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as walls and furniture in real-world settings, the achieved sensing
coverage is still limited even with LoRa.

In this work, we propose RobotSen, which places LoRa device
on a moving robot to study the feasibility of wireless sensing in
the presence of device motions. With a robot moving the LoRa
device, wireless sensing can be performed in a larger area. Wireless
sensing also adds a new sensing modality to robot platform which
traditionally relies on camera and LiDAR for sensing.

However, we quickly realize making wireless sensing work with
a moving device (i.e., the device is placed on a moving robot) is
challenging. Almost all existing wireless sensing systems keep their
devices static as shown in Figure 1(a) and very little attention has
been paid to wireless sensing with a moving device. This is be-
cause wireless sensing fundamentally relies on signal variations to
sense target movement. When the device is static, signal variations
are only induced by target movements. However, if the device is
also moving, the signal variations are then induced by both target
movements and device motions. It is therefore difficult to separate
target movements from device motions to achieve target sensing.
The straightforward method to deal with device motions is to obtain
the motion information using the sensors equipped with the robot.
For example, moving speed can be obtained from an accelerometer.
However, sensor readings are too coarse to be used to cancel the
motion effect for fine-grained sensing such as respiration monitoring
on the scale of a few millimeters.

In this work, we employ the signal propagation theory to under-
stand the effect of device motion on signal variation and address it to
achieve target sensing under device motions. Similar to target move-
ment which causes the signal amplitude and phase to change, the
device motion causes an extra amount of signal variation. If we can
remove the extra amount of signal variation caused by device mo-
tion, we can obtain clean target-induced signal variation for sensing.
The key idea of our design is to utilize a second antenna to remove
the signal variation induced by device motion. The intuition is that
during the robot movement process, the second antenna moves to the
previous location of the first antenna. When two antennas are at the
same location, the reflections from static objects are very similar and
therefore we can leverage the signals received at the two antennas
at the same location to remove these reflections. On the other hand,
the target movements are different and the cancellation process does
not eliminate the target movement information. We further remove
the remaining effect of device motion leveraging the periodicity of
the target-induced signal variation pattern. By placing two antennas
along the moving directions of the robot, the two antennas move
following the same trajectory during the robot movement process.

Contributions: The main contributions are as follows:
• We combine the sensing capability of LoRa signals with the

mobility of robot to support a larger sensing coverage.
• With a deep understanding of the effect of device motion on

signal variation, we propose a novel method which utilizes the
same moving trajectory of two antennas to eliminate signal
variation induced by device motion.

• We evaluate the performance of RobotSen using two represen-
tative applications, i.e., fine-grained respiration monitoring
and coarse-grained walking sensing. While RobotSen is im-
plemented on LoRa hardware, the proposed method can also
benefit other wireless sensing modalities.

2 PRELIMINARY
In this section, we introduce the LoRa basics, and the principle of
LoRa sensing when LoRa device is static. Then we use two examples
to show how device motions affect wireless sensing.

2.1 LoRa Basics
LoRa, a low-power wide-area wireless technology designed for
connections among IoT devices, can support a communication range
on the scale of kilometers in rural areas [22, 26, 27, 42]. Recent
works [14, 46, 50] demonstrate that LoRa sensing can also achieve
a larger sensing range compared to other wireless technologies such
as WiFi [49]. The long range is mainly owing to the Chirp Spread
Spectrum (CSS) modulation design which can enable LoRa to detect
weak signals even 20 dB below the noise floor [26]. Although the
sensing range of LoRa is larger, the sensing coverage is still not
enough to cover a large space such as a warehouse.

2.2 LoRa Sensing with Static Device
LoRa signal goes directly from the transmitter to receiver, and also
gets reflected from the target and other objects. To analyze how
signals vary with target movement, we group the signal paths into
two categories, i.e., static path and dynamic path [43, 50]. The static
paths are composed of the direct path and reflection paths from
static objects, while the dynamic path is the target reflection path.
During the target movement process, the path length of dynamic path
changes while the length of static path does not change. The amount
of path length change is determined by the displacement of target
movement. For instance, the chest displacement during respiration
is around 5 mm, and the induced path length change is around 1 cm.
On the other hand, human walking-induced path length change can
be several meters.

2.3 Impact of Device Motion on Sensing
To show how device motion affects sensing, we conduct benchmark
experiments with two applications, i.e., fine-grained respiration mon-
itoring and coarse-grained human walking sensing. The chest dis-
placement during respiration is around 5 mm while the device on the
robot can move on the scale of meters in a few seconds. As shown in
Figure 2(a), when the receiver is static, we can see a clear periodical
respiration pattern. However, once the receiver starts moving with a
robot at a speed of 0.2 m/s, the respiration-induced phase variation
pattern is severely distorted as shown in Figure 2(b). This is because
when the receiver is moving, the phase variation induced by device
motion is much larger than that induced by chest displacement. Thus,
respiration-induced phase variation is buried in the phase variation
induced by device motion. When the target walks 1 m away from
the static device, the path length would be changed by roughly 2 m,
inducing a phase change of 2𝑚

33𝑐𝑚 = 6.1 cycles1 as shown in Fig-
ure 2(c). When the device is moving, the walking pattern is severely
distorted as presented in Figure 2(d).

3 SYSTEM DESIGN
Without loss of generality, we consider the case when LoRa trans-
mitter is static and LoRa receiver moves with a robot. We first

1The wavelength is around 33 cm for 915 MHz LoRa signals.
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signal difference. We further propose a method to remove the ef-
fect of device motion on the target-device signal to extract clean
target-induced phase variation for sensing.

Our assumption is that the leader and follower antennas are
aligned with the moving direction of robot. Most robots have a
camera or sensor at the front side to detect obstacles during the
moving process [3, 7, 10]. Robots move with the front side heading
forward. When a robot encounters an obstacle and needs to change
the moving direction, it first rotates its front side towards the chosen
direction, and then moves forward. By leveraging this property, we
can align two antennas with the robot’s front side to ensure the two
antennas follow the same moving trajectory. We also assume the
multipath does not vary much within a short period of time, and the
robot moving velocity does not change when we measure the signals
at the two antennas.

3.3 Removing Device Motion Induced Signal
Variation

In this section, we introduce how to address the effect of device
motion to obtain clean target-induced signal phase variation.

3.3.1 Signal subtraction. In this subsection, we utilize signal
subtraction to remove the static-device signals which contain only
device motion.

At time 𝑡2 in Figure 4, the follower antenna moves to the loca-
tion where the leader antenna was located at time 𝑡1. The received
signal 𝑅𝐿 (𝑡1) at the leader antenna and received signal 𝑅𝐹 (𝑡2) at the
follower antenna can be expressed as{

𝑅𝐿 (𝑡1) = 𝐻𝑠𝑑𝐿 (𝑡1) + 𝐻𝑡𝑑𝐿 (𝑡1)
𝑅𝐹 (𝑡2) = 𝐻𝑠𝑑𝐹 (𝑡2) + 𝐻𝑡𝑑𝐹 (𝑡2),

(1)

where 𝐻𝑠𝑑𝐿 (𝑡1) and 𝐻𝑠𝑑𝐹 (𝑡2) are the static-device signals at the
leader antenna and follower antenna respectively. 𝐻𝑡𝑑𝐿 (𝑡1) and
𝐻𝑡𝑑𝐹 (𝑡2) are the target-device signals. Note that in the two equations
above, the static-device signals 𝐻𝑠𝑑𝐿 (𝑡1) and 𝐻𝑠𝑑𝐹 (𝑡2) are identi-
cal due to the same location of the two antennas, while the two
target-device signals are different because the target movements are
different at time 𝑡1 and 𝑡2.

The arriving time delay between 𝑡2 and 𝑡1 can be denoted as 𝛿 .
We utilize 𝑡 and 𝑡 + 𝛿 to represent 𝑡1 and 𝑡2, respectively. By taking
the subtraction operation of two equations in Eq. (1), we obtain the
signal difference Δ𝑆𝑡𝑑 as

Δ𝑆𝑡𝑑 (𝑡) = 𝑅𝐿 (𝑡) − 𝑅𝐹 (𝑡 + 𝛿) = 𝐻𝑡𝑑𝐿 (𝑡) − 𝐻𝑡𝑑𝐹 (𝑡 + 𝛿). (2)

In this equation, the static-device signals (𝐻𝑠𝑑𝐿 and 𝐻𝑠𝑑𝐹 ) which
only contain the device motion are cancelled out.

Next, we analyze the effect of device motion on the remaining
target-device signal. For the target-device signal, both the target and
device cause the signal to vary. We can represent the signal as

𝐻𝑡𝑑 (𝑡) = 𝐴(𝑡)𝑒
𝑗2𝜋
𝜆

(𝑙𝑖𝑛𝑖+𝑙𝑑 (𝑡 )+𝑙𝑡𝑎𝑟 (𝑡 ) ) , (3)

where 𝐴(𝑡) is the amplitude of the target-device signal, 𝑙𝑖𝑛𝑖 is the
initial signal path length without device motion and target movement,
𝑙𝑑 is the path length change caused by device motion, 𝑙𝑡𝑎𝑟 is the
path length change caused by target movement, and 𝜆 is the signal

wavelength. Eq. (2) can then be written as

Δ𝑆𝑡𝑑 (𝑡) = 𝐴1𝑒
𝑗2𝜋
𝜆

(𝑙𝑖𝑛𝑖+𝑙𝑑𝐿+𝑙𝑡𝑎𝑟 (𝑡 ) ) −𝐴2𝑒
𝑗2𝜋
𝜆

(𝑙𝑖𝑛𝑖+𝑙𝑑𝐹 +𝑙𝑡𝑎𝑟 (𝑡+𝛿 ) ) ,
(4)

where 𝑙𝑑𝐿 and 𝑙𝑑𝐹 are the path length changes caused by the motions
of leader antenna and follower antenna, respectively. When the two
antennas are at the same location, as we also assume the velocity
does not change, we can obtain 𝑙𝑑𝐿 = 𝑙𝑑𝐹 and denote them as 𝑙𝑑 .
Then we can obtain the following equation

Δ𝑆𝑡𝑑 (𝑡) = 𝐴1𝑒
𝑗2𝜋
𝜆

(𝑙𝑖𝑛𝑖+𝑙𝑑 (𝑡 ) )︸                ︷︷                ︸
device motion: 𝐻𝑑

· [𝑒
𝑗2𝜋
𝜆

𝑙𝑡𝑎𝑟 (𝑡 ) − 𝐴2
𝐴1

𝑒
𝑗2𝜋
𝜆

𝑙𝑡𝑎𝑟 (𝑡+𝛿 ) ]︸                                   ︷︷                                   ︸
target movement: Δ𝐻𝑡𝑎𝑟

.

(5)
To derive clean signal phase variation only induced by target

movement, we first simplify Eq. (5). We denote the first part as 𝐻𝑑

which is only related to device motion, and represent the second part
which is only related to target movement as Δ𝐻𝑡𝑎𝑟 . The difference of
the received signals at the two antennas (i.e., Eq. (5)) can therefore be
simplified as Δ𝑆𝑡𝑑 (𝑡) = 𝐻𝑑 (𝑡) · Δ𝐻𝑡𝑎𝑟 (𝑡). Moreover, the path length
change induced by device motion can be represented as 𝑙𝑑 (𝑡) = 𝑣𝑡

where 𝑣 is the radial component of device (robot) velocity. In a short
period of time, 𝑣 can be assumed as a constant.

Then, the phase variation induced target movement 𝜙𝑡𝑎𝑟 can be
calculated by subtracting the phase variation induced by the device
motion (𝜙𝑑 ) from the total phase variation (𝜙Δ𝑆𝑡𝑑 )

𝜙𝑡𝑎𝑟 (𝑡) = 𝜙Δ𝑆𝑡𝑑 (𝑡) − 𝜙𝑑 (𝑡)

= 𝜙Δ𝑆𝑡𝑑 (𝑡) −
2𝜋
𝜆
(𝑙𝑖𝑛𝑖 + 𝑣𝑡) .

(6)

3.3.2 Modeling target movement using signal subtraction.
Different from previous works which utilize one target reflection
signal to model the target movement [31, 50], we leverage Δ𝐻𝑡𝑎𝑟

which is the difference between two target signals as illustrated
in Eq. (5) to characterize the target movement. We take the fine-
grained respiration sensing and coarse-grained walking sensing as
application examples to show the phase variation of target signal
difference Δ𝐻𝑡𝑎𝑟 .

Fine-grained respiration sensing. The inhalation and exhalation
of chest motions cause the path length of the target signal to change.
According to previous studies [49, 50], the chest displacement during
respiration is around 5 mm, inducing a path length change of around
1 cm. Thus, the target signal in the IQ domain rotates by around
1𝑐𝑚
𝜆

× 360◦ = 11◦ for 915 MHz LoRa signal (𝜆 = 33 cm) during
the process of respiration. As shown in Figure 5(a), the target signal
vector rotates periodically between points A and B during the process
of respiration. The signal amplitude is the length of the signal vector
while the phase is the angle between the signal vector and the I-axis.

To show the difference Δ𝐻𝑡𝑎𝑟 between two target signals, we plot
the two target signal vectors as shown in Figure 5(b), denoted as
𝐻𝑡𝑎𝑟1 and 𝐻𝑡𝑎𝑟2. As we can see, the difference of two target signal
Δ𝐻𝑡𝑎𝑟 = 𝐻𝑡𝑎𝑟1 −𝐻𝑡𝑎𝑟2 is a new vector denoted in red color. Initially,
at𝑇𝑖𝑚𝑒 1, the first target signal vector𝐻𝑡𝑎𝑟1 is near point A while the
second one 𝐻𝑡𝑎𝑟2 is near point B, thus their signal difference vector
𝐻𝑡𝑎𝑟1−𝐻𝑡𝑎𝑟2 points towards the right. When𝐻𝑡𝑎𝑟1 rotates near point
B and 𝐻𝑡𝑎𝑟2 rotates near point A (e.g., 𝑇𝑖𝑚𝑒 2), the target signal
difference vector points towards the left. The opposite directions
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Multi-target sensing. Multi-target sensing is a well-known chal-
lenge in contact-free sensing. When multiple targets exist in the same
environment, it is challenging to extract the movement information
of each individual target. This is because the reflection signals from
multiple targets get mixed together at the receiver. Due to the lack of
a large antenna array and a large bandwidth at LoRa receivers [50], it
is difficult to separate the mixed signals in either the spatial domain
or time domain. One potential solution is to utilize the device mobil-
ity to create a virtual antenna array and adopt the method proposed
in [47] to fuse information from multiple dimensions (space, time,
and frequency) for multi-target sensing.

Deploying sensing device on a drone. In this work, we focus
on robot-induced device motions. If we deploy the device on a
drone, the device motion would be 3-dimensional. Theoretically,
the proposed method in RobotSen can also remove the impact of
3D device motion as long as the follower antenna exactly follows
the moving trajectory of leader antenna. The challenge is that the
drone has more freedom and can move at directions where the leader
and follower antennas are not aligned even the drone only moves
horizontally. What makes it even more challenging is that the vertical
movement of the drone can not be addressed because the antennas
are deployed on the same horizontal plane. We believe this is an
exciting research direction worth devoting effort to.

7 RELATED WORK
We discuss the most related work in the following domains.

Wireless sensing. Wireless signals have been widely studied
for contact-free sensing. Different from sensor and wearable-based
methods, wireless sensing does not require the target to carry any
device, but relies on analyzing the variation of wireless signals to
sense human target. In the last few years, various wireless signals
have been employed for contact-free sensing, including Radar [53],
WiFi [30, 36, 47], RFID [45], acoustic [23–25, 28], and LTE [19].
While promising in many aspects, one limitation of wireless sensing
is the limited sensing coverage. To fully cover a large area, a dense
deployment of static devices is required. For instance, only 15% of
the area in a typical university building is covered in WiFi sensing
range [19]. In this paper, we utilize LoRa signal for contact-free
sensing and also explore the feasibility of integrating LoRa sensing
with a moving robot to achieve a larger sensing coverage. While
mobility requires more space, it saves the cost of deploying many
static devices and utilizes a single device efficiently.

LoRa-based sensing. LoRa has been employed for contact-free
sensing because of the long sensing range and through-wall capabil-
ity of LoRa signal. Zhang et al. [50] employ the signal ratio scheme
to achieve a sensing range of 25 m for respiration sensing. Zhang
et al. [51] also adopt the beamforming technique in LoRa to realize
multi-target respiration sensing. Xie et al. [43, 46] further improve
the respiration sensing range, and also mitigate the interference issue.
None of these works consider device mobility, which we believe is
an important step towards ubiquitous wireless sensing. WideSee [15]
places LoRa devices on a drone to detect the presence of human
targets inside a building. The information obtained in WideSee is
still quite coarse. It can not obtain fine-grained respiration informa-
tion nor the accurate human walking distance because the effect of
drone motion is not addressed. In contrast, RobotSen moves one

step forward to enable fine-grained wireless sensing in the presence
of device motions. Palantir [21] attaches LoRa node to a moving
bicycle and a backscattered tag to a human target riding the bicycle
to sense the target motion. It requires attaching a tag to the target
which is not contact-free sensing that RobotSen is designed for.

Sensing static objects with robot. UWBMap [17] proposes to
combine robot and Ultra Wideband Radar to construct the floor plan.
milliMap [29] utilizes a mmWave radar and a lidar co-located on
a mobile robot to construct the indoor mapping. LidarPhone [32]
captures the sound of a speaker through the lidar sensor on the
commodity robot vacuum cleaner. Tagtag [44] employs an RFID
antenna moving with a robot to sense the material type of an object
with RFID tags attached. However, these systems mainly sense walls,
doors, slabs and liquid, which are static. They do not try to sense
fine-grained activities such as human respiration which can be easily
buried in device motion.

Localizing a moving device. RIM [40] utilizes antennas mounted
on the moving receiver to estimate the receiver’s moving speed,
direction and trajectory. P2PLocate [52] leverages on-body devices
to localize a smartwatch. GLAC [35] proposes to localize an RFID
tag and employs the tag motion to remove the trajectory ambiguity.
In addition, previous RFID-based localization schemes [33, 34, 37]
utilize the moving antennas to localize the RFID tags. All these
works focus on active localization or sensing.

Wireless communication with device mobility. Prior works [38,
54] have demonstrated the feasibility of utilizing robot/car to realize
mobile networks. They utilize the device mobility to enlarge the
network coverage. Different from these works, we focus on enabling
wireless sensing under device motions, which has different objectives
and challenges.

8 CONCLUSION
In this work, we propose RobotSen, a contact-free sensing system
which can achieve wireless sensing under device motions. We quan-
tify the effect of device motion on sensing and propose a novel
leader-follower antenna scheme to address the impact of device mo-
tion. Even though the tiny chest displacement during respiration is
much smaller than the device motion, the proposed method is able to
accurately extract the clean respiration information. We believe the
proposed methods can be applied to benefit a large range of wireless
sensing applications, moving one important step towards ubiquitous
wireless sensing.
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