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ABSTRACT
Emerging building analytics rely on data-driven machine learning

algorithms. However, writing these analytics is still challenging—

developers need to know not only what data are required by the

analytics but also how to reach the data in each individual building,

despite the existing solutions to standardizing data and resource

management in buildings. To bridge the gap between analytics

development and the specific details of reaching actual data in

each building, we present Energon, an open-source system that

enables portable building analytics. The core of Energon is a new

data organization for building as well as tools that can effectively

manage building data and support building analytics development.

More specifically, we propose a new "logic partition" of data re-

sources in buildings, and this abstraction universally applies to all

buildings. We develop a declarative query language accordingly to

find data resources in this new logic view with high-level queries,

thus substantially reducing development efforts. We also develop a

query engine with automatic data extraction by traversing building

ontology that widely exists in buildings. In this way, Energon en-

ables mapping of analytics requirements to building resources in a

building-agnostic manner. Using four types of real-world building

analytics, we demonstrate the use of Energon and its effectiveness

in reducing development efforts.
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• Information systems → Data access methods.
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1 INTRODUCTION
Building analytics—that is, using data to develop machine learning

(ML)-based methods for operation and control of building systems—

have proven to be effective in reducing energy footprints and oper-

ational costs, and improving the maintenance efficiency of build-

ings [23, 25, 30, 38, 39, 41, 44].While promising, developing building

analytics requires not only expertise in machine learning and build-

ing science but also deep knowledge about the configuration of

each individual building, as each building is unique. For example,

developing a smart lighting control system in a particular building

requires the knowledge about what algorithm fits, what control

points are available in the space (switch, blinds, etc), and how to

access these points in the specific configuration of each individ-

ual building. Currently, developing and deploying analytics still

requires tremendous manual effort on a per building basis because

of the varying system details in each building. This greatly impedes

the adoption of building analytics.

Recently, efforts have been dedicated to standardizing the orga-

nization of resources and data in buildings and to facilitating access

to building data. Schemas such as Brick [4] and BuildingSync [26]

provide a standardized naming convention and hierarchy to name,

organize, and manage resources in buildings. Solutions such as

SEED [3] and Mortar [16] provide a uniform way to organize and

query data. These solutions significantly simplify access to building

data. Yet, building analytics apply to a building subsystem (e.g. a

lighting system, a chiller system), and there is still a gap between

the ability of practitioners to access data in an organized way at

such level and to conveniently realize building analytics. Develop-

ers need to spend a considerable amount of time mapping their

algorithm to the actual data resources in a specific building before

they can leverage existing tools such as Mortar. Ideally, developers

would only need to write a few simple SQL-like queries to locate the

data and/or control points that they need and implement analytics,

regardless of the building particulars. We envision a system that

simplifies and standardizes the data acquisition process for building

analytics so that the analytics become portable across buildings.

In this paper, we present Energon, a system that allows for the

acquisition of data to develop analytics in a building-agnostic man-

ner. Energon builds upon a standardized organization of building

data resources (e.g. using the Brick Schema) and further provides

developers with the capability to locate and retrieve desired data via

declarative queries. In this way, a developer can develop and deploy

analytics without the need to know the underlying building details,

greatly simplifying and expediting the development process.

In designing Energon, the key challenge lies in how to efficiently

map analytics requirements to the actual data resources in a build-

ing. This mapping process is currently deeply coupled with building

https://doi.org/10.1145/3447555.3464850
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specifics, due to variations in buildings. For example, in one build-

ing the luminance of a lighting system is solely determined by the

setpoint of the lamp, while in another building it could be deter-

mined by the setpoints of both the lamp and the ballast. Thus, to

develop a data-driven smart lighting control system [13, 30], one

needs to have the light level readings of the lighting system, and

nuanced details about how to control the lighting system, which

makes the process building-dependent and unnecessarily onerous.

To overcome this challenge, Energon presents a new data orga-
nization method for building as well as tools that can effectively

manage building data and support building analytics development.

More specifically, we propose an abstraction that divides the data

resources in a building into two logic categories: subsystem (e.g.

lighting, chiller, pump) and functionality (e.g. illuminance, tem-

perature, power). Thus, the building data resources can be catego-

rized into these two classes upon which analytics can develop. We

then develop a declarative query language, with which developers

can compose high-level queries to find the desired subsystem of a

certain functionality. Our query language allows for common set

operations (such as union, intersect, and join) on building resources,

akin to relational algebra, which expedites analytics development

and ensures that queries are complete and consistent. To execute

these queries, we develop a query engine with a building-agnostic

ontology extraction procedure, which automatically extracts the ele-

ments in a building ontology and assigns them into the two abstract

categories. In this way, the query engine can automatically map the

input of analytics to the concrete resources in a building. Energon

can adapt to building specifics and hide building-dependent and
analytics irrelevant knowledge. Analytics developed upon Energon

are uniform across different buildings, hence portable.

We evaluate Energon and demonstrate its use in multiple types

of analytics in real buildings. In summary, the contributions of this

paper are as follows:

• We present a new abstraction of building resources so that de-

velopers do not need to have building-specific knowledge when

developing building analytics; thus, the development of appli-

cation can be simplified. The abstraction comprises two logic

categories of building resources, namely, subsystem and func-

tionality.

• We present the design and implementation
1
of Energon to materi-

alize the abstraction. We develop a declarative query language to

hide building-dependent and analytics irrelevant knowledge. We

develop a query engine to automatically extract data by travers-

ing a building ontology that widely exists in buildings. We further

develop an indexing structure to optimize query execution time.

• We develop four types of building analytics through Energon,

and qualitatively show that the development process becomes

simpler when using Energon.

• We quantitatively evaluate Energon with regards to program

length and development time. We evaluate our optimization

schemes designed for execution time in Energon.

2 RELATED WORK
Standardized Resource and Data Management for Building.
There have been various attempts to facilitate the management of

1
Our code is open-sourced and available: https://github.com/KGBUSH/Energon

and access to resources and data in buildings. Brick [4] and Build-

ingSync [26] are examples of unified schemas for organizing and

managing resources in buildings, which helps to locate resources

in a vendor-agnostic way. However, a schema can efficiently navi-

gate users to resources only if the user knows exactly where they

can locate the data in a building. The question of what resources

users need remains to be answered per analytics, for which rich

experience and often domain knowledge of individual buildings is

required. On another front, platforms such as SEED [3] and Mor-

tar [16] provide standard programming interfaces to query and

retrieve data points in a building, which greatly eases and expedites

data management in buildings. Yet, again, the users need to have

the knowledge about which sensing and/or control devices they

need the data points for, but such knowledge is sometimes beyond

the ability of an algorithm or analytics developer to provide.

Besides these research efforts, commercial platforms available

such as BuildingOS [27], CopperTree [11], Entronix EMP [14], and

Skyspark [31] are also available for smart building solutions. These

platforms are well integrated with Building Automation Systems

(BAS), along with tools for monitoring and visualizing building

data and generating reports. Analytics are often achieved by setting

up rules or implementing pre-programmed templates for alerts and

finding trends. However, the use of such customized solutions is

often limited to specific analytics (e.g. only for fault detection and

diagnostics), and hence can be difficult to extend.

Building Analytics. In recent years, building analytics have been

developed and have proven to be effective for use in various kinds of

building systems. Building Integrated Control (BIC) jointly controls

multiple systems in a building to manage the indoor environment.

For example, to ensure indoor visual comfort, Shen et al. developed

ML models to predict the indoor illuminance under different op-

erations of lighting and blind systems [30]. ML models have been

developed for Indoor Air Quality (IAQ) by using indoor air data (e.g.

CO2 and air flow rate) [37] . Energy Consumption Prediction (ECP)

models energy usage of one or multiple system(s) in a building to

manage and save energy. Neural Network models and Bayesian Net-

work and Decision Tree models were developed to monitor the load

of appliances and to identify appliances in use [21][5]. Multi-task

learning was proposed to predict the coefficient of performance

(COP) of the chillers, and improve chiller sequencing [44]. Model

Predictive Control (MPC) [1, 20] is a common solution to Heat-

ing, Ventilation and Air Conditioning (HVAC) control optimization.

Both model-based [9, 22, 43] and model-free [10, 36] algorithms

have been developed. Detecting faults can improve system perfor-

mance efficiency. Several ML-based methods for fault detection

have been developed, either through simulations [12] or by using

historical data [6, 24, 38].

To develop these analytics, developers not only need the skills

in machine learning and data analytics, but must also have to have

deep domain knowledge on how to reach the necessary data in in-

dividual buildings. In this paper, we aim to bridge the gap between

analytics and building data extraction by developing a data acquisi-

tion system that can simplify and standardize the data extraction

workflow, making building analytics portable across buildings.

Declarative Programming. Declarative programming is a non-

imperative programming paradigm that describes the goal rather

https://github.com/KGBUSH/Energon
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Figure 1: 1○ Spatial auxiliary knowledge; 2○ Temporal auxil-
iary knowledge; 3○ Contextual auxiliary knowledge.

than illustrates all the intermediate steps. In the database commu-

nity, typical examples of declarative languages are SQL for relational

databases [28], XQuery for XML documents [7], SPARQL for RDF

triples [18], HiveQL for NoSQL databases [34], and more. In the

building science community, building entities and relationships

are defined as RDF ontology in the Brick Schema, which supports

declarative SPARQL queries. As building ontology and the corre-

sponding sensor data are usually stored separately, to retrieve the

actual data, a two-step procedure is required: first, SPARQL queries

are composed per analytics to search a building ontology for desired
resources; then, in another step, the actual time-series data retrieval

for these resources is performed, as is done in Mortar [16]. Thus,

developers need to know the building ontologies which vary in

different buildings. By contrast, Energon introduces an abstraction

on top of the resources organized in Brick so that developers can

easily extract building data without knowing the underlying details.

To the best of our knowledge, Energon is the first system to provide

the capability to write declarative queries over the abstraction of

building data resources designed for analytics requirements.

3 MOTIVATION AND APPROACH
3.1 A Motivating Example
Building analytics involves the development of ML-based methods

to analyze or predict the status of building systems so as to reduce

wasteful or inefficient operations. An example is Building Integrated

Control [13, 33], in which trains ML models are trained using data

frommultiple building systems for joint control, e.g. joint control of

the lighting system and the blind system for indoor visual comfort.

Developing ML models for building analytics requires data. For

example, in BIC, the setpoints for controlling the luminance level

of the lighting systems and the slat angles of the blind systems, and

readings on the intensity of outdoor sunlight, are used to develop a

neural network to jointly consider these inputs to achieve indoor

visual comfort [13]. To extract these data in a building, existing data

acquisition systems, e.g. Mortar, need to deal with various types

of building-dependent auxiliary knowledge. In particular, we show

three types of auxiliary knowledge in Figure 1:

• Spatial (or structural) auxiliary knowledge: The structure of build-

ing subsystems often varies from building to building, e.g. in

Figure 1 the lighting system in building A (i.e. lighting_1) only

contains Lamp, the setpoint of which controls the luminance

Data Tracing Flow

Figure 2: Example of a SPARQL query for extracting set-
points for BIC analytics (blue arrows show the steps in-
volved in locating the desired data. Changes (marked in red)
to the program are needed for another building due to vari-
ation in context (e.g. room to zone) and the addition of new
components (e.g. Ballast setpoints).

level, while in building B the setpoints of both the Lamp and the

Ballast control the luminance levels.
2

• Temporal auxiliary knowledge: a building subsystem may have

a seasonal usage pattern, e.g. in Figure 1, lighting_2 is detached

from a room to save energy because of ample light in the summer.

• Contextual auxiliary knowledge: a building subsystem may be

used in different contexts, e.g. in Figure 1, lighting and blind

systems are used in the context of "rooms" in building A but in

"zones" in building B.

Such auxiliary knowledge, while necessary for pinpointing the

correct data sources, is irrelevant to the analytics development

and unnecessarily complicates the data acquisition process. For

example, to develop the BIC ML model, a developer only needs to

know the setpoints that control the luminance level of a room, yet

whether such setpoints are for the lamp or the ballast or both is

an unnecessary detail to the developer. This is also where existing

building data acquisition systems fall short: they are designed for

someone equipped with the knowledge to specify the exact point(s)

to access [4, 16], rather than to provide users with the capability

to make queries by high-level requirements such as functionality.
We need a data acquisition that hides such building-dependent

auxiliary knowledge.

Figure 2 shows an example of the extraction of the setpoints of

a lighting system using an existing data acquisition system, Mortar.

We see that 1) to find the setpoint, detailed knowledge about how

to reach the data is needed; and 2) such details can differ from one

building to another; thus the program needs to be revised according

to the building.

3.2 Design Approach and Goals
A building-independent data acquisition system needs to evade

the three types of building-dependent auxiliary knowledge when

retrieving data. We would need to have a proper abstraction of the

building data required by analytics and to build upon it, which is

2
An electrical ballast is a device to limit the amount of current in an electrical circuit,

and thus can control the luminance as well.
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akin to how an Android program is developed regardless of the un-

derlying specifications of the phone. To create such an abstraction,

we examine a number of major categories of building analytics, as

listed in Table 1. We observe that the data required by these analyt-

ics can be categorized according to the subsystem and functionality
that they relate to. More specifically, building analytics are built

upon building subsystems, e.g. lighting, chillers; the data associ-

ated with functionality are also required, e.g. temperature, power

consumption, humidity. To reach the data of different subsystems,

spatial, temporal, and contextual auxiliary knowledge is needed.

Thus, we abstract the data according to the subsystem and func-

tionality involved, and then develop corresponding data extraction

operations on these categories using declarative queries. Figure 3

shows an example of the extraction of data through referencing

queries to the abstracted categories—obtaining the required data

boils down to first locating the subsystem it involves and then

finding the particular functionality.

We develop standard query operations (Select-From-Where, Union,

Intersect, etc), which help to hide different types of auxiliary knowl-

edge. For example, in Figure 3, to retrieve the setpoints of Lighting

and Blind systems, the Join operation eliminates the contextual

auxiliary knowledge on whether these two systems are reached via

a room context (building A) or a zone context (building B).

To ensure the completeness and consistency of the query opera-

tions, we develop our query operations following relational algebra;

for example, the Intersection, Union, and Join operations follow the

convention of (+, ∗,Z). This algebra assists developers in writing

error-free queries.

We develop a query engine to execute our query language. The

core of the query engine is to leverage building ontology [4], which

widely exists in buildings [19]. Building ontology embeds the orga-

nization of the building data, and we design a traversal algorithm

to automatically reach the data. We further develop optimization

schemes to improve the execution performance of the query engine.

In summary, our new query language provides an abstraction

for the developer to easily specify the desired data for developing

building analytics, and our system helps with the task of reaching

the data. Overall, our system design follows the following goals:

Completeness. The system should provide a complete set of com-

ponents that may be used to acquire data to support the develop-

ment of building analytics. Components should be decoupled, so

that each component can be used as an independent module.

Usability. Building analytics often requires specific domain knowl-

edge and expertise in data analytics. Therefore, our system should

be easy for users of different backgrounds to use, from analytics

developers with ample knowledge about buildings to data scientists

who know little about buildings.

Extensibility. The system should be designed in an extensible

manner so that adding new functions to existing modules or adding

new modules is simple and straightforward.

Portability. It should be possible to deploy building analytics

across buildings without major changes to the implementation.

Table 1: Analysis of seven building analytics: FaultDetection
and Diagnosis (FDD) for Chiller (FDD-Chiller) [6, 40], for
Variable Air Volume (FDD-VAV) [35], for Air Handling Unit
(FDD-AHU) [29, 42], Chiller Profiling (CP) [44], Building In-
tegration Control (BIC) [30], Indoor Air Quality (IAQ) [37],
and Energy Consumption Prediction (ECP) [2, 23].

Analytics
Category Subsystem Func-

tionality
Query

OperationSpatial Temporal Contextual
FDD-Chiler ✓ ✓ (1) (3)

FDD-VAV ✓ ✓ (1) (3)

FDD-AHU ✓ ✓ (1) (3)

CP ✓ ✓ ✓ (1)(2)(3)

IAQ ✓ ✓ ✓ ✓ (1)(2)(3)(4)

BIC ✓ ✓ ✓ ✓ (1) (3)(4)

ECP ✓ ✓ ✓ (1) (3)(4)

Query

Operation

(1) Select, From, Where; (2) Filter;

(3) Union, Difference, Intersect; (4) Join;

1 /* ontology algebra to perform ontology traversal */
2 SELECT Lighting(A) JOIN Blind(A) * Setpoint(A)
3 /* list of buildings to determine ontology boundings */
4 FROM Building A
5 /* predicate expression(s) to perform ontology selections */
6 WHERE A.BuildingID = 'building_A' AND A.Source = 'Local'
7 /* predicate expression(s) to perform data selections */
8 FILTER A.TIMESTAMP >'20190801' AND A.TIMESTAMP <'20191231'

Figure 3: Energon query for extracting the setpoints for BIC.

4 THE ENERGON SYSTEM DESIGN
4.1 Design Overview
Figure 4 shows the architecture of Energon. Energon has three parts:

Energon Query Language, based on SPARQL for the data acqui-

sition process of building analytics; Energon Query Engine for
Energon Query Language interpretation and execution; Energon
Ontology Index, developed for system performance optimization.

The database stores the building data and the building ontology.

The Energon Query Engine presents a standardized execution
procedure for building analytics. There are three steps. First, the

Declarative Query Processing (§4.2) module processes the query

written by analytics developers and generates a query execution

plan. Second, the Building Independent Ontology Extraction
(BIOE) module (§4.3) extracts the essential sub-ontology out of the

building ontology based on user queries. There are two sub-steps to

the process. The Ontology Segment Extraction (OSE) (§4.3.1) module

takes an existing building ontology (e.g. based on the standard Brick

schema) from the ontology storage and extracts a set of ontology

segments. The Algebra-based Ontology Composition (§4.3.2) module

takes the extracted set of ontology segments and performs the

algebraic operations specified in the query to derive a sub-ontology.

Finally, the Data Extraction module takes the sub-ontology to

extract data via standard programming interfaces.We also develop a

Energon Ontology Index (§4.4) to organize the building ontology

hierarchically to complement traditional RDF triples. This index

can improve the system performance of the Energon Query Engine.

4.2 Energon Query Language and Processor
4.2.1 EnergonQL: A declarative query for building analytics. As
discussed, in current systems, when used to support building an-

alytics, the data retrieval process requires writing analytics- and
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SELECT Light(A) JOIN Blind(A) * Setpoint(A)
FROM Building A
WHERE A.BuildingID = "building_A"
FILTER A.TIMESTAMP > “20190801”ANDA.TIMESTAMP < "20191231"
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Figure 4: Energon System Architecture
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Figure 5: Energon Query Processor

Table 2: Predicates of Subsystem Boundary

Predicates of Subsystem Boundary

brick:hasPoint brick:hasPart brick:hasUuid rdf:type

building-specific SPARQL queries; thus, it is time-consuming and

not portable across buildings. Energon designs and implements a

query engine which allows the user to write declarative queries to
extract a subset of building data requiring minimal domain knowl-

edge about the building and data extraction details. Following the

concept of object database [8, 15], the Energon query language, En-
ergonQL, comprises select-from-where expressions. The basic primi-

tives are objects and functions, where objects can be bounded to

buildings and functions can be used as predicate conditions.

We illustrate the semantics of EnergonQLwith an Energon query

in Figure 3. The SELECT, FROM, andWHERE clauses specify on-

tology traversal, bounding, and selection, respectively. Specifically,

the ontology from ’building_A’ is selected and bounded to object A,
from which the lighting and blind systems with setpoints-related

nodes in A are traversed (more details about ontology traversal can

be found in §4.3). The FILTER clause further specifies the filtering

conditions for ontology and data selection. In this case, an ontol-

ogy falling in the time window from 2019.08.01 to 2019.12.31 is

firstly selected as the input of the query processor. Then in the data

extraction stage, the data in the same time window are retrieved.

4.2.2 Query processor. Figure 5 shows the steps for processing

queries in Energon. The Query Parser parses the query string into a
set of tokens, called a query syntax tree. During the Normalization
step, the predicates are normalized to the Conjunctive normal form
(CNF). Then, the Query Transformer converts the normalized tree

into a query execution plan, represented as ordered internal function
calls accessing both the ontology and time-series databases for the

building. The execution plan obtains a subset of building data that

will further be used in data modeling.

4.3 Building Independent Ontology Extraction
A building ontology describes the building entities (e.g. sensors,

chillers, pumps, etc.) and the relationships among them.

Room

rooms_
1.A.11

w9018_0_
setpoint

lighting-
w9018

Lighting
System

Luminance
Setpoint

type

type

type
hasPoint

hasLocation

Class

Instance

Figure 6: Ontology of a Building (Partial)

Definition 1. A building ontology is a directed graph, comprising
the building entities as nodes and the relationship between them as
edges. This graph can be described by RDF triples ⟨𝑆𝑢𝑏, 𝑃𝑟𝑒𝑑,𝑂𝑏 𝑗⟩,
where the Subject (Sub) and Object (Obj) are nodes and the Predicates
(Pred) are edges in the graph.

𝑆𝑢𝑏 and 𝑂𝑏 𝑗 refer to concrete building entities, and 𝑃𝑟𝑒𝑑 is the

relationship among the entities (e.g. a lamp is a part of a light-
ing system, a lamp has a luminance setpoint). Figure 6 shows the

building ontology of a real building. In this building, there is a

room (named rooms_1.A.11) that is the location of a lighting sys-

tem (named lighting-w9018) with a luminance setpoint (named

w9018_0_setpoint). These can be described by RDF triples. For

example, the triple <rooms_1.A.11, type, Room> indicates that

rooms_1.A.11 is an instance of class Room, <lighting-w9018, hasLo-

cation, rooms_1.A.11> indicates that the room (rooms_1.A.11) is

the location of a lighting system (lighting-w9018), and so on.

Nowadays, building ontologies are widespread. A building ontol-

ogy represents a complete view of a building’s resources and data.

A building analytic requires a subset of the building data, and thus

can be represented by a sub-ontology of the entire ontology. Thus,

we leverage the building ontology and develop a systematic way to

extract a sub-ontology that can satisfy analytics needs.

As discussed in §3, there are two logic views of the building

entities, subsystems and functionalities, which are commonly used

in building analytics. We introduce the ontology segment, defined as
a set of building entities with a logic partition of building ontology.

We will first extract subsystem ontology segments and functionality
ontology segments from the building ontology. Then, we will per-

form a set of algebraic operations on these ontology segments to

generate the sub-ontology.

4.3.1 Ontology Segment Extraction.

Subsystem Ontology Segment Extraction. A subsystem in a build-

ing is a complete, independently functioning part of the building’s
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Figure 7: Subsystem Boundary divides an ontology into sub-
systems (e.g. lighting system, blind, and room in the figure).

interior. This means that the components that make up the subsys-

tem can work together for a certain task. For example, a lighting

system is a common type of subsystem in modern buildings, which

typically consists of a group of lamps, switches and ballasts. It works

in a single lighting zone that conditions the intensity of illumination

for thermal visual comfort. We call this a subsystem. To logically

separate subsystems, we define subsystem boundary through a sub-
system boundary predicate set, which contains the belonging rela-

tionship. Table 2 shows an example subsystem boundary predicate

sets of Brick predicates.

A subsystem boundary exists between two nodes in the build-

ing ontology where there is no predicate (i.e. no relationships) or

where the predicate does not belong to the system boundary pred-

icates. For example, in Figure 7, the predicate hasPart suggests

that Lamp_1 is part of Lighting_1. Thus, they belong to the same

subsystem segment. The predicate hasLocation is not in the sub-

system boundary. Thus, Room_1 and Lighting_1 do not belong to

the same subsystem.

With the subsystem boundary defined, we can automatically ex-

tract subsystem ontology segments. We note that the Brick schema

has already defined a naming convention which we can use to select

a node in the building ontology. In the example in Figure 7, to get the

lighting subsystem segment, Lighting_1 is defined as <Lighting_1,

rdf:type, brick:Lighting_System> in Brick, and the SPARQL query

SELECT ?light WHERE ?light rdf:type/rdfs:subClassOf*
brick: Lighting_System can find it because it is of the type

brick:Lighting_System. If there are multiple lighting systems,

all of them will be returned. Breadth-first search (BFS) can be used

to find nodes recursively. Specifically, the subsystem segment type

in user query can be followed to pinpoint the subsystem (e.g. light-

ing system) and extract the initial nodes. BFS can then be conducted

from the initial nodes (e.g. Lighting_1 in Figure 7) with a search

stopping condition defined by the subsystem boundary.

Functionality Ontology Segment Extraction. As discussed, only
a logic view subsystem cannot meet all building analysis require-

ments. For example, to develop a control model for lighting system,

the lighting conditions data (e.g. illumination intensity) and oper-

ation data (e.g. status and setpoints) from the lighting system are

needed. Extra lighting system data, such as power, may be a curse

(e.g. irrelevant and redundant variables), rather than a blessing.

We also note that building analytics can require the same types

of functional sensors in different subsystems. For example, to de-

velop the energy consumption model used in ECP, we need the

temperature data of various subsystems. Therefore, we introduce

the functionality ontology segment, referring to a group of entities

in the building with the same function.

For the functionality segment extraction, we directly make use

of a SPARQL query to find all the nodes whose type matches a par-

ticular functionality segment type. For example, the functionality

segment of the type Temperature will include all the nodes of the

type brick:Temperature_Sensor.

4.3.2 Algebra-assisted Ontology Composition. With subsystem and

functionality ontology segments, we now present how to generate

the sub-ontology for a specific query. Energon allows operations

on top of the ontology segments to compose the final sub-ontology

by following Energon algebra defined as follows: (a general intro-

duction on set algebra can be found in [32]).

Energon Algebra. An Energon query Q, as illustrated by Figure 3,

is a select-from-where liked query. Conceptually, such queries have

the "canonical" form of Formula (1) in terms of relational algebra:

𝑄 = 𝜋P(𝑝1, · · · , 𝑝𝑘 )𝜎S(𝜑1, · · · , 𝜑𝑚)𝜏F(𝜔1, · · · , 𝜔𝑛) (𝐺1, · · · ,𝐺𝑟 ) (1)

That is, upon the ontology relations (𝐺1,𝐺2, · · ·𝐺𝑛), the follow-
ing two types of clausesWHERE and FILTER denoted by 𝜎 (with

S function over conditions𝜑1, · · · , 𝜑𝑚) and 𝜏 (with F function over

conditions 𝜔1, · · · , 𝜔 𝑗 ) respectively are performed to determine the

pending ontology. Then ontology extraction 𝜋 (with function P
indicates) with projected attributes (𝑝1, · · · , 𝑝𝑘 ) is performed to

compose a building sub-ontology.

Let 𝐴, 𝐵 be two sub-ontologies,𝑈 be the universe, i.e. the com-

plete building ontology, ∅ be the empty set, and 𝑥 , 𝑎 and 𝑏 be a

single node of ontology. Energon algebra defines four fundamental

operations to conduct an ontology composition:

• Union 𝐴 + 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵}.
• Intersection 𝐴 ∗ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵}.
• Difference 𝐴 − 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∉ 𝐵}.
• Join 𝐴 Z 𝐵 = {𝑥 | 𝑥 = 𝑎 𝑜𝑟 𝑏,𝑤ℎ𝑒𝑟𝑒 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 𝑎𝑛𝑑 𝑎 ↔ 𝑏)},
"↔" represents a situation where at least one predicate exists

between 𝑎 and 𝑏, i.e. 𝑎 and 𝑏 are connected in the ontology graph.

We define that any query that fits Formula (1) as a normal form

of Energon query. For example, the query in Figure 3 is an Energon

query and can be formalized as:

𝑄 = 𝜋 (𝐿𝑖𝑔ℎ𝑡 Z 𝐵𝑙𝑖𝑛𝑑) ∗𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 𝜎𝜑1∧𝜑2
𝜏𝜔1∧𝜔2

(𝐺𝐴)
Here, 𝜑1 is BuildingID=’building_A’, and 𝜑2 is Source=’Local’.𝜔1

is A.timestamp > ’20190801’, and 𝜔2 is A.timestamp < ’20191231’.

It is easy to verify that the Energon algebra has three algebraic

equivalence laws: Commutative, Associative, and Distributive (Table
3). This ensures consistencywhen developers write Energon queries

in different ways. For example, to extract the luminance data and

setpoint data from the Lighting subsystem in a building, the algebra

can be expressed as 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 ∗ 𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 + 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 ∗ 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 .

With the distributive property, the algebra can also be expresssed

as: 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 ∗ (𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 + 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡).
We now present the implementation of these four operations:

Union, Intersection and Difference operations are implemented by

overloading the +, ∗ and − operators, respectively.

The Join operation is the set of all combinations of tuples in two

tables that are equal in their common attribute names. In build-

ing ontology, to jointly control multiple subsystems (e.g., BIC and

ECP), we introduce Join operator to merge the subsystems with
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relationships. In Energon algebra, Join operator is a binary operator

that can only be performed on two subsystems, and thus its results

can be regarded as a further subsystem. We implement the Join

operator in a three-step process as follows:

(1) Determine the two subsystems to be joined from the Energon

query, and extract the sub-ontology of these two subsystems;

(2) For each pair of equipment in the both side subsystems, tra-

verse the entire ontology, and try to find a path (a sequence of

predicates in building ontology that connects a sequence of enti-

ties) between the equipment. Once there is a path exists, the pair

of equipment is added to the resulting subsystem ontology;

(3) For each piece of added equipment, an algorithm like BFS

can be conducted recursively to find underlying sensors and com-

ponents. As a result, the targeted joint subsystem is extracted.

We illustrate the Join execution process in Figure 1, where BIC

needs the data from the Lighting system and the corresponding

Blind system. The algebra can be expressed as 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 Z 𝐵𝑙𝑖𝑛𝑑 .

To extract the sub-ontology, the query engine traverse the RDF

triples recursively to search the paths between pieces of equipment

in Lighting subsystem (𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔_1 and 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔_2) and the equip-

ment in the Blind subsystem (𝐵𝑙𝑖𝑛𝑑_1 and 𝐵𝑙𝑖𝑛𝑑_2). As shown in

Figure 8, there are two paths were searched by the query engine,

i.e. 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔_1 to 𝐵𝑙𝑖𝑛𝑑_1 as well as 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔_2 to 𝐵𝑙𝑖𝑛𝑑_1, thus all

the sensors from these three equipment are extracted.

Completeness and Consistency. Based on the Energon algebra,

an Energon query has the properties of completeness (Theorem 1)

and consistency (Theorem 2). Theorem 1 states that an Energon

query can meet building analytics requirements, i.e. for building

analytics with a targeted sub-ontology, an Energon query exists

and our implementation above can extract such a sub-ontology.

Theorem 1. (Completeness) Given a building ontology and the
requirement that a building analytic be represented as a logic partition
of this building ontology, there exists a set of subsystem ontology
segments, functionality ontology segments, and algebra operations
on these ontology segments, that can construct this logic partition.

We now examine the issue of consistency. Given two individual

Energon queries, 𝑄1 and 𝑄2, if the sub-ontologies extracted with

𝑄1 and 𝑄2 are the same, we refer to 𝑄1 and 𝑄2 as consistent.
Note that the Energon algebra does not have a distributive law

for intersection (∗) over join (Z). For example, 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 Z (𝑅𝑜𝑜𝑚 ∗
𝑍𝑜𝑛𝑒) should be different from 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 Z 𝑅𝑜𝑜𝑚 ∗ 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 Z
𝑍𝑜𝑛𝑒 , as the result of the former algebra can be empty (zones and

rooms have no intersection set) and the latter algebra can be non-

empty (some lights are public equipment of zones and rooms).

Theorem 2 states that in the case of two Energon queries, as long

as they follow the Energon algebra equivalence laws (without the

distributive law for intersections over joins), they are consistent.

Theorem 2. (Consistency) Given two individual Energon queries,
𝑄1 and𝑄2, if the algebra of𝑄1 can be equivalent to𝑄2’s with Energon
algebra equivalence laws, then 𝑄1 and 𝑄2 are consistent.

We defer the formal proof of these theorems to Appendix A.

4.4 Energon Ontology Index
Energon stores the RDF triples constituting a building ontology

graph in an ontology storage structure. This heavily influences the

Proposition 1: Commutative law
• 𝑆1 Θ 𝑆2 ≡ 𝑆2 Θ 𝑆1,∀Θ ∈ {+, ∗,Z}
Proposition 2: Associative law
• (𝑆1Θ 𝑆2) Θ 𝑆3 ≡ 𝑆1 Θ (𝑆2 Θ 𝑆3),∀Θ ∈ {+, ∗,Z}
Proposition 3: Distributive law
• (𝑆1 + 𝑆2) Θ 𝑆3 ≡ 𝑆1 Θ 𝑆3 + 𝑆2 Θ 𝑆3,∀Θ ∈ {∗,Z}
Table 3: Energon Algebra Equivalence Laws.

Subject Predicate Object
Lighting_1 hasLocation Room_1
Lighting_1 hasPoint Luminance11
Lighting_1 hasPart Lamp_1
Lighting_2 hasLocation Room_1
Lighting_2 hasPoint Luminance21

Subject Predicate Object
Blind_1 hasPoint Slat_Setpoint1

Blind_2 hasPoint Slat_Setpoint2

Lighting System

Blind System

Subject Predicate Object
(Subject) Predicate Object

Lighting_1 hasLocation Room_1 isLocationOf Blind_1
Lighting_2 hasLocation Room_1 isLocationOf Blind_1

Lighting System Join Blind System

Subject Predicate Object
Room_1 isLocationOf Blind_1
Room_2 isLocationOf Blind_2

Room

Subsystem Sensors
Lighting_1 Luminance11
Lighting_2 Luminance21
Blind_1 Slat_Setpoint1

Join Results

Figure 8: Join Execution in Energon

execution of an Energon query, especially the ontology extraction

process. A common ontology storage structure is to store the entire

ontology as RDF triples (see Figure 9 (a)). This can incur significant

execution overhead for processing Energon queries. Specifically,

the subsystems of EnergonQL have a hierarchical structure, i.e.

Lamp and Ballast are children of Lighting; yet a storage in RDF

triples does nothing to maintain such a hierarchical structure. As

such, extracting an entity from each individual segment (§4.3.1) first

requires an initial node to be located and then the entire ontology

to be traversed, an 𝑂 (𝑛) operation conducted, and the entities of

a subsystem extracted. This process needs to be repeated for each

entity, leading to a time complexity of 𝑂 (𝑛2). Even worse, once

there is a Join operator, the traversal to specify the relationship

between two ontology segments is needed, leading to another𝑂 (𝑛)
and the overall complexity becomes 𝑂 (𝑛3).

We present the Energon Ontology Index structure to maintain

the hierarchical structure of a building ontology into an adjacency

list (see Figure 9 (b)). This allows for an immediate positioning of the

substructure of an entity. We maintain a list for each subsystem as

building analytics are based on subsystems. This Energon Ontology

Index structure basically sacrifices a memory space of 𝑂 (𝑛) to sub-

stitute a time complexity of 𝑂 (𝑛2). We present the implementation

details as follows.

Subsystem Segment Index. As Figure 9 (b) shows, a fully elabo-

rated two-layer index is represented to store the subsystem struc-

ture for a certain building. In the first layer, the keys are the unique

identifications of a subsystem index and values are lists of belong-

ing equipment segments index. In the second layer there are three

lists, for each type of equipment: sensor list, component list, and

segment list. The sensor list is used to associate the data points of

the equipment. The component list is used to associate the com-

ponents of the equipment. The segment list stores the equipment

connected with each segment.

There are two benefits to this structure. Firstly, when a single

subsystem is extracted (e.g. Lighting in Figure 9 (b)), its own sensors

(𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒_11, 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡_11 and others in 𝐵𝑎𝑙𝑙𝑎𝑠𝑡_1 and 𝐿𝑎𝑚𝑝_1)
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Subsystem Index Segment Index

Lighting
Blind
Ballast
Lamp
Room
……

Lighting_1
Lighting_2
Lighting_3

Blind_1
Blind_2

Luminance_11
Setpoint_11

Sensor List

Blind_1
Room_1

Segment List

Segment Index
Ballast_1
Lamp_1

Component List

Subject Predicate Object

Lighting_1 hasLocation Room_1

Lighting_1 hasPoint Setpoint_11

Lighting_1 hasPart Ballast_11

Lighting_1 hasPart Lamp_1

Room_1 isLocationOf Blind_1

…… …… ……

(a) (b)
Figure 9: (a) Ontology store in RDF triples; (b) Energon On-
tology Index for optimized performance

can be easily found by recursively indexing the component list and

the sensor list instead of conducting a full search of the ontology.

For each iteration, the sensors in the sensor list are added and

the components in the component list figure out the next object.

Secondly, the segment list significantly accelerates the Join process

(especially in a dense ontology graph) by recording both a directly

and indirectly connected subsystem. When Energon sees a query

pattern like 𝐴 Z 𝐵, e.g. 𝐵𝑙𝑖𝑛𝑑 Z 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔, it checks the segment

lists from each equipment index of the subsystem Blind, to extract

the equipment of the subsystem Lighting. Thus, there is a saving of
the traversal time among subsystems.

Functionality Segment Index. The functionality segment has a

simpler index structure compared with the subsystem segment

index. It is a key-value structure, where the index keys are the

all identifications of functionality segments in the ontology graph

(e.g. 𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 and 𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 ). Each value contains a sensor list

associated with the functionality key.

Both segment index structures can contribute to the ontology

extraction process in two ways. First, in the extraction of ontology

segments, the segments can be easily retrieved instead of having

an iterative traversal with an integral RDF triples, as the sensor

list records the data points within the segments. Secondly, in the

algebra-assisted ontology composition, the operators mentioned

in §4.3.2 can be well supported for constructing an objective sub-

ontology. The sensor list and component list contribute to the Union,

Intersect and Difference operation between segments. The segment

list in subsystem segment index contributes to the Join operation

between subsystem segments.

5 QUALITATIVE EVALUATION
We demonstrate how Energon simplifies analytics development

using four different types of analytics.

5.1 Building Integrated Control (BIC)
Given that indoor comfort is affected by more than one subsys-

tems [13], BIC is an MPC method that jointly controls multiple

subsystems to manage the indoor environment in a building.

A typical analytics is to adjust indoor light levels for visual com-

fort through the integrated control of the Lighting System and Blind

System. During the day, in addition to electric lighting, daylight pro-

vides indoor lighting. The incident daylight intensity is managed

by adjusting the blind slat angle. In this way, such an integrated

control allows the interior illuminance to be maintained at a proper

level (e.g. ∼500 lux), meanwhile saving energy for electric lighting

1 # 1. SPARQL query for ontology extraction
2 bic_query = '''
3 SELECT ?lpsp ?llum ?bsp ?blum ?ans ?srs WHERE {
4 ?room rdf:type/rdfs:subClassof* brick:Room .
5 ?lighting rdf:type/rdfs:subClassOf* brick:Lighting_System .
6 ?blind rdf:type/rdfs:subClassOf* brick:Shading_System .
7

8 ?room brick:isLocationOf ?lighting .
9 ?room brick:isLocationOf ?blind
10

11 ?lamp rdf:type/rdfs:subClassOf* brick:Luminance .
12 ?lpsp rdf:type/rdfs:subClassOf* brick:Setpoint .
13 ?llum rdf:type/rdfs:subClassOf* brick:Luminance_Sensor .
14 ?light brick:hasPart ?lamp .
15 ?lamp brick:hasPoint ?lpsp .
16 ?lamp brick:hasPoint ?lum .
17

18 ?bsp rdf:type/rdfs:subClassOf* brick:Setpoint .
19 ?blum rdf:type/rdfs:subClassOf* brick:Luminance_Sensor .
20 ?blind brick:hasPoint ?bsp .
21 ?blind brick:hasPoint ?blum .
22

23 ?wea rdf:type/rdfs:subClassOf* brick:Weather .
24 ?ans rdf:type/rdfs:subClassOf* brick:Angle_Sensor .
25 ?srs rdf:type/rdfs:subClassOf* brick:Solar_Radiance_Sensor .
26 ?wea brick:hasPoint ?ans .
27 ?wea brick:hasPoint ?srs .
28 }
29 '''
30

31 # 2. data extraction and encapsulation
32 request = pymortar.FetchRequest(
33 # Define building 'building_A' as data source
34 sites=['building_A'],
35 views=[
36 pymortar.View(
37 name='data_points',
38 query=bic_query,
39 ),
40 ],
41 # Data format is omitted here, e.g. time series interval
42 # and aggregation method
43 ...
44 # Define the time window
45 time=pymortar.TimeParams(
46 start='2019-08-01T00:00:00Z',
47 end='2019-12-30T00:00:00Z',
48 )
49 )
50

51 result = fetch(request)
52 data = result['data'][data_list]

Figure 10: Current data acquisition process (e.g. in Mor-
tar [16]) for developing analytics (e.g. BIC) requires detailed
knowledge about a building.

as much as possible. As an example of such integrated control, Shen

et al [30] utilized the setpoint of the Lighting System (e.g. intensity

level of lamps), the Blind System (e.g. blind slat angle) as well as

environmental data (e.g. solar incident angle and solar radiation

rate) to build an ML model to predict the indoor illuminance.

Figure 10 shows how this analytics would be implemented using

existing platforms such as Mortar (see in appendix). The analytics

program has two parts. The first part (line 2 to line 29) is a SPARQL

query to retrieve the data from lighting, blind, and weather systems.

The second part (line 31 to line 52) executes the query and gets the

data for further analytics development. Clearly, this implementa-

tion requires the developers to have an in-depth knowledge of the

structure and relationships of building systems.
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1 from Energon.EnergonQL import *
2 from ontology.ontology_bic import global_ontology
3

4 # Load the complete building ontology for BIC
5 global_ontology()
6

7 # 1. Energon Query for ontology and data extraction
8 bic_query = '''
9 SELECT Light(A) JOIN Blind(A) * (Luminance(A) + Setpoint(A)) +

Weather(A) * (Solar_Angle(A) + Solar_Radiance_Rate(A))
10 FROM Building A
11 WHERE A.BuildingID = 'LightZone' AND A.Source = 'Local'
12 FILTER A.TIMESTAMP > '20190801' AND A.TIMESTAMP < '20191231'
13 '''
14 # 2. execute the query to retrieve the data
15 data = fetch(bic_query)

Figure 11: Retrieving Data for BIC in Energon

By contrast, Figure 11 shows the same analytics developed in

Energon, still with two parts. The first part (line 8 to line 14) defines

a BIC query in the EnergonQL. The second part (line 16) executes

the query and retrieves the data. We see that, in Energon, the

developer does not need to have auxiliary knowledge about the

building systems. Specifically, the spatial auxiliary knowledge is

hidden by the subsystem and functionality partitions (e.g., lighting

and blinds); the temporal auxiliary knowledge is addressed by filter

clause (e.g., timestamp conditions); and the contextual auxiliary

knowledge is hidden by the Join operator (e.g. 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 Z 𝐵𝑙𝑖𝑛𝑑).

We also see that the Energon program is portable across buildings

and easier to extend. For example, if a lighting system has a ballast

(e.g., a ballast is installed with sensors to collect its setpoint data),

there is no change in the Energon program.

Energon provides the level of abstraction with which developers

can focus on analytics-specific design and implementation, thus

simplifying the development of analytics.

5.2 Energy Consumption Prediction (ECP)
ECP often takes an MPC-based approach to save energy for a build-

ing system by predicting the energy consumption of the system

with a group of available operations. In general, ECP establishes

a (usually nonlinear) model with the control strategies as inputs

and the energy consumption according to the control strategies

as outputs. An optimization algorithm then searches the control

strategy space for the control strategy that would result in the least

amount of energy consumed.

We implement an ECP based MPC approach to VAV control in a

building while maintaining thermal comfort. For this ECP analytics,

we use environmental data (e.g. weather and zone condition) and

data on the historical operations of AHU and VAV systems (e.g., set-

point) [2, 22]. In Figure 13 (see in Appendix B), we show an example

of an Energon query that extracts data for the ECP analytics.

5.3 Fault Detection and Diagnosis for AHU
(FDD-AHU)

Traditional FDD methods follow rule-based models. Recently, data-

driven ML model-based approaches have been put forward [25, 29].

As faults often occur in parallel, multi-objective MLmodels are used.

Specifically, a multi-layer diagnostic model has been developed to

detect multiple types of faults (e.g., stuck dampers and stuck cooling

coil valves) in an AHU system [25].

Analytics Method Lines of Code Development Time
(minute)

BIC

Mortar 42 86.2

Energon 11 (-73.8%) 46.2 (-46.4%)

ECP

Mortar 54 90.2

Energon 13 (-75.9%) 35.2 (-60.9%)

FDD-AHU

Mortar 73 66.6

Energon 11 (-84.9%) 30.4 (-54.4%)

CP

Mortar 52 60.4

Energon 10 (-80.8%) 25.0 (-58.6%)

Table 4: Development Effort of Mortar and Energon
The common data used for these models are air condition data

(e.g. temperature, humidity, pressure, and flow rate) and operation

data (e.g. control signals and setpoints). To retrieve data for FDD-

AHU, an example of an Energon query is shown in Figure 14 (see

in Appendix B).

5.4 Chiller Profiling (CP)
Chillers are core components of an HVAC system. Chiller profiling

involves estimating the performance of a chiller, which can be used

formaintenance, operation decisions, and so on. The performance of

a chiller is called the Coefficient of Performance (COP). Intuitively,

COP is an indication of the amount of cooling load a chiller can

output given a unit of electricity.

To build a COP prediction model, three kinds of data are needed:

(1) temporal features such as the age of the chillers (2) meteorologi-

cal features such as outdoor air temperature, and (3) mechanical

features such as the inlet/outlet node water temperature, mass flow

rate, and the power consumption of the chiller as well as its associ-

ated parts. We also show an Energon query to extract these data in

Figure 15 (see in Appendix B).

6 QUANTITATIVE EVALUATION
6.1 Analytics Development Effort
We compare the development effort (in terms of program length and

program development time) required when using Energon to that

for a state-of-the-art system, Mortar. Our focus is to demonstrate

how much development effort can be reduced.

We recruited five developers in this evaluation study to imple-

ment the four analytics mentioned in §5, each associated with a

different building ontology. All five developers are data scientists

with limited knowledge of RDF semantics and building analytics.

We intend to evaluate the development efficiency of using these

two approaches; thus, we do not count the time spent learning

background knowledge such as RDF, SPARQL, and the task-specific

requirements of these four analytics into the development time.

The developers only recorded the time spent on implementing the

analytics according to the order in which they appear in Table 4.

The development workflow consists of two main steps: ontology

extraction and data extraction. Table 4 shows the breakdown of the

lines of code for Mortar and Energon. We exclude auxiliary snippets

such as comments and library imports. We see a drastic reduction

in the total number of lines of code for all four analytics, by 73.8%,

75.9%, 84.9%, and 80.8%, respectively. This is attributed to the effec-

tive abstraction of ontology extraction and data extraction, which

can be done with standard select-from-where query expressions in
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Figure 12: (a) Execution Time with and without the Indexing Structure Optimization; (b) Time Consumption of Subsystem,
Functionality, and Operator in Ontology Extraction Stage; (c) Execution Time of Ontology Extraction across Buildings

Energon, whereas with Mortar building-specific SPARQL queries

need to be written with an understanding of the specifics of the

building, a key difficulty during the development of the analytics.

In Table 4 shows a record of development times. We see that

with EnergonQL developers spent less time on implementing the

analytics. The time spent was reduced by 46.4%, 60.9%, 54.4%, and

58.6%, respectively, compared to using Mortar. We see that as they

developed one analytics after another, the developers became more

proficient and spent less time on each analytics over time. The

speedup in this process was more significant when Energon was

used. Specifically, with Energon, the development time of the last

building analytics dropped from 46.2 minutes to 25.0 minutes (a

45.9% reduction), compared with the first building analytics. When

using Mortar, the development time was reduced from 86.2 minutes

to 60.4 minutes (a 29.0% reduction). This is partially because for each

analytics in EnergonQL, the developer does not need to understand

the details of every new building ontology.

These results suggest that Energon can effectively shorten de-

velopment effort via a standardized workflow.

6.2 System Execution Time
We now study the execution time of Energon. Figure 12 (a) shows

the results on the four analytics. We report on the execution time

of the four modules – ontology loading, ontology extraction, data

extraction, and model selection and training. We see that model

training dominates the execution time of analytics. This is expected

since ML analytics have significant model training time. We see

that the ontology extraction module also requires a long execution

time, due to the traversal of the building ontology, which takes

30.2%, 27.3%, 43.2% and 36.8% in the four analytics respectively.

We then evaluate our Indexing Storage (IS) optimization ap-

proach (§4.4), where we offline pre-extract and cache ontology

segments for an online lookup. Figure 12 (a) shows that our IS

scheme substantially reduces the ontology extraction time, and that

the average execution time among the four analytics is reduced by

more than 1000x times for all four mentioned building analytics.

This is attributed to the effective indexing mechanism, which avoids

time-consuming traversals with RDF triples in this stage.

In addition, we study two factors that influence the time con-

sumption of ontology extraction – the first one is query constituents

and the second one is building ontology size. As shown in Figure

12 (b), the execution time of the ontology extraction of these four

analytics is respectively 51.7, 47.4, 28.7, and 31.0 𝜇s (from bottom

to top). The execution mainly consists of three parts: subsystem

extraction, functionality extraction, and operator performing. We

find that no part dominates the whole process. The Energon queries

for BIC and ECP take longer than those for FDD and CP for two

reasons: 1) more subsystems are involved and need to be extracted;

2) The JOIN operator also increases the complexity of ontology

extraction. Thus, it takes longer for the queries for BIC and ECP to

execute, especially the part of operator performing.

We note that, even for the same analytics, ontology extraction

time varies across buildings because the scale of their ontology

differs. Figure 12 (c) shows the ontology extraction time in two sim-

ulated buildings, where the ontology size of Building 1 is five times

over that of Building 2. However, we see that the time consumption

in Building 1 only increased by 50.0%, 62.1%, 52.3% and 40.9%, for

the four analytics, respectively. Our proposed Subsystem Segment

Index stores both directly and indirectly connected equipment, and

therefore even when the building scale increases dramatically, the

traversal time only grows at a moderate pace.

7 CONCLUSION
In recent years, ML model-based building analytics have emerged

and proven to be effective for the operation, control, and main-

tenance of buildings. Such analytics range from the profiling of

building systems and energy conservation, to fault detection and

diagnosis. While promising, each of these applications still requires

non-trivial and building-specific development efforts to deploy in

practice. The key difficulty is that developers need both analytics-

specific knowledge to develop applications and building-specific

knowledge to extract building data.

In this paper, we presented Energon, a data acquisition system

that can support the development of building analytics with an

abstraction that decouples the process of analytics development

from the nuances details of the building system. With Energon,

developers can focus on application development, and applications

become portable across buildings. We evaluated Energon both qual-

itatively and quantitatively, and showed that Energon simplifies

development in terms of lines of code and development effort.
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A APPENDIX
Theorem 1. Given a building ontology and the requirement of

a building analytics represented as a logic partition of this building
ontology, there exists a set of subsystem ontology segments, function-
ality ontology segments, and algebra operations on these ontology
segments, which can be used to construct this logic partition.

Proof. For an individual building, let the complete ontology

be the universe 𝐵. We know that the subsystem and functionality

abstraction are two different partitions of 𝐵, where subsystem par-

tition 𝑆 = {𝑆𝑃1, 𝑆𝑃2, ..., 𝑆𝑃𝑚} such that 𝑆𝑃𝑖 ⊂ 𝐵 and 𝑆𝑃1 ∪ 𝑆𝑃2 ... ∪
𝑆𝑃𝑚 = 𝐵, functionality partition 𝐹 = {𝐹𝑃1, 𝐹𝑃2, ..., 𝐹𝑃𝑛} such that

𝐹𝑃𝑖 ⊂ 𝐵 and 𝐹𝑃1 ∪ 𝐹𝑃2 ...∪ 𝐹𝑃𝑛 = 𝐵. Because 𝐹 is partitioned based

on sensor functionalities, 𝐹 is an exact set cover of all the sensor

data in 𝐵 [17]. Since no two sensors of the same type are installed in

one piece of equipment, we can always find a subsystem partition 𝑆

such that ∄𝑦 [𝑦 ∈ 𝑆𝑃𝑖 𝑎𝑛𝑑 𝑥 ∈ 𝑆𝑃𝑖 𝑎𝑛𝑑 𝑥 ≠ 𝑦]. As a result, for every
sensor entity 𝑥 ∈ 𝐵, we can find exactly one 𝐹𝑃𝑜 where 𝑥 ∈ 𝐹𝑃𝑜 and

we can find a collection of subsystems𝐶𝑆𝑃 = {𝑆𝑃 𝑗 ...𝑆𝑃𝑘 } such that

𝑥 ∈ 𝑆𝑃𝑝 , 𝑆𝑃𝑝 ∈ 𝐶𝑆𝑃 ; therefore, 𝑥 can be extracted as: 𝑆𝑃𝑝 ∩ 𝐹𝑃𝑜 .

For any combination of building data, 𝐶 = {𝑐1, 𝑐2, ...𝑐𝑙 }, we know
that 𝑐𝑖 ∈ 𝐶 can be extracted; therefore, 𝐶 can also be extracted by

the unions of all sensors in 𝐶 □

Theorem 2. Given two individual Energon queries, 𝑄1 and 𝑄2,
if the algebra of 𝑄1 can be equivalent to 𝑄2’s according to Energon
algebra equivalence laws, then 𝑄1 and 𝑄2 are consistent.

https://www.coppertreeanalytics.com/
https://entronix.io/
https://lucidconnects.com/
https://skyfoundry.com/
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Proof. The Energon algebra equivalence laws can be easily

proved by set theory, with the exception of the distributive law for

Union(+) over Join(Z). Here we would like to prove the following

equation:

(𝐴 + 𝐵) Z 𝐶 = 𝐴 Z 𝐶 + 𝐵 Z 𝐶

Let 𝐴, 𝐵, and 𝐶 be three individual sub-ontologies of a certain

building ontology. First, we expand the both sides of the equation

as follows:

(𝐴 + 𝐵) Z 𝐶 = (1) (𝐴 + 𝐵) ∗ [(𝐴 + 𝐵) Z 𝐶] + (2) 𝐶 ∗ [(𝐴 + 𝐵) Z 𝐶]
𝐴 Z 𝐶 = (3) 𝐴 ∗ (𝐴 Z 𝐶) + (4) 𝐶 ∗ (𝐴 Z 𝐶)
𝐵 Z 𝐶 = (5) 𝐵 ∗ (𝐵 Z 𝐶) + (6) 𝐶 ∗ (𝐵 Z 𝐶)

Such an expansion separates the result of the Join query. We then

try to find if (1) = (3) + (5) and (2) = (4) + (6). Easy to have,

(3) 𝐴 ∗ (𝐴 Z 𝐶) = 𝐴 ∗ [(𝐴 + 𝐵) Z 𝐶]. Recap that the Join(Z)
Operator is for mining the relationships between subsystems; hence,

both of them represent the part of 𝐴 that is related to 𝐶 . Similarly,

there exists (5) 𝐵 ∗ (𝐵 Z 𝐶) = 𝐵 ∗ [(𝐴 + 𝐵) Z 𝐶]. According to the

Distributive Law of Intersection (∗), we have:

(3) + (5) = 𝐴 ∗ [(𝐴 + 𝐵) Z 𝐶] + 𝐵 ∗ [(𝐴 + 𝐵) Z 𝐶]
= (𝐴 + 𝐵) ∗ [(𝐴 + 𝐵) Z 𝐶]
= (1)

Also, (4)𝐶∗(𝐴 Z 𝐶) represents the part of𝐶 related to𝐴, and (6)𝐶∗
(𝐵 Z 𝐶) represents the part of𝐶 related to 𝐵. Combining these two

items, we have (4) 𝐶 ∗ (𝐴 Z 𝐶) + (6) 𝐶 ∗ (𝐵 Z 𝐶) which represents

the part of 𝐶 that is related to either A or B. Such a representation

is the same as the representation of (2) 𝐶 ∗ [(𝐴 + 𝐵) Z 𝐶]. In other

words, (4) 𝐶 ∗ (𝐴 Z 𝐶) + (6) 𝐶 ∗ (𝐵 Z 𝐶) = (2) 𝐶 ∗ [(𝐴 + 𝐵) Z 𝐶].
Putting these items together, we have the equation we wanted to

prove at the beginning.

□

B APPENDIX
Here we give the example of Energon query for the three building

analytics mentioned in §5: ECP, FDD-AHU, and CP in Figure 13, 14,

and 15 respectively.

1 SELECT Weather(B) * (Temperature(B) + Solar_Radiance_Rate(B)) +
Zone(B) * Temperature(B) + AHU(B) JOIN VAV(B) * (Temperature(B)
+ Flow_Rate(B) + Setpoint(B))

2 FROM Building B
3 WHERE B.BuildingID = '5ZoneAutoDXVAV' AND B.Source = 'Local'
4 FILTER B.OCCUPANCY_FLAG = 1

Figure 13: Energon Query for ECP

1 SELECT AHU(C) * (Temperature(C) + Humidity(C) + Pressure(C) +
Flow_Rate(C) + Signal(C) + Setpoint(C))

2 FROM Building C
3 WHERE C.BuildingID = 'MZVAV' AND C.Source = 'Local'
4 FILTER C.TIME_STAMP > '20070828' AND C.TIME_STAMP < '20090515'

Figure 14: Energon Query for FDD-AHU

1 SELECT (Chiller(D) * (Temperature(D) + Flow_Rate(D) + Power(D)) +
Weather(D) * Temperature(D)

2 FROM Building D
3 WHERE D.BuildingID = 'CP1' AND D.Source = 'Local'
4 FILTER D.TIMESTAMP > '20190630' AND D.TIMESTAMP < '20190831'

Figure 15: Energon Query for CP
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