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ABSTRACT 

Transforming permanently porous but electrically insulating metal–organic frameworks (MOFs) into 
electrically conducting materials is key to expanding their utility beyond traditional guest storage, 
separation, and delivery applications into the realms of modern electronics and energy technologies. To this 
end, herein, we have converted a highly porous but intrinsically insulating NU-1000 MOF into 
semiconducting NU-1000/gold-nanoparticle (AuNP) and NU-1000/polydopamine/AuNP composites via 
MOF- and polymer-induced reduction of infiltrated Au3+ ions into metallic AuNPs. The NU-1000/AuNP 
and NU-1000/PDA/AuNP composites not only gained significant room temperature electrical conductivity 
(~10–7 S/cm), which was ca. 104 times greater than any MOF/metal-nanoparticle (MNP) composites 
exhibited thus far under the same conditions, i.e., without photo- and thermal induction, but also retained 
sizable porosity and surface areas (1527 and 715 m2/g, respectively), which were also larger than most 
intrinsically conducting 3D MOFs developed to date. The markedly higher conductivities of NU-
1000/AuNP and NU-1000/PDA/AuNP composites can be attributed to more efficient charge hopping or 
tunneling through well-dispersed AuNPs embedded inside the crystalline MOF matrix, which pristine NU-
1000 lacked. Thus, this work presented an effective new strategy to transform porous but non-conducting 
MOFs into electrically conducting MOF/MNP composites with considerable porosity, which could be 
useful in future electronics, electrocatalysis, and energy storage devices. 
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hopping 

INTRODUCTION 

Owing to their highly ordered porous structures that can be tailored for various guest entities ranging from 
small molecules to large polymers and nanoparticles, metal–organic frameworks (MOFs) have emerged as 
one of the most attractive and versatile functional materials of the 21st century.1–2 Recently, electrically 
conducting MOFs3–10 have attracted significant attention because of their diverse potential applications in 
modern electronics and energy technologies,11–35 including batteries,18–20 supercapacitors,21–25 
transistors,26,27 chemiresistive sensors,28–34 and electrocatalysis.35–41 Although the porosity of MOFs is a key 
to their well-documented guest separation, storage, delivery, and sensing applications,42–61 it also hinders 
long-range charge conduction through spatially separated redox-active components and thus causes poor 
intrinsic electrical conductivity of most porous MOFs. However, the porosity of MOFs could be exploited 
to create guest-induced electrical conductivity by introducing appropriate guest entities that can supply 
charge carriers and facilitate charge movement.62–71 Nevertheless, since most small molecular guests are 
also intrinsically insulating, in order to create adequate guest-induced electrical conductivity, oftentimes 
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the host MOFs must be saturated with guests, which quash the porosity, i.e., the guest-induced conductivity 
of MOFs is often achieved at the expense of their porosity. In contrast, recent studies have revealed that 
polymeric guests formed inside porous MOF via in situ polymerization of pre-loaded monomers can not 
only improve the structural stability and porosity of certain collapse-prone frameworks,72–74 but also 
introduce large number of functional groups that can create new properties and functions in the resulting 
MOF/polymer composites. For example, in situ generated conducting polymers (CPs) have transformed 
insulating MOFs into semiconducting MOF/CP composites,75–80 MOF/polymer composites have been used 
to extract heavy metal ions, such as Hg, Au, Pb, and Pd ions, from aqueous solutions,81,82 and a 
MOF/polydopamine/Pd-nanoparticle composite was able to catalyzed Suzuki coupling reaction.73 
However, the electrical conductivity of MOF/polymer/metal-nanoparticle (MNP) composites has been 
largely unexplored. Although an intrinsically insulating Rb-cyclodextrin (Rb-CD) MOF reduced infiltrated 
Ag+ ions to yield a Rb-CD/AgNP composite, it displayed negligible room temperature electrical 
conductivity (~10–11 S/cm) in the absence of light, but modest photo- and thermal conductivity (~10–7 S/cm) 
only after light and/or heat activation.83 Therefore, we envisioned that porous but intrinsically insulating 
MOFs could be converted into electrically conducting MOF/MNP and MOF/Polymer/MNP composites by 
introducing relatively small amounts of guest polymers and MNPs that can facilitate long-range charge 
hopping and tunneling while also preserving significant porosity and surface area of the host framework. 

 

Figure 1. Transformation of NU-1000 to NU-1000/AuNP, NU-1000/PDA, and NU-1000/PDA/AuNP 
composites.  

Herein, we demonstrate for the first time that a permanently porous but electrically insulating Zr-
pyrene-tetrabenzoate (TBPy) MOF, called NU-1000,84 can be converted into semiconducting MOF/AuNP 
and MOF/polydopamine/AuNP composites having significant electrical conductivity (Figure 1) via MOF 
and polydopamine (PDA) induced reduction of infiltrated Au3+ ions into metallic AuNPs. PDA was chosen 
for this purpose because (i) it can be synthesized easily inside MOFs via aerobic oxidative polymerization 
of infiltrated dopamine monomers72,73 and (ii) it bears a large number of strong reducing groups, such as 
catechol and amines that are known to reduce Ag+, Hg2+ and Pd+2 metal ions to corresponding metal 
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nanoparticles,73,81,82 prompting us to envision that it should also be able to reduce infiltrated Au3+ ions into 
metallic AuNPs. Powder X-ray diffraction (PXRD) analysis revealed the crystallinity, structural stability, 
and the presence of crystalline AuNPs in NU-1000/AuNP and NU-1000/PDA/AuNP composites, which 
was further confirmed by scanning-electron microscopy (SEM) and scanning transmission electron 
microscopy coupled with energy dispersive X-ray (STEM-EDX) analyses revealing the coexistence of 
signature elements (Zr, N, and Au) of each component of the composites. Thermogravimetric analysis 
(TGA) revealed that NU-1000/AuNP and NU-1000/PDA/AuNP composites contained ca. 14 and 21 wt% 
gold, respectively, indicating that the MOF-encapsulated PDA containing amine and OH groups produced 
more AuNPs possibly due to more efficient reduction of Au3+ ions than pristine NU-1000, the effects of 
which were reflected on their electrical conductivity.85 N2-sorption studies showed that although the 
Brunauer-Emmett-Teller (BET) surface areas of NU-1000/AuNP (1527 m2/g) and NU-1000/PDA/AuNP 
(715 m2/g) composites were lower than that of pristine NU-1000 (2215 m2/g)70,84 due to the presence of 
embedded PDA and AuNPs, they still remained adequately porous while dramatically gaining electrical 
conductivity. Two-probe current–voltage (I-V) measurements revealed that whereas NU-1000, NU-
1000/PDA, and PDA/AuNP pellets practically behaved as insulators (s ≤ 10–12 S/cm), NU-1000/AuNP and 
NU-1000/PDA/AuNP composites displayed several orders of magnitude higher room-temperature 
electrical conductivity (σ = 1.2 (±0.1) × 10–7 and 5.2 (±0.04) × 10–7 S/cm, respectively) possibly due to 
more efficient charge-hopping and/or tunneling across the framework enabled by the well-distributed 
AuNPs embedded in the MOF.84 To our knowledge, the room-temperature conductivities of both NU-
1000/AuNP and NU-1000/PDA/AuNP composites are four orders of magnitude higher than that displayed 
by any other MOF/MNP composites thus far (i.e., AgNC@Rb-CD MOF)83 while their BET surface areas 
are also higher than that of many intrinsically conducting 3D porous MOFs.86–91 Thus, this work presents a 
novel strategy to convert highly porous but intrinsically insulating MOFs into semiconducting MOF/MNP 
and MOF/Polymer/MNP composites, which also possess significant porosity.  

RESULTS AND DISCUSSION 

To demonstrate the possibility of transforming an intrinsically insulating, porous MOF into electrically 
conducting MOF/MNP and MOF/polymer/MNP composites with sizable porosity and surface areas, we 
have employed NU-1000 MOF because its large pores and exceptional chemical and structural stabilities 
are well suited for facile infiltration of dopamine monomers and Au3+ ions and subsequent in situ oxidative 
polymerization and reductive AuNP formation. NU-1000 was synthesized by a solvothermal reaction 
between ZrOCl2•8H2O and a TBPy ligand according to a literature protocol,92 and its crystalline structure 
and phase-purity were confirmed by PXRD analysis. Upon soaking a bright yellow colored activated NU-
1000 powder into an aqueous AuCl3 solution (2 mM) overnight, the suspension turned orange, which was 
washed thoroughly and dried (see Supporting Information (SI) for details). The PXRD profile (Figure 2) of 
the resulting orange powder not only featured the characteristic NU-1000 peaks (2q ≈ 2.5, 5.0, 7.5, and 
10°), but also characteristic [111] and [200] peaks of metallic AuNPs at 2q ≈ 38 and 45°, respectively,82 
indicating the formation of metallic AuNPs via reduction of infiltrated Au3+ ions by the OH groups of the 
Zr6(µ3-O)4(µ3-OH)4(OH)4(H2O)4 nodes, as evident from the IR spectrum of NU-1000 (Figure S1). This 
observation was consistent with previous reports of metallic AuNP formation via Au3+ reduction by MIL-
100(Fe)82 and AgNPs formation via Ag+ reduction by the hydroxyl groups in Rb-CD MOF.83  

 Recent studies have demonstrated82 that although pristine MIL-100(Fe) can reduce infiltrated Au3+ 
ions into metallic AuNPs, MOF-embedded organic polymers having electron-donating amine and hydroxyl 
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groups can reduce Au3+ ions more efficiently to produce larger amounts of metallic gold. Therefore, we 
functionalized the NU-1000 pores with polydopamine via aerobic oxidation of preloaded dopamine 
monomers by a double-solvent method93 (see SI for details). Briefly, to a suspension of activated NU-1000 
in dry hexane a small amount of aqueous solution of dopamine hydrochloride was added. Hexane’s low 
vapor pressure, poor interfacial tension with water, and weak interaction with the internal surface of NU-
1000 facilitated infusion of the monomer into NU-1000 pores and prevented unwanted polymerization on 
the outer surface of the MOF. Then, an aqueous NH4OH solution was added to the reaction mixture to 
neutralize dopamine hydrochloride and trigger oxidative polymerization to polydopamine in the presence 
of air (O2). Consequently, the bright yellow colored NU-1000 suspension turned olive indicating the 
formation of NU-1000/PDA composite, which was washed extensively to remove unreacted dopamine 
monomers and dried under vacuum. The PXRD profile of the resulting olive powder (Figure 2a) featured 
the characteristic NU-1000 peaks, indicating that the crystalline structure of the MOF remained intact after 
PDA formation and that the PDA chains were mostly confined to NU-1000 pores (if amorphous PDA 
coated the external surfaces of hexagonal rod-shaped NU-1000 crystals, then the crystallinity of the 
resulting composite would have been severely diminished). Subsequently, the NU-1000/PDA composite 
was soaked in an aqueous AuCl3 solution (2 mM) and stirred at room temperature for overnight, which led 
to a distinct color change of the suspension from olive to ochre, indicating the formation of metallic AuNP 
via the reduction of Au3+ ions. The resulting material was collected by centrifugation, washed thoroughly 
with H2O and MeOH, and dried under vacuum for subsequent studies. The PXRD profile of the resulting 
NU-1000/PDA/AuNP composite (Figure 2a) also featured the characteristic peaks of NU-1000 (2q ≈ 2.5, 
5.0, 7.5, and 10°) as well as of metallic AuNPs (2q ≈ 38 and 45°),82 confirming the presence of AuNPs in 
this composite as well. Although a MIL-100(Fe)/PDA composite had been previously used to extract Hg, 
Pb, and Pd from aqueous solutions of respective salts,81 this is the first demonstration of AuNP formation 
from an Au3+ solution by a MOF/PDA composite. For control studies, free PDA was prepared by aerobic 
oxidation of dopamine monomer in the absence of NU-1000, and a PDA/AuNP composite by soaking free 
PDA into an aqueous AuCl3 solution (2 mM) under the same conditions. According to PXRD analysis 
(Figure 2a), free PDA was amorphous, whereas PDA/AuNP displayed only the characteristic AuNP peaks 
confirming the PDA-induced reduction Au3+ ions to metallic AuNPs. 

 

Figure 2. (a) PXRD profiles of NU-1000, AuNP, NU-1000/AuNP, NU-1000/PDA, NU-1000/PDA/AuNP, 
and PDA/AuNP. (b) N2 sorption isotherms (77 K) of pristine NU-1000 (black), NU-1000/AuNP (orange), 
and NU-1000/PDA/AuNP (blue), adsorption: closed circles, desorption: open circles.  

N2-sorption studies (Figure 2b) revealed that compared to highly porous NU-1000 (2215 m2/g),70 
activated NU-1000/AuNP and NU-1000/PDA/AuNP composites possessed smaller BET surface areas 
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(1527 and 715 m2/g, respectively) due to the presence of embedded PDA and AuNPs inside the pores. The 
smaller surface area of NU-1000/PDA/AuNP than that of NU-1000/AuNP composite can be attributed the 
presence of both PDA and AuNPs in the former. Notably, the surface area of NU-1000/AuNP was still 
slightly higher than that of a Ni-carborane (NiCB)-doped NU-1000 (1260 m2/g), which displayed a similar 
range of conductivity.70 Although smaller than pristine MOF’s, the surface areas of semiconducting NU-
1000/AuNP and NU-1000/PDA/AuNP composites were still larger than most 3D porous MOFs having 
comparable conductivity,86–91  suggesting that this could be an effective strategy to create electronic 
conductivity while preserving sufficient porosity of MOF materials, thus combining two most desired but 
conflicting features in a single platform.  

The FT-IR analysis of NU-1000/PDA and NU-1000/PDA/AuNP composites (Figure S1) showed 
the characteristic PDA signals at ca. 1600 and 1300 cm–1 corresponding to C=C, C=N, and C=N–C bond 
stretching vibrations, respectively, confirming the presence of PDA in these materials. TGA revealed 
(Figure S2) that while free PDA gradually decomposed with increasing temperature and completely 
vanished as CO2, H2O, and N-oxides gasses leaving no residual weight at ~600 °C, thermally decomposed 
PDA/AuNP composite left a constant ~53% residual weight corresponding to metallic Au after complete 
disappearance of PDA. In contrast, NU-1000, NU-1000/AuNP, NU-1000/PDA, and NU-1000/PDA/AuNP 
displayed small initial weight loss due to solvent loss (~10 % up to 100 °C), followed by a stable plateau 
before decomposing at higher temperature (≥ 400 °C) leading to a sharp weight loss. The residual weights 
of these thermally decomposed materials—NU-1000 (~33 %), NU-1000/AuNP (~47 %), NU-1000/PDA 
(~28 %), and NU-1000/PDA/AuNP (~50 %)—accounted for indestructible ZrO2 and Au (the MOF-
embedded PDA should also vanish completely), which provided valuable insights into the amounts of 
MOF-embedded PDA and AuNP in each composite. Based on the molecular formula (Zr6C88H60O32) and 
formula weight (2176.74) of NU-1000,92 a fully pyrolyzed NU-1000 formula unit can produce six ZrO2 
molecules (FW: 123.3, total weight: 739.8), which accounted for ~33% weight of the pristine MOF. In 
other words, 33% residual weight corresponding to remaining ZrO2 in thermally decomposed NU-1000 
corresponds to 100 % of original NU-1000. Therefore, the higher residual weight of fully decomposed NU-
1000/AuNP composite (~47 %) suggested that it contained ~14 wt% of embedded AuNPs. On the other 
hand, the smaller residual weight of thermally decomposed NU-10000/PDA composite (~28 %), which 
stemmed entirely from ZrO2 (the embedded PDA vanished), corresponded to 85 wt% of NU-1000, leaving 
~15 wt% of embedded PDA in this composite. Thus, the residual weight of fully decomposed NU-
1000/PDA/AuNP (~50 %) than NU-1000/PDA (~28 %) suggested that the difference (~22 wt%) stemmed 
from the embedded AuNPs in the former. Thus, the AuNPs content in NU-1000/PDA/AuNP (~22 wt%) 
was ~1.5 times greater than in NU-1000/AuNP (~14 wt%) possibly due to the fact that the electron-donating 
catechol and amine groups of embedded PDA led to more efficient reduction of infiltrated Au3+ ions to 
AuNPs than the Zr4+-bound OH groups of pristine NU-1000.  

The presence of embedded PDA and AuNPs in NU-1000/AuNP and NU-1000/PDA/AuNP 
composites was further confirmed by SEM and STEM-EDX analyses (Figure 3). The SEM images (Figure 
3a–d, left) revealed hexagonal rod-shaped crystals of pristine NU-1000, which remained largely intact in 
NU-1000/AuNP, NU-1000/PDA, and NU-1000/PDA/AuNP composites. No polymer brush protruding out 
of the smooth surfaces and sharp, well-defined edges of NU-1000 crystals was observed, suggesting that 
the in situ generated PDA was mostly confined to the MOF pores instead of growing on the outer surface. 
The STEM-EDX analysis (Figure 3a–d, colored panels) revealed that in addition to signature elements of 
the host MOF (Zr, C, and O), NU-1000/AuNP composite contained Au; NU-1000/PDA featured N, the 
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signature element of PDA; and NU-1000/PDA/AuNP contained both N and Au, confirming the coexistence 
and uniform distribution of each component of respective composites. Furthermore, cross-sectional SEM 
and STEM-EDX analysis (Figure 3e–h) of 100 nm thick slices of NU-1000, NU-1000/AuNP, NU-
1000/PDA, and NU-1000/PDA/AuNP embedded in epoxy resin revealed uniform distribution of the 
signature elements of each component inside the well-defined hexagonal cross-sections of NU-1000 
crystals, i.e., Zr, C, and O in pristine NU-1000; Zr, C, O, and N in NU-1000/PDA; and Zr, C, O, N, and Au 
in NU-1000/PDA/AuNP, confirming the presence of the PDA and AuNPs inside the MOF. Back-scattered 
and secondary electron SEM image of NU-1000/PDA/AuNP composite (Figure S3) further confirmed the 
presence of AuNPs embedded underneath the MOF surface. 
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Figure 3. (a–d) The SEM images (left) and color-coded STEM-EDX elemental mapping (right) of (a) 
pristine NU-1000, (b) NU-1000/AuNP, (c) NU-1000/PDA, and (d) NU-1000/PDA/AuNP. (e–h) Cross-
sectional SEM images (left) and color-coded STEM-EDX elemental mapping (right) of (e) pristine NU-
1000, (f) NU-1000/AuNP, (g) NU-1000/PDA, and (h) NU-1000/PDA/AuNP. 

Finally, room-temperature electrical conductivities of NU-1000, NU-1000/AuNP, NU-1000/PDA, 
and NU-1000/PDA/Au were determined by two-probe I–V measurements (Figure 4a and S4) performed on 
pressed pellets of respective materials sandwiched between two stainless steel electrodes surrounded by a 
snug-fit Teflon tube. Since NU-1000 lacks well-defined through-bond and/or through π-stack conduction 
pathways4–7 it relies on relatively less efficient redox-hopping between spatially well-separated ligands. 
Therefore, although horizontally and vertically oriented NU-1000 thin films displayed modest anisotropic 
conductivity (10–9 and 10–7  S/cm, respectively) due to more efficient redox-hopping along the c-axis,84 NU-
1000 and NU-1000/PDA pellets consisting of randomly oriented MOF crystallites practically acted as 
insulators without showing any meaningful conductivity (≤ 10–12 S/cm, Figure S4). In contrast, NU-
1000/AuNP and NU-1000/PDA/AuNP pellets displayed several orders of higher room temperature 
electrical conductivity—1.2 (±0.1) × 10–7 and 5.2 (±0.04) × 10–7 S/cm, respectively—which was attributed 
to more efficient charge hopping and/or tunnelling83 facilitated by the in-situ generated AuNPs located 
inside the MOF. The slightly higher conductivity of NU-1000/PDA/AuNP than NU-1000/AuNP could be 
attributed to higher AuNP content in the former. In contrast, the MOF-free PDA/AuNP composite displayed 
negligible conductivity (3.2 × 10–11 S/cm, Figure S4), demonstrating that randomly distributed AuNPs 
embedded in amorphous PDA matrix did not support efficient charge hopping. On the other hand, 
crystalline NU-1000 enabled more orderly distribution of AuNPs inside its cavities, leading to more 
efficient long-range charge hopping and higher electrical conductivities of NU-1000/AuNP and NU-
1000/PDA/AuNP composites, demonstrating a distinct benefit of the crystalline MOF over amorphous 
PDA. While the conductivities of NU-1000/AuNP and NU-1000/PDA/AuNP composites are comparable 
to that of NiCB@NU-1000,70 NU-1000/AuNP possesses larger surface area than NiCB@NU-1000 (1527 
vs. 1260 m2/g), demonstrating that AuNPs can be installed to successfully convert intrinsically insulating 
porous MOFs into electrically conducting composite while retaining sizeable porosity. Furthermore, the 
room-temperature conductivities of NU-1000/AuNP and NU-1000/PDA/AuNP composites are 104 times 
higher than that displayed by AgNP@Rb-CD without any light and/or thermal induction,83 to our 
knowledge, the only other electrically conducting MOF/MNPs composite reported to date. In this context, 
it is also important to note that the bulk conductivity values of MOFs pellets are usually 1–3 orders of 
magnitude smaller than the values measured with single-crystals and specifically oriented MOF films due 
to the contributions of grain boundary resistance and random distribution of MOF crystallites in the pellets. 
Finally, the thermal activation energies of NU-1000/AuNP (Ea = 0.24 eV) and NU-1000/PDA/AuNP (Ea = 
0.12 eV) composites were determined from the Arrhenius plots (Figure 4b and c) of respective temperature-
dependent electrical conductivity values, which confirmed their semiconducting nature. Thus, an 
intrinsically insulating NU-1000 MOF was successfully transformed into semiconducting NU-1000/AuNP 
and NU-1000/PDA/AuNP composites while also preserving significant porosity and surface area of the 
host MOF.  
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Figure 4. (a) Representative I-V plots of NU-1000/AuNP (orange) and NU-1000/PDA/AuNP (blue). 
Arrhenius plots of temperature-dependent conductivity of (b) NU-1000/AuNP (orange) and (c) NU-
1000/PDA/AuNP (blue) revealing their respective activation energies. 

 

CONCLUSIONS 

The foregoing studies demonstrated that while pristine NU-1000 itself could reduce the infiltrated Au3+ 
ions to metallic AuNPs forming NU-1000/AuNP composite, a NU-1000/PDA composite obtained by 
oxidative polymerization of preloaded dopamine monomers yielded NU-1000/PDA/AuNP composite 
containing a higher AuNP content due to the better reducing capacity of electron-donating PDA polymer. 
The SEM and STEM-EDX analyses revealed the coexistence and uniform distribution of signature elements 
of each component of respective composites, confirming the presence of PDA and AuNPs inside NU-1000 
pores. Although NU-1000/AuNP and NU-1000/PDA/AuNP composites became less porous than pristine 
NU-1000, they still retained sizeable porosity (BET surface areas 1527 and 715 m2/g, respectively), while 
gaining significant electrical conductivity (~10–7 S/cm), which pristine NU-1000 lacked. Notably, the bulk 
electrical conductivities of NU-1000/AuNP and NU-1000/PDA/AuNP composites are on par with that of 
NiCB-doped NU-1000 films and 104 times higher than that of the only other MOF/MNP composite (Rb-
CD/AgNP) with a measurable conductivity reported to date. The markedly higher conductivity of NU-
1000/AuNP and NU-1000/PDA/AuNP composites is attributed to more efficient charge hopping or 
tunneling through well-dispersed and organized AuNPs embedded inside crystalline NU-1000 matrix, 
which practically insulating NU-1000, NU-1000/PDA, and PDA/AuNP lacked. Thus, this work presents 
an effective novel strategy to convert porous but non/poor conducting MOFs into electrically conducting 
MOF/MNP and MOF/polymer/MNP composites with sizeable porosity, which will help expand their utility 
in modern electronics and energy technologies.  
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