which is roughly “dual” to the property of
step 2a. This property guarantees that we can perform further restrictions on the subclasses G\*
(and decrease the weights wff accordingly); it turns out that after a bounded number steps of doing
so, the property in step 2a will be satisfied, and we can process the next example (241, ys+1)-

We next introduce some further notation. For each n > 1, and A € [A], let W) ,, denote the
total of all weights in 7 after round n, i.e., Wy, = Z(gzx wMeTr wy*. Further set W) o = 1 for all

A € [A]. The quantities W) ,,, for A € [A], will be used as a potential function to track the progress
of Multi-scale Proper Learner over rounds n.

Finally, given the class F C [0,1]%, denote by Faps C [0,1]F %01 the “absolute loss class” of
F, namely {(z,y) — [f(x) —y| : f € F}. We will also need to consider the dual class of Faps,
denoted F

abs*
Frs ={h: F—10,1: 3F(z,y) € X x[0,1], such that h(f) = |f(z) —y| Vf € F}.

By Lemma A.6 with £k = 1, Z = X x [0,1], and ¢é(a, (z,y)) = |a — y| (which is 1-Lipschitz),
we have that sfaty(Faps) < O(sfaty (F) - log(1/a)) for all @ > 0. Thus sfat,(Faps) < oo for all
a > 0, meaning that (by Lemma 8.4), sfat,(Fy ) < oo for all @ > 0. Let fat,(-) denote the (non-
sequential) fat-shattering dimension (see Section A for the definition). Since sfato(G) > fat,(G)
holds for any class G, we get that fat,(Fans) < 0o and fat,(Fy ) < oo for all a > 0.

At some points in our proof we will need to use basic uniform convergence properties for the

class Faps, Foys; for this we make the following definitions:

Vo 10Cy - fatcya, /10(Fabs) log(10/ap ) — 10Cy - fatega, /10(Faps) log(10/an)

9

, (18)

2 2
p Qp

my, = [@w VA € [A], (19)
)
where Cy, ¢y are the constants of Theorem A.3, and C7 > 0 is a sufficiently large constant. As
the parameters V, V* will not show up in our rates for regret, we do not attempt to optimize their
dependence on any of the relevant parameters.
Finally, set

= min aymy, = max a)\m). 20
Ho AelA] AT H1 AeiA] AT (20)

As long as the constant C is sufficiently large, we have that py/pg < 2.
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Recall from Algorithm 2 that we set Cy = 3072A3. The below lemma uses the minimax theorem
to show that if the condition in step 2a of Multi-scale Proper Learner fails at some step, then
the condition in step 2b does not fail; thus, this lemma establishes that the algorithm is well-defined,
i.e., can run as claimed.

Lemma 5.8. Suppose the condition in step 2a of Multi-scale Proper Learner (Algorithm 2)
fails at some time step, i.e., there is no f € Rand(FV") so that for each \ € [A — 6],

sup Epopllf(x) —yll < an.
(z,y)eHighVote(T,a\/Ch)

Then for every A € [A] there is a collection of tuples (Z2, 777 ), - - -, (T, » T, ) € HighVote(T, ax/Ch),

so that for every f € F, there are some X € [A], N € [A— 3] so that —— ka 1] f(z;) — y;] >
ax] > 16X2¢/\/‘

Proof. Fix some weighted subclass collection 7 so that there is no f € Rand(F"") so that for each
A € [A = 6], sup(, y)enighvote(T,ay /) Efaf [1f(2) — yl] < ax. By Theorem A.3 applied to the class

F* and by the definition of V* in (18), for every finite support measure @ on F, there is some
A € [A — 6] so that

sup Epeq [1f () —yl] > 2a4/3.
(z,y)€HighVote(T ,a\/Ch)

For each (z,y) € X x [0,1], let a(x,y) be the smallest value of ay (for A < A —6) for which
(x,y) € HighVote(T,ay/Cp).'? Hence for every finite support measure Q on F, there is some
(z,y) € X x [0,1] so that Egl|f(x) — y|] > a(z,y)/2. Now consider the function class G C R,

defined by
L@l
Q.—{f o) (,y)GXX[Oyl]}-

Note that there are a finite number of possible values of a(z,y), namely a) for A —6 > XA >
—O(log(Cy)). For each such possible value of A, define

Gy = { o @ =l <x,y>:ax}.

Q)

Note that G = | A—6>A>—O(log Cy ) Q,\ Further, since each Gy is simply a subclass of F};  scaled
by 1/ay, it holds that sfate(Gy) < sfataa, (Fr,) < oo for all @ > 0. Thus, by Corollary A.7,

sfat, (G) < oo for all @ > 0. Then by Theorem 8.8,
|f(z) — yl]

1/2 < inf sup Ewmw[
/ f~Q,(z,y)~P a(z,y)

QEA(F) peAc(xx[0,1])

: [f(z) — y!]
= sup inf Eroo (zu)~ [7 .
PEAO(XX[O71DQ€AO(-F) f Q?( 7y) P a(x’ y)

Thus we may find a finite-support measure P* € A°(X x [0,1]) so that for every f € F,

E(x’y)Np* |:|fo(é(;’y) |:| > 1/3. (21)

2Note that it could be the case that a(z,y) > 1, i.e., A <O0.
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For each A\ satisfying 2 < A < A — 6, let P € A°(X x [0,1]) be the distribution of (z,y) ~ P*,
conditioned on a(z,y) = ay. Further, for the case A = 1, let P} be the distribution of (z,y) ~ P*,
conditioned on o(z,y) < ai. (If P*{(z,y) : a(z,y) = an} = 0 for some A, then let P} be an
arbitrary finite-support distribution on X’ x [0,1].) By Theorem A.3 with the function class given
by Fabs and by definition of V' in (18) and of my in (19) for each A, we have the following: for each
A € [A — 6], there is a dataset S* := {(27,97),..., (if‘m,gﬁm)} of size m) so that for any f € F
satisfying E(, ,)~p; [ f(2) — yl] > ax/3, we have n% > \f(:%;‘) — g?\ > ay /4.

But by (21), we see that for every f € F, there is some A € [A — 6] so that E(, ) p; [|f(z) — y[] >
ay /3. Hence, for any f € F, there is some A € [A — 6] so that miA PRy |f(:i;‘) - gj| > ay/4, which
implies, by Lemma 5.5 with the value of A set to A — 3 (using that oo\/4 > 2ap—3 since A < A — 6),
that for some X € [A — 3], . Em* 1]|f(z ) - y]| > ay] > 16Aa . (Here we have used that

|f(5:§‘) - ~J)‘| <1 for all 7, \.) O

Lemma 5.9 shows that the potentials W) ,, (for A € [A]) decrease in each round n of Multi-scale
Proper Learner if the condition in step 2a succeeds in round n.

Lemma 5.9. Consider any round n in the algorithm for which the condition in step 2a of Multi-scale
Proper Learner (Algorithm 2) holds. Let t = t(n) be the value of t at step 2(a)ii. If 0y > 32,
then it holds that for some A € [A], Wyx,, < Wi,—1 - (1 642’; ) Further, for all X' € [A],
Wyin < Wxin-1.

Proof. Recall that &, = TErr(T,x¢,y:), where T = [G, w] is the weighted subclass collection main-

tained by Multi-scale Proper Learner at the beginning of round n (equivalently, at the end of
round n — 1). By Lemma 5.2, there is some A € [A] so that

S w1 SOA(GE an) (@) —y| > an] _ 1
Q) >
W)\,n—l A

Since v < 1/2, it follows that

5 5 5
Win < Wanot- (1 Win—1 - Y < Waner - (1— .
An = AR < 32Aoz)\>+ T VN < 64Aa,\>

The fact that Wy ,, < Wy ,—1 for all X € [A] is immediate. O

Complementing the previous Lemma 5.9, Lemma 5.10 shows that the potential W), ,, decreases
in round n of Multi-scale Proper Learner if the condition in step 2a fails in round n.

Lemma 5.10. Consider any round n for which the condition in step 2a of Multi-scale Proper
Learner (Algorithm 2) fails. For all N € [A], it holds that

3,&11\
ay-Cr /)’

W)\’,n < W)\’,n—l : <A +

Further, for any X' € [A], letting wii’;\j denote the weights constructed in step 2(b)iA at round n,
we have

3,ulA
v>\/,j . ,
> wy'y < v Ch Wy n—1, (22)

. vy1:d5b
(>‘7.]7b7v)\/):g>\/A,,>\ 750

where the summation is over A € [A],j € [my],0 < b < [1/ay|+1, and vy € [|T{ ).
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Algorithm 2: Multi-scale Proper Learner

Input: Function class F C [0,1]%, time horizon T € N, scale parameter A € N, constants
C1,Cs > 0, Cp = 307273,
1. For X\ € [A], initialize T = [G, w] to be the weighted subclass collection with 7\ = {(F,1)}
for each A (i.e., Gf = F and w} =1 for all A € [A]). Set v := chy my = {C;}AV—‘, A= M
t < 1 (recall definitions of V in (18) and py in (20)).
2. While t < T

(a) If, there is f € Rand(F"") so that, for each A € [A — 6],
By pertgnvoner =) Brg [£0) — yl) < ax: (recall defnition of V* i (15))

i. Choose f; = f. On the next example x;, draw f ~ f; and predict f(x;).
ii. Receive vy, and let §; := TErr(T, x4, yt)-
e For each 1 < A < A, and each vy € [|T,]]:
A. If [SOA(GY, an) () — ye| > auy, set wit «— v - wi>.
B. If [ SOA(G™, an ) (@e) — ye| > i, set G\ < gg|“;t )
C. If G\* = 0, remove (G\*,w)*) from T.
iii. Set t+t+ 1.

(b) Else, choose {(Z1,71),- -, (&, 7m,)} C HighVote(T, &) for all A € [A] so as to
satisfy the following property: for every f € F, there are some A € [A],\ € [A — 3] so
that m% SN f(EY) — 77| > an] > TIENE

i. For each \, X € [A]:
e For each vy € [|Tv|], and each j € [my]:
. If [SOA(G,Y, oz,\/)(:i";‘) - g]]A| < Bayy, set

’U)\ 7.7
Wy Y wy,

g”” N : bay — g)‘ > 6ary
@ 00 | fA' YO <b< [1/ay] + L
@ . ’bOé)\/ — yj ‘ S 604)\/7

gU}\/,] ,b

B. Otherwise, set

,"] Vy/
u)XA)\ <—U))\/A
GO0 gy, gt e V1< < [Tay] + 1.

ii. For X € [A], set
1

7;\/ «— A- 7;\/ U U { gUA/Jb K%l)’\]) . ] S [m>\], b S \‘OZ_A/
AE[A]

J 1, vy € [ Twll, G50 #0).
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Proof. Let T = T" ! = [G,w] denote the weighted subclass collection at the end of round
n — 1 (i.e., at the beginning of round n). Consider the datasets {(:ii\,gji\),...,(:iﬁu,gjﬁh)} C
HighVote(T, a/Cy) constructed in step 2b. Fix any A\, N € [A], and j € [m,]. Since (i;‘,g])‘) €
HighVote(T, a—A) by Lemma 5.4 with o = /Oy, at most a fraction a;f‘.*CA of the weight w)}", for
1 < vy < |Ty|, satisfies 1[| SOA(G,, ay)(& ) — y]\ > bay. Let Sy be the set of such indices

vy, and let Sy = [|Tyv|]\Sx,0. Thus, letting wA, )’\J denote the weights constructed in step 2(b)iA
at round n,

2 « 2 3a

v/\/,y Urd A Y A

E Ty T E Wy y < + - Wyip— < Wi 1. 23

>\ A Qs AT <Oﬁ)\/ CA Of)\/> Am—1 A m—1 ( )
’l))\lESAyl

’l))\IESAVO
Using that |[1/ay |+ 2 < 2/ay for each X € [A], it follows that

Am)\

/5 2 7,7
TAPRTRTIREES 50 f (D iR RUC R S
A=1j=1 U)\/GS)\ 0 A U)\/GS)\J
3aAm>\
SW)\I’H_l ' (A + Z Q- )
3ur A
Wyt - (A - “—1> ,
ay - Chp

as desired. The second claim (22) of the lemma follows in an identical manner, except with the
leading term Wy ,,—1 - A above deleted. O

Lemma 5.11 forms a crucial part of the cumulative loss bound proof for Multi-scale Proper
Learner. For each step n+ 1 of Multi-scale Proper Learmner for which the condition in step 2a
holds, Lemma 5.11 upper bounds the expected error Efwﬁ(nﬂ) [|ft(n+1)(:p) —yl] of ft(n+1) on any
point (z,y) as the sum of 3 terms: the third term is the truncated error of 7 on (z,y) at some later
step (namely, step n + ng — 1 for some ny > 1), and the first two terms depend on the behavior of
the algorithm between steps n and n + ng — 1 (in particular, the first two terms are 0 if ng = 0,
e, n=n+ng—1).

Lemma 5.11. Fiz integers n > 0 and ng > 1. Let So C {n+1,n+2,...,n+ ny — 1} be the
subset of rounds n in which the condition on step 2a of Multi-scale Proper Learner (Algorithm
2) holds, and S1 = {n+1,n+2,...,n+ng—1}\So. Suppose further the condition on step 2a holds
at step n+ 1. For any point (x,y) € X x Y, it holds that

A

& ”)\,n n’—1 |Sl| n

Effuin (@) —yl] < Y 80-CaA ) axn (ﬁ) 1 150C p1 A245-Cp - TErr (77071 22, 9)).
n': n+n’€Sy A=1 T

(24)
In particular, for any round n + 1 on which the condition in step 2a holds, Sy = Sy = 0 and so

Efo_t(n+1) Uf(x) - y” <2 CA : TErr(T",a;,y),

Proof. Fix any 1 < n’ < ng— 1. We consider two cases:
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e The condition in 2a holds at round n + n/, i.e., n+n' € . For X € [A], write

> (g0 wnyerpn’-1 W3 LISOA(GY, an) (@i(nant)) = Yonam)| > @]

O i=

Z(G” yeTptn' =1 wy
Then by the update in step 2(a)iiA,

W)\,n-i-n’

. <1-Gc(T=9) £1-0/2<exp(—=()/2).
An+n/—1

Therefore,

AT T <6< 2In (LA’"*“’*) .

An+n’

Therefore, by Lemma 5.7, it follows that for any x € X,

Voterpin () — Voterpins < 16 ay - In A"+",_1>, 25
[Votey 0 (#) — Vot (z ZA (Tt (25)
and for any (z,y) € X x [0,1],

| TErr (T 2,y) — TEre (T 1 2,y)| < 162m In < V*V;Zn 1) . (26)

e The condition in step 2a does not hold at round n+n/, i.e., n +n’ € §;. By (22) of Lemma
5.10, for any \, \ € [A],

NN 3N1A 3N1A W)\’,n—l—n’
Z ’LU)\/ < . W)\’,TL—I—TL’—I S . )
v b Oé)\f-CA Oé)\”CA A
()\,j,b,UA/)ZgA/A,;\’J’ 75@

where the summation on the left-hand side is over A € [A],j € [m)],0 < b < |1/ay |+ 1, and
vy € |73/ Y]. Then for each ) € [A],

UA/J
, , Adsbsvn )Gy N N
AT Ty <
W)\’,n—l—n
L
A ay-Ch
Therefore, by Lemma 5.7, it follows that for any x € X,
_8 A 3mA 1 30uA2
\VoteTnM/ () — Vote 1 ( Z 2_: . o - Cn < a1 C (27)
and for any (z,y) € X x [0, 1],
) / 1 A2
| TE(T™ 2, y) — TEre(T™7 = g, )| <= . 204 (28)
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Fix any pair (z,y) € X x [0,1]. By Lemma 5.1, we have
TErr (707! 2, Votening-1(z)) <2 TErr(T70 1 2, y), (29)
and so, using the triangle inequality,

TErr (7", z, Votern (z))

<| Votesn+ng-1(x) — Votern(x)| + TErr(T", z, Votening—1(z))

<| Votesning-1(x) — Voten(x)| + ‘TErr(T"JF"O_l, z,Votening-1(x)) — TErr(T™, &, Votening-1 ()]
+ TErr(T"J’"O_1 x, Votegning—1(z))

W nan/— A?
< Z 32Za,\ 111( Ant 1>+@~60M1 + 2TErr(7 0L 2 y) =: 6,

- 1% A C
n’: n+n’€Sy A=1 Antn/ A

where the final inequality uses (25), (26), (27), (28), and (29). Thus, (z, Voter=(z)) € HighVote(7™, ).
Since the condition on step 2a holds in round n +1 (by assumption), it follows that f;(,,4) satisfies

Bt [|f(z) — Votern(x)|] < max{64-ap,2C) -0} =20, -9, (30)

where the equality above follows since Cy - § > Ci - TErr(T™ 071 2, Votening-1(z)) > 32 - ay,
since C > 32. It then follows that, writing 7" = [G, w],

Ef g ()l

<Bj g, [F(@) = Voters (@)]] + |y — Voters ()

SEf iy 1f (@) = Votern (z)] + NE%T )Pw(v) |y — SOA(G1.4) ()|
vENA(T™

<Ef o foy (@) = Votern(2)[] + > Pu(v) - TErr(Gly, 2,9)
vENA(T™)

:Efot(nJrl) Hf(ﬂf) o VOteT” (33‘)” + TEI‘I‘(T”, x, y)
SEffy iy [ (@) = Votera(a)[] + TEr(T" 07! 2, y)

A
Wi ntn'—1 |S1| 30u1A2
Y Y H<WMW>+ il 2 (31)

The claim of the lemma then follows from (30) and (31).

Recall that for each A € [A], we use the parameter W, = Z(g;/\ NeTr w)* as a potential
function; in particular, Lemmas 5.9 and 5.10 show an upper bound for the values of W), in
each round n. In order to bound the total number of rounds n (thus showing that the algorithm
converges), as well as the total error, it is necessary to have a lower bound for the weights w)* as
well; such a lower bound is provided by Lemma 5.12 below.

Lemma 5.12. For all rounds n, and all X\ € [A], it holds that for each pair (G\*,wy*) € Ty,
w;)\A > ,statak (.7:)
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Proof. We will prove the stronger statement that at any step of the algorithm, for all pairs
(G, wi*) € Ty, it holds that wi* > fySfataA(]:)_SfataA(g:A). Note that the only two points in
the algorithm where any pair (G\*,w\*) € Ty is changed, for any A € [A], are steps 2(a)iiA and
2(b)ii. Moreover, note that when any weight w{* is changed to a new value wKV, we always have
fwf\v/w;’\A > 7. Thus, it suffices to show that whenever any weight w{* is changed, the sequential
fat-shattering dimension of G\* (at the scale ay) always decreases by at least 1. To do so, we
consider each of the two possibilities in turn:

e If we decrease w by a factor of v in step 2(a)iiA, then we also replace G with g|f‘;t )
(and it must be the case that |SOA(G, ay)(zt) — y¢| > «)). By Lemma A.2, it holds that
sfatq, (G \'(J;*t yt)) < sfatq, (G), i.e., the ay-sequential fat shattering dimension of G must strictly
decrease.

e Now suppose we are at step 2(b)iA, where we will add (g”w b v”’] b) to Ty (in step 2(b)ii),
for some choices of \, N € [Al,vx € [|Tx|],J € [ma],b € {0,1,...,|1/ay | + 1}. Then for
the pair (G}, w)»") which was previously in Ty, we have w;')’f a = v-w,), and g”W b

Gy |a” ) where |yj bay| > 6ay. We have | SOA(G, ay ) (Z ’\)— ~’-\| < 5ayr, and therefore,

|SOA(g oz)\/)( A) —bay| > ay, so by Lemma A.2, we have sfata,, (G3") < sfata,, ().
O

Lemma 5.12 above shows a lower bound on the size of the individual weights w{* in the weighted
subclass collections 7"; in order to lower bound the weights W) ,,, we need a lower bound on the
number of pairs (G)*, w)*) remaining in the multisets 7}*; Lemma 5.13 below aids in obtaining such
a lower bound.

Lemma 5.13. Consider any round n for which the condition in step 2a of Multi-scale Proper
Learner (Algom'thm 2) fails. Suppose that before this round, for each \ € [A], there are qx € N
tuples (G ,w)\ *) € Ty with f* € G\*. Then after round n, for some X" € [A], there are at least

A,,.<A+ e ) tuples (G2"), (w™y')') € Tan with f* € (G,

Proof. Set A\ € [A],\ € [A —3] to be so that miAZmA 1] f*(z ) — y]] > ay] > 16Aa . (This is
possible by the property in step 2b of Multi-scale Proper Learner) Set \' = )\’ +3 € [A]l
Then Lzmx ]l[|f*(i§‘) - yj| > Tapn] > % : ﬁ. Note that if |f*(:ﬁ;‘) - yj| > Tayr, then
fr(z j) [bayr, (b + 1)ay) for some b satisfying [bayr — 3 Al > 6ayn.

Uy Q)M

Therefore, for any vy~ such that f* € G,)", there are at least o Aoy tuples (7,b) € [my] x
{0,1,..., o] + 1} so that f* € Qz,*,”/\’j’b: in particular, these correspond to the (at least) 15?[&7";&”
values of j for which | f*(i’?) — gj\ > Tayr, each of which is handled as follows:

~\ ~\/ .
o If |SOA(Q§%",O¢>\~)( A — )-‘ | < 5ayr, then as we have remarked above, there is some b
(N7 ,j7b UA” ’O‘A”

satisfying |bayr — y]\ > 6@)\// so that f* € Q)\,,7 X Gy (2 bory (this corresponds to step

2(b)iA of Multi-scale Proper Learner).
e Otherwise, we have f* € g;%,',’)’\j’o = gi},” (this corresponds to step 2(b)iB of Multi-scale
Proper Learner).
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Since Ty~ after step n contains A copies of the collection Ty~ before step n in addition to the
tuples (gg,*,”/\’]’b,wf\,*,"')’\]) for each A € [A], j € [mp],0 € {0,1,...,[1/ax/| + 1}, var € [|Tav]|] (so that
X,A,”):] ® £ 0), it follows that the number of tuples (G, (wyy')) € T so that f* € (G\Y") is at

least
Q)M Ho
7 A > 7 A _ .
@ < - 128Aoo\~> = I < - 128Aoo\~>

O

For n € N, let V,, be the number of rounds, up to and including round n, for which the condition
in step 2a fails. Also let T}, be the value of t immediately before executing round n of the algorithm.
Finally, let S,, denote the set of rounds n’ < n for which the condition in step 2a holds. Note that
‘Sn’ =1,

The following lemma uses the previous lemmas of this section to bound various parameters that
show up in our error bounds. The first two bounds (on d; and log(Wy ,s—1/Wy ) will be used
together with Lemma 5.11 to bound the error of the predictors f;, and the final bound (on N,,)
shows that Multi-scale Proper Learner terminates after a finite number of steps.

Lemma 5.14. For each n € N, it holds that

Ty
Z&t <32ap T, + 64A log(1/7) - Z ay - sfaty, (F)
t=1 A€[A]

Z Z ay, - log< ><log 1/7) - Z ay, - sfatq, (F)

n' €Sy A€[A] A€[A]

N,, <1024A - A -log(1/7) Zoo\ sfatq, (F).
m AE[A]

Proof. The realizability assumption gives us that for each t, y; = f*(a:t) Thus, in each round n in
which the condition in step 2a holds, for each A € [A] and each (G\*,w)*) € T, for which f* € G{*
at the beginning of round n, after restricting G\* + G* ](w ) it still holds that f* € G. For each

round n in which the condition in step 2a fails, for each A € [A], if Ty has gy tuples (G}*, w{*) so
that f* € G\* at the beginning of round n, then step 2(b)ii ensures that after round n, 7 has A- gy
tuples (G,*, wy*) so that f* € G)*. Moreover, we have the following two facts:

e By Lemma 5.13, for each round n in which the condition in step 2a fails, there is some value
of ' = N(n) € [A] so that after round n, T, has at least g - (A + #an) tuples (G3*, w)*)

with f* € G{*. (If the condition in step 2a holds in round n, X'(n) is not defined; we write
X(n) =L.) For each A € [A], and n > 1, let N, , denote the number of rounds n’ < n, for
which X'(n') = A. Note that >-ycip; Nan = Na.

e By Lemma 5.9, for each round n in which the condition in step 2a holds, if we let ¢ be
the value of ¢t = t(n) at step 2(a)ii, then the following holds: if 6; > 32ay, then for some
)\/l — )\”(TL) S [A], W)\an < WX’m—l . <1 — Wfﬁ) < W)\”,n—l - exp <ﬁ) (If 5t < 320[1\

or the condition in step 2a fails, then \”’(n) is not defined; we write \”(n) =L for such n.)
For each A € [A] and n > 1, let Sy, denote the set of rounds n’ < n for which \’(n’) = A.
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Nixn
By definition of N, ,, 7 has at least AN - <1+ w’{ﬁ) . tuples (G, wi*) with f* € G.
Combining this fact with Lemma 5.12, we get that the total weight of tuples in 7 is lower bounded
as follows:

N/\,n
> ANn (14 HO . ~sfatay (F) 9
Wan > ( b )t (32)

We next proceed to compute an upper bound on W) ,,. By Lemma 5.9, for all rounds n’ in which
the condition in step 2a holds, we have W) , < W) ,,_;. Further, by Lemma 5.10, for all rounds

n’ in which the condition in step 2a fails, we have Wy,, < W) ,_1 - (A + 3‘“A) for all A € [A].
Combining these facts with the definition of Sy ,, above, we get that

3,&11\ Nn W)\ n’ N, 3,&11\ Nn
Wi, <AN. (1 : A < AN
An = ( + CM)\CAA> nl;[S Win—1 — + a)\CprA

I o (g
64Aay
TL’GS)\yn
(33)

Combining (32) and (33), we obtain that, for each A € [A],

Wi n— 1o 3 A
sfato, (F) - In(1/v) > Z In < > + Nap - In <1 + 128Aoz>\A> Ny - 1In <1 + arCrA

n'eSy
W/\n M1 3p1A
1 +Nap —=— — N, - 4
n%; n( > A 12N an A arCr A (34)
O(n') i1 3 A
> Nyp+ == N, . P12
= EZS: 6ihay " 512harA ayCrA (35)
n A,n

where the inequality (34) uses that A > £2 for all A € [A] and pg > p1 /2. Note that our choice of
Ca = 3072A3 gives

H1 3ur A L1 3N1A2 "
S . ~ ' - . |
AelA] <NM JUVINE CAAA> A (512AA cna ) 2N qooapa >0 B9)

Thus, multiplying (35) by «) and summing it over A € [A] gives that the following hold:

Zét <3205 T+ > > Oyry < 3200, + 64AI(1/7) - Y ay - sfatq, (F)

t=1 AE[A] W/ ESA A€[A]
Z Z oy - ln< > <lIn(1/7) - Z ay, - sfatq, (F)
n'€Sn A€[A] AE[A]

N, <1024A - . In(1/7) Y an - sfata, (F).
i AEA]
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Fix any smoothing parameter n > 0 so that 1/n € N, and write £ := 1/n. Consider the
distributions fi,..., fr output by Multi-scale Proper Learner. Fix arbitrary distributions
fos-- -5 fi—e € A°(F). We define the n-stabilized distributions hi, ..., hr as follows: for t € [T], we
define

S
|
—_

Btzn

s

(37)

Il
=)
~+
|
»

Clearly it holds that ||hs — Bt““l < 2nfor all T € [T — 1], and hy € A°(F) for each t € [T]. The
below lemma gives a bound on the cumulative loss for the sequence hy:

Theorem 5.15 (Near—optimfml stable proper learning). Fiz any n > 0. In the realizable setting,
the n-stabilized distributions hy defined in (37) from the output of Multi-scale Proper Learner
(Algorithm 2) satisfy:

éEhNht [|A(ze) — yel] < % -0 <10g6(T) - min {aT + /a 1 sfatn(}')dn}> : (38)

a€gl0,1]

Further, ||h; — Bt+1H1 < 2n for allt € [T — 1] and hy € A°(F) for all T € [T).

Proof. As in the proof of Proposition 4.1, choose a € [1/T,1] minimizing the expression on the
right-hand side of (38), and set A = [1/(2a)| < logT. Since Cy = 3072A% = O(log® T) and
log(1/7v) = O(log T'), it suffices to show

T A2 A
> By, [Ih(ze) — 3] <O (CAnA ) : <aAT +1og(1/7) Y axsfata, (f)) ,
t=1

A=1

when Multi-scale Proper Learner is run with the chosen scale parameter A.

For t € [T] and 0 < s < &, let Moy s be the set of rounds n starting at the round when z; is
observed and up to (but not including) the round where x4 is observed, so that the condition in
step 2a holds in round n. Let M ;¢ be the set of such rounds n (i.e., starting at z;, and up to but
not including z;4,) for which the condition in step 2a fails in round n. Let Mg be the set of all
rounds n (up to, and including, the round that xp is observed) for which the condition in step 2a
holds in round n, and let My be the set of all rounds n for which the condition in step 2a fails in
round n. Furthermore, recall the definition of ¢; in step 2(a)ii of Algorithm 2. By the definition of
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h¢, we have

T
> Ep, [lh(ae) = yel]
t=1

T §-1

SWZZEfot (@) = wel]

t=1 s=
—E+16-1

<&+ Z ZEM [1f (@t4s) = Yers]
t=1

=1 s=

Wi n—1 M s] 2
<E+7 Z 80-Cx > ZOZ,\'1D< e >+ 150 i A? + 504 - b
t=1 s=0 n'EMo,t,s)\E[A] ’
(39)
80C W M| - 1500 iy A2 L
<o+ TR ST S et (it ) + PR 50 3 0
T eMo xeA] An 4 t=1
A
8 15004 A2 &
<€+ 2 og(1/7) Y an sfata, (F) + 1024 log(1/7) - ——2— Zaxsfatm (41)
A=1

A
450, - (32aAT +64A10g(1/7) Y _ oy sfata, (F ))
A=1

A
<0 <CA : A2> . <aAT + log(1/7) Zoo\ sfatq, (.F)) ,

U A=1

where:
e (39) follows from Lemma 5.11;

e (40) follows from exchanging the order of summation and noting that for each n’ € My, there
are at most £2 values of (t,s) so that n’ € Moy s and for each n’ € M;, there are at most £2
values of (¢,s) so that n’ € My g;

e (41) follows from Lemma 5.14; notice that we have used here that |[M;| = N,,, where n is
total number of iterations of the outer while loop of Multi-scale Proper Learner.

O

6 Path-length regret bound for a stable proper learner

In this section we prove Theorem 6.1, obtaining a proper agnostic learner that gets a path-length
regret bound. As we do throughout the paper, we assume that the given function class F has finite
sequential fat-shattering dimension at all scales.

Theorem 6.1 (Path-length regret bound for a stable online learner). Suppose that « is chosen so
that 1 < oT < sfato(F) and o < k. Moreover suppose that for all t < T, the examples (xy,y)

33



satisfy ||zt — zev1lloo 7 < K and |yr — yer1| < k. Then, for any I' > 1 Optimistic SOA-Ezperts
with step size Nog = Npsg = kT’ obtains a regret of

(42)

I-sfato(F) -log®T k2T
ZEftht’ftxt Z\f*wt yt’§0< (m) 4 >

r

Further, for any choices of nog,mpsg > 0 (and without restriction on the (x4,1;)), the iterates f; of
Optimistic SOA-Experts belong to A°(F) and are stable in the following sense: for all t < T,

| fe = frell, <5nom + 3nese.

In particular, if we have I'noy = I'npsg = Kk = (sfate(F)/T) /4 - 1og®/*(T), then the regret is
bounded above by O (T - sfatq (F)3/4 - T1/4).

The main ingredient in the proof is Theorem 5.15 from the previous section which gives an
(optimal) stable and proper learner for the setting of realizable online regression. Given this result,
the proof of Theorem 5.15 is mostly standard, using results of [BDPSS09, RST15a] and [SALS15].

6.1 Defining the experts

As discussed in Section 3, the general idea of the proof is to use the SOA-experts framework of
[BDPSS09, RST15a].'3 We begin by defining the experts in this setting in Definition 6.1 below.
Let X* be the set of all finite sequences of elements of X'. Each expert is a function E : X* — [0, 1];
E(z1,...,2¢) should be interpreted as the label that the expert E predicts for x; given that it has
already seen x1,...,T;—1.

Definition 6.1 ([RST15a]). Fix T € N, any F C [0,1]* and a € (0,1), and set d,, := sfat,(F).
For each tuple (I,0), where I is a subset I C [T of size |I| < dg, and o € {0,1,...,[1/a] — 1}1]]
define the expert F(; 5 : X* — [0,1] by

E([7U)(x1,. X ) = SOA(./."( ) )(a:t)

where F(t) is defined inductively via F(1) = F and

F(t) X
Ft+1) =
( ) {]—'(t)|axt os,-a) :tel,
Oy
where for t € I, i, € {1,...,|I|} is defined so that ¢ is the i;th smallest element of I. We denote

the set of experts E(r ) given T, a by &7, (the class F is implicit in our notation).

The set of all experts E; ) of Definition 6.1 can be seen as an algorithmic version of a sequential
cover [RST15b, Definition 4]. Lemma 6.2 bounds the number of experts in &7 4.

Lemma 6.2. Given T € N, F C [0,1]* and o € (0,1), the number of experts in the set &ro of

Definition 6.1 is at most (2ZT)Sfata(F)

3For  references in  this  section  to [RST15a], see in  particular = the  version at
https://arxiv.org/pdf/1006.1138v1.pdf.
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Proof. The number of experts (I,0) is at most
T 178 2¢T sfatq (F)
(=G0
s et o

Lemma 6.3 shows that the set of experts covers the class F in an online sense.

sfatqy (F)

s=1

Lemma 6.3 (Lemma 15, [RST15a]). Given T € N, F C [0,1]*, and a € (0,1), for each f € F
and any sequence (x1,...,xr), there exists some expert E € &4 so that for all t € [T,

|f(z) — E(x1,...,2¢)| <

Since Lemma 6.3 only proimses that some expert has error o with respect to any given hypoth-
esis f, yet Lemma Theorem 5.15 (for proper learning) requires that its input sequence be ezactly
realizable, we need to work with the a-augmented class for a given class F, defined below.

Definition 6.2 (a-augmented class). For a real-valued class F C [0,1]* and a > 0, define the
a-augmented class F& by

Fo .= {f’e [0,1]X: df € F such that Hf/—fHOQXSOé}-

For each element f' € F®, fix some element can,(f’) € F (a “canonical element”) so that
1f" = flloox < @ We may extend this definition to elements of A°(F?) as follows: for f =
Zfil w; - 01, fi € F, set cang (f) = Zfil W; * Ocan, (s7)- This definition will be used to ensure
stability of the learner Optimistic SOA-Experts.

Lemma 6.4 bounds the a-sequential fat-shattering dimension of an augmented class in terms of
that of the original class.

Lemma 6.4. For any class F C [0, 1])(, and any « > 0, it holds that, for all &/ > 4, sfaty (F*) <
sfatys /o (F).

Proof. Set dy := sfat,s o(F). Suppose for the purpose of contradiction that there were some trees
x,s of depth d > dj so that for all ky.y € {—1,1}%, there is some f € F so that k; - (f(x¢(k1:4—1)) —
st(k1.4—1)) > /2 for all t € [d]. Then there is some f' € F so that k¢« (f'(x¢(k14-1)) —st(k1.4-1)) >
a'/2 —a > d'/4 for all t € [d], i.e., the trees x,s witness an «'/2-shattering of F, which is a
contradiction to dy < d. O

Lemma 6.5. For any t < T, the following hold:
o For all E € 1.0, |9:(E) — ge1(E) |y < npsg;

e Suppose that ||z — x4, 7 < K and |yr — ye1| < K, and that PSR-Learner is run with step
size npsp. Then, for all E € &rq, [t:(E) — lip1(E)| < 2K + npsp.

35



Algorithm 3: Optimistic SOA-Experts

Input: Function class F C [0, 1], time horizon T € N, scale o > 0, step size n > 0.
1. Set Fo:={f €[0,1]¥ : 3f € F such that ||f'— flloox < af

2. Initialize wg 1 = 1/|&74/| for all E € &74.

3. For 1 <t<T:

(a) For each E € &4, define hy(E) € A°(F%) to be the npsg/2-smoothed hypotheses (as
defined in (37)) of the output of Multi-scale Proper Learner (Algorithm 2) given
the class F¢, the parameter A = |log1/(4a) |, and the input sequence
(:Elv E(gjl))v (3327 E($122))7 SR (xt—lv E(gjlit—l))'

(b) For each E € &7,q, set gi(E) := cang (ht(E)) € A°(F) to be canonical randomized
hypothesis for h(E).

(c) Predict the hypothesis f; := ZEeé”T,a wp - Gi(E) € A°(F).

(d) Receive (x¢,y;), draw f; ~ f; and suffer loss | f;(z¢) — ).

e) For each expert E € &7, compute the loss (;(E) := Ey g, (g) [l9(zt) — ytl]-

)

(

(f) Update the weights {wg 1} pes;,, using Optimistic Exponential Weights, i.e.,
wg,t - exp (=1 - (20(E) — L1 (E)))

Y mesy, wE - exXp (=0 - (26(E) = b (E)))

WEt+1 =
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Proof. By Theorem 5.15, we have that Hﬁt(E) — Bt+1(E)H1 < mpgr for all experts E. Thus, by the
definition of can,(-) and the data processing inequality, ||g:(E) — gi+1(E)||; < npsr for all experts
E.

We may now compute

[0(E) — b1 (B)| =| Egegyml9(ze) — mil] — Bggyymyllg(zes1) — yesa] |
<Ge(E) = Ges1(B)ly + | Bgagyyr (o) [9(@0) — yel = 19(ze41) — weral] |
<Nge(E) = g1 (B)lly + |ye — yer1l + Egug, i () [l9(2t) — g(z41) ]
<[ge(E) = g1 (E)|ly + |yt — yea| + (|20 — el 7
<2k + 7psr,

where the final inequality uses that [|g:(£) — gi+1(E)|l; < mpsr, [ye—ye1| < 5, and [z — 2]l 7 <
K. O

Finally, we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. Without loss of generality we may assume that x > (sfat,(F)/T)/* log?/tT
(since the expression on the right-hand side of (42) is minimized at s = (sfatq (F)/T)"/* - log®/* T,
meaning that we can make « larger if it is less than (sfaty (F)/T)Y* - log® 1 T).

By Lemma 6.5 and the fact that max{a, nog, 7psr} < K, we have that for each ¢ < T and each
expert E € &7, [t:(E) — li11(E)| < 5k. Set

T
fo = argmin 3" [ f(z1) - il

fer =1

By Lemma 6.3, there is some expert E, € &7 so that for all t € [T, |fu(xt) — Ex(21,...,2¢)] < o
Thus, there is some f& € F* so that for all ¢ € [T], f*(x¢) = Ex(x1,...,2). By Theorem 5.15
with n = npsp/2, it follows that

T

T
> Byespn 9(z) = Eu(zr, .o x)] <aT + > By gy, [B(@e) = Ex(@r, . a0)]
=1 =1

log® T
<0 < %% L (T + sfat4a(}'a))>

TIPSR

<0 <1(;g6 T (T + sfata(}'))> , (43)

where the final inequality above follows from Lemma 6.4.

37



y [SALS15, Theorem 11], we have that

T T
B on fi@) —ul] =Y > wee Egugumllg(@) — i)
t=1

t=1 EeéaT @

log éoT’a
< min {Z Eg~gt(E’ Hg(xt) yt!]} + % + Nox - (55)2 T

Ecér o
- log |&7,0
< ZEgNgt(E*)Hg(xt) — |l + =2+ ou - (BR)2- T
t=1 Tlon
T T
<Y Byegmollg@) — Bu(my, . x|+ Y |Ba(wr, @) — flw)|
=1 t=1
(44)
g‘gTa‘ 9
+ * f]}' - (5K T
Z e el Tlon Tow - (5+)
T
logb T
Z — fulzg)| + O ( og 1 (aT + sfata(]:))> (45)
t=1 TIPSR
f (6% ‘1 T
L0 <s at (]:)77 og( /a)) s (5R)% T
OH

where (44) uses the triangle inequality and (45) uses (43) and Lemma 6.2 (which bounds |&74]).
By choosing nog = npsg = /I’ < k and using that o > 1/T and oT < sfat,(F), we obtain

I-log®T k3T
ZEfwft o) er* z0) — il SO(Tg«aﬂsfata(fm - )

: oob 3
<0 (F sfata(.:) log T+/£FT>‘

Finally, when s = & - (sfato (F)/T)Y/* log?’/ 4T, we obtain
T

ZEftht | fi(t) Z | fr(xt) — yil <0 (F . sfata(}')3/4 . T1/4> .

Since each f; is a finite convex combination of the collection of g;(E), each of which is an element
of A°(F), it holds that f; € A°(F) as well. Finally we bound the stability of the iterates f;: for
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any t < T,

| fe = ferall, = Z (e - Gi(E) —wEp i1 - Gir1(E))

EEéaTya 1
<D wee-G(B) —wein-g(B)|| + || D e 9(B) —wp i - G (E))

B8, L |lEetra
< Y lwse—wperl+ Y wre - 19(E) = G (B

BE€dr,q B8,
1

< 2 -1) — G (E) — g1 (E 46
<(exp(2non) — 1) (2o T AR 19:(E) — g1 (E)|ly (46)
<57on + 31psr, (47)

where (46) follows from the Optimistic Exponential Weights updates in step 3f of Algorithm 3, and
(47) follows from the fact that exp(4n) — exp(2n) < 5n for 0 < 7 < 1/4, and Lemma 6.5.
O

7 Fast rates for learning in games

In this section we present a key application of the stable proper learner Optimistic SOA-Experts
in Section 6: we show that when multiple agents in a game each run the algorithm Optimistic
SO0A-Experts, then they can converge to equilibrium at faster rates than the typical 1/ VT ones.

7.1 Problem setting: Littlestone games

We begin by defining the notion of games we consider, which generalizes finite-action normal form
games to the case of extremely large or infinite action spaces. Further, we focus on the case of
games for which the payoff for each player is in {0, 1} under any pure strategy profile; our setup
generalizes that of [HLM21], which considered the special case of 2-player 0-sum Littlestone games.

Definition 7.1 (General-sum Littlestone games). Consider any integer K € N, denoting the
number of players, and sets Fi, ..., Fr. Write F_j := Hje[K]\{k} Fj. A function £ : Fy x - Fg —
{0,1} is said to define a Littlestone payoff function if the following holds: for each k € [K], the
class

Fro={for > L fws fok) ¢ fx € Fu} € {0,117+ (48)

has finite Littlestone dimension. A Littlestone (general-sum) game is a K-tuple of Littlestone
payoff functions, namely a tuple ¢ = (¢1,...,0x). We say that Littlestone dimension of the game
is manG[K]{Ldim(f,fk)}.

For k € [K], the payoff function ¢ in Definition 7.1 denotes the payoff function for player k
in the Littlestone game. It is immediate that all finite-action normal form games are Littlestone
games.
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Before proceeding, we make the following definition: for a class F C {0,1}%, define a class
mix(F) C [0,1]2°(¥), in bijection with F, as follows: for each f € F, the corresponding f € mix(F)
is defined by, for P € A°(X), f(P) := Ezwp[f(z)].

To help describe how we apply Optimistic SOA-Experts in the context of learning in Little-
stone games, we need to make an additional definition: for a Littlestone game ¢ = (¢, ..., k) with
action sets Ji,. .., Fk, for each k € [K], define the loss set £i’“ of player k as follows:

Lk = {fx = O(fao for) : for € Fog} € {0,117

In words, Ef;k is the set of mappings from fi to {0,1} which may be realized as the loss of player k
given some valid actions of all other players. To avoid confusion, we denote elements of Ef;k with a
capital L. It is evident that Ef;’“ is the dual class of fﬁk ; thus we may view fﬁk as a set of mappings
from ﬁik to {0,1}, i.e., for fx € .7-",?“ and Ly € £i’€, we have fi(Ly) := Li(fx).

We consider the following independent learning setting in Littlestone games, which directly
generalizes the setting of independent learning in normal-form games. Consider a Littlestone game
¢=(tq,...,0K), with action sets Fi,..., Fx:

e For each time step 1 <t <1T"

1. Each player k plays a distribution over actions f}, € A°(Fy).

2. Each player k observes its loss function Lfg e A° (ﬁik) at time step ¢, namely the mapping
Li(fr) =By g [0e(frs f-n)]-

3. Each player k suffers loss £ ( fé, ft .); notice that this loss value may also be written as
fE(LL), by viewing f{ as an element of Ao(mix(]:ﬁ’“)).

7.2 Independent learning algorithm for fast rates in games
Lemma 7.1. Given a class F C {0,1}%, it holds that sfat, (mix(F)) < O (Ldim(F) - log(Ldim(F)/a)).

Proof. Denote L = Ldim(F),V = VCdim(F). Suppose p is an a-shattered A°(X)-valued tree of
depth d for mix(F), witnessed by s. For some constant C' > 1, let us form a new X-valued tree,
p’, by replacing each node v of p, labeled by P,, with a new tree t, of depth m := [C - V/a?]. For
i € [m], each node on the ith level of t, is labeled by 2!, where the points x},..., 2™ € X satisfy
the following: for all f € F,

m

1 i «o
Bor, [f(@)] = — > f(@)| < 7 (49)
m = 4
By classic uniform convergence bounds [Tal94, vdVW96] such points z.,...,2™ € X exist as long

as C is sufficiently large (this holds even in the absence of additional measurability assumptions
on X since P, is finite-support). Let s, € [0,1] be the label of the node of s corresponding to
node v of p. For each of the 2 leaves of the tree t,, indexed by (01,...,0,) € {—1,1}™, we will
assign to each such leaf the subbtree rooted by either the left (—1) or right (4+1) child of v, as

follows: if % D 1+T§Z) > s,, then use the subtree rooted by the right child of v, and otherwise

use the subtree rooted by the left child of v. Formally, we have the following: for any sequence
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615+ vy 0qm € {—1,1}9m and any i € [dm], writing i = mt + j for 1 < j < m, then p/(01.;-1) = z,

where v is the node of p corresponding to the sequence (e, ..., €;), where
) 1 = /14 O(e—1ymi
€0 = sign <E . ; <f> = 81, 1) Ve € [t]. (50)

The depth of the new tree p’ we have constructed is dm. By (49) and (50), p’ satisfies the
following property: for any ¢t € [d], and ¢ € {—1,1}% consider any function f € F so that
for i < t, ¢ - (f(pi(€e1:i-1)) — si(€1:i-1)) > a/2. Let v be the node of p corresponding to the

sequence e1,...,¢_1, P, = pi(e14-1) (as above), and consider the sequence xl,... 2. Now
define the sequence § € {—1,1}%" inductively via & = 2 - f(p}(1.5-1)) — 1 for i > 1. Then the
sequence Py, .1 (01:tm); - - - » Pl (01:tmsm—1) is exactly the sequence xl, ..., 2™ we will say that
f, f' encounter the sequence x.,...,x™ in the tree p'.

Now consider f, f’ € mix(F) which lead to different leaves of the tree p, in the sense that
there are € # ¢ € {—1,1}¢ so that, for each t € [d], ¢ - (f(pi(e1.4-1)) — se(€1:4-1)) > /2 and
€ (f'(Pe(€l_1)) —se(€hi—1)) > /2. Let to € [d] be as small as possible so that €, # €} , and let
v be the node of p corresponding to the sequence €, ..., €,—1; let P, = pyy(€1:49—1) € A(X) be the
label of v and s, = s¢,(€1.49—1) € [0,1] be the label of the corresponding node of s, and t, be the
tree constructed in place of v (as above). By the choice of v, it holds that f(P,) > s, + a/2 and
f'(P,) < s, — /2. Thus, letting x},..., 2™ be the sequence constructed as above for the node v,
we have Y7, f(ah) > 5 > S f{at).

Thus f, f’ lead to different leaves of the tree t,, and hence (since f, f’ both encounter the
sequence z.,...,z™ in the tree p) also to different leaves of the tree p/. Thus the sequential
0-covering number of the tree p’ (see [RS14b, Definition 13.2]) is at least 2¢.1* On the other hand,
by the Sauer-Shelah lemma for trees [RS14b, Theorem 13.7], the sequential 0-covering number of
the (depth-dm) tree p’ is at most (edm)”.

Summarizing, we have that 2¢ < (edm)”, i.e., d < Llog(edm), meaning that d < O(Llog(Lm)) <
O(Llog(LV/a?)) < O(Llog(L/a)). O

Theorem 7.2. Fix a Littlestone game with K players and a time horizon T. If the players play
according to Algorithm J with each player using the algorithm Optimistic SOA-Exzperts (Algorithm
3) with step sizes npsp, Mo as in (51) below and scale o = 1T, then each player k € [K] suffers
regret O(Ldi]rn(]:l,f’“)?’/4 VK -TY4), where the O(-) hides logarithmic factors in T and Ldim(]—',f’“).

Proof. Set

Ldim(F*) - log(Ldim(F*) - T)
K1/2.71/4

7 = 7Tlpsr = Tou = (51)
and « = 1/T. Also write Dy = Ldim(]:,fk). In Algorithm 4, each player k applies Optimistic
SO0A-Experts with function class F = mix(}",fk) with feature space X = AO(Ef;k); by Lemma 7.1,
it holds that sfat, (mix(F*)) < O(Dy, - log(DyT)).

By Theorem 6.1, the hypotheses f}; € Ao(f]f’“) output by each player k satisfy Hf}; — f,iHHl <
8n.

n more detail, what we have directly shown is that the thicket shatter function of the tree p’ is at least 2%; then
[GGKM21, Lemma 2.7] implies that the sequential 0-covering number of the tree p’ is at least 24,
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Algorithm 4: Independent Learning in a Game

Input: Littlestone game ¢ = ({1, ..., k) with action sets Fi, ..., Fk, time horizon T € N.
Input to each player: Each player k € [K] only knows its action set Fj and its loss class
ﬁik, as well as the horizon 7.
1. Each player k € [K] initializes some online proper learning algorithm <7, (e.g., Optimistic
S0A-Experts, Algorithm 3) with function class F = mix(}f’“) and feature space
X = A°(LF).
2. For 1 <t<T:

(a) Each player k € [K] plays a distribution f}, € A°(Fy) according to their respective
algorithm 7.

(b) Each player k € [K] observes the loss function L! € A° (ﬁi’“) = X (defined as
Li(fr) = Ef,wfik[gk(fh f-k)]), and feeds the example (L%, 0) to its algorithm 7.

(c) Each player k suffers loss /4 (f!) = Eyof [f(LL)].

Now let us consider any player k € [K]; by symmetry we may assume k = 1; then for any t < T
and any f1 € Fi, abbreviating f = (f1,..., fx), we have

L (f1) = Li(f))]

< ‘Efzwf5+17...7fKNf;<+l [N = Epyfir et [gl(f)]‘

K
< Z IEf ’\’7§+17~~~7fj”"ﬁ+1’fj+1’\’]?}+17---7fKfo< ()] = Ef2~ 7§+17~~~7fj71’\’f;i%7fj'\“ﬁww x~Fk [62(f)]

K
< Z Ef2~f§+17---7fj71Nf;+17fj+1Nf;+1,---7fK~f§( [(Eijf;H o Eijf]t’)[él (f)]] ‘

K
F+l_ 7t
<> |- 5],

It follows that HL’;Jrl — LﬁHOO < 8nK for all ¢ < T'. Since the choice of player £ = 1 here is

e S 8nK. Since, by
k
assumption, each player runs Optimistic SOA-Experts with step size ngy = 7psg = 7, We may

apply Theorem 6.1 with x = 8nK and I' = 8K to obtain that each player’s regret is bounded above
by

s
Fit
arbitrary, we have in a similar manner that for all k € [K], HL’,;Jrl - L}@HOO

0 (K : Sfata(]:,f’“) log® T

e + n3K2T) <0 (\/E TV Dt log?’(DkT)> .
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8 On real-valued games satisfying the minimax theorem

In this section we show that all online learnable (real-valued) classes satisfy the minimax theorem,
in the absense of any topological assumptions on the class F or the space X, thus generalizing a
corresponding result from [HLM21] which treated the binary setting.

8.1 Additional preliminaries

We first introduce some additional preliminaries. We begin by describing a way to discretize a
hypothesis class F C [0,1]* at some scale > 0. Roughly speaking, this is done by subdividing
the interval [0,1] into [1/n] intervals each of length 1/[1/n] < 7, and rounding the output of
each hypothesis to its interval. Formally, we make the following definitions: For a real number
y € [0,1], define the discretiztion of y at scale 7, denoted |y], € {1/[1/n],2/[1/n],... 1}, as
follows: |y], = L (14 |y-[1/n]]) for 0 <y <1 and ly],, =1 for y = 1. It is straightforward

~m
from this definition that for all y € [0, 1],

ly—Lyl, [ <1/[1/n] <n.

Definition 8.1 (Thresholds with margin; similar to [JKT20], Definition 7). Consider a hypothesis
class F C [0, 1]X, a>28>0,and d € N. F is said to contain d thresholds with margin o and
tightness B (respectively, infinitely many thresholds with margin « and tightness () if there are
Z1,...,xq € X and fi1,..., fq € F (respectively, x1,x9,... € X and fi, fao,... € F) as well as
u,u’ € [0,1] so that:

o lu—u|=oa;
o |fi(xzj) —u| < B fori<jand|fi(x;)—u|<p fori>j.

We further say that F contains d (or infinitely) many ordered thresholds with margin « and
tightness 3 if the above conditions hold and furthermore v’ > wu.

The following lemma, which gives a lower bound on the sequential fat-shattering dimension for
a class with many thresholds, is standard, but we include a proof for completeness.

Lemma 8.1. Suppose that F contains d thresholds with margin o and tightness 3. Then sfatq_o5(F)
|log d].

Proof. The proof closely follows the analogous result for Littlestone dimension (see [She78, HH97,
ALMM19]). Set m = |logd]|, and suppose that x1,...,x9m and fi,..., fom are a collection of
2™ thresholds with margin « and tightness (3, together with the values u,’ as in Definition 8.1;
we may assume v > u without loss of generality (otherwise we can reverse the order of the
thresholds). We construct a tree x of depth m that is shattered (together with the witness tree
s) as follows: the labels of the tree x correspond to the binary search process on [2™], so that
X (€15, €—1) = Tom—14¢.9m—24.. 4, ,.om—t. All nodes of the tree s are labeled by (u+u’)/2. It is
straightforward to see that the function f; leads to the leaf which is i spots from the left (viewing
—1 as the left child and 1 as the right child for each node).

The lower bound on the sequential fat-shattering dimension then follows from the fact that for
i > j, we have fi(z;) > (u+v)/2+a/2 -0 = (u+u)/2+ (. —26)/2 and for ¢ < j, we have
fiey) < (u+)/2 = (@ —28)/2 O
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Lemma 8.2 below provides a sort of converse to Lemma 8.1, giving a lower bound on the number
of thresholds in a real-valued class of large sequential fat-shattering dimension.

Lemma 8.2. For some constant ¢ > 0 the following holds. Suppose that o > 4n > 0,d € N are so

that sfaty(F) > d. Then F contains c - %ﬁgd) thresholds with margin o/4 and tightness 7.

A similar result to Lemma 8.2 was claimed in [JKT20, Theorem 8], though with a stronger
quantitative bound (namely, the lower bound on the number of thresholds was ,(logd), not
Q,(loglog d), as we show). Unfortunately, there appears to be a gap in the proof [JKT20, Theorem
8]: in particular, the proof of Proposition 5 in [JKT20] (which is used to prove Theorem 8) begins
with the following claim: “Since sfat, (F) > d, in the online learning setting an adversary can force
any deterministic learner to suffer 7/2 loss for d rounds.” This sentence is incorrect, even if the ad-
versary only reveals the discretized labels to the learner: in particular, fix n > 0, X :=log(|1/n]/2),
and set X = {1,2,..., X }. Consider the following class F which consists of 2% hypotheses: for each
(€1,...,ex) € {=1,1}X, let n(e) € {1,2,...,[1/n]/2} be the integer corresponding to € in base 2.
Then there is a hypothesis f. € F so that f.(i) = 3 +¢; - n-n(e) for each i € X. It is evident that
sfat, (F) > Q(log 1/7n), yet no matter which point 1 € X which the adversary first reveals to the
learner, the value | f*(x1)] , reveals the identity of f*, meaning that the learner will always make at
most 1 mistake. This gap is filled in our proof of Lemma 8.2, at the cost of a weaker quantitative
bound; the question of whether F contains €2, (log d) thresholds (in the context of Lemma 8.2) is
left open for future work.

Proof of Lemma 8.2. We will first construct a weaker notion of a collection of thresholds: in par-
ticular, we will first prove the following claim:

Claim 8.3. For some constant C1 > 0, the following holds. Fiz o > 4n > 0 and m € N. If
sfaty (F) > (Cy/n)™, then there is a collection of hypotheses fi, ..., fm € F and points x1,..., Ty, €
X so that, for each i € [m], the following holds: there are some v;, pi; € Dy, satisfying |v; — | > o /4,
so that one of the below options holds:

® v; > p;; moreover, for j = i, we have | fi(x;)], = vi and for j > i we have | f;(@;)], < pi; or

n
o u; < l;; moreover, for j > i, we have Lfi(:nj)jn = v;, and for j > i, we have ij(xi)Jn > 1.

Proof of Claim 8.3. We use induction on m. In the case m = 1, then since sfat,(F) > 1, F, X are
nonempty so the proof is completed by choosing any x € X and f € F.

Now suppose m > 1 and the claim statement holds for all values m’ < m. Set d = (C1/n)™, and
write D, := {1/[1/n],2/[1/n],...,1} to denote the set of discretized points with discretization of
n, and k = [1/n] = |D,|. Before continuing, we need to introduce the notion of subtree: given
a tree x, a subtree of x of depth ¢ is defined inductively as follows. Any node of x is a subtree
of depth 0. A subtree of depth ¢ is obtained by taking any internal node v of x together with a
subtree of the trees rooted at the left and right children of v. Note that if the tree x is a-shattered
by a hypothesis class F, then so is any subtree of x.

Let x be an X-valued tree of depth d shattered by F, witnessed by a [0, 1]-valued tree s. Let f
be an arbitrary hypothesis in F, and define a k-coloring of the nodes of x as follows: color a node
corresponding to the sequence €1.4_1 by the element Lf(xt(el;t_l))Jn € D,. By [JKT20, Lemma 16],
there is a subtree x” of x of depth d’ := [(d + 1)/k] > d/k so that all nodes are colored by some
color v* € D,. Denote the corresponding subtree of s by s’. Set X’ := {z € X : | f(z)], = v*}, so

U
that x’ is X’-valued and is shattered by F, as witnessed by s'.
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Define the following subclasses of F, viewed as classes of hypotheses on the restricted set X

Fr={feF : f(x})>s +a/2} c0,1]"
Fo={feF : f(x)<s) —a/2} 0,1,

It is immediate that sfat,(Fy) > d — 1 and sfaty(F-) > d — 1 (in particular, X’-valued trees

shattering F,, F_ are obtained by taking the subtrees of x’ rooted at the right and left children,

respectively, of its root). Set vy = |s] + o/2], > si+a/2—nandv_ = |s] — a/2], < sh—a/2+n.
We must have either v* > s} or v* <'s|. We consider each of the cases in turn:

e If v* > s/, then we apply the inductive hypothesis on the class F_ and the data (feature) space
X’. We have that sfaty(F_) >d —1> % > (Cy/n)™ ! (as long as C) is chosen sufficiently
large), meaning that, by the inductive hypothesis with the value m — 1 (and the same values
of a,m), we can find fo,..., f, € F_, xo,...,2;m € X’ so that the constraints of the claim
statement are staisfied. Now we add f; = f, x1 = X} to this collection. Note that, for i > 1,
we have | fi(z;)], = | f(z:)], = v* since all z; (including x7) lie in A”. Further, for i > 1, we
have | fi(z1)], = |fi(x})], < v— by definition of F_. Since [v* —v_| > /2 —n > a/4, we
have verified the inductive step in this case; in particular, we may set vy = v* and pu; = v_
(f1,21 correspond to the first case in the claim statement).

o If v* < &), then we apply exactly the same argument except with F replacing F_. Again
setting fi = f,x1 = xj, we have, for i > 1, [fi(2;)], = |f(2:)], = v*, while for i > 1, we
have | fi(z:)], = Lfi(x1)], = v4. Since [v* —vy| > /2 —n > /4, we have verified the
inductive step; in particular, we may set vy, = v* and p; = vy (f1,21 now correspond to the
second case in the claim statement).

O

Given Claim 8.3, we may now complete the proof of Lemma 8.2, as follows. Given that

sfat (F) > d, set m = Llo;ogf/nJ’ wheree (' is the constant of Claim 8.3. Then we may con-

sider a collection f1,...,fn € F and z1,...,x, € X satisfying the guarantee of Claim 8.3.
Since there are [1/n] possibilities for the value v;, for ¢ := m/[1/n], we can extract a subset
91 = firs-+ 90 = fiyy W1 := Tiy, ..., wy := x4, s0 that, for some fixed v € Dy, v;; = v for all j € [{];
in particular, for 1 <1 < j < m, it holds that Lgi(wj)Jn =v.

Now we color each tuple (i, j) with 1 <4 < j < ¢ with the value [g;(w;)], € Dy; note that for
15

all such 4, j, by our choice of v, we must have that | [g;(w;)], —v| > o/4. By Ramsey’s theorem,
there is some p € D, and a sub-collection hy := g;y, ..., hy = gi,, v1 = Wy, ..., vp 1= w;, for some
p > W?ﬁ)%’ so that for all 1 <7 < j < p, th(vi)jn = u. Further, it must be the case that
lv —u| > a/4.

Summarizing, we have found a collection of thresholds (namely, hq,...,hp,vi,...,v,) with
margin a/4, tightness 1, and of size

o) o () oo ()
]

51n particular, we use the following estimate on the multi-color Ramsey numbers [GG55]: for N > ¢, if the edges
of the complete graph on N vertices are colored with ¢ colors, there is a monochromatic clique of size r.
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Finally, we may combine Lemmas 8.1 and 8.2 to show that the sequential fat-shattering dimen-
sion of a class is finite if and only if the sequential fat-shattering dimension of the dual class is
finite.

Lemma 8.4. Suppose F C [0,1]*. Then for any o > 0, the dual class F* satisfies sfatq /g (F*) >
Q(log(a - log log(sfaty(F)))).

For binary valued classes, it is known (see [Bha21]) that Ldim(F*) > Q(loglog(Ldim(F))). The
additional logarithm in Lemma 8.4 is due to the double logarithm in the lower bound of Lemma
8.2; we leave the question of improving the quantitative bound in Lemma 8.4 to future work.

Proof of Lemma 8.4. Set n = «a/16. Write d = sfat,(F). By Lemma 8.2, for some constant ¢ > 0,

F contains m = c - %ﬁgd) thresholds with margin a/4 and tightness 7, which we denote
fi,ooos fm €F, x1,..., 2y € X. Thus, the functions in F* corresponding to x,, ..., x1 furnish m

thresholds in the dual class on the points f,, ..., fi, with margin «/4 and tightness 1. Then by
Lemma 8.1, we have that

alog(alogd)

sfata/g(]:*) > |logm]| > {log <c log1/a

>J > Q (log(a - loglog d)) .

8.2 A minimax theorem for online learnable games

In this section we will consider infinite two-player zero-sum games: in particular, fix sets X, F
and a loss function ¢ : X x F — [0,1]. The loss ¢ defines a function class in bijection with F,
namely the class F¢ := {x = {(z,f) : f € F}, as well as its dual class X, namely the class
{f = Lz, f) : = € X}. We say that the game (X, F,¢) is a GC game if fat,(F’) < oo for
all @ > 0 (here “GC” stands for “Glivenko-Cantelli”, refelcting the fact that the hypothesis class
Ft is a Glivenko-Cantelli class). Tt is folklore (see [KS21, Corollary 3.8]) that for any real-valued
hypothesis class G C [0,1]7, its dual class G* satisfies fat,/2(G*) > Q(log(e - fat(G))). Thus, for a
GC game (X, F, /), we have fat,(X*) < oo for all a. For a > 0, we say that (X, F,¢) is an a-GC
game if max {fat,(F?), fato (X%} < 0.

We further define sequential analogues of the above notions: (X, F,{) is defined to be an SGC
game (“Sequential Glivenko-Cantelli”) if sfat,(F) < oo for all & > 0; by Lemma 8.4 this implies
that sfat,(X*) < oo for all @ > 0. Further, the game (X, F,/) is said to be an a-SGC game if
max {sfat, (F*), sfate (X))} < occ.

Lemma 8.5. There is a constant Cy > 2 so that the following holds. Fiz any o > 0, and suppose
that (X, F,ly) is a [0,1]-valued (a/Cy)-GC game that does not contain infinitely many ordered
thresholds with margin o and tightness a/Cy. Then

inf sup Eq o lo(z, < sup inf Eq e lo(z, f)] + 4a.
PXGA(X)PFEA(]:) (z.f) PXXPF[O( f)] PFGA(}')PXGA(X) (z,f) PXXPF[O( f)]

Furthermore, the same statement holds if Px, Pr are restricted to A°(X), A°(F), respectively.
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Proof. The proof closely follows the technique of [HLM21, Proposition 9]. Fix a [0, 1]-valued GC
game (X, F,{y), set n := a/Cp, and define the discretization (X, F,¥) as follows: for (z, f) € X x F,

E(l‘7 f) = LEO(l‘7 f)Jn :

Since [|€ — lo|| o xx 7 < 1, it follows that

inf sup E me bo(x, f)] — inf sup E, £(x, < 52
Px€A(X) ppeA(F) (. ypxcpe o2 D) Px€A(X) preA(F) (@hepsxre U Dl <0 (52)
sup inf  Eq e bo(x, f)] — sup inf  Eq e £(x, <. 53

It is furthermore straightforward to see that (X, F,¢) is a 3n-GC game; one may see this by noting,
for instance, that fats,({z — {(z, f) : f e F}) < fat,({x — lo(z, f) : f € F}), and similarly
for the dual class. Thus, by uniform convergence (i.e., Theorem A.3), there is a universal constant
C so that, for all n, X, F, ¢, there is an integer V16, so that for all finite-support distributions
Px € A°(X), Pp € A°(F), there are elements z1,...,zy € X, f1,..., fy € F, so that

1 \4

sup By ((a )] - V;aazi,f) <0 (54)
1 \4

sup |~ [f(z, f)] - V;a:v,fi) <. (55)

Now set

= su inf Eg o e
PFEAIZ}') Prea(r) @) Py xPp (2, f)]

w= inf sup Erp pyo oz, )],
PXEA(X)PFGAP(}.) (@.f)~Px xPp [L(@, f)]

Suppose for the purpose of contradiction that w > 6 + 4a — 2n (if this is not the case, then by
(52) and (53) the proof of the lemma is complete). We next construct two sequences of finite-
support distributions P}}, Pf;, t € N, where each of Pj}, Pf; is a uniform distribution over exactly
V elements of X', F, respectively (possibly with some elements being duplicates), and so that the
following inequalities hold:

4o — 2
sup B pyortxpp [l f)] <6+ Tﬂ Vi >1 (56)
PpeA(U;<; supp(Pr))
) 4o — 21
inf E £~ ¢ 0z, f)] >0 +2 —— vt > 1. 57
PxeAUse supp(Pi)) ) pexpplf® ) 3 &7

We construct Pk, Pk inductively as follows:

18Tn particular, we may take V = O(

max{fatn({foo(x»f)ifEF})»;a;n({foo(%f)wEX})}-log1/’7)7 which is finite, by
assumption.
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e Suppose we have constructed P)l(, . ,P}{l, P};, . ,PI@_l satisfying (56) and (57) up to step
t—1. To construct P% so as to satisfy (56) at step ¢, we argue as follows: if t = 1, set P)l( =0,
for any x € X (i.e., the point mass at x), which suffices because (56) is vacuous for ¢t = 1.
Otherwise, let Foy = |, supp(P%), which is a finite set. Since £(x, f) takes values in a finite
set, there are a finite number of distinct sequences {{(x, f)} rer., given by elements x € X
Thus, there is a finite subset X/ C X so that for each x € X, there is some 2’ € X’ so that
Uz, f) =L, f) for all f € F<;. Thus, by the von Neumann minimax theorem applied to
the finite game (X’, F<¢, )7, there is a distribution Py € A(X”) so that

sup - B pyopyxppll(z, f)] = sup inf B, U, f

Preatrey @D Py xppll(2, f)] pohD  PxAy ) Py xpp (@, f)]

= su inf K e Uz, )] < su inf Eg po ((x, f)] =0,
PFEAB“—‘<t) PXEA(X) ( 7f) PXXPF[ ( f)] PFeAp(]-') PXEA(X) ( 7f) PxXPF[ ( f)]

(58)

where the first equality follows from the choice of P% as a minimax strategy for the X-
player in the finite game, the second equality follows from the defining property of X”, and
the inequality follows from the fact that points on F are measurable, meaning that every
measure Pr € A(F<;) may be realized as the corresponding distribution on F restricted to
Foy.

By (54) and using the fact that P is a finite-support measure, there is a sequence 1, ...,zy €
X so that, setting P} to be the empirical measure P%(S) := % szzl 1[z; € 5], every f €

Fo, C F satisfies
da — 2
B,y €@, )] ~ Bopy [Ue, )] < O < ==,

where the final inequality may be ensured by choosing C so that Cy > 3C + 2 (which implies
that Cn < a_3277). Thus

sup Ex ~P! Eaz,f < sup Ex " P* g%f +7S9+ 7
PpeA(F<t) @) PXXPF[ (2, f)] PreA(Far) (@,f)~ Py x P [£(25 f)] 3 3

showing that (56) holds at step t.

e Next suppose we have constructed P)lo o P P}, . ,P;:l satisfying (56) up to step t and
satisfying (57) up to step ¢t — 1. We then construct Plffl so as to satisfy (57) in a very similar
manner as to the previous case: setting X< := J,«, supp(Pj(), we get that there is a finite
set 7/ C F and a distribution Px € A(F’) so that

inf  E e [z, )] = inf sup Eq e {(z,

Prea(xe,) @) Py xpg (@, f)] PXGA(th)PFeAI()}") (@.f)~Px x Pp [L(@ f)]

= inf su E e Uz, > inf su Ei; £ /(z, = w.
PxeA(X<;) PFEAp(]:) (z,f)~Px XPF[ ( f)] PxeA(X) PFeAp(]-‘) (z,f)~Px XPF[ ( f)]

(59)

TWith a slight abuse of notation, the loss function £ is restricted to X’ x F;.
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By (55) and the fact that Py is a finite support measure, there is a sequence fi,..., fy € F
so that, setting Pht! to be the empirical measure PL(S) = . szzl 1[f; € S], every x €
X<t C X satisfies EfNP;+1[€(a:,f)] > Epoppll(z, f)] - @_ Thus

. 4o — 27 4o — 27
S>w-—> R
Pxelil(fXSt) E(m’ )P x Pt = & 3 20+2 3 7

thus verifying (57) since we have assume w — 6 > 4a — 21.

As we have constructed each of P;o P}} to be a uniform distribution over V elements of X', F,
respectively, we may denote these elements as x;1,...,2;v and f;1,..., fiv, for each ¢« € N. For
each 4,7 € N with ¢ < j, we define matrices AY, BY ¢ {1/[1/n],2/[1/n],...,1}V*V as follows:
for k,m € [V], we set

AT = (i gy fim), By = () 5, bim)-

The number of different possible matrix pairs (A%, BY) is [1/7]2V*, which is finite. The infinite
Ramsey theorem implies that there exists an infinite increasing sequence 41,2, ..., € N and a pair
of matrices A*, B* € {1/[1/n],2/[1/n],...,1}V*V so that for all s,¢ € N with s < ¢, we have
(Aisit’Bis’it) — (A*,B*).

We next claim that there are k*,m* € [V] so that A%, .. — B« > 40‘3;277. To see this, note
that, for any s, € N with s < £, we have

inf sup B porexppl(z, f)] (60)
Px€A(supp(PY)) ppeA(supp(Pit))
Wz, f)] > 042 2220

> inf E
in T

- PXEA(XSit) (xvf)NPX XPI?
and

inf i sup B f)~pyxpr [U(z, f)] (61)
Px €A(supp(Py)) PpeA(supp(Pi))
4o — 21

< sup E(%f)NP}igXPF[E(:E’f)] <O+ 3

PreA(F<;,)

Notice that the quantity in (60) is the value of the game represented by the matrix {£(z;, x, fi,.m) }k,me[v];
and this matrix is A" = A*. Similarly, the quantity in (61) is the value of the game represented

by the matrix {€(z;, i, fi,,m)}kme[v), and this matrix is B*" = B*. Hence the value of the game

A* is at least @ greater than the value of the game B*. Thus some entry of A* must be at
least 40‘5277 greater than the corresponding entry of B*. Indeed, if this were not the case, then we
would have that

: T Ax a — 277 . T ok
min  max A< ——— 4+ min  max B*q,
pEA([V])qeﬁ([V])p ! 3 PEA([V])qeﬁ([V])p !

a contradiction to the previous sentence. This shows the existence of the k*, m* as desired.
Finally we may construct a collection of infinitely many thresholds with margin o and tightness
B. For t > 1, define o} := x;,, 1> and f = fi,,_, m+. For s,t € N with s < t, we have 19, < @91,

49



and so (%, ) = L(Tiy, k> fot—1,m*) = Afs,,- For s,t € N with s > ¢, we have io5 > ig_1, and so
0@y, f1°) = U(Tig, ks f2t—1,m%) = Bl s

Recalling that |[{(z, f) — lo(x, f)| < n for all z, f, it follows that [lo(x}, fF) — Afs,,+| < 1 for
s < tand [ly(x}, ff) — Bjs,y| < m for s > t. Further, since 2n < o (as Cp > 2), we have
Afirs — Bjape >, as desired (in particular, in the context of Definition 8.1, we may take
W = AL, =B}, ).

Finally, to establish the statement of the lemma about finite support measures Px, Pr, we note
that exactly the same proof presented above works; the only difference is that in (58) and (59), we
replace A(F) with A°(F) and A(X) with A°(F); it is evident that the claimed inequalities in (58)
and (59) hold even with these substitutions. O

We next show a converse to Lemma 8.5, thus obtaining a necessary and sufficient condition for
the minimax theorem to hold in all subgames of a GC game.

Lemma 8.6 (Converse to Lemma 8.5). For any o € (0,1), any [0,1]-valued game (X,F,{y)
which contains infinitely many ordered thresholds with margin o and tightness B satisfies, for some
X cX, FFcF,

inf E, o lo(z, f)] > TR 0o(z, —28.
PxénA(X/) szlil()]:’) ( 7f) PXXPF[ O(CU f)] PFEZI()]:/) Pxég()(’) ( 7f) PXXPF[ (](iU f)] +Oé B

Proof. Let x1,x0,... € X and fi, fo,..., € F denotes a collection of infinitely many ordered thresh-
olds with margin « and tightness 8. Write X’ = {x1,22,...} and F' = {f1, fo,...}. By definition
there are u,u’ € [0,1] so that v —u > «, | fi(z;) —u| < for i < j and |fi(z;) — /| < B for i > j.
Then for any Px € A(X’), we have
sup E(x,f)NPXXPF [60(337 f)] > sup EI]‘NPX [EO(:Eja fl)] > hm inf ijNPX [fo(l‘j, fl)]
PreA(F) i>1 oo

> By~ py [liminf lo(x;, fi)] > v’ — B,
11— 00

where the second-to-last inequality follows from Fatou’s lemma.
On the other hand, for any Pp € A(F’), we have

Pxé&f( X,)E(:v,f)wxpr o, )] < inf By [lo(aj, fi)] < 1i?LSOgPEfi~PF [Co(z;, fi)]

< Ef~plimsup bo(z;, f;)] < u+ B,

j—o00
where again the second-to-last inequality follows from Fatou’s lemma. The two displays above
complete the proof. O

By combining Lemmas 8.5 and 8.6, we are able to show the following necessary and sufficient
condition for all subgames of an infinite GC game to satisfy the minimax theorem:

Theorem 8.7. Let Cy > 2 be the constant of Lemma 8.5. A [0, 1]-valued GC game (X,F, L)
satisfies

inf sup Eq e bo(x, f)] = sup inf K e lo(x, f 62
PXEA(X’)PFEA(]-") (. f) PxxPF[ 0( )] PFGA(}")PXEA(X/) (z,f) PXXPF[ 0( )] ( )

for all X' ¢ X, F' C F if and only if it does not contain infinitely many ordered thresholds with
margin « and tightness o/Cy, for all a > 0.
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Proof. First suppose that (62) holds for all X/, F'. If the game (X, F, {y) contained infinitely many
ordered thresholds with margin a and tightness «/Cp, then by Lemma 8.6, there would be some
X', F' so that the left-hand side of (62) is at least the sum of & — 2a/Cjy > 0 and the right-hand
isde of (62). This is a contradiction.

Conversely, suppose that the game (X, F, {y) does not contain infinitely many ordered thresholds
with margin a and tightness o/Cy for all &« > 0. Since, for each « > 0 and X’ C X, F' C F,
(X', F' by) is a (a/Cy)-GC game, Lemma 8.5 gives that for each o > 0,

inf su E e lo(z, < su inf  E. . lo(z, f)] + 4a.
PyreA@) pponiry @) pyxppllo(, f)] oSO by by ) PyxPpllo(z, f)]

Then (62) follows by taking « | 0. O

It is also immediate to show the minimax theorem for online learnable games, as follows:

Theorem 8.8 (Minimax theorem for online learnable games). Any SGC game (X, F,{) satisfies
the min-max theorem, i.e.,

inf sup  Eq Uz, f)] = su inf Eg, e Uz, f)].
PxeA(X) PFGAp(]:) (z,f) PXXPF[ ( f)] PFeAp(]-") PyreA(X) (z,f) PXxPF[ ( f)]

Further, the above equality remains true even if Px,Pp are restricted to lie in A°(X), A°(F),
respectively.

Proof. By Lemma 8.4 and since the given game is an SGC game, we have that the sequential fat-
shattering dimension of the classes F¢ := {x + (2, f) : f € F} and X* := {f — {(2, f) : v € X}
is finite at all scales. Thus (X, F,¥) is a GC game. The inequality

inf sup Eq pe Uz, f)] > sup inf Eq e Uz, f
PxeA(X) PreA(F) (. f) PXXPF[ ( )] PreA(F) PyeA(X) (z,f) PXxPF[ ( )]

is immediate. To see the opposite direction, fix any « > 0, and let Cy be the constant of Lemma
8.5. Certainly (X, F,¢) is a (a/Cp)-GC game. Further, by Lemma 8.1, the maximum number of

thresholds in the game (X, F,¢) with margin « and tightness «o/Cj is 90(sfata.(1-2/00)(F)) < o0, T
follows from Lemma 8.5 that

inf sup K )~ Uz, f)] < sup inf K e Uz, f)] + 4a,
PXGA(X)PFEA(]:) (=,f) PxxPF[( f)] PFEA(}')PXGA(X) (z,f) PXXPF[( f)]

and even if Px, Pr are restricted to A°(X), A°(F), respectively. The statement of the theorem
follows since o > 0 may be taken arbitrarily small. O

A Miscellaneous lemmas

In this section we state some miscellaneous lemmas on the fat-shattering dimension of real-valued
hypothesis classes. Many of these lemmas are well-known (see for instance [Gol21]), but we state
the proofs for completeness.

Lemma A.l. Fiz a class F C [0,1]Y and o € (0,1). There are at most 2 integers j, 0 < j <
|1/a| + 1 so that
sfat, (F) = sfaty, ({f € F: f(z) € [jo, (§ + 1a)}).

Moreover, if there are 2 such integers j, they differ by 1.
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Proof. Suppose for the purpose of contradiction that for some j1, jo with |jo2 — 71| > 2, we have
sfaty, (F) = sfat, ({f € F : f(x) € [J1a, (j1 + D) }) = sfat, ({f € F: f(x) € [Joc, (J2 + D) }).
Set 7/ = (j1 + j2)/2. We therefore have that
sfaty(F) = sfato ({f € F: f(x) > ja+ a/2}) = sfat,({f € F: f(z) < ja—a/2}),
which is a contradiction. O

Lemma A.2. For F C [0,1]* and a € (0,1), and (z,y) € X x [0,1], if |y — SOA(F,a)(x)| > «,
then sfata(}"]‘(lx y)) < sfata(F).

Proof. Suppose for the purpose of contradiction that sfat, (F |‘(’x y)) = sfaty(F). Let j = |y/a].
Then by definition of F |‘(3‘x ,)» We have that

sfaty (F) = sfato ({f € F: f(x) € [jo, ( + 1)a)}).

By definition of SOA(F, ar), we have that SOA(F, «)(x) = j*a for some 0 < j* < |1/aJ+1. It must
hold that sfat,({f € F: f(z) € [j*a, (j* + 1)a)}) = sfat,(F). Since |y — j*a| > «, we have that
y € [(7* — Da, (* + 1)a), meaning that j & {j*,7* — 1}. By Lemma A.1 we must have j = j* + 1.
But the definition of SOA(F, «) requires that in this case that SOA(F, «a)(z) = (j* + 1)«, which is
a contradiction. O

Uniform convergence. Next we state a uniform convergence bound for real-valued hypothesis
classes. The below bound is not optimal (as it only considers the fat-shattering dimension at a
single scale), but as it does not quantitatively affect our statistical rates for online learning, it will
suffice for our purposes.

For uniform convergence (which implies learnability under i.i.d. data), finiteness of the fat-
shattering dimension [ABDCBH97], which is smaller than the sequential fat-shattering dimension,
is sufficient (and necessary). The fat-shattering dimension of a hypothesis class F C [0, 1] at scale
a > 0, denoted fat, (F), is defined as follows. It is the largest positive integer d so that there are
Z1,...,xq4 € X and s1,...,84 € [0,1] so that for each choice of €1,...,e4 € {—1,1} it holds that
there is some f € F so that, for each i € [d], €; - (f(z;) — s5) > /2.

Theorem A.3 (Uniform convergence; [MV02]'®). There are constants Cy > 1 and 0 < ¢y < 1 s0
that the following holds. For any F C [0,1]%, and finite-support distribution P on X, and any
v €(0,1/2),n € (0,1/2), it holds that for any

fatcyn (F) log(1/n) + log(1/7)

n 2 C() . )
2
we have
1 n
Py, .. zn~P |SUD Eenp[f(z)] — = Z flx)| >n| <.
fer n im1

'8For an explanation of how the theorem follows from [MV02], see [Gol21, Corollary 20].
¥The finite-suportedness assumption can be dropped if F is countable.
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Closure bound for the sequential fat-shattering dimension. Next we establish a clo-
sure bound for the sequential fat-shattering dimension; the result is the real-valued analogue of
[GGKM21, Proposition 2.3], and is also similar to [RST15a, Lemma 4], which proves an analogue
for the sequential Rademacher complexity. To begin, we establish some additional preliminaries,
following [RST15a]: for some set Z and a function class F C [0, 1]%, fix a Z-valued tree z of depth
d, and consider a set V of R-valued trees of depth d. For a > 0, the set V is defined to be a
sequential a-cover of F on the tree z if for all f € F, and all € € {—1,1}¢, there is some v € V so
that
max |vi(er—1) — f(ze(e14-1))| < . (63)
teld]
Given a class F, the sequential a-covering number (with respect to £,) for the tree z is defined as
follows:

Noo(F,z,«) :=min{|V| : V is a sequential a-cover of F on the tree z} .

Next we need a few basic lemmas that related the sequential covering numbers of classes and
their sequential fat-shattering dimension.

Lemma A.4 (Theorem 14.5, [RS14b]). Consider a class F C [0,1]%. Then for any o > 0, and
d € N, and any Z-valued tree z of depth d > sfat,(F),

2¢d sfatq (F)
-/\/’oo(]:vzva) é <ﬁ> .

« - sfat,

We remark that in the statement of [RS14b, Theorem 14.5] the term sfat, (F) does not appear
in the denominator in the upper bound on Ny (F,z,«). However, a close inspection of their
proof shows that they establish Ny (F,z,a) < (g%l)m for some m < sfat,(F) (namely, m is the
pararmeter called fato(G) therein). The statement of Lemma A.4 then follows by noting that the

function m (i—en‘i) is non-decreasing for m < d.

Lemma A.5. Suppose a tree z of depth d is a-shattered by a class F. Then Noo(F, 2z, 5) > 2% for
any B < a/2.

Proof. Let s be an R-valued tree that witnesses the shattering of z. Let V be a §-cover of F on
the tree z. Consider any two leaves €,¢’ € {—1,1}% of the tree z, and let corresponding functions
in F be denoted f, f'. (For a leaf ¢ € {—1,1}¢, a corresponding function f € F is any function so
that e - (f(z¢(€1.4—1)) — se(€14—1)) > «/2 for each t € [d].) Let v,v' € V be the elements of the
cover V as guaranteed by (63) for the leaves €,¢. We claim that v # v/, which would immediately
complete the proof; so suppose to the contrary that v = v’.

Choose t as small as possible so that €; # €,. Then (perhaps after interchanging the roles of
£y f), it holds that

f(ze(er:-1)) > se(ers—1) + /2, fl(ze(e14-1)) < selerg—1) — a/2. (64)
On the other hand, since V is a 3-cover of F, we have (since v = v’) that

[vi(eri—1) — f(ze(er—1))| < B, [Vi(eri—1) — f'(ze(er:-1))] < B (65)
Using that § < «/2, we get that (64) and (65) lead to a contradiction, thus completing the proof
of the lemma. O
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Given some k € N, some function ¢ : R¥ x Z — R, and function classes Fi,...,F; C [0,1]7,

define the ¢-composition of Fq,...,Fy as follows:
¢(f1,...,fk)::{Z'_>¢(f1(2),...,fk(z)72) : flEfla"'afkefk}‘
Lemma A.6. Consider classes Fi,...,Fr C |0, 1]2, and consider a function ¢ : RF x X = R so

that ¢(-, z) is L-Lipschitz for each z € Z. Fix any a > 0, and suppose that sfat, 1) (Fi) < d for
each i € [k] and some d € N. Then

sfate (¢(Fi, ..., Fr)) <O <dl<: log <%’“>> .

Proof. Write G := ¢(Fi,...,Fr) to denote the composed class. Fix a > 0, and write N :=
sfato (¢(F1,...,Fk)). Let z be a Z-valued binary tree of depth N that is a-shattered by G. By
Lemma A.4, for each ¢ € [k], we have that, for 5 = a/(4L),

2¢N >Sfat6(.7:7;)

NOO(*EquB) < <5Ttﬁ(]:z)

For each ¢ € [k], let V; be a minimal S-cover for the class F; on the tree z. Now consider the set
V= {V:¢(V1,...,Vk) cvley, .. vF GVk},
where ¢(v!,...,v¥) denotes the R-valued tree defined by

oV, V) (eri—1) = (Vi (er—1)s - VI (€14-1), Ze (€1:6-1))-

Now fix any g € G; it can be written as g(z) = ¢(f1(2),. .., fx(2), ) for some f; € Fi,..., fr € Fi.
For each i € [k], let v* € F; denote a representative for f; in the sense that for each i € [k],

max ‘Vi(elzt—l) — filze(e14-1))| < B (66)
te(d]
Then
max ‘ﬁb(vl, e 7Vk)t(€1:t—1) - g(zt(elzt—l))‘
te(d]

= ?é%( ‘¢(V%(61:t—1), e ,Vf(Elzt—l), zi(€1:0-1)) — O(f1(ze(er:i—1))s - - s fr(2Ze(€1:-1)), Ze (€1:0-1))

<L = a/4. (Using (66) and L-Lipschitzness of ¢)

By Lemma A.5, since z is a-shattered by G, we have that Noo(G,z,a/4) > 2V. On the other hand,
as we have shown above, the set V is a sequential «//4-cover for the class G on the tree V. Thus,

9

4L€N >Sfata/(4L)(]'—i)

k
2N S./\/’oo g,Z,Oé )=V = <
( /4) <[V Zl;[l o - sfatyar) (Fi)

which implies that

k
4LeN
Ngg sfat,, ]-"Z--log< )
— ) (F3) o - sfatyjar) (Fi)



4LeN

Recalling the assumption that sfat,, 1) (F;) < d for each i and using that m +— m - log ( v ) is a

non-decreasing function for m < N, we obtain that N < O (dk; log (%k))
O

Corollary A.7. There is a constant C > 1 so that the following holds. Suppose Fi,...,Fy C [0,1]*
satisfy sfaty 4 (Fi) < d fori € [k]. Then for any o > 0,

sfato (Fr U - U Fg) < C - dk -log(k/a). (67)

Proof. For i € [k], define F! := F; U {0}, where 0 denotes the function that is identically 0 on
Z. Then clearly sfat,  (F;) < sfatq) (F;) +1 < d+ 1. For a1,...,a; € R and z € Z, define
¢(ay,...,ax, z) :=aj + - + ag, which is clearly 1-Lipschitz with respect to || - ||~. Further,

flu"'Uka(ﬁ(f{,...,f]/g),

since for each i € [k] and f; € F;, ¢(F7, ..., F;,) contains the function z — ¢(0, ..., fi(z),...,0,2) =
fi(2). The result now follows from Lemma A.6 with L = 1. O

B Proof of Proposition 1.2

In this section we prove Proposition 1.2, thus showing that the bound of Theorem 5.15 is optimal
up to a polylog T factor

Proof of Proposition 1.2. By compactness of [1/T', 1], the infimum M := inf,e[1 /7,1 {aT + f; s(n)dn}
is obtained at some o € [1/7T,1].

Note also that the mapping a — o1+ f; s(n)dn is convex (its derivative is T'—s(«), which is non-
decreasing), meaning that for all &« > ag, T — s(a) > 0, and for 1/T < a < a, T — s(a) < 0. Thus,
by increasing ag by a factor of 3/2, we can ensure that T'— s(cag) > 0 and for all 1/T < a < ap/2,

T — s(a) <0 (further, doing so can only increase oT + f; s(n)dn by definition of «y).

For any « € [0, 1], note that

1
aT+/ s(n)dn < aT + Z 2 s(2'ar).
a i>0: 2ia<l

Thus setting @ = o in the above display, one of the following possibilities holds:
1. apT > M/2. In this case, set af, = o /2, and set d := T < s(ay).

2. There is some i < [log1/ag] < [logT] so that 2'aq - s(2°ag) > M/(2[log T7). In this case,
set d := s(2'ag) < T (by definition of ap, and using that s(ag) < T). Now set afy := 2¢ - ap.

Set X = {1,2,...,d}, and let F be the class of all functions on X so that for each = € S,
f(z) € {(1 —ag)/2,(1 + af)/2}. Clearly, sfat,(F) = d for all o < «f, and sfat,(F) = 0 for all
a > af. Thus sfat,(F) < s(a) for all « € [0, 1].

Further, the adversary can clearly force a cumulative loss of at least %6 - d: simply feed each of
the examples z1,...,z4 (using that d < T'), and set y; to be whichever of (1 — og/2), (1 + «f)/2
is further from the algorithm’s prediction at time t. In case 1 above, this cumulative loss becomes
aoT/2 > Q(M), and in case 2 above, this cumulative loss becomes 2'aq - s(2ag) > Q(M/logT).
Thus, in both cases, we get a cumulative loss of Q(M/logT'), as desired. O
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