Energon: A Data Acquisition System
for Portable Building Analytics

Fang He!, Yang Deng!, Yanhui Xu!, Cheng Xu?, Dezhi Hong?®, Dan Wang!
'The Hong Kong Polytechnic University, 2Johnson Electric, *University of California, San Diego
{fangf.he,yang2.deng,stephen.xu}@connect.polyu.hk
cheng.xu@johnsonelectric.com,dehong@eng.ucsd.edu,dan.wang@polyu.edu.hk

ABSTRACT

Emerging building analytics rely on data-driven machine learning
algorithms. However, writing these analytics is still challenging—
developers need to know not only what data are required by the
analytics but also how to reach the data in each individual building,
despite the existing solutions to standardizing data and resource
management in buildings. To bridge the gap between analytics
development and the specific details of reaching actual data in
each building, we present Energon, an open-source system that
enables portable building analytics. The core of Energon is a new
data organization for building as well as tools that can effectively
manage building data and support building analytics development.
More specifically, we propose a new "logic partition" of data re-
sources in buildings, and this abstraction universally applies to all
buildings. We develop a declarative query language accordingly to
find data resources in this new logic view with high-level queries,
thus substantially reducing development efforts. We also develop a
query engine with automatic data extraction by traversing building
ontology that widely exists in buildings. In this way, Energon en-
ables mapping of analytics requirements to building resources in a
building-agnostic manner. Using four types of real-world building
analytics, we demonstrate the use of Energon and its effectiveness
in reducing development efforts.

CCS CONCEPTS

« Information systems — Data access methods.

KEYWORDS

Smart building, Data analytics, Machine learning, Declarative query

ACM Reference Format:

Fang He!, Yang Deng!, Yanhui Xu!, Cheng Xu?, Dezhi Hong®, Dan Wang!.
2021. Energon: A Data Acquisition System for Portable Building Analytics.
In The Twelfth ACM International Conference on Future Energy Systems
(e-Energy °21), June 28-Fuly 2, 2021, Virtual Event, Italy, 12 pages. https:
//doi.org/10.1145/3447555.3464850

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

e-Energy '21, June 28-July 2, 2021, Virtual Event, Italy

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8333-2/21/06...$15.00
https://doi.org/10.1145/3447555.3464850

1 INTRODUCTION

Building analytics—that is, using data to develop machine learning
(ML)-based methods for operation and control of building systems—
have proven to be effective in reducing energy footprints and oper-
ational costs, and improving the maintenance efficiency of build-
ings [23, 25, 30, 38, 39, 41, 44]. While promising, developing building
analytics requires not only expertise in machine learning and build-
ing science but also deep knowledge about the configuration of
each individual building, as each building is unique. For example,
developing a smart lighting control system in a particular building
requires the knowledge about what algorithm fits, what control
points are available in the space (switch, blinds, etc), and how to
access these points in the specific configuration of each individ-
ual building. Currently, developing and deploying analytics still
requires tremendous manual effort on a per building basis because
of the varying system details in each building. This greatly impedes
the adoption of building analytics.

Recently, efforts have been dedicated to standardizing the orga-
nization of resources and data in buildings and to facilitating access
to building data. Schemas such as Brick [4] and BuildingSync [26]
provide a standardized naming convention and hierarchy to name,
organize, and manage resources in buildings. Solutions such as
SEED [3] and Mortar [16] provide a uniform way to organize and
query data. These solutions significantly simplify access to building
data. Yet, building analytics apply to a building subsystem (e.g. a
lighting system, a chiller system), and there is still a gap between
the ability of practitioners to access data in an organized way at
such level and to conveniently realize building analytics. Develop-
ers need to spend a considerable amount of time mapping their
algorithm to the actual data resources in a specific building before
they can leverage existing tools such as Mortar. Ideally, developers
would only need to write a few simple SQL-like queries to locate the
data and/or control points that they need and implement analytics,
regardless of the building particulars. We envision a system that
simplifies and standardizes the data acquisition process for building
analytics so that the analytics become portable across buildings.

In this paper, we present Energon, a system that allows for the
acquisition of data to develop analytics in a building-agnostic man-
ner. Energon builds upon a standardized organization of building
data resources (e.g. using the Brick Schema) and further provides
developers with the capability to locate and retrieve desired data via
declarative queries. In this way, a developer can develop and deploy
analytics without the need to know the underlying building details,
greatly simplifying and expediting the development process.

In designing Energon, the key challenge lies in how to efficiently
map analytics requirements to the actual data resources in a build-
ing. This mapping process is currently deeply coupled with building

https://doi.org/10.1145/3447555.3464850
https://doi.org/10.1145/3447555.3464850
https://doi.org/10.1145/3447555.3464850

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

specifics, due to variations in buildings. For example, in one build-
ing the luminance of a lighting system is solely determined by the
setpoint of the lamp, while in another building it could be deter-
mined by the setpoints of both the lamp and the ballast. Thus, to
develop a data-driven smart lighting control system [13, 30], one
needs to have the light level readings of the lighting system, and
nuanced details about how to control the lighting system, which
makes the process building-dependent and unnecessarily onerous.

To overcome this challenge, Energon presents a new data orga-
nization method for building as well as tools that can effectively
manage building data and support building analytics development.
More specifically, we propose an abstraction that divides the data
resources in a building into two logic categories: subsystem (e.g.
lighting, chiller, pump) and functionality (e.g. illuminance, tem-
perature, power). Thus, the building data resources can be catego-
rized into these two classes upon which analytics can develop. We
then develop a declarative query language, with which developers
can compose high-level queries to find the desired subsystem of a
certain functionality. Our query language allows for common set
operations (such as union, intersect, and join) on building resources,
akin to relational algebra, which expedites analytics development
and ensures that queries are complete and consistent. To execute
these queries, we develop a query engine with a building-agnostic
ontology extraction procedure, which automatically extracts the ele-
ments in a building ontology and assigns them into the two abstract
categories. In this way, the query engine can automatically map the
input of analytics to the concrete resources in a building. Energon
can adapt to building specifics and hide building-dependent and
analytics irrelevant knowledge. Analytics developed upon Energon
are uniform across different buildings, hence portable.

We evaluate Energon and demonstrate its use in multiple types
of analytics in real buildings. In summary, the contributions of this
paper are as follows:

o We present a new abstraction of building resources so that de-
velopers do not need to have building-specific knowledge when
developing building analytics; thus, the development of appli-
cation can be simplified. The abstraction comprises two logic
categories of building resources, namely, subsystem and func-
tionality.

o We present the design and implementation' of Energon to materi-
alize the abstraction. We develop a declarative query language to
hide building-dependent and analytics irrelevant knowledge. We
develop a query engine to automatically extract data by travers-
ing a building ontology that widely exists in buildings. We further
develop an indexing structure to optimize query execution time.

o We develop four types of building analytics through Energon,
and qualitatively show that the development process becomes
simpler when using Energon.

o We quantitatively evaluate Energon with regards to program
length and development time. We evaluate our optimization
schemes designed for execution time in Energon.

2 RELATED WORK

Standardized Resource and Data Management for Building.
There have been various attempts to facilitate the management of

10ur code is open-sourced and available: https://github.com/KGBUSH/Energon

He et al.

and access to resources and data in buildings. Brick [4] and Build-
ingSync [26] are examples of unified schemas for organizing and
managing resources in buildings, which helps to locate resources
in a vendor-agnostic way. However, a schema can efficiently navi-
gate users to resources only if the user knows exactly where they
can locate the data in a building. The question of what resources
users need remains to be answered per analytics, for which rich
experience and often domain knowledge of individual buildings is
required. On another front, platforms such as SEED [3] and Mor-
tar [16] provide standard programming interfaces to query and
retrieve data points in a building, which greatly eases and expedites
data management in buildings. Yet, again, the users need to have
the knowledge about which sensing and/or control devices they
need the data points for, but such knowledge is sometimes beyond
the ability of an algorithm or analytics developer to provide.

Besides these research efforts, commercial platforms available

such as BuildingOS [27], CopperTree [11], Entronix EMP [14], and
Skyspark [31] are also available for smart building solutions. These
platforms are well integrated with Building Automation Systems
(BAS), along with tools for monitoring and visualizing building
data and generating reports. Analytics are often achieved by setting
up rules or implementing pre-programmed templates for alerts and
finding trends. However, the use of such customized solutions is
often limited to specific analytics (e.g. only for fault detection and
diagnostics), and hence can be difficult to extend.
Building Analytics. In recent years, building analytics have been
developed and have proven to be effective for use in various kinds of
building systems. Building Integrated Control (BIC) jointly controls
multiple systems in a building to manage the indoor environment.
For example, to ensure indoor visual comfort, Shen et al. developed
ML models to predict the indoor illuminance under different op-
erations of lighting and blind systems [30]. ML models have been
developed for Indoor Air Quality (IAQ) by using indoor air data (e.g.
CO2 and air flow rate) [37] . Energy Consumption Prediction (ECP)
models energy usage of one or multiple system(s) in a building to
manage and save energy. Neural Network models and Bayesian Net-
work and Decision Tree models were developed to monitor the load
of appliances and to identify appliances in use [21][5]. Multi-task
learning was proposed to predict the coefficient of performance
(COP) of the chillers, and improve chiller sequencing [44]. Model
Predictive Control (MPC) [1, 20] is a common solution to Heat-
ing, Ventilation and Air Conditioning (HVAC) control optimization.
Both model-based [9, 22, 43] and model-free [10, 36] algorithms
have been developed. Detecting faults can improve system perfor-
mance efficiency. Several ML-based methods for fault detection
have been developed, either through simulations [12] or by using
historical data [6, 24, 38].

To develop these analytics, developers not only need the skills
in machine learning and data analytics, but must also have to have
deep domain knowledge on how to reach the necessary data in in-
dividual buildings. In this paper, we aim to bridge the gap between
analytics and building data extraction by developing a data acquisi-
tion system that can simplify and standardize the data extraction
workflow, making building analytics portable across buildings.
Declarative Programming. Declarative programming is a non-
imperative programming paradigm that describes the goal rather

https://github.com/KGBUSH/Energon

Energon: A Data Acquisition System
for Portable Building Analytics

Building A| | I

@/

Building B

. . 477 _Periodic . Periodic
L__| Qr D & > Connection - Connection

Figure 1: D Spatial auxiliary knowledge; 2 Temporal auxil-
iary knowledge; 3 Contextual auxiliary knowledge.

than illustrates all the intermediate steps. In the database commu-
nity, typical examples of declarative languages are SQL for relational
databases [28], XQuery for XML documents [7], SPARQL for RDF
triples [18], HiveQL for NoSQL databases [34], and more. In the
building science community, building entities and relationships
are defined as RDF ontology in the Brick Schema, which supports
declarative SPARQL queries. As building ontology and the corre-
sponding sensor data are usually stored separately, to retrieve the
actual data, a two-step procedure is required: first, SPARQL queries
are composed per analytics to search a building ontology for desired
resources; then, in another step, the actual time-series data retrieval
for these resources is performed, as is done in Mortar [16]. Thus,
developers need to know the building ontologies which vary in
different buildings. By contrast, Energon introduces an abstraction
on top of the resources organized in Brick so that developers can
easily extract building data without knowing the underlying details.
To the best of our knowledge, Energon is the first system to provide
the capability to write declarative queries over the abstraction of
building data resources designed for analytics requirements.

3 MOTIVATION AND APPROACH

3.1 A Motivating Example

Building analytics involves the development of ML-based methods
to analyze or predict the status of building systems so as to reduce
wasteful or inefficient operations. An example is Building Integrated
Control [13, 33], in which trains ML models are trained using data
from multiple building systems for joint control, e.g. joint control of
the lighting system and the blind system for indoor visual comfort.

Developing ML models for building analytics requires data. For
example, in BIC, the setpoints for controlling the luminance level
of the lighting systems and the slat angles of the blind systems, and
readings on the intensity of outdoor sunlight, are used to develop a
neural network to jointly consider these inputs to achieve indoor
visual comfort [13]. To extract these data in a building, existing data
acquisition systems, e.g. Mortar, need to deal with various types
of building-dependent auxiliary knowledge. In particular, we show
three types of auxiliary knowledge in Figure 1:

e Spatial (or structural) auxiliary knowledge: The structure of build-
ing subsystems often varies from building to building, e.g. in
Figure 1 the lighting system in building A (i.e. lighting_1) only
contains Lamp, the setpoint of which controls the luminance

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

SELECT ?1psp ?blsp WHERE { ‘\\
?room(?zone) rdf:type/rdfs:subClassof* brick M(Zone)
?lighting rdf:type/rdfs:subClassOf* br1ckm

\
i

1
2
3
4
5 ?room(?zone) brick:isLocationOf ?lighting . ¥
6
7
8
9

?lamp rdf:type/rdfs:subClassOfx brick{Luminancd< DataTracmg Flow
?light brick:hasPart ?lamp .
?lamp brick:hasPoint ?1lpsp .

10 ?1psp rdf:type/rdfs:subClassOfx br1ck.

12 ?blst rdf:type/rdfs:subClassOf* brick:Ballast
13 ?1light brick:hasPart ?blst . §
14 ?blst brick:hasPoint ?blsp . i
15 ?blsp rdf:type/rdfs:subClassOf* brick:Setpoint
16 }

Figure 2: Example of a SPARQL query for extracting set-
points for BIC analytics (blue arrows show the steps in-
volved in locating the desired data. Changes (marked in red)
to the program are needed for another building due to vari-
ation in context (e.g. room to zone) and the addition of new
components (e.g. Ballast setpoints).

level, while in building B the setpoints of both the Lamp and the
Ballast control the luminance levels.?

o Temporal auxiliary knowledge: a building subsystem may have
a seasonal usage pattern, e.g. in Figure 1, lighting_2 is detached
from a room to save energy because of ample light in the summer.

o Contextual auxiliary knowledge: a building subsystem may be
used in different contexts, e.g. in Figure 1, lighting and blind
systems are used in the context of "rooms" in building A but in
"zones" in building B.

Such auxiliary knowledge, while necessary for pinpointing the
correct data sources, is irrelevant to the analytics development
and unnecessarily complicates the data acquisition process. For
example, to develop the BIC ML model, a developer only needs to
know the setpoints that control the luminance level of a room, yet
whether such setpoints are for the lamp or the ballast or both is
an unnecessary detail to the developer. This is also where existing
building data acquisition systems fall short: they are designed for
someone equipped with the knowledge to specify the exact point(s)
to access [4, 16], rather than to provide users with the capability
to make queries by high-level requirements such as functionality.
We need a data acquisition that hides such building-dependent
auxiliary knowledge.

Figure 2 shows an example of the extraction of the setpoints of
a lighting system using an existing data acquisition system, Mortar.
We see that 1) to find the setpoint, detailed knowledge about how
to reach the data is needed; and 2) such details can differ from one
building to another; thus the program needs to be revised according
to the building.

3.2 Design Approach and Goals

A building-independent data acquisition system needs to evade
the three types of building-dependent auxiliary knowledge when
retrieving data. We would need to have a proper abstraction of the
building data required by analytics and to build upon it, which is

2 An electrical ballast is a device to limit the amount of current in an electrical circuit,
and thus can control the luminance as well.

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

akin to how an Android program is developed regardless of the un-
derlying specifications of the phone. To create such an abstraction,
we examine a number of major categories of building analytics, as
listed in Table 1. We observe that the data required by these analyt-
ics can be categorized according to the subsystem and functionality
that they relate to. More specifically, building analytics are built
upon building subsystems, e.g. lighting, chillers; the data associ-
ated with functionality are also required, e.g. temperature, power
consumption, humidity. To reach the data of different subsystems,
spatial, temporal, and contextual auxiliary knowledge is needed.

Thus, we abstract the data according to the subsystem and func-
tionality involved, and then develop corresponding data extraction
operations on these categories using declarative queries. Figure 3
shows an example of the extraction of data through referencing
queries to the abstracted categories—obtaining the required data
boils down to first locating the subsystem it involves and then
finding the particular functionality.

We develop standard query operations (Select-From-Where, Union,
Intersect, etc), which help to hide different types of auxiliary knowl-
edge. For example, in Figure 3, to retrieve the setpoints of Lighting
and Blind systems, the Join operation eliminates the contextual
auxiliary knowledge on whether these two systems are reached via
a room context (building A) or a zone context (building B).

To ensure the completeness and consistency of the query opera-
tions, we develop our query operations following relational algebra;
for example, the Intersection, Union, and Join operations follow the
convention of (+, *,). This algebra assists developers in writing
error-free queries.

We develop a query engine to execute our query language. The
core of the query engine is to leverage building ontology [4], which
widely exists in buildings [19]. Building ontology embeds the orga-
nization of the building data, and we design a traversal algorithm
to automatically reach the data. We further develop optimization
schemes to improve the execution performance of the query engine.

In summary, our new query language provides an abstraction
for the developer to easily specify the desired data for developing
building analytics, and our system helps with the task of reaching
the data. Overall, our system design follows the following goals:
Completeness. The system should provide a complete set of com-
ponents that may be used to acquire data to support the develop-
ment of building analytics. Components should be decoupled, so
that each component can be used as an independent module.
Usability. Building analytics often requires specific domain knowl-
edge and expertise in data analytics. Therefore, our system should
be easy for users of different backgrounds to use, from analytics
developers with ample knowledge about buildings to data scientists
who know little about buildings.

Extensibility. The system should be designed in an extensible
manner so that adding new functions to existing modules or adding
new modules is simple and straightforward.

Portability. It should be possible to deploy building analytics
across buildings without major changes to the implementation.

L RO N T ORI

He et al.

Table 1: Analysis of seven building analytics: Fault Detection
and Diagnosis (FDD) for Chiller (FDD-Chiller) [6, 40], for
Variable Air Volume (FDD-VAV) [35], for Air Handling Unit
(FDD-AHU) [29, 42], Chiller Profiling (CP) [44], Building In-
tegration Control (BIC) [30], Indoor Air Quality (IAQ) [37],
and Energy Consumption Prediction (ECP) [2, 23].

Category Subsystem Func- Query
Analytics Spatial Temporal Contextual | tionality | Operation
FDD-Chiler v v (1) (3
FDD-VAV v v (1) (3)
FDD-AHU v v (1) (3)
CP v v v (1)(2)(3)
1AQ v M v v (1)(2)(3)(4)
BIC v v v v (1) (3)4)
ECP 7 7 7 @O)@
Query (1) Select, From, Where; (2) Filter;

Operation (3) Union, Difference, Intersect; (4) Join;

/* ontology algebra to perform ontology traversal */

SELECT Lighting(A) JOIN Blind(A) * Setpoint(A)

/* list of buildings to determine ontology boundings =/

FROM Building A

/* predicate expression(s) to perform ontology selections */
WHERE A.BuildingID = 'building_A' AND A.Source = 'lLocal

/* predicate expression(s) to perform data selections */
FILTER A.TIMESTAMP >'20190801"' AND A.TIMESTAMP <'20191231"'

Figure 3: Energon query for extracting the setpoints for BIC.

4 THE ENERGON SYSTEM DESIGN
4.1 Design Overview

Figure 4 shows the architecture of Energon. Energon has three parts:
Energon Query Language, based on SPARQL for the data acqui-
sition process of building analytics; Energon Query Engine for
Energon Query Language interpretation and execution; Energon
Ontology Index, developed for system performance optimization.
The database stores the building data and the building ontology.
The Energon Query Engine presents a standardized execution
procedure for building analytics. There are three steps. First, the
Declarative Query Processing (§4.2) module processes the query
written by analytics developers and generates a query execution
plan. Second, the Building Independent Ontology Extraction
(BIOE) module (§4.3) extracts the essential sub-ontology out of the
building ontology based on user queries. There are two sub-steps to
the process. The Ontology Segment Extraction (OSE) (§4.3.1) module
takes an existing building ontology (e.g. based on the standard Brick
schema) from the ontology storage and extracts a set of ontology
segments. The Algebra-based Ontology Composition (§4.3.2) module
takes the extracted set of ontology segments and performs the
algebraic operations specified in the query to derive a sub-ontology.
Finally, the Data Extraction module takes the sub-ontology to
extract data via standard programming interfaces. We also develop a
Energon Ontology Index (§4.4) to organize the building ontology
hierarchically to complement traditional RDF triples. This index
can improve the system performance of the Energon Query Engine.

4.2 Energon Query Language and Processor

4.2.1 EnergonQLl: A declarative query for building analytics. As
discussed, in current systems, when used to support building an-
alytics, the data retrieval process requires writing analytics- and

Energon: A Data Acquisition System
for Portable Building Analytics

SELECT Light(A) JOIN Blind(A) * Setpoint(A)
Energon FROM Building A

Query WHERE A.BuildingID = "building_A"
FILTER A.TIMESTAMP > “20190801” AND A.TIMESTAMP < "20191231" |:

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

: Energon
Subsystem Functionality | : Ontolo
Index Index : 8Y
l |. ¢ Index

N\ :
Declarative : Ontology Algebra-assisted : Data HE
H Query : Segment Ontology : Extraction = a
: Processor : Extraction Composition : i o :
Energon: : v . ! Dat
Query : Operator Tokens : :| Timestamp | Node 1 | Node 2 : ata
Engine Subsystem Tokens 1 P i[20150701 | ### LI Storage
Functionality Tokens | : 20190702 idivi HA# Time-series
20190703 H#iH H#i# Datab
Query Plan Ontology Segments Building Sub-ontology Retrieved Data atabase

o uer i
Query—| Qe > Normalization e Execu'mon
Parser Transformer Engine

Figure 5: Energon Query Processor

Table 2: Predicates of Subsystem Boundary

Predicates of Subsystem Boundary
brick:hasPoint l brick:hasPart l brick:hasUuid l rdfitype

building-specific SPARQL queries; thus, it is time-consuming and
not portable across buildings. Energon designs and implements a
query engine which allows the user to write declarative queries to
extract a subset of building data requiring minimal domain knowl-
edge about the building and data extraction details. Following the
concept of object database [8, 15], the Energon query language, En-
ergonQL, comprises select-from-where expressions. The basic primi-
tives are objects and functions, where objects can be bounded to
buildings and functions can be used as predicate conditions.

We illustrate the semantics of EnergonQL with an Energon query
in Figure 3. The SELECT, FROM, and WHERE clauses specify on-
tology traversal, bounding, and selection, respectively. Specifically,
the ontology from "building_A’ is selected and bounded to object A,
from which the lighting and blind systems with setpoints-related
nodes in A are traversed (more details about ontology traversal can
be found in §4.3). The FILTER clause further specifies the filtering
conditions for ontology and data selection. In this case, an ontol-
ogy falling in the time window from 2019.08.01 to 2019.12.31 is
firstly selected as the input of the query processor. Then in the data
extraction stage, the data in the same time window are retrieved.

4.2.2 Query processor. Figure 5 shows the steps for processing
queries in Energon. The Query Parser parses the query string into a
set of tokens, called a query syntax tree. During the Normalization
step, the predicates are normalized to the Conjunctive normal form
(CNF). Then, the Query Transformer converts the normalized tree
into a query execution plan, represented as ordered internal function
calls accessing both the ontology and time-series databases for the
building. The execution plan obtains a subset of building data that
will further be used in data modeling.

4.3 Building Independent Ontology Extraction

A building ontology describes the building entities (e.g. sensors,
chillers, pumps, etc.) and the relationships among them.

LT] W9018_0_ I Luminance | ==
Il Room] setpoint I_ Setpoint | ———"
AN type T Class

type hasPoint

[rooms_ lighting- I_fig—hTirTg_} ([

1.A.11 w9018] ;|_§y§te_nl _1 Instance
hasLocation type

Figure 6: Ontology of a Building (Partial)

DEFINITION 1. A building ontology is a directed graph, comprising
the building entities as nodes and the relationship between them as
edges. This graph can be described by RDF triples (Sub, Pred, Obj),
where the Subject (Sub) and Object (Obj) are nodes and the Predicates
(Pred) are edges in the graph.

Sub and Obj refer to concrete building entities, and Pred is the
relationship among the entities (e.g. a lamp is a part of a light-
ing system, a lamp has a luminance setpoint). Figure 6 shows the
building ontology of a real building. In this building, there is a
room (named rooms_1.A.11) that is the location of a lighting sys-
tem (named lighting-w9018) with a luminance setpoint (named
w9018_0_setpoint). These can be described by RDF triples. For
example, the triple <rooms_1.A.11, type, Room> indicates that
rooms_1.A.11 is an instance of class Room, <lighting-w9018, hasLo-
cation, rooms_1.A.11> indicates that the room (rooms_1.A.11) is
the location of a lighting system (lighting-w9018), and so on.

Nowadays, building ontologies are widespread. A building ontol-
ogy represents a complete view of a building’s resources and data.
A building analytic requires a subset of the building data, and thus
can be represented by a sub-ontology of the entire ontology. Thus,
we leverage the building ontology and develop a systematic way to
extract a sub-ontology that can satisfy analytics needs.

As discussed in §3, there are two logic views of the building
entities, subsystems and functionalities, which are commonly used
in building analytics. We introduce the ontology segment, defined as
a set of building entities with a logic partition of building ontology.
We will first extract subsystem ontology segments and functionality
ontology segments from the building ontology. Then, we will per-
form a set of algebraic operations on these ontology segments to
generate the sub-ontology.

4.3.1 Ontology Segment Extraction.

Subsystem Ontology Segment Extraction. A subsystem in a build-
ing is a complete, independently functioning part of the building’s

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

hasPoint hasPoint
Luminance_ Luminance_
Setpoint_1 Lamp—l Sensor_2 —_————
hasPart ————— System
- A Boundary
Luminance_ PR |[Luminance_
[Sensor_1 Lighting_1] [Setpoint_2]
hasPoint

_________ ﬁaﬂ.@aﬂon_l ThasPoint —

_ Instance
[Luminance_ H Room_1 H Blind_1]
Sensor_3 I

hasPoint hasLocation

Figure 7: Subsystem Boundary divides an ontology into sub-
systems (e.g. lighting system, blind, and room in the figure).

interior. This means that the components that make up the subsys-
tem can work together for a certain task. For example, a lighting
system is a common type of subsystem in modern buildings, which
typically consists of a group of lamps, switches and ballasts. It works
in a single lighting zone that conditions the intensity of illumination
for thermal visual comfort. We call this a subsystem. To logically
separate subsystems, we define subsystem boundary through a sub-
system boundary predicate set, which contains the belonging rela-
tionship. Table 2 shows an example subsystem boundary predicate
sets of Brick predicates.

A subsystem boundary exists between two nodes in the build-
ing ontology where there is no predicate (i.e. no relationships) or
where the predicate does not belong to the system boundary pred-
icates. For example, in Figure 7, the predicate hasPart suggests
that Lamp_1 is part of Lighting_1. Thus, they belong to the same
subsystem segment. The predicate hasLocation is not in the sub-
system boundary. Thus, Room_1 and Lighting_1 do not belong to
the same subsystem.

With the subsystem boundary defined, we can automatically ex-
tract subsystem ontology segments. We note that the Brick schema
has already defined a naming convention which we can use to select
anode in the building ontology. In the example in Figure 7, to get the
lighting subsystem segment, Lighting_1 is defined as <Lighting_1,
rdf:type, brick:Lighting_System> in Brick, and the SPARQL query
SELECT ?light WHERE ?light rdf:type/rdfs:subClassOf*
brick: Lighting_System can find it because it is of the type
brick:Lighting_System. If there are multiple lighting systems,
all of them will be returned. Breadth-first search (BFS) can be used
to find nodes recursively. Specifically, the subsystem segment type
in user query can be followed to pinpoint the subsystem (e.g. light-
ing system) and extract the initial nodes. BFS can then be conducted
from the initial nodes (e.g. Lighting_1 in Figure 7) with a search
stopping condition defined by the subsystem boundary.

Functionality Ontology Segment Extraction. As discussed, only
a logic view subsystem cannot meet all building analysis require-
ments. For example, to develop a control model for lighting system,
the lighting conditions data (e.g. illumination intensity) and oper-
ation data (e.g. status and setpoints) from the lighting system are
needed. Extra lighting system data, such as power, may be a curse
(e.g. irrelevant and redundant variables), rather than a blessing.

We also note that building analytics can require the same types
of functional sensors in different subsystems. For example, to de-
velop the energy consumption model used in ECP, we need the
temperature data of various subsystems. Therefore, we introduce

He et al.

the functionality ontology segment, referring to a group of entities
in the building with the same function.

For the functionality segment extraction, we directly make use
of a SPARQL query to find all the nodes whose type matches a par-
ticular functionality segment type. For example, the functionality
segment of the type Temperature will include all the nodes of the
type brick:Temperature_Sensor.

4.3.2 Algebra-assisted Ontology Composition. With subsystem and
functionality ontology segments, we now present how to generate
the sub-ontology for a specific query. Energon allows operations
on top of the ontology segments to compose the final sub-ontology
by following Energon algebra defined as follows: (a general intro-
duction on set algebra can be found in [32]).

Energon Algebra. An Energon query Q, as illustrated by Figure 3,
is a select-from-where liked query. Conceptually, such queries have
the "canonical” form of Formula (1) in terms of relational algebra:

Q=P (p1, -+, p) IS (g1, o) TF (@, -+, 00) (G . Gr) - (D)

That is, upon the ontology relations (Gi, Gz, - - - Gy), the follow-
ing two types of clauses WHERE and FILTER denoted by o (with
S function over conditions ¢1, - - - , ¢yn) and 7 (with # function over
conditions wy, - - - , @j) respectively are performed to determine the
pending ontology. Then ontology extraction 7 (with function
indicates) with projected attributes (p1, - - -, pg) is performed to
compose a building sub-ontology.

Let A, B be two sub-ontologies, U be the universe, i.e. the com-
plete building ontology, @ be the empty set, and x, a and b be a
single node of ontology. Energon algebra defines four fundamental
operations to conduct an ontology composition:

e UnionA + B={x|x € Aorx € B}.

e Intersection A * B={x | x € A and x € B}.

e Difference A — B={x|x € Aand x ¢ B}.

e Join A M B={x|x=aorb,whereac A,b € Banda < b)},
"<" represents a situation where at least one predicate exists
between a and b, i.e. a and b are connected in the ontology graph.

We define that any query that fits Formula (1) as a normal form
of Energon query. For example, the query in Figure 3 is an Energon
query and can be formalized as:

Q = T(Light w Blind) = Set point 01 Ags Ty Aws (Ga)

Here, ¢; is BuildingID="building_A’, and ¢ is Source="Local’. w;
is A.timestamp > ’20190801’, and w; is A.timestamp < '20191231’.

It is easy to verify that the Energon algebra has three algebraic
equivalence laws: Commutative, Associative, and Distributive (Table
3). This ensures consistency when developers write Energon queries
in different ways. For example, to extract the luminance data and
setpoint data from the Lighting subsystem in a building, the algebra
can be expressed as Lighting * Luminance + Lighting = Setpoint.
With the distributive property, the algebra can also be expresssed
as: Lighting * (Luminance + Setpoint).

We now present the implementation of these four operations:
Union, Intersection and Difference operations are implemented by
overloading the +, * and — operators, respectively.

The Join operation is the set of all combinations of tuples in two
tables that are equal in their common attribute names. In build-
ing ontology, to jointly control multiple subsystems (e.g., BIC and
ECP), we introduce Join operator to merge the subsystems with

Energon: A Data Acquisition System
for Portable Building Analytics

relationships. In Energon algebra, Join operator is a binary operator
that can only be performed on two subsystems, and thus its results
can be regarded as a further subsystem. We implement the Join
operator in a three-step process as follows:

(1) Determine the two subsystems to be joined from the Energon
query, and extract the sub-ontology of these two subsystems;

(2) For each pair of equipment in the both side subsystems, tra-
verse the entire ontology, and try to find a path (a sequence of
predicates in building ontology that connects a sequence of enti-
ties) between the equipment. Once there is a path exists, the pair
of equipment is added to the resulting subsystem ontology;

(3) For each piece of added equipment, an algorithm like BFS
can be conducted recursively to find underlying sensors and com-
ponents. As a result, the targeted joint subsystem is extracted.

We illustrate the Join execution process in Figure 1, where BIC
needs the data from the Lighting system and the corresponding
Blind system. The algebra can be expressed as Lighting > Blind.
To extract the sub-ontology, the query engine traverse the RDF
triples recursively to search the paths between pieces of equipment
in Lighting subsystem (Lighting_1 and Lighting_2) and the equip-
ment in the Blind subsystem (Blind_1 and Blind_2). As shown in
Figure 8, there are two paths were searched by the query engine,
i.e. Lighting_1 to Blind_1 as well as Lighting_2 to Blind_1, thus all
the sensors from these three equipment are extracted.

Completeness and Consistency. Based on the Energon algebra,
an Energon query has the properties of completeness (Theorem 1)
and consistency (Theorem 2). Theorem 1 states that an Energon
query can meet building analytics requirements, i.e. for building
analytics with a targeted sub-ontology, an Energon query exists
and our implementation above can extract such a sub-ontology.

THEOREM 1. (Completeness) Given a building ontology and the
requirement that a building analytic be represented as a logic partition
of this building ontology, there exists a set of subsystem ontology
segments, functionality ontology segments, and algebra operations
on these ontology segments, that can construct this logic partition.

We now examine the issue of consistency. Given two individual
Energon queries, Q1 and Qy, if the sub-ontologies extracted with
Q1 and Q3 are the same, we refer to Q1 and Q3 as consistent.

Note that the Energon algebra does not have a distributive law
for intersection () over join (). For example, Lighting > (Room
Zone) should be different from Lighting > Room x Lighting »d
Zone, as the result of the former algebra can be empty (zones and
rooms have no intersection set) and the latter algebra can be non-
empty (some lights are public equipment of zones and rooms).

Theorem 2 states that in the case of two Energon queries, as long
as they follow the Energon algebra equivalence laws (without the
distributive law for intersections over joins), they are consistent.

THEOREM 2. (Consistency) Given two individual Energon queries,
Q1 and Qz, if the algebra of Q1 can be equivalent to Q2 ’s with Energon
algebra equivalence laws, then Q1 and Q2 are consistent.

We defer the formal proof of these theorems to Appendix A.

4.4 Energon Ontology Index

Energon stores the RDF triples constituting a building ontology
graph in an ontology storage structure. This heavily influences the

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

Proposition 1: Commutative law

05,085 = 5, 085,V0 e {+,*,l><1}
Proposition 2: Associative law

o (51@ Sz) 0S53=5 0 (52 (€] S3),V® (S {+, *, l><1}
Proposition 3: Distributive law
®(S14+52)0S3=50853+520853,V0 € {*}

Table 3: Energon Algebra Equivalence Laws.

L Room
- nghtm'g System - Subject | Predicate Object
S}'b]ef:t Predlcate‘ Object | ~%Room_1 |isLocationOf |Blind_1
Lighting_1 |hasLocation |Room_1 7 Room_2 |isLocationOf |Blind_2
Lighting_1 |hasPoint Luminancell = =

Blind System
Subject |Predicate | Object
Blind_1 |hasPoint |Slat_Setpointl
Blind_2 |hasPoint |Slat_Setpoint2

Lighting_1 |hasPart Lamp_1
Lighting_2 |hasLocation |[Room_1
Lighting_2 |hasPoint Luminance21

Lighting System Join Blind System Join Results
Object . " bsy 1| Sensors
(Subject) Predicate Object Lighting_1 |Luminancell
Lighting 1 |hasLocation |[Room_1 |isLocationOf |Blind_1| |Lighting_2|Luminance21
Lighting_2 |hasLocation|Room_1 |isLocationOf |Blind_1| |Blind_1 |Slat_Setpointl

Figure 8: Join Execution in Energon

Subject Predicate

execution of an Energon query, especially the ontology extraction
process. A common ontology storage structure is to store the entire
ontology as RDF triples (see Figure 9 (a)). This can incur significant
execution overhead for processing Energon queries. Specifically,
the subsystems of EnergonQL have a hierarchical structure, i.e.
Lamp and Ballast are children of Lighting; yet a storage in RDF
triples does nothing to maintain such a hierarchical structure. As
such, extracting an entity from each individual segment (§4.3.1) first
requires an initial node to be located and then the entire ontology
to be traversed, an O(n) operation conducted, and the entities of
a subsystem extracted. This process needs to be repeated for each
entity, leading to a time complexity of O(n?). Even worse, once
there is a Join operator, the traversal to specify the relationship
between two ontology segments is needed, leading to another O(n)
and the overall complexity becomes O(n?).

We present the Energon Ontology Index structure to maintain
the hierarchical structure of a building ontology into an adjacency
list (see Figure 9 (b)). This allows for an immediate positioning of the
substructure of an entity. We maintain a list for each subsystem as
building analytics are based on subsystems. This Energon Ontology
Index structure basically sacrifices a memory space of O(n) to sub-
stitute a time complexity of O(n?). We present the implementation
details as follows.

Subsystem Segment Index. As Figure 9 (b) shows, a fully elabo-
rated two-layer index is represented to store the subsystem struc-
ture for a certain building. In the first layer, the keys are the unique
identifications of a subsystem index and values are lists of belong-
ing equipment segments index. In the second layer there are three
lists, for each type of equipment: sensor list, component list, and
segment list. The sensor list is used to associate the data points of
the equipment. The component list is used to associate the com-
ponents of the equipment. The segment list stores the equipment
connected with each segment.

There are two benefits to this structure. Firstly, when a single
subsystem is extracted (e.g. Lighting in Figure 9 (b)), its own sensors
(Luminance_11, Setpoint_11 and others in Ballast_1 and Lamp_1)

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

" " " |Subsystem Index Segment Index Sensor List
Subject Predicate Object I - h
Lighting ——> Lighting_1 —>Lumi 11
Lighting_1 |hasLocation |Room_1 | ighting ighting_ uminance_.
— - - Blind Lighting_2 Setpoint_11
Lighting_1 |hasPoint Setpoint_11| | Bal lighting 3
allast ightin
Lighting_1 |hasPart Ballast_11 | g g Component List
L
Lighting_1 |hasPart Lamp_1 I % Segment Index Ballast_1
oom v
Room_1 |isLocationOf (Blind_1 : — Blind_1 Lamp_1
| /= Blind 2 Segment List
.................. in
| = Blind_1
Room_1

(@) (b)
Figure 9: (a) Ontology store in RDF triples; (b) Energon On-
tology Index for optimized performance

can be easily found by recursively indexing the component list and
the sensor list instead of conducting a full search of the ontology.
For each iteration, the sensors in the sensor list are added and
the components in the component list figure out the next object.
Secondly, the segment list significantly accelerates the Join process
(especially in a dense ontology graph) by recording both a directly
and indirectly connected subsystem. When Energon sees a query
pattern like A » B, e.g. Blind » Lighting, it checks the segment
lists from each equipment index of the subsystem Blind, to extract
the equipment of the subsystem Lighting. Thus, there is a saving of
the traversal time among subsystems.

Functionality Segment Index. The functionality segment has a
simpler index structure compared with the subsystem segment
index. It is a key-value structure, where the index keys are the
all identifications of functionality segments in the ontology graph
(e.g. Luminance and Setpoint). Each value contains a sensor list
associated with the functionality key.

Both segment index structures can contribute to the ontology
extraction process in two ways. First, in the extraction of ontology
segments, the segments can be easily retrieved instead of having
an iterative traversal with an integral RDF triples, as the sensor
list records the data points within the segments. Secondly, in the
algebra-assisted ontology composition, the operators mentioned
in §4.3.2 can be well supported for constructing an objective sub-
ontology. The sensor list and component list contribute to the Union,
Intersect and Difference operation between segments. The segment
list in subsystem segment index contributes to the Join operation
between subsystem segments.

5 QUALITATIVE EVALUATION

We demonstrate how Energon simplifies analytics development
using four different types of analytics.

5.1 Building Integrated Control (BIC)

Given that indoor comfort is affected by more than one subsys-
tems [13], BIC is an MPC method that jointly controls multiple
subsystems to manage the indoor environment in a building.

A typical analytics is to adjust indoor light levels for visual com-
fort through the integrated control of the Lighting System and Blind
System. During the day, in addition to electric lighting, daylight pro-
vides indoor lighting. The incident daylight intensity is managed
by adjusting the blind slat angle. In this way, such an integrated
control allows the interior illuminance to be maintained at a proper
level (e.g. ~500 lux), meanwhile saving energy for electric lighting

1
2

50
51
52

He et al.

1. SPARQL query for ontology extraction
bic_query = '"'
SELECT ?1lpsp ?1lum ?bsp ?blum ?ans ?srs WHERE {
?room rdf:type/rdfs:subClassof* brick:Room
?lighting rdf:type/rdfs:subClassOf* brick:Lighting_System
?blind rdf:type/rdfs:subClassOf* brick:Shading_System .

?room brick:isLocationOf ?lighting
?room brick:isLocationOf ?blind

?lamp rdf:type/rdfs:subClassOf* brick:Luminance .
?1psp rdf:type/rdfs:subClassOf* brick:Setpoint .

?11lum rdf:type/rdfs:subClassOf* brick:Luminance_Sensor
?light brick:hasPart ?lamp .

?lamp brick:hasPoint ?1lpsp .

?lamp brick:hasPoint ?lum .

?bsp rdf:type/rdfs:subClassOf* brick:Setpoint .

?blum rdf:type/rdfs:subClassOfx brick:Luminance_Sensor .
?blind brick:hasPoint ?bsp .

?blind brick:hasPoint ?blum .

?wea rdf:type/rdfs:subClassOf* brick:Weather

?ans rdf:type/rdfs:subClassOf* brick:Angle_Sensor .

?srs rdf:type/rdfs:subClassOf* brick:Solar_Radiance_Sensor .
?wea brick:hasPoint ?ans .

?wea brick:hasPoint ?srs .

}

2. data extraction and encapsulation
request = pymortar.FetchRequest(
Define building 'building_A' as data source
sites=['building_A"'],
views=[
pymortar.View(
name='data_points',
query=bic_query,
),
1,
Data format is omitted here, e.g. time series interval
and aggregation method

Define the time window

time=pymortar.TimeParams(
start='2019-08-01T00:00:00Z",
end='2019-12-30T00:00:00Z "',

result = fetch(request)
data = result['data'][data_list]

Figure 10: Current data acquisition process (e.g. in Mor-
tar [16]) for developing analytics (e.g. BIC) requires detailed
knowledge about a building.

as much as possible. As an example of such integrated control, Shen
et al [30] utilized the setpoint of the Lighting System (e.g. intensity
level of lamps), the Blind System (e.g. blind slat angle) as well as
environmental data (e.g. solar incident angle and solar radiation
rate) to build an ML model to predict the indoor illuminance.

Figure 10 shows how this analytics would be implemented using
existing platforms such as Mortar (see in appendix). The analytics
program has two parts. The first part (line 2 to line 29) is a SPARQL
query to retrieve the data from lighting, blind, and weather systems.
The second part (line 31 to line 52) executes the query and gets the
data for further analytics development. Clearly, this implementa-
tion requires the developers to have an in-depth knowledge of the
structure and relationships of building systems.

Energon: A Data Acquisition System
for Portable Building Analytics

from Energon.EnergonQL import *
from ontology.ontology_bic import global_ontology

Load the complete building ontology for BIC
global_ontology()

1. Energon Query for ontology and data extraction
bic_query = "'’
SELECT Light(A) JOIN Blind(A) * (Luminance(A) + Setpoint(A)) +
Weather (A) * (Solar_Angle(A) + Solar_Radiance_Rate(A))
FROM Building A
WHERE A.BuildingID = 'LightZone' AND A.Source = 'Local'
FILTER A.TIMESTAMP > '20190801' AND A.TIMESTAMP < '20191231'
2. execute the query to retrieve the data
data = fetch(bic_query)

Figure 11: Retrieving Data for BIC in Energon

By contrast, Figure 11 shows the same analytics developed in
Energon, still with two parts. The first part (line 8 to line 14) defines
a BIC query in the EnergonQL. The second part (line 16) executes
the query and retrieves the data. We see that, in Energon, the
developer does not need to have auxiliary knowledge about the
building systems. Specifically, the spatial auxiliary knowledge is
hidden by the subsystem and functionality partitions (e.g., lighting
and blinds); the temporal auxiliary knowledge is addressed by filter
clause (e.g., timestamp conditions); and the contextual auxiliary
knowledge is hidden by the Join operator (e.g. Lighting > Blind).
We also see that the Energon program is portable across buildings
and easier to extend. For example, if a lighting system has a ballast
(e.g., a ballast is installed with sensors to collect its setpoint data),
there is no change in the Energon program.

Energon provides the level of abstraction with which developers
can focus on analytics-specific design and implementation, thus
simplifying the development of analytics.

5.2 Energy Consumption Prediction (ECP)

ECP often takes an MPC-based approach to save energy for a build-
ing system by predicting the energy consumption of the system
with a group of available operations. In general, ECP establishes
a (usually nonlinear) model with the control strategies as inputs
and the energy consumption according to the control strategies
as outputs. An optimization algorithm then searches the control
strategy space for the control strategy that would result in the least
amount of energy consumed.

We implement an ECP based MPC approach to VAV control in a
building while maintaining thermal comfort. For this ECP analytics,
we use environmental data (e.g. weather and zone condition) and
data on the historical operations of AHU and VAV systems (e.g., set-
point) [2, 22]. In Figure 13 (see in Appendix B), we show an example
of an Energon query that extracts data for the ECP analytics.

5.3 Fault Detection and Diagnosis for AHU
(FDD-AHU)

Traditional FDD methods follow rule-based models. Recently, data-
driven ML model-based approaches have been put forward [25, 29].
As faults often occur in parallel, multi-objective ML models are used.
Specifically, a multi-layer diagnostic model has been developed to
detect multiple types of faults (e.g., stuck dampers and stuck cooling
coil valves) in an AHU system [25].

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

Devel tTi
Analytics | Method Lines of Code evelopment fime
(minute)

BIC Mortar 42 86.2

Energon 11 (-73.8%) 46.2 (-46.4%)
ECP Mortar 54 90.2

Energon 13 (-75.9%) 35.2 (-60.9%)

Mortar 73 66.6
FDD-AHU

Energon 11 (-84.9%) 30.4 (-54.4%)
cp Mortar 52 60.4

Energon 10 (-80.8%) 25.0 (-58.6%)

Table 4: Development Effort of Mortar and Energon

The common data used for these models are air condition data
(e.g. temperature, humidity, pressure, and flow rate) and operation
data (e.g. control signals and setpoints). To retrieve data for FDD-
AHU, an example of an Energon query is shown in Figure 14 (see
in Appendix B).

5.4 Chiller Profiling (CP)

Chillers are core components of an HVAC system. Chiller profiling
involves estimating the performance of a chiller, which can be used
for maintenance, operation decisions, and so on. The performance of
a chiller is called the Coefficient of Performance (COP). Intuitively,
COP is an indication of the amount of cooling load a chiller can
output given a unit of electricity.

To build a COP prediction model, three kinds of data are needed:
(1) temporal features such as the age of the chillers (2) meteorologi-
cal features such as outdoor air temperature, and (3) mechanical
features such as the inlet/outlet node water temperature, mass flow
rate, and the power consumption of the chiller as well as its associ-
ated parts. We also show an Energon query to extract these data in
Figure 15 (see in Appendix B).

6 QUANTITATIVE EVALUATION
6.1 Analytics Development Effort

We compare the development effort (in terms of program length and
program development time) required when using Energon to that
for a state-of-the-art system, Mortar. Our focus is to demonstrate
how much development effort can be reduced.

We recruited five developers in this evaluation study to imple-
ment the four analytics mentioned in §5, each associated with a
different building ontology. All five developers are data scientists
with limited knowledge of RDF semantics and building analytics.
We intend to evaluate the development efficiency of using these
two approaches; thus, we do not count the time spent learning
background knowledge such as RDF, SPARQL, and the task-specific
requirements of these four analytics into the development time.
The developers only recorded the time spent on implementing the
analytics according to the order in which they appear in Table 4.

The development workflow consists of two main steps: ontology
extraction and data extraction. Table 4 shows the breakdown of the
lines of code for Mortar and Energon. We exclude auxiliary snippets
such as comments and library imports. We see a drastic reduction
in the total number of lines of code for all four analytics, by 73.8%,
75.9%, 84.9%, and 80.8%, respectively. This is attributed to the effec-
tive abstraction of ontology extraction and data extraction, which
can be done with standard select-from-where query expressions in

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

He et al.

—_
. 2
AIO.U N\ Ontology Loading Ontology Extraction EEE Subsystem Functionality B Operators \E mE BC W FCP FDD W CP
&, I Data Extraction I Model Training £ 150
5 80 122 =
= (SN
s — 5 120
g 60 [124 st
g s 90
40 =
‘;)E, 26 2 60
F 20 230
134 198 '—g
0
PepC et R F o 30 40 50 © Building 1 Building 2
(a) (b) (©)

Figure 12: (a) Execution Time with and without the Indexing Structure Optimization; (b) Time Consumption of Subsystem,
Functionality, and Operator in Ontology Extraction Stage; (c) Execution Time of Ontology Extraction across Buildings

Energon, whereas with Mortar building-specific SPARQL queries
need to be written with an understanding of the specifics of the
building, a key difficulty during the development of the analytics.

In Table 4 shows a record of development times. We see that
with EnergonQL developers spent less time on implementing the
analytics. The time spent was reduced by 46.4%, 60.9%, 54.4%, and
58.6%, respectively, compared to using Mortar. We see that as they
developed one analytics after another, the developers became more
proficient and spent less time on each analytics over time. The
speedup in this process was more significant when Energon was
used. Specifically, with Energon, the development time of the last
building analytics dropped from 46.2 minutes to 25.0 minutes (a
45.9% reduction), compared with the first building analytics. When
using Mortar, the development time was reduced from 86.2 minutes
to 60.4 minutes (a 29.0% reduction). This is partially because for each
analytics in EnergonQL, the developer does not need to understand
the details of every new building ontology.

These results suggest that Energon can effectively shorten de-
velopment effort via a standardized workflow.

6.2 System Execution Time

We now study the execution time of Energon. Figure 12 (a) shows
the results on the four analytics. We report on the execution time
of the four modules — ontology loading, ontology extraction, data
extraction, and model selection and training. We see that model
training dominates the execution time of analytics. This is expected
since ML analytics have significant model training time. We see
that the ontology extraction module also requires a long execution
time, due to the traversal of the building ontology, which takes
30.2%, 27.3%, 43.2% and 36.8% in the four analytics respectively.

We then evaluate our Indexing Storage (IS) optimization ap-
proach (§4.4), where we offline pre-extract and cache ontology
segments for an online lookup. Figure 12 (a) shows that our IS
scheme substantially reduces the ontology extraction time, and that
the average execution time among the four analytics is reduced by
more than 1000x times for all four mentioned building analytics.
This is attributed to the effective indexing mechanism, which avoids
time-consuming traversals with RDF triples in this stage.

In addition, we study two factors that influence the time con-
sumption of ontology extraction — the first one is query constituents
and the second one is building ontology size. As shown in Figure
12 (b), the execution time of the ontology extraction of these four
analytics is respectively 51.7, 47.4, 28.7, and 31.0 ps (from bottom
to top). The execution mainly consists of three parts: subsystem

extraction, functionality extraction, and operator performing. We
find that no part dominates the whole process. The Energon queries
for BIC and ECP take longer than those for FDD and CP for two
reasons: 1) more subsystems are involved and need to be extracted;
2) The JOIN operator also increases the complexity of ontology
extraction. Thus, it takes longer for the queries for BIC and ECP to
execute, especially the part of operator performing.

We note that, even for the same analytics, ontology extraction
time varies across buildings because the scale of their ontology
differs. Figure 12 (c) shows the ontology extraction time in two sim-
ulated buildings, where the ontology size of Building 1 is five times
over that of Building 2. However, we see that the time consumption
in Building 1 only increased by 50.0%, 62.1%, 52.3% and 40.9%, for
the four analytics, respectively. Our proposed Subsystem Segment
Index stores both directly and indirectly connected equipment, and
therefore even when the building scale increases dramatically, the
traversal time only grows at a moderate pace.

7 CONCLUSION

In recent years, ML model-based building analytics have emerged
and proven to be effective for the operation, control, and main-
tenance of buildings. Such analytics range from the profiling of
building systems and energy conservation, to fault detection and
diagnosis. While promising, each of these applications still requires
non-trivial and building-specific development efforts to deploy in
practice. The key difficulty is that developers need both analytics-
specific knowledge to develop applications and building-specific
knowledge to extract building data.

In this paper, we presented Energon, a data acquisition system
that can support the development of building analytics with an
abstraction that decouples the process of analytics development
from the nuances details of the building system. With Energon,
developers can focus on application development, and applications
become portable across buildings. We evaluated Energon both qual-
itatively and quantitatively, and showed that Energon simplifies
development in terms of lines of code and development effort.

8 ACKNOWLEDGEMENTS

Dan Wang’s work is supported by GRF 15210119, 15209220, ITF-
ITSP ITS/070/19FP, CRF C5026-18G, C5018-20G, PolyU 1-ZVPZ and
a Huawei Collaborative Project. Dezhi Hong’s work is supported
by National Science Foundation 1940291, 1947050, and 2040727.

Energon: A Data Acquisition System
for Portable Building Analytics

REFERENCES

[1] A. Afram and F. Janabi-Sharifi. 2014. Theory and applications of HVAC control
systems—A review of model predictive control (MPC). Building and Environment
72 (2014), 343-355.

A. Afram, F. Janabi-Sharifi, A. S. Fung, and K. Raahemifar. 2017. Artificial neural

network (ANN) based model predictive control (MPC) and optimization of HVAC

systems: A state of the art review and case study of a residential HVAC system.

Energy and Buildings 141 (2017), 96-113.

[3] E. Alschuler, J. Antonoff, R. Brown, and M. Cheifetz. 2014. Planting SEEDs:
Implementation of a Common Platform for Building Performance Disclosure
Program Data Management. In Proc. ACEEE Summer Study.

[4] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen, J.
Koh, J. Ploennigs, Y. Agarwal, M. Berges, D. Culler, R. Gupta, M. Kjeergaard, M.
Srivastava, and K. Whitehouse. 2016. Brick: Towards a Unified Metadata Schema
For Buildings. In Proc. ACM BuildSys’16. 41-50.

[5] L.Basu, K.and Hawarah, N. Arghira, H. Joumaa, and S. Ploix. 2013. A prediction
system for home appliance usage. Energy and Buildings 67 (2013), 668—-679.

[6] A.Beghi, R. Brignoli, L. Cecchinato, G. Menegazzo, M. Rampazzo, and F. Simmini.
2016. Data-driven fault detection and diagnosis for HVAC water chillers. Control
Engineering Practice 53 (2016), 79-91.

[7] S.Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, J. Siméon, and M.
Stefanescu. 2002. XQuery 1.0: An XML query language. (2002).

[8] R.G.G. Cattell, R. G. Cattell, D. K. Barry, D. K. Barry, M. Berler, J. Eastman, D.
Jordan, C. Russell, O. Schadow, T. Stanienda, et al. 2000. The object data standard:
ODMG 3.0.

[9] B.Chen, Z. Cai, and M. Bergés. 2019. Gnu-rl: A precocial reinforcement learning
solution for building hvac control using a differentiable mpc policy. In Proc. ACM
BuildSys’19. 316-325.

[10] Y. Chen, L. K Norford, H. W Samuelson, and A. Malkawi. 2018. Optimal control
of HVAC and window systems for natural ventilation through reinforcement
learning. Energy and Buildings 169 (2018), 195-205.

[11] CopperTree. 2020. CopperTree Analytics. https://www.coppertreeanalytics.com/

[12] D. Dehestani, F. Eftekhari, Y. Guo, S. H. Ling, S. Su, and H. Nguyen. 2011. Online
Support Vector Machine Applicationfor Model Based Fault Detection and Isola-
tionof HVAC System. International Journal of Machine Learning and Computing
1(01 2011), 66-72.

[13] X. Ding, W. Du, and A. Cerpa. 2019. OCTOPUS: Deep reinforcement learning
for holistic smart building control. In Proceedings of the 6th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation.
326-335.

[14] Entronix. 2020. Entronix EMP. https://entronix.io/

[15] L. Fegaras, C. Srinivasan, A. Rajendran, and D. Maier. 2000. lambda-DB: An

ODMG-Based Object-Oriented DBMS. SIGMOD Rec. 29, 2 (2000), 583.

G. Fierro, M. Pritoni, M. Abdelbaky, P. Raftery, T. Peffer, G. Thomson, and D. Culler.

2018. Mortar: An Open Testbed for Portable Building Analytics. In Proceedings

of the 5th Conference on Systems for Built Environments (BuildSys '18). 172-181.

[17] M.R. Garey and D. S. Johnson. 1990. Computers and Intractability; A Guide to the
Theory of NP-Completeness. USA.

[18] S.Harris, A. Seaborne, and E. Prud’hommeaux. 2013. SPARQL 1.1 query language.
W3C recommendation 21, 10 (2013), 778.

[19] F. He, C. Xu, Y. Xu, D. Hong, and D. Wang. 2020. EnergonQL: A Building
Independent Acquisitional Query Language for Portable Building Analytics. In
Proc. ACM BuildSys °20.

[20] H.Huang, L. Chen, and E. Hu. 2015. A new model predictive control scheme for
energy and cost savings in commercial buildings: An airport terminal building
case study. Building and Environment 89 (2015), 203-216.

[21] J. Kelly and W. Knottenbelt. 2015. Neural nilm: Deep neural networks applied to
energy disaggregation. In Proceedings of the 2nd ACM international conference on
embedded systems for energy-efficient built environments. 55-64.

[22] A.Kusiak, M. Li, and F. Tang. 2010. Modeling and optimization of HVAC energy
consumption. Applied Energy 87, 10 (2010), 3092-3102.

[23] A.Kusiak, G. Xu, and Z. Zhang. 2014. Minimization of energy consumption in
HVAC systems with data-driven models and an interior-point method. Energy
Conversion and Management 85 (2014), 146-153.

[24] S.Liand]J. Wen. 2014. Application of pattern matching method for detecting
faults in air handling unit system. Automation in Construction 43 (2014), 49 - 58.

[25] J. Liang and R. Du. 2007. Model-based fault detection and diagnosis of HVAC sys-
tems using support vector machine method. International Journal of Refrigeration
30, 6 (2007), 1104-1114.

[26] N.Long, J. DeGraw, M. Borkum, A. Swindler, K. Field-Macumber, E. Ellis, et al.
2018. BuildingSync®. Technical Report.

[27] Lucid. 2020. BuildingOS. https://lucidconnects.com/

[28] J. Melton and A. R. Simon. 1993. Understanding the New SQL: A Complete Guide.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[29] M. Najafi, D. M. Auslander, P. L. Bartlett, P. Haves, and M. D. Sohn. 2012. Appli-
cation of machine learning in the fault diagnostics of air handling units. Applied
Energy 96 (2012), 347-358.

[2

[16

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

[30] E.Shen, J. Hu, and M. Patel. 2014. Energy and visual comfort analysis of lighting
and daylight control strategies. Building and Environment 78 (2014), 155-170.

[31] SkyFoundry. 2020. SkySpark. https://skyfoundry.com/

[32] R.R.Stoll. 1979. Set Theory and Logic. Dover Publications, Upper Saddle River,
NJ, USA.

[33] B.Sun, P.B.Luh, Q. Jia, Z. Jiang, F. Wang, and C. Song. 2012. Building energy
management: Integrated control of active and passive heating, cooling, lighting,
shading, and ventilation systems. IEEE Transactions on automation science and
engineering 10, 3 (2012), 588-602.

[34] A.Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff,

and R. Murthy. 2009. Hive: a warehousing solution over a map-reduce framework.

Proceedings of the VLDB Endowment 2, 2 (2009), 1626-1629.

S. Wang and J. Qin. 2005. Sensor fault detection and validation of VAV terminals

in air conditioning systems. Energy Conversion and Management 46, 15-16 (2005),

2482-2500.

[36] T. Wei, Y. Wang, and Q. Zhu. 2017. Deep reinforcement learning for building
HVAC control. In Proc. ACM DAC’17. 1-6.

[37] W. Wei, O. Ramalho, L. Malingre, S. Sivanantham, J. C. Little, and C. Mandin.
2019. Machine learning and statistical models for predicting indoor air quality.
Indoor Air 29, 5 (2019), 704-726.

[38] S. West, Y. Guo, R. Wang, and J. Wall. 2011. Automated Fault Detection And
Diagnosis Of HVAC Subsystems Using Statistical Machine Learning. In Proc.
IBPSA’11. 2659-2665.

[39] F.Xiao,Y.Zhao, J. Wen, and S. Wang. 2014. Bayesian network based FDD strategy
for variable air volume terminals. Automation in Construction 41 (2014), 106—118.

[40] K. Yan, Z. Ji, and W. Shen. 2017. Online fault detection methods for chillers
combining extended kalman filter and recursive one-class SVM. Neurocomputing
228 (2017), 205-212.

[41] K. Yan, W. Shen, T. Mulumba, and A. Afshari. 2014. ARX model based fault
detection and diagnosis for chillers using support vector machines. Energy and
Buildings 81 (2014), 287-295.

[42] Y. Yu, D. Woradechjumroen, and D. Yu. 2014. A review of fault detection and

diagnosis methodologies on air-handling units. Energy and Buildings 82 (2014),

550-562.

C. Zhang, S. R Kuppannagari, R. Kannan, and V. K Prasanna. 2019. Building

HVAC scheduling using reinforcement learning via neural network based model

approximation. In Proc. ACM BuildSys’19. 287-296.

Z. Zheng, Q. Chen, C. Fan, N. Guan, A. Vishwanath, D. Wang, and F. Liu. 2018.

Data Driven Chiller Sequencing for Reducing HVAC Electricity Consumption in

Commercial Buildings. In Proc. ACM e-Energy ’18. 236-248.

[35

[43

[44

A APPENDIX

THEOREM 1. Given a building ontology and the requirement of
a building analytics represented as a logic partition of this building
ontology, there exists a set of subsystem ontology segments, function-
ality ontology segments, and algebra operations on these ontology
segments, which can be used to construct this logic partition.

Proor. For an individual building, let the complete ontology
be the universe B. We know that the subsystem and functionality
abstraction are two different partitions of B, where subsystem par-
tition S = {SP1, SPs, ..., SPp, } such that SP; ¢ B and SP; U SP,... U
SP,, = B, functionality partition F = {FPy, FP,, ..., FP,} such that
FP; c Band FP; UFP,...UFP, = B. Because F is partitioned based
on sensor functionalities, F is an exact set cover of all the sensor
data in B [17]. Since no two sensors of the same type are installed in
one piece of equipment, we can always find a subsystem partition S
such that y[y € SP; and x € SP; and x # y]. As a result, for every
sensor entity x € B, we can find exactly one FP, where x € FP, and
we can find a collection of subsystems CSP = {SP;...SPy} such that
x € SPy,SP, € CSP; therefore, x can be extracted as: SPp N FP,.
For any combination of building data, C = {c1, ¢z, ...c;}, we know
that ¢; € C can be extracted; therefore, C can also be extracted by
the unions of all sensors in C O

THEOREM 2. Given two individual Energon queries, Q1 and Q2,
if the algebra of Q1 can be equivalent to Q2’s according to Energon
algebra equivalence laws, then Q1 and Q2 are consistent.

https://www.coppertreeanalytics.com/
https://entronix.io/
https://lucidconnects.com/
https://skyfoundry.com/

1

3
4

1

4

e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy

Proor. The Energon algebra equivalence laws can be easily
proved by set theory, with the exception of the distributive law for
Union(+) over Join(). Here we would like to prove the following
equation:

(A+B) W C=AxC+BxC

Let A, B, and C be three individual sub-ontologies of a certain
building ontology. First, we expand the both sides of the equation
as follows:

(A+B)yxC=(1) (A+B)+«[(A+B) < C]+(2) C+ [(A+B) = (]
AxC=0B)A*x(AxC)+(4) C*x(AxCO)
B C=(5)B*x(BxC) +(6)Cx(BxC)

Such an expansion separates the result of the Join query. We then
try to find if (1) = (3) + (5) and (2) = (4) + (6). Easy to have,
(3) A% (A C) = Ax* [(A+ B) » C]. Recap that the Join()
Operator is for mining the relationships between subsystems; hence,
both of them represent the part of A that is related to C. Similarly,
there exists (5) B (B > C) = B = [(A+ B) x C]. According to the
Distributive Law of Intersection (*), we have:

(3)+(5)=A*[(A+B) < C]+B=[(A+B) ~ (]
=(A+B)*[(A+B) xC]
=)

Also, (4) C+(A > C) represents the part of C related to A, and (6) Cx
(B »a C) represents the part of C related to B. Combining these two
items, we have (4) C * (A 1 C) + (6) C = (B » C) which represents
the part of C that is related to either A or B. Such a representation
is the same as the representation of (2) C * [(A + B) > C]. In other
words, (4) Cx (AN C)+(6) Cx (B C)=(2)Cx*[(A+B) xC].
Putting these items together, we have the equation we wanted to
prove at the beginning.

O

B APPENDIX

Here we give the example of Energon query for the three building
analytics mentioned in §5: ECP, FDD-AHU, and CP in Figure 13, 14,
and 15 respectively.

SELECT Weather(B) * (Temperature(B) + Solar_Radiance_Rate(B)) +
Zone(B) * Temperature(B) + AHU(B) JOIN VAV(B) * (Temperature(B)
+ Flow_Rate(B) + Setpoint(B))

FROM Building B

WHERE B.BuildingID = '5ZoneAutoDXVAV' AND B.Source = 'Local’

FILTER B.OCCUPANCY_FLAG = 1

Figure 13: Energon Query for ECP

SELECT AHU(C) * (Temperature(C) + Humidity(C) + Pressure(C) +
Flow_Rate(C) + Signal(C) + Setpoint(C))

FROM Building C

WHERE C.BuildingID = 'MZVAV' AND C.Source = 'Local

FILTER C.TIME_STAMP > '20070828' AND C.TIME_STAMP < '20090515'

Figure 14: Energon Query for FDD-AHU

RTINS

He et al.

SELECT (Chiller(D) * (Temperature(D) + Flow_Rate(D) + Power(D)) +
Weather(D) * Temperature(D)

FROM Building D

WHERE D.BuildingID = 'CP1' AND D.Source = 'Local'

FILTER D.TIMESTAMP > '20190630' AND D.TIMESTAMP < '20190831'

Figure 15: Energon Query for CP

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation and Approach
	3.1 A Motivating Example
	3.2 Design Approach and Goals

	4 The Energon System Design
	4.1 Design Overview
	4.2 Energon Query Language and Processor
	4.3 Building Independent Ontology Extraction
	4.4 Energon Ontology Index

	5 Qualitative Evaluation
	5.1 Building Integrated Control (BIC)
	5.2 Energy Consumption Prediction (ECP)
	5.3 Fault Detection and Diagnosis for AHU (FDD-AHU)
	5.4 Chiller Profiling (CP)

	6 Quantitative Evaluation
	6.1 Analytics Development Effort
	6.2 System Execution Time

	7 Conclusion
	8 Acknowledgements
	References
	A Appendix
	B Appendix

