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A B S T R A C T

Traffic congestion occurs daily but the transportation network still functions to meet people’s travel needs.
We propose that a road meets operation requirements as long as the quality of its links (i.e., speed or travel
time) satisfies an acceptable threshold. This paper incorporates the link reliability concept into the road travel
performance using the link quality threshold to offer new perspectives on network resilience measurement. We
introduce two aggregated macroscopic metrics: network reliability scale index, and network stability, based
on the link reliability to quantify the road travel performance change in facing external disturbance. We use
the temporal traffic-embedded Harris County, TX transportation network during the 2017 Hurricane Harvey
as a case study. We show that the proposed metrics can well capture the transportation network performance
variation during flooding. Also, we develop an integrated resilience metric that encapsulates the network
resistance, recoverability, and rapidity in facing flooding. The results move us closer to better understanding
transportation network resilience behavior in different link quality conditions (q). The findings of this research
also provide important insights for city planners and traffic operators to examine transportation network
resilience through a reliability and stability lens.

1. Introduction

Transportation networks are the backbone of human movements
and activities in urban systems. Maintaining road network topological
integrity in facing disturbances is critical for providing basic trans-
port functionality [1]. Extensive research has already been devoted to
road network resilience assessment using topological information of
physical roads as it is the most accessible and complete data source.
For example, Dong et al. [2] investigated the robustness of co-located
road and sewer networks in different earthquake disruption scenarios.
Wang et al. [3] examined the road network connectivity in the face
of flood-induced large-scale inundation. Topology-based network ro-
bustness [4,5] modeling and analysis have revealed different important
patterns and governing characteristics of road network structure in
various disaster disruption scenarios, which can help inform vulnera-
bility reduction and hazard mitigation strategies [6–8]. However, the
topological integrity of the road network does not fully guarantee
the desired level of travel performance. Functionality loss such as
heavy congestion can also lead to transportation network failure. More
importantly, these two types of failures are often compounded during
disasters such as flooding and further exacerbate the impact of flooding
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on transportation resilience. Using the traffic network of Harris County,
Texas (USA), in the context of the 2017 Hurricane Harvey as an
example, Fig. 1(a) shows the spatial mapping of the proportion of the
time that a road is congested from 8 am to 9 am on both August 8th and
28th, 2017. Fig. 1(b) presents the mapping of the congestion time ratio
difference between them, which encapsulates the impact of Hurricane
Harvey flooding on road congestion.

To reveal the transportation resilience behavior, we use a link
quality measure to characterize the travel performance. The proportion
of the time that the link quality meets functionality expectations is
considered the link reliability. We hypothesize that the link reliability
of a network follows a power-law distribution and can help us capture
the network resilience behavior during flood disruptions. Moreover,
although link reliability varies over time, we expect the link reliability
variation to fluctuate within a range to ensure stable travel perfor-
mance. However, as shown in Fig. 1(b), the increase or decrease in
reliability of certain links was extreme. Such abnormal increase and
decrease would induce perturbations and result in the shift in the
network metastable states [9]. We propose that link reliability variation
reflects the network stability behavior and can be used to further
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Fig. 1. Dynamic link reliability of Harris County, TX transportation network.

characterize the network resilience performance beyond topological
characteristics.

It is often anticipated that network performance will experience
degradation during flooding, but exactly how long it takes to re-
cover and the extent to which the network performance will be dis-
rupted remains unknown. The hypothesis and research questions pre-
sented above motivate us to understand the network resilience behavior
through the lens of link reliability and stability in the face of disaster
disruptions [10]. Different from the existing transportation resilience
study where modified normal travel demand is adopted [11], we use a
unique empirical disaster traffic dataset in Harris County, TX to help
us examine the extent to which Hurricane Harvey flooding affected
the network reliability and measure the network resilience throughout
the network disruption and recovery phases. Such resilience charac-
terization using empirical flood-disrupted traffic data is missing in
current literature. This research will bridge this gap and provide new
insights and metrics for evaluating transportation network resilience
performance. Results of this research can improve our understanding
of transportation resilience when facing flood disruption and facilitate
stakeholders’ and engineers’ decision-making in traffic control during
disasters.

2. Literature review

2.1. Transportation reliability

Transportation reliability is commonly studied from three perspec-
tive: connectivity reliability, capacity reliability, and travel time reli-
ability [12–14]. Travel time reliability relates to the characterization
of the travel time variation [15,16]. The U.S. Department of Trans-
portation (USDOT) defines reliability as ‘‘the degree of certainty and
predictability in travel times on the transportation system’’ [17]. Ster-
man and Schofer [18] initially computed the inverse of the standard
deviation of travel time as transportation service reliability. Later, more
models are developed for travel time reliability measurement. Califor-
nia Buffer Time Reliability model [19] uses the difference between 95th
percentile travel time (i.e., planning time) and the average travel time
as the buffer time. Florida DOT [20] developed the Florida Reliability
model by setting an upper threshold and calculating the probability that
the actual travel time does not exceed the threshold [21]. Al-Deek and
Emam [21] define the link travel time reliability as the probability that
the travel time at degraded capacity is less than the free-flow travel
time plus a tolerance margin. Indexes such as Buffer Time Index (buffer
time divided by the average travel time) [16,22,23] and Planning Time
Index (dividing the 95th percentile travel time with the free-flow travel
time) [16,23,24] are also developed to describe the link reliability by
the time-of-the-day or day-of-the-week.

An important aspect of reliability is to determine if a trip can be
completed within an expected time [21,25], such as mean degree travel
time with several degrees of variation. Lo et al. [26] introduced the
Within Budget Time Reliability as the probability that a trip is within
the travel time budget. Similar to this definition, we translate the
probability into a ratio that describes the proportion of the time that a

link is underperforming, namely, the speed is lower than an acceptable
level and thus cannot complete the travel within the expected time.
We are not intended to replace the existing reliability definition but to
present a different perspective to capture the reliability dynamics on a
temporal scale.

In addition, it is critical to understand transportation system be-
havior in facing non-recurring congestion induced by the extreme
weather, so that Metropolitan Planning Organization (MPO) planners
and operations managers, and analysts can better manage the traffic
in urban areas during natural disasters [27–30]. Several studies have
examined the impact of link failures on transportation system per-
formance. For example, Sullivan et al. [31] examined the impact of
critical road failure on Chittenden County on transportation network
robustness through a capacity-reduction approach and showed that
system-wide travel time varies dramatically. Ganin et al. [32] examined
the impact of small random road failure on 40 U.S. metropolitan
transportation networks and showed that 5% link disruption can result
in serious resilience and efficiency damages. However, previous studies
all employed synthetic or adjusted normal day traffic data, which
cannot fully capture the system dynamics in a disaster where flooding,
congestion, and rerouting occur. This research employs the unique
empirical fine-resolution traffic data during hurricane Harvey to unveil
the transportation system behavior under disruptions. Moreover, we
are able to examine the network reliability of a large-scale network in
different phases of a disaster (stable, disruption, recovery), which has
not been captured in previous studies.

2.2. Resilience measurement

Resilience has been widely studied in different fields [33,33–37],
and different disciplines interpret resilience with its unique domain
knowledge. Even within the same field, such as transportation, re-
silience is assessed from different perspectives [38]. For example,
Zhang et al. [39] investigated the transportation network resilience
from a topological perspective. Adjetey-Bahun et al. [40] evaluated the
mass railway transportation system resilience through system efficien-
cies such as passenger delay and passenger load. Markolf et al. [41] dis-
cussed transportation resilience considering its interconnections with
other critical infrastructure systems. Chen and Miller-Hooks [42] mea-
sures the resilience of the transportation network by calculating the
expectation of the ratio between maximum demand that an origin–
destination pair can satisfy after and before a disruption. Francis and
Bekera [43] introduced a dynamic resilience metric by multiplying the
recovery speed, the percentage of performance loss, and the percent-
age of the performance recovery. Therefore, no unified approach or
definition of resilience can be asserted [44]. For instance, resilience
characterization has been approached from different perspectives [45],
including

• Vulnerability: system’s susceptibility to disruption [46]
• Robustness: system’s ability to absorb disturbance and remain
functional [47,48]

• Reliability: the probability that a network deliver adequate func-
tionality given a disruption [49–52]
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• Recoverability: the ability of a disrupted network to recover its
functionality [53]

• Redundancy: the ability of the system to undertake disruption
without severely damaging the system performance [54,55]

• Rapidity: recovery with a focus on the speed to recover [56]

These metrics have been widely investigated among researchers.
Berdica [57] discussed vulnerability from the perspective of reliability,
robustness, resilience, and redundancy. Rather than a quantitative
measure, they view vulnerability as a way of thinking. Chen et al. [58]
studied transportation vulnerability by assessing the impact of network
disruption on accessibility in terms of travel time or generalized travel
cost increase. However, the model was only applied in a five-node
network, which provides limited insights for the effective large-scale
network application. Xu et al. [59] used travel alternative diversity and
network spare capacity to characterize the transportation network re-
dundancy. They can also serve as criteria for network vulnerability as-
sessment. Recent disaster events also raised attention for transportation
network vulnerability and resilience assessment [60–62].

Several studies have examined the resilience of the transportation
network under disruptive events such as flood. For example, Morelli
and Cunha [61] evaluated the increase in travel path length due to
disruptions in different regions. They show that motorized individual
transport is more vulnerable to floods, compared to walking and cy-
cling. Papilloud and Keiler [63] assessed the direct and indirect impact
of extreme floods on regional road networks based on accessibility
loss. The proposed metrics take population and average shortest travel
time into account when identifying highly impacted traffic. Wi±niewski
et al. [64] examined the vulnerability for accessing critical facilities
such as grocery stores during flooding.

Empowered by modern data collection technology, many studies
also used empirical data to examine the transportation network per-
formance in facing disruption. Esfeh et al. [65] used travel time and
incident data collected in the City of Calgary to examine the spa-
tiotemporal impact of the incident on road network vulnerability. Pan
et al. [66] used the OD-grid network to assess the transportation
network resilience and tested the recovery strategy using empirical
GPS data. Calvert and Snelder [67] proposed the Link Performance
Index for Resilience (LPIR) to assess road traffic resilience and demon-
strated its application in a real motorway network. Adams et al. [68]
studied freight resilience of the Hudson-Beloit corridor by examining
the resilience triangle derived based on empirical truck speeds and
counts. Muriel-Villegas et al. [69] used real data to investigate the inter-
urban transportation network connectivity and vulnerability through a
case study in Antioquia, Columbia. The findings of prior research have
great implications for real-world transportation management. However,
empirical data-driven studies are still rare, mainly due to the lack of
proper methods and high-resolution data during disasters. This research
complements existing literature on examining disaster impact on trans-
portation and provides a novel robust data-driven network approach
to measure the mobility reliability and resilience behavior in facing
large-scale flood disruption.

In this paper, we adopt the insights from [44] and define transporta-
tion resilience as the system’s ability to absorb disruptions, maintain
essential structure and functionality, and timely recovery from the
disruption events such as natural disasters to a new state with accept-
able performance at reasonable costs. We deem that the amount of
performance loss and recovery is equivalently important to the speed
of such loss and recovery. Accordingly, we developed an integrated
resilience measure that encapsulates vulnerability, recoverability, and
rapidity for functionality recovery in Section 4.3.

2.3. Infrastructure failure characterization in resilience assessment

All resilience definitions involve the consideration of system per-
formance in facing disruptions [70–74]. Thus, proper characterizations

of the network disruption are critical in resilience assessment. In the
case of the transportation network, the disruption is often modeled by
modifying topological or functional attributes of road networks [75].

Topological attributes such as connectivity, emphasize the connec-
tion between infrastructures and are often studied through graph-based
approaches and metrics [76]. Many studies have examined the trans-
portation network resilience using a topological approach. For example,
Dong et al. [47] examined the robustness of several road networks
through random failure-based percolation. Dong et al. [77] also ex-
amined the road access to hospitals in the aftermath of a probabilistic
earthquake-induced transportation network failure. Chopra et al. [78]
investigated the vulnerability of the London metro network through
various topology-based metrics.

The topological approach has proven to be an effective method for
preliminary network resilience analysis, especially when dynamic data
is limited and connectivity or critical facility access assessment is of
interest. It only requires simple network topology data but provides
rich information regarding the criticality of each component and how
road connectivity can influence the resilience of the network. The
disadvantage of the topological approach lies in the simplified binary
infrastructure failure characterization. The road or intersection failures
are represented with link and node removal in the simulation [77].
However, partial failure is very common in real life. For example, lane
closure or traffic congestion may only compromise a fraction of the
performance. In this case, dynamic functional failure can be considered.

Functional attributes mainly focus on the serviceability of the
transportation network, such as travel time/speed/distance, capac-
ity/throughput, mobility/accessibility [31,75,79]. Geng et al. [80]
considered the network demand under disruption in network resilience
assessment. Ganin et al. [32] examined the resilience and efficiency
of multiple cities’ road networks using functional measures such as
travel delay. Li et al. [81] define link quality of a road at time t as
the ratio of its current travel speed and maximum speed. Similarly,
Hamedmoghadam et al. [82] define link quality of a road at time
t as the ratio of current travel time and free-flow travel time. The
road functional status is then determined by comparing the road’s link
quality and an acceptable performance threshold q.

The link quality approach enables the integration of both dynamic
road performance and partial temporal road failure in the road failure
characterization. Thus, we adopt the link quality approach in this study.
More importantly, based on the aforementioned road functional status
definition, a road’s status can switch between functional and failure
over time in dynamic transportation, such as traffic congestion or road
inundation. Therefore, we further calculate the fraction of time that a
link remains functional and define it as the link reliability (Eq. (2)) to
evaluate the network resilience performance.

3. Methodology

The transportation network can be modeled as a graph G(V ,E,W )
whose link attributes vary temporally. V = {v1,… , vn} is a set of N
nodes (i.e., intersections) and E = {eij , i, j = 1,… , n} is the set of k links
(i.e., roads) that connect node i and node j. W = [W (t), t = 1,… , T ] is a
series of temporal weight matrix where wij (t) represents the temporal
attribute of the link eij at time t. Link quality is a dynamic feature
that has been used to describe the performance of each road [81–
83]. We define link quality as the ratio of travel speed (vij) at time
t and the reference speed of the link (vl). Reference speed is the ‘‘free-
flow’’ mean speed of the link [16]. The dynamic traffic patterns make
the link quality a time-variant feature as travel speed changes over
time. Travel speed is used because it can directly reflect the impact
of the disaster disruption on travel demand and road condition. A low
travel speed (relative to the reference speed) indicates road congestion,
which implies a low link quality. The link quality (vij_vl) essentially
encapsulates the extent to which the traffic on road eij is disrupted.
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Ideally, link quality should equal 1, namely, vehicles expect to
travel at the reference speed on all roads. However, our daily travel is
compromised due to varying factors, such as increasing urbanization,
traffic incidents, and disaster disruptions. We gradually develop a tol-
erance for travel experience degradation by adjusting our expectation
or standard for link quality to a lower threshold. Depending on what
level of travel speed is deemed acceptable, we can use a link quality
threshold q to determine if a road is reaches expected functionality
or congested at different times. We formulate this rule in Eq. (1) for
determining link function status f (i.e., functional or dysfunctional).

f (i, j, t) =
T

1 vij (t)_vl g q
0 vij (t)_vl < q

(1)

where q is the link quality threshold that characterizes the tolerance
for link performance. The quality threshold q suggests that a partially
compromised link can still be considered functional if its performance
is above an acceptable level. For example, for a road with a reference
speed of vl = 60 miles/h, q = 0.3 indicates that as long as the travel
speed is above 18 miles/h, we consider the link is functioning. The link
quality threshold q can also be interpreted as the acceptable system
performance level, above which the system is considered functional.
The selection of q is dependent on the city’s traffic behavior and the
decision-makers’ goal for traffic performance.

3.1. Link reliability definition using link quality threshold

Link function status f oscillates over time. For example, travel
congestion occurs during rush hours and the link function status transits
from 1 to 0. While in off-peak hours, the link function will switch
back to 1. This traffic pattern is commonly recognized in daily life.
Such an oscillation phenomenon can also occur when a network is
disrupted. For example, the flooding-induced road closure will lead to
traffic rerouting, which can turn a congestion-free road into a deadlock.
More importantly, the time at which a link stays functional is also
critical. For instance, a link that stays congested for one hour has a
better performance than a link that stays congested for four hours, in
terms of its performance reliability. To capture this important temporal
feature, we formulate the link reliability rij of link eij during time Ã t
(= tn * tm) as the ratio depicted in Eq. (2).

rij (tm, tn) =
≥tn
tm
f (i, j, t)
Ã t

(2)

Link reliability of the network is represented by r in general, and
it is a microscopic network performance metric that measures the
proportion of time that a link’s functionality stays above the link quality
threshold q. If specified as rij , it indicates the reliability of the link
eij . In the case of flooding, roads may be inundated and the travel
speed can decrease. The resulting prolonged congestion would indicate
the network quality does not meet standards over time, and thus, link
reliability decreases. It is worth noting that the fluctuation range of the
speed is not considered in the reliability definition. We mainly focus on
determining if a road’s speed/travel time meets the expectation (q) or
not. Once they meet the criteria, we do not specify how much they are
above or below the threshold.

3.2. Network reliability scale characterization through link reliability distri-
bution

Spatial mapping of individual link reliability enables the identifica-
tion of the critical unreliable links, whereas the holistic investigation
of aggregated link reliability can reveal the network’s macroscopic
performance pattern. It is important to notice that roads are intercon-
nected. So the theoretical analysis of a network should consider road
correlations. However, this research uses the empirical traffic data,
where impacts between roads are already captured and reflected in the

observed speed. Therefore, we can examine the network performance
based on aggregated link performances.

Using a hypothetical transportation network with 100 roads as an
example (Fig. 2). In an off-peak hour, 90 roads are congested only in
1% of the time, 9 roads are congested in 3% of the time, and 1 road
is congested in 10% of the time. As traffic increases in a rush hour, 60
roads become congested in 1% of the time, 30 links become congested
in 3% of the time, and 10 links are congested in 10% of the time.
The shift of link reliability slope in two scenarios reflects the network
functionality change. Therefore, we investigate the distribution of link
reliability across the entire network. As suggested by Jiang et al. [84],
road congestion duration distribution follows a power-law distribution.
Thus, we hypothesize the distribution of link reliability r across the
network during a given period follows the relationship in Eq. (3):

p Ì (1 * r)*↵ (3)

where *↵ is the exponent that controls the slope of the distribution.
1 * r is the opposite of the link reliability, namely, the proportion of
time that a link is congested, and p is the frequency of corresponding
link congestion. In the illustrative example in Fig. 2(b), for the roads
congest 1% of the time, the probability for the road holds reliability
r = 0.99(= 1 * 0.01) is p = 0.9(= 90_100) in off-peak hour (i.e., blue
curve) and it changes to p = 0.6(= 60_100) in peak hour (red curve).

Fig. 2(b) shows an example of ↵ from 8:00 a.m. to 9:00 a.m. with the
link quality threshold q = 0.3. The reliability of each link is calculated
based on Eq. (2) and the opposite of reliability, 1 * r is then plotted
in log–log scale. In this illustrative case, ↵ equals 2.726. As suggested
by Fig. 2(a), the slope reflects the network functionality. When ↵
decreases, the fitted line becomes flat and more links become less
reliable, as more values concentrate in the high 1 * r end, namely the
low-reliability region. Similarly, the increase in ↵ indicates more links
become reliable. The change of ↵ and r are consistent here. Therefore,
we use 1*r in the definition and name ↵ as the network reliability scale
index. ↵ is a macroscopic network performance metric that depicts the
reliability distribution of the whole network during a given time.

3.3. Network stability characterization considering link reliability variance

We have shown that link reliability fluctuates over time due to
the dynamic nature of traffic. However, such fluctuation should vary
within a range to ensure the stability of the network functionality.
Moreover, despite the significance of understanding the impact of link
reliability reduction on network resilience, equivalently important is to
consider the obvious improvement of link reliability. Because a drastic
change of link performance, either improvement or degradation, can
both disturb the metastability of the transportation network [5]. For
example, historical data show the reliability of a selected road on a
regular day varies from 0.2 to 0.5. In the case of an important sports
event, the traffic worsens and the link reliability can drop to 0.1. On
the other hand, when a travel restriction is implemented, fewer vehicles
are on the road and the link quality can increase to 0.7. Therefore, we
introduce the metric of link stability and define it as an interval, from
which link behavior abnormality, both the functionality improvement
and reduction, can be detected when the link reliability falls out of the
defined range.

Fig. 3(a) shows a single link’s (eij) dysfunction ratio (1 * rij) from
Aug. 1 to Oct. 30, 2017 under different combinations of q and �. We
can observe that a link’s dysfunction ratio normally varies within a
range but fluctuates drastically during Hurricane Harvey. If we define
a boundary, we can identify the network’s abnormal behavior accord-
ingly, as pointed by the yellow squares and diamonds in Fig. 3(a).
When we aggregated all links’ dysfunctional ratio on Aug. 16, 2017 as
presented in Fig. 3(b) and fit a boundary, we can capture the stability
of the network.  lij and  

u
ij are the defined lower and upper bound of

the dysfunction ratio of link eij based on historical baseline data. This
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Fig. 2. Illustrative example of network resilience scale index characterization.

Fig. 3. Single-link and network-wide reliability stability illustration, with different q and � combinations.

boundary (i.e., curved red dash and green solid line) is the result of the
concatenation of all individual link ranges.

 uij = min{(1 * r
b
ij ) +max{�(1 * rb), (� * 1)(1 * rbij )}, 1} (4)

 lij = max{(1 * r
b
ij ) *max{�(1 * rb),

� * 1
�

(1 * rbij )}, 0} (5)

where 1*rbij indicates the baseline dysfunction ratio of link eij and 1*rb
is the average baseline dysfunction ratio of the whole network. � is the
tolerance factor that controls the width between the upper and lower
bound.

The boundary in Eqs. (4)–(5) are empirically derived. The rationale
is that we first constructed the dysfunction ratio boundary by adding or
subtracting a buffer of � times of network’s average baseline value 1*rb
to the link’s baseline value (1*rbij ). In this case, the upper boundary has
the possible format of  uij = (1* rbij ) + �(1* rb) and the lower boundary
is  lij = (1* rbij )*�(1* rb). However, the distribution of the dysfunction
ratio is highly nonlinear at higher values. Thus, we use variations of
the link’s baseline value rbij as the buffer. Different treatments of � * 1
and �*1

� ensure we accommodate the non-linearity and only capture
the extreme abnormal fluctuation behavior in both directions. In this
scenario, the upper boundary has the possible format of  uij = �(1 + rbij )
and the lower boundary is  lij =

1
� (1* r

b
ij ). Based on the value adoption

for �, different upper and lower boundary conditions can be derived.
Finally, we enforce the dysfunction ratio ranges between 0 and 1.

We show that a larger � creates a wider boundary that enables
higher tolerance for heterogeneous reliability behaviors. The reason we
use different � values for different thresholds q is because, the variation
of reliability fluctuation for different q values are different. We consider
the network before a disaster is relatively stable. So we adjust the � to
encapsulate most of the links. In this case, we can capture how many
links were behave abnormally because of the disaster.

Since the network reliability behavior is of interest, we will investi-
gate the reliability fluctuation as shown in 3(c). The proportion of the
links whose reliability falls within the define range during time [tm, tn]
is defined as the network stability s:

s(tm, tn) =
1
k

n…
i,j
�tm,nij (6)

�tm,nij =
T

1 1 *  uij f rij (tm, tn) f 1 *  lij
0 else

(7)

where �tm,nij is the link stability indicator—a binary value that indicates
if the reliability of link eij is within the defined range. rij (tm, tn) then
iterates through all links (k) in the network and calculates the pro-
portion of links whose reliability value falls within the defined range
during time [tm, tn]. That is to say, as long as the reliability of the link
is within an expected range, we consider it as stable. Network stability
s is a macroscopic performance metric that ranges from 0 to 1.
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Fig. 4. Flood-disrupted Harris County transportation network during Hurricane Harvey.

4. Road network resilience in the case of Hurricane Harvey

The proposed two network performance metrics are examined using
the transportation network of Harris County, TX in the case of the
2017 Hurricane Harvey flood disruption. Hurricane Harvey stalled over
Harris County, home to Houston, from August 26 to 28, and is one of
the costliest extreme weather events in the United States history [85].
Fig. 4(a) maps the ‘‘closed roads’’ (whose travel speed reduced to 0)
due to Hurricane Harvey flooding. Fig. 4(b) shows the development of
such road disruption and recovery before, during, and after Hurricane
Harvey. Other than the topological data, we also acquired a high-
resolution traffic dataset (i.e., average traffic information every 5 min),
capturing the dynamic traffic condition for the 92 days from August 1
to October 31. The traffic speed data was collected by tracking peo-
ple’s mobile phone movement and its accuracy has been significantly
improved over the years due to the prevalence of smartphone usage.
Large-scale smartphone location-based mobility data made it possible
for us to reveal the hidden empirical dynamics of the disrupted human
and infrastructure system during disasters [83,86,87].

The connected network of Harris County contains 15,390 nodes and
19,712 links. Each link has both dynamic and static attributes, such as
average travel speed, reference speed, binary road closure status, link
coordinates, and link length. We use reference speed as the optimal
travel performance, and the travel speed less than the reference speed
is considered as the link quality drop. The ratio of travel speed and ref-
erence speed is defined as link quality. We propose that the road closure
and partial inundation would result in traffic slowdown and rerouting
that congests unflooded regions, and eventually lead to link quality
drop and network resilience reduction. Depending on the link quality
threshold (q) that one considers as the acceptable performance level,
the road can be classified as functional or dysfunctional using Eq. (1).
We use the commonly accepted definition of network resilience [88]
in this paper, which describes a network’s ability to anticipate, absorb,
adapt to, and recover from disruptive events. Specifically, we focus on
resilience through the lens of the link reliability and stability variations
in the case of flooding, and we use the Harris County road network
during Hurricane Harvey as the case study.

4.1. Temporal variation of network reliability during Hurricane Harvey

Using the procedure described in Section 3.2, the network reliability
scale index (↵) can be derived for each hour. Repeating this procedure
for every hour from August 1 to October 31, we obtained the resilience
curve for the network reliability scale index, as shown in Fig. 5(a). We
use the case of q = 0.3 as an illustration but such a resilience curve
can be developed with other q values as well. We can see that the
network reliability scale (↵) remains stable before Harvey. However,
as Hurricane Harvey approaches, an obvious drop of ↵ can be observed
(red shaded area), indicating that network resilience reduces as more

links’ reliability r decreases (i.e., probability of prolonged congestion
1* r increases). This can be explained by the fact that road inundation
pushes the original traffic to reroute to the fewer remaining roads,
which causes congestion. In addition, the inclement weather reduces
the safe travel speed on roads, which further exacerbates the conges-
tion, and therefore, the link reliability decreases. As the flood recedes,
the network resilience gradually improves with roads becoming more
reliable, since more roads are available for travel and road condition
improves.

To better demonstrate the temporal reliability dynamics before,
during, and after Hurricane Harvey flooding, we calculate the daily
average reliability to remove the traffic fluctuation noise, as shown in
Fig. 5(b). Considering the influence of the workday commute, we also
look into the weekdays and weekends separately. We can see that link
reliability during weekdays is lower than those on weekends. We can
also clearly identify different stages of the resilience curve. In specific,
before the onset of Harvey, the average reliability scale index ↵ is
around 2.07. As Harvey approaches, ↵ started dropping and reaches its
minimum value of 1.6 (23% of decrease) on September 1. This decline
directly relates to the disruption resulting from the compound failure
of flood-inundated roads and slowed traffic due to extreme weather.
The reliability performance then recovers to 1.81 (13% of increase)
on September 15, which can be explained by the flood water receding
and the improved travel condition on the functional road. The spike
in weekday curve (Fig. 5(b)) on September 4th 2017 (highlighted in
the green box) is because it was Memorial day. Thus, the network’s
reliability behavior on that day is closer to its weekend counterparts.
The reliability performance then remains stable till September 25. This
is likely the phase when dysfunctional roads (e.g., debris on roads
or traffic control infrastructure malfunction) are being cleaned and
properly maintained. Eventually, the reliability scale index ↵ recovers
and reaches 2.0 (10% of increase) in October and remain steady.
However, the transportation system was not able to fully recover to the
pre-Harvey condition, partially because the excessive debris generated
after Harvey takes many months to remove and the system was not fully
restored within the recovery horizon of this study [89,90]. Also, some
impacts of Harvey on trips and home relocation of impacted residence
continued beyond the period used in this study.

In addition to the average performance, we also examined the Inter-
Quantile Range (IQR, 25th to 75th) which is indicated by the light-blue
shaded area in Fig. 5(c) to show the variation of reliability of each day.
A clear weekly pattern can be detected from the IQR time series. Based
on the network reliability scale index (↵) time series of individual week-
days and weekends, we can conclude that link variation of reliability
within the day is higher during weekdays than on weekends. This is
likely caused by the work commute on weekdays.

Link functionality f is determined based on link quality threshold q
using Eq. (1). Meanwhile, link functionality f also defines link reliabil-
ity r as in Eq. (2), whose distribution shapes the value of ↵. Therefore,
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Fig. 5. Time series of network reliability scale index ↵ over the course of Hurricane Harvey.

Fig. 6. Sensitivity analysis of network reliability scale index ↵ responding to change of link quality threshold q.

it is important to examine the sensitivity of the resilience scale index
↵. Fig. 6(a) shows the overall variation of ↵ given different q values.
It is worth noting that we do not consider the cases of q = 0.1 and
q = 0.9 because they are extreme conditions and thus unrealistic goals
for traffic regulations. Additionally, we also see abnormal behavior due
to few valid data points when we attempt to fit the ↵ based on Fig. 2.

In the case of Harris County, we can observe that as the q value
increases, the ‘‘resilience triangle’’ become less obvious. Since the
variation of network reliability scale ↵ is more pronounced in smaller
q (e.g., below 0.5) as shown in Fig. 6, it indicates that Harris County’s

traffic fluctuation mainly oscillates at the lower level and is thus better
captured by smaller q. This is unique to each city’s traffic condition.
Harris County is the home to Houston, a large metropolitan area, so
the link quality is generally lower. A high link quality threshold q may
not be able to capture the lower level travel speed change. For example,
on a road with a reference speed of 60 miles/h, the pre-Harvey average
travel speed can drop from 30 miles/h to 18 miles/h during Harvey.
If q = 0.4 is considered, the functional status of this road changes
from 1 (functional) to 0 (dysfunctional) according to Eq. (1), which
consequently affects the derivation of reliability r and reliability scale
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Fig. 7. Network reliability stability fluctuation throughout Hurricane Harvey.

↵ as in Eqs. (2) and (3). However, if a larger q is employed (a higher
standard of what travel speed is considered as the acceptable travel
performance), such as q = 0.6, the road’s function status f before and
during Harvey are all considered unacceptable. Thus, the reliability r
remains the same, and consequently, the reliability scale index ↵ does
not change, which explains why the variation of reliability scale index
↵ before and during Harvey becomes smaller in high q values in this
study. Therefore, the selection of q needs to be based on the city’s
traffic and the decision-maker’s goal for traffic reliability control. A less
congested city may require a larger link quality threshold q for proper
reliability characterization and resilience assessment. Additionally, the
↵ value for larger q is low from the beginning (e.g., bottom lines in
Fig. 6(a)). That means fewer links satisfy the high-quality requirement
overall. Even if they become dysfunctional due to the flood disruption,
the change to the already-low reliability is small.

Moreover, a close examination of network reliability scale ↵ in
Fig. 6(b) suggests that network reliability increases during Harvey,
despite by a smaller margin. This is because, although the inundation
results in road closure and speed drop on certain roads, the travel
demand decreased on a small fraction of functional roads, which in turn
enables a higher travel speed that led to the small reliability increase.
It soon decreases when travel demand climbs back when rain stops and
flood recedes.

4.2. Hurricane Harvey flooding-disturbed network stability

In a steady-state, link reliability acts in stable patterns. For example,
some major roads are always congested during the weekday rush hours.
In the face of disruption, such a pattern can be disrupted as the
congestion will be exacerbated (e.g., travel rerouting) or alleviated
(e.g., travel demand reduction). When both changes exceed a tolerable
range, the change will perturb the network and result in abnormal
traffic behavior. The network stability s metric proposed in Section 3.3
enables us to capture the flood-disrupted network reliability variation.

We use the first two weeks of August as the baseline to derive the
upper ( li,j) and lower ( 

l
i,j) bound of the reliability fluctuation range

(Eq. (7)). We present the resilience performance of network stability
throughout Hurricane Harvey in Fig. 7 in the case of q = 0.3, � = 4.5.

We observe a clear disruption in network stability pattern during
Hurricane Harvey (the fourth week of August to the second week of
September in 2017) in Fig. 7. The network stability first decreases as
Hurricane Harvey approaches and then drops to the minimum. The
solid blue curve in Fig. 7(a) describes the fraction of roads whose
reliability stay within the Eq. (7) defined range. Fig. 7(b) visualizes the
stability characterization in log-scale. We can see that the reliability (r)
of most roads is within the stability boundary before Hurricane Harvey.
The stable pattern is disrupted during Hurricane Harvey as many links
(i.e., blue dots) fall out of the stability boundary. As Harris County
recovers after Hurricane Harvey, most outliers return to a stable state.

We further decompose the roads with abnormal reliability behavior.
As shown in Fig. 7(a), the red curve represents the proportion of links
that become more congested, and the green solid curve depicts those
links that become less congested. We can see that as Hurricane Harvey
approaches, there is an increase in both congested (due to inundation-
induced road closure) and alleviated roads (due to reduced travel
demand). As Hurricane Harvey rainfall diminishes, more people start
to travel but the flood has not entirely receded. Thus, the number of
less-congested roads decreases and the number of more-congested roads
continues to grow, till flood inundation and debris cleaning take into
effect.

Network reliability shows different patterns on weekdays and week-
ends (Fig. 5). Hence, we examine the network stability on weekdays
and weekends separately. Also, Fig. 3 has shown that the value of
tolerance factor � can affect the width of the stability range. Therefore,
we derive an optimal � for each q. We assume that the network is
stable before Hurricane Harvey. Therefore, we adjusted � for each q
to make sure 99% of links are within the stability range, namely, the
smallest � that enables the stability range to encapsulate 99% of the
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Fig. 8. Network reliability stability for weekday and weekend under different � and q.

Fig. 9. Illustrative diagram of the network resilience attributes.

links in baseline condition. Fig. 8 delineates the non-linear relationship
between q and � in weekday and weekend and shows the network
stability characterization for weekdays and weekends at different stages
of Hurricane Harvey. We can conclude that as q increases, the required
� decreases. Just like the network reliability pattern in Fig. 6, the
stability of the reliability drops as the Harvey approaches and recovers
when the flood recedes. A similar ‘‘resilience triangle’’ is captured by
the stability curve. Additionally, we observe that as the q increases,
the stability value during Harvey decreases as well. That suggests the
highly functional roads prior to Harvey are sensitive to flood disruption.
Also, a spike appears during Harvey because the flood not only inun-
dates the road but also reduces travel demand, which leads to improved
performance on certain roads. It falls back when flood recedes and
travel demand picks up.

4.3. Transportation network resilience characterization

Temporal examination of network reliability scale index (↵) and
reliability stability (s) in Figs. 6 and 8 both show an obvious ‘‘resilience
triangle’’ pattern that the network functionality first decreases in a
case of disruption and then recover over time as shown in Fig. 9.
Adams et al. [68] used an R4 framework to measure the resilience of
the freight system. In this study, we propose a comprehensive metric
R [43,91] to capture the transportation system resilience, as delineated
in Eq. (8). In this definition, we put an emphasis on the recovery part
of the resilience process and measure the rapidity and capability of
the system ‘‘bounce back’’ to the new equilibrium from the disrupted
state. Faster recovery of the majority of lost capacity indicates a more
resilient system.

R =
Ftd
Fte

ù
Ftr * Ftd
Fte * Ftd

ù
Ftr * Ftd
tr * td

(8)

The proposed resilience metric contains three components. First, the
remaining performance ratio Ftd _Fte captures the capacity of system
stave off the disruption impact [91] or to absorb disruptions before
recovery actions [43]. A larger ratio indicates less functionality loss,
and thus, less vulnerable to network disruption. Second, (Ftr*Ftd )_(Fte*
Ftd ) describes the amount of system functionality recovered compared
to the total functionality disruption. Hence, it shows the recoverability
of the system or the adaptive capacity of the system to recover the
lost functionality [43]. Third, the ratio, (Ftr * Ftd )_(tr * td ), represents
the rapidity of the functionality restoration. This ratio (i.e., recovered
functionality and time cost) describes how quickly the system reaches
the new equilibrium from the lowest performance level. A larger ratio
indicates a speedy recovery of the system, and thus, higher resilience.

Using different resilience metrics introduced above, we examine
the Harris County transportation network resilience in the case of
Hurricane Harvey flooding-induced disruption, including both road
inundation and congestion. Based on the reliability and stability char-
acterization presented in Figs. 5 and 8, we consider time of disruption
occurrence (te) is on August 24 (i.e. a day before Hurricane Harvey
landed [92]). We propose that people’s travel behavior has started to
change in anticipation of Hurricane Harvey. td is the day when network
functionality drops to the minimum, and tn is the day that the system
functionality reaches its maximum within the time horizon of this
dataset. With more data, a more holistic inspection of the post-Harvey
recovery can be achieved and a new equilibrium date may be obtained
in the future. To eliminate the daily fluctuation, we use the two-week
average of network performance (e.g., network resilience scale and
stability) as the steady-state baseline. We investigate the weekday and
weekends separately in resilience measurement.

Fig. 10 shows how different resilience attributes change in terms of
network reliability and stability based on different selections of q. For
network reliability scale ↵ during weekdays Fig. 10(a), we can see that
using a large q as the functional threshold, the network shows a higher
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Fig. 10. Network resilience summary through the lens of temporal network reliability scale index (↵) and network stability (s).

resistance. This means that when a larger q is selected, the low-level
link quality change will not be reflected in ↵. For instance, considering
q = 0.7 for a road of reference speed of 60 mile/h, speed drop from
40 mile/h to 30 mile/h will not affect ↵ as the link is considered
dysfunctional in both cases. The increasing recoverability indicates that
most of the functionality can be restored for the high quality roads.
However, the decreasing rapidity suggests that recovery for high qual-
ity roads is slow and takes longer time to recover. Overall, the network
is more resilient when a low functionality standard (i.e., smaller q) is
considered.

Fig. 10(b) shows that stability resistance decreases on both week-
days and weekends when strict performance requirements (i.e., large
q) is considered. One plausible explanation is that high-quality roads
are more sensitive to flood disruption (e.g., inundation and rerouting-
induced congestion). The increasing recoverability and rapidity suggest
high-quality roads recover better and faster. This is because a wider
stability range is considered for large q, and thus, it is easier for link
reliability to return inside of the range. Although the rapidity increase,
the increase is very small and mainly because of a small number of
links’ stability change. In all, the resilience of the network reliability
stability increases for large q. It is worth mentioning that we are not
intended to compare resilience for different q. After all, the selection
of q should be based on the city’s traffic and decision-maker’s goal for
traffic performance. We comprehensively present the network behav-
ior under different q here to engineers and stakeholders and aim to
facilitate traffic control and emergency management decision-making.

5. Discussion

According to the sensitivity analysis of reliability scale index ↵ given
different link quality threshold q values (Fig. 6), a proper definition
of acceptable travel quality is essential in a disaster-disrupted traffic

resilience analysis. An impractical acceptable travel performance stan-
dard would lead to a false estimation of urban traffic resilience since
inaccurate reliability reduction and recovery would be captured. In
addition, such a definition of link quality threshold q values should be
based on the perspectives of both the traffic operators and road users.
Otherwise, the incongruence can create a gap between desired traveler
experience level and the targeted infrastructure performance goal,
which would be further exacerbated in the case of a disruptive event
and exacerbate the mobility hardship experienced during disasters,
and potentially worsen the transportation mobility and accessibility
disparity [93,94].

Besides, a uniform link quality threshold q is used across the net-
work to determine the functionality of the road. However, based on
the classification of each road, people may have various service ex-
pectations for different roads. For example, a critical path to a critical
facility is expected to maintain higher link quality than a regular local
road. For example, a survey can be designed to collect people’s travel
expectations and different link quality thresholds can be applied to
the corresponding roads to evaluate the link reliability. In doing so,
a traveler-centric road network resilience pattern can be derived.

Furthermore, a customized reliability range is introduced in this
study to detect abnormal reliability fluctuation. However, other bound-
ary conditions can be derived with more empirical data in the future.
Similarly, the maximum–minimum or mean–variance approach can be
also used. Besides, a professional-defined acceptable reliability range
can be adopted in practice to better monitor the transportation network
performance. Other than the reliability range, the fluctuation range of
the speed oscillation can also be considered when characterizing the
link quality and reliability.

Moreover, currently, we use the timestamp td when system perfor-
mance reaches the minimum value as the critical point for disruption
and recovery. In reality, however, there might exist a time period when
the system performance remains stable for the emergency response
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to be collected and take effect, as suggested in [91]. The length of
this time can be used as a metric or indicator for evaluating emer-
gency response efficiency. On the other hand, the system may not
require full recovery to provide essential service. Therefore, a fraction
(e.g., 85%) of the performance recovery can be used as the signal of
new equilibrium to re-assess different metrics in Eq. (8).

Finally, diverse critical infrastructures are coupled together and
depend on each other, including transportation, water/food supply,
communications, fuel, financial transactions, and power stations. These
complex relationships are characterized by multiple connections be-
tween infrastructures, forming a network of networks [95–98]. The
links create an intricate web that, depending on the characteristics
of its linkages, can transmit shocks throughout broad swaths of an
economy and across multiple infrastructures. Thus, it is vital to extend
our approach to a network of infrastructure systems, enabling us to
measure the reliability and stability of complex infrastructure services
as a whole.

6. Conclusion

The new characterization of transportation network resilience from
the perspective of link reliability and stability advances the under-
standing of infrastructure network resilience to extreme events beyond
topology-based measures. The incorporation of link reliability broadens
the conventional binary link failure characterization by considering
the partial function loss results from service quality reduction. And
the notion of link quality is adopted to integrate stakeholders’ traffic
operation goals for travel speed. We used the Harris County trans-
portation network during Hurricane Harvey as the case study. Based
on the empirical traffic data during disasters, we developed a scale
index to describe the network-wide reliability distribution shift when
facing flood disruptions over time. We also introduced a tolerance-
driven boundary condition to detect anomalies in network reliability
fluctuation. We showed that network reliability and stability can well
capture the network performance evolution. A non-linear relation be-
tween the tolerance factor � and link quality threshold q was discovered
and the temporal network stability pattern was extracted. We proposed
a comprehensive resilience measure that encapsulates the network
resistance, recoverability, and rapidity in facing flood disruption and
tested it on the Harris County transportation network.

The case shows that each of the proposed metrics provides a unique
property for the quantification of resilience based on network dynam-
ics and functionality. The promising results of this paper shed light
on the relationship between reliability, stability, and resilience and
provide a new perspective for assessing the dynamic transportation
network resilience during floods. The improved understanding of link-
ages between link attributes and network behavior provides traffic
managers a tool to more comprehensively examine network resilience
through collective road performance monitoring in the face of disaster
disruptions.

The proposed metrics are very generic and can be adopted in other
cities and events. The proposed study uses high-resolution traffic data
which contains the travel speed on the major roads of Harris County,
Texas every 5 min. Similar empirical traffic data are available for dif-
ferent cities and events. Researchers can acquire the data by developing
research partnerships with mobility companies or directly requesting it
from the local Department of Transportation. The proposed methods
can also be used to assess the impact of future hazards. With massive
historical and real-time traffic data, advanced deep learning techniques,
and accurate weather forecasts, traffic engineers can now predict the
traffic pattern based on the historical traffic behavior given the weather
forecast. With predicted traffic on each road, emergency managers
can then apply the proposed reliability method to evaluate the ex-
tent to which the incoming disaster affects the transportation system
performance and derive targeted strategies to enhance transportation
resilience. Also, we can adjust the traffic speed based on the flood depth

and evaluate how transportation reliability and resilience change in
different flood scenarios to facilitate stakeholders’ decision-making on
infrastructure protection.

Moreover, the proposed method is not limited to transportation
networks. Other natural, physical, social, and engineered networks with
time-variant functionality states and properties could also be examined
and characterized using the proposed metrics. For example, excessive
viewing requests for special events or breaking news incidents can
stress the telecommunication network and results in jammed content
streaming. Similarly, the surging demand for electricity can overload
the power network. Both infrastructure networks can also be disrupted
by man-made attacks or extreme weather events, from which the in-
frastructure functionality is compromised and the network resilience is
tested. In these cases, link quality can be measured by the information
packet passed through a telecommunication link or electricity passed
through the power line. By measuring the proportion of time that the
infrastructure component is delivering an acceptable level of service,
we can measure the network resilience in providing reliable and stable
infrastructure service during disruptions.
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