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G R W N

Abstract: Network structure provides critical information for understanding the dynamic behavior of
complex systems. However, the complete structure of real-world networks is often unavailable, thus
it is crucially important to develop approaches to infer a more complete structure of networks. In this
paper, we integrate the configuration model for generating random networks into an Expectation—
Maximization—-Aggregation (EMA) framework to reconstruct the complete structure of multiplex
networks. We validate the proposed EMA framework against the Expectation-Maximization (EM)
framework and random model on several real-world multiplex networks, including both covert
and overt ones. It is found that the EMA framework generally achieves the best predictive accu-
racy compared to the EM framework and the random model. As the number of layers increases,
the performance improvement of EMA over EM decreases. The inferred multiplex networks can
be leveraged to inform the decision-making on monitoring covert networks as well as allocating
limited resources for collecting additional information to improve reconstruction accuracy. For law
enforcement agencies, the inferred complete network structure can be used to develop more effective
strategies for covert network interdiction.

Keywords: multiplex networks; partially observable networks; interlayer dependency; network
completion; expectation-maximization

1. Introduction

Multiplex networks, in which each layer consists of the same set of nodes but different
sets of links (Figure 1), are a powerful tool for describing and analyzing the connectivity
from interactions of different types among the same set of entities in complex systems [1].
Examples include social networks [2], multi-modal transportation networks [3], multi-tier
supply networks [4], etc. Due to the interplay between network structure and dynamics,
the knowledge of complete multiplex network structure is essential to a deep understanding
of the dynamic behavior of multiplex networks and predicting future interactions between
nodes in the networks [5]. Nonetheless, in many practical applications, particularly covert
networks, it is extremely difficult to obtain sufficient data for constructing the complete
structure of all layers of a multiplex network due to limited observing resources and privacy
concerns [6].

Reconstructing the complete topology (i.e., all nodes and links) from incomplete toplo-
gies (partially observed nodes and links) is an exceedingly challenging task primarily
because (i) the number of missing nodes and links will be very large; (ii) sparse networks
(e.g., illicit supply networks) usually have much lower link density than typical (overt)
social networks, thereby it is often inappropriate to use many prediction methods de-
veloped for denser networks with a balanced ratio of positive and negative labels; and
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(iii) observations are limited to task-specific activity, excluding historic relations that are
instrumental to network resilience [7,8].

Figure 1. A schematic of a multiplex network with three layers and six nodes. In a multiplex network,
the nodes are shared across layers, and links in each layer represent one type of relation between
nodes. An interlayer link exists between any node and its counterparts in other layers.

On the application side, this study focuses on illicit networks, such as drug and human
trafficking networks. The reason is that illicit networks compromise national security
and prosperity as well as public health and safety [9]. Despite considerable advances in
understanding and disrupting the operations of covert networks, a deep understanding of
the structure and dynamics of covert networks remains lacking. Although the structure is
crucial for understanding, monitoring, and controlling covert networks, this topological
information is always incomplete [10,11]. There are multiple reasons: (i) Investigations
typically focus on current operations with the aim of documenting the involvement of
specific individuals in specific criminal activities. (ii) Potential criminal actors may be
identified and are then often omitted from the network due to essential legal principles and
civil rights protections. (iii) Criminal actors take measures to obfuscate their involvement,
hiding, or disguising activities and relations because they are wary of attack by agents of
the criminal justice system, as well as competitors or rivals. By modeling illicit networks as
a multiplex and reconstructing the structure of multiplex covert networks, this study can
be leveraged to help monitor, control, and interdict the illicit activities on covert networks.

The rest of this paper is structured as follows. Section 2 presents the literature review.
Details on the EMA framework are presented in Section 3. Details on the real-world
multiplex networks used to validate the proposed EMA framework are given in Section 4.
The numerical experiments and the resultant results are reported in Section 5, followed by
the discussion on the implication of this study on disrupting illicit networks in Section 6
and the concluding remarks in Section 7.

2. Literature Review

Network reconstruction methods can be divided into three categories: similarity-based
approach, probabilistic (statistical) approach, and algorithmic (machine learning) approach.

Structural similarity-based methods assume that the nodes tend to connect to other
nodes with a higher level of similarity computed by a certain distance function [12]. These
approaches give similarity scores for missing or unobserved links between any pair of two
nodes, then links with high similarity scores will be predicted to exist. For example, in [13],
the eigenvectors of the layer adjacency matrix are used to measure the layer topological
similarity and then the topological similarity (element of the layer similarity matrix) of the
unconnected nodes is used to predict if a link exists between them. Berlusconi et al. [14]
and Calderoni et al. [15] apply multiple similarity metrics, such as common neighbor and
resource allocation, to identify missing links in a criminal network. They demonstrated
that these similarity metrics can identify possible missing links in criminal networks with
noise or incomplete information. However, the performance of similarity-based methods
depends on the structure of specific networks [16]; therefore, prior knowledge about the
networks under study is usually required to improve the predictive performance [13].
This approach is infeasible for the network reconstruction problem in this study because
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the nodes and links to be inferred are completely missing without any connection with
observed nodes. Therefore, all scores of structural similarity between unobserved nodes
and observed nodes are zeros.

Statistical approaches for network structure inference assume a network has a known
structure, and then a parametric or nonparametric model is built to fit the structure, such
as the stochastic block model or its variants, as well as the Dirichlet network distribution
model [17-20]. Then, the model parameters are estimated using statistical methods, such
as maximum likelihood estimation. The model parameters are then used to compute the
formation probability of each unobserved link, such as the stochastic block model and the
hierarchical structure model. In particular, Kim and Leskovec [21] developed a scalable
Kronecker Expectation-Maximization (KronEM) approach to reconstruct a single-layer
network with a known number of missing nodes by alternating between inferring the
unobserved part of the network (E-step) and estimating the optimal model parameters
(M-step) until convergence. The network structure is assumed to be described by the
Kronecker graph model, and this approach does not require attributes about nodes or
edges. Wu et al. [22] use a Bayesian approach to reconstruct two-layer multiplex networks
from the available aggregate topology of all layers (the aggregation of all the layers into
a monoplex layer) and partial observations of nodes in each layer, and the inference is
conducted by leveraging the Expectation-Maximization algorithm. However, statistical
approaches would be computationally challenging for large networks, especially when a
large number of samples are required for inference [21].

The previous two approaches are based on computing a score for each unobserved
link by defining a similarity or a probability function. However, the inference of network
structure can also benefit from other algorithmic (machine learning) approaches, including
supervised learning and optimization techniques. In particular, Zhang and Chen [23] de-
velop graph neural network (GNN) models to predict missing links. However, the method
is mainly developed for single-layer networks. Gao et al. [24] developed a network em-
bedding method called interactive learning across relations that exploits existing multiple
types of relational data to predict inductive links (new or unobserved relation) between
existing nodes instead of inter- or intra-layer links in a known layer.

On the application side, a growing number of researchers are resorting to multilayer
network models to study illicit supply chains [11,25-28] since these models allow actors
to be placed in different layers representing different characteristics of covert networks.
Going beyond mapping, only the co-offending activity, multilayer models help to reveal
more about the social processes that connect people, which can be used to infer missing
information [29,30]. However, to the best of our knowledge, a few studies have attempted
to infer their multiplayer structure (topology), even though the complete structure of
multiplex illicit networks is typically missing, as discussed earlier.

In this study, we develop an EMA framework built on the EM algorithm. The EMA
framework is advantageous for reconstructing covert networks because:

1. The sparsity of links in covert networks, i.e., the negatives (no links between nodes)
significantly outnumber the positives, leads to challenges in inference and thus signif-
icantly affects the predictive performance of classical learning-based methods [31].

2. Itcan infer the links that connect unobserved nodes of the network. This is hardly pos-
sible for methods built on structural similarities, such as Adamic—Adar index, Jaccard
index, and Resource Allocation index [32], because the links to be inferred usually
connect unobserved nodes that are isolated from the observed part of the network.

3. It embeds observed criminal activity within the latent social structure required to sus-
tain operations within a dynamic operational context [33-37]. This informs disruption
efforts by improving estimates of network resiliency [38,39].

The EMA framework is an extension to the EM framework proposed in a recent
work [22], but the EMA framework is more generic because it can be applied to multiplex
networks with more than two layers and unknown aggregate topology, which is more
common for real-world incomplete multiplex networks.
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3. Methodology
3.1. Problem Description

Mathematically, a multiplex network can be described by a set Z = {Z€| £=1,2,...,m},
where m is the number of layers. Z’ consists of the complete set of nodes A and the
complete set of edges £° of relation type £. For incomplete multiplex networks, only some
parts (partial topologies) of each layer are observed, i.e., a fraction ¢ of nodes and the
associated links of the complete network. If we denote the partially observed topologies as
X = {X!|¢=1,2,...,m}, then we have X’ C Z’. In this study, we use the same notation
for topology and the adjacency matrix that encodes the connectivity of the topology. We
consider undirected and unweighted multiplex networks; therefore, the observed and
complete adjacency matrices for each layer of a multiplex network are symmetric and
binary (i.e., Zf]-, Xf;- € {0,1}, Vi, j € N). Formally, the problem of this study can be given
as follows.

Problem. Consider an undirected and unweighted multiplex network wherein each layer £ have the
same set of nodes N but a different set of links E'. The multiplex network reconstruction problem is
to infer the complete topology of all layers Z given partial topologies of all layers X.

Note that the classical link prediction problem [32], in which only links are missing
and typically not all links connected a node are missing, is a special case of the network
reconstruction problem, in which both nodes and links can be missing, i.e., all links con-
nected to a missing node are missing as well. As such, the network reconstruction problem
is naturally more difficult than the link prediction problem.

3.2. Expectation—Maximization-Aggregation Framework

This section provides details on the proposed EMA framework for multiplex net-
work reconstruction, including the classical EM algorithm, the network generation model,
the integration of aggregate topology into the EM framework, as well as the correspond-
ing algorithms.

3.2.1. Expectation-Maximization

The EM algorithm [40] is an iterative approach for estimation problems wherein the
value of model parameters and latent variables depend on each other. For the network
reconstruction problem, where the task is to find the most probable topology of the missing
subnetwork, it is required to first estimate the parameters of the network model, which
establish a connection between the observed subnetworks X and the complete multiplex
network Z. This framework can be formulated as follows.

We here consider a model parameterized by ©. Given the observed subnetworks X of
the complete multiplex network Z, the task of classical maximum likelihood estimation is
to estimate ®. However, since the complete observations Z are not available, we need to
marginalize it out. Let q(Z) be the probability density distribution of Z, i.e., Y z9(Z) =1
and q(Z) > 0, then we obtain the likelihood of the observed topology given the model

Inp(X|®)=In) p(X,Z|0O) (1a)
Z

Yoz MK Z1©)
_1 XZ:q(Z) q(Z)

> () 1n(P(Xq'(ZZ)| ®>>. (10)

(1b)
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The last inequality follows from Jensen’s equality. Specifically, InE[x] > E[lnx]

since Inx is a concave function. The equality is attained when % is a constant,

ie,q(Z) x p(X,Z | ©). Typically, q(Z) is set to the posterior distribution of Z, thus we get

_ rix,Z]e)
7(2) = Yzr(X,Z|0)

The lower bound given by Equation (1c), referred to as the evidence lower bound
(ELBO), is used because it is difficult to directly optimize Equation (1a) due to the missing
information [41]. The EM algorithm then proceeds by alternating between the following
two steps until convergence [40]:

=p(Z]X,0). @

1. E-step: updating g(Z) by setting it to the posterior of Z given the current ©®, which is
used to construct the local ELBO on the log-likelihood.
2. M-step: updating ® by maximizing the ELBO, i.e., solving for ® in

;g;q(a Inp(X,Z | ©) =0. 3

3.2.2. Network Generation Model

In this study, the parameters in the model for generating the topology of each layer
include the degree sequences of layers d and the adjacency of the aggregate topology from
all layers of the multiplex network A. The degree sequence of a layer is used to generate the
topology of that layer using the configuration model [42,43]. According to this model, for a
network with a given degree sequence, the probability of a link between two nodes with
degree d; and d; is % where |€] is the number of edges. Therefore, after estimating the
degree sequences of all layers, we can probabilistically infer the complete topology of each
layer. The adjacency matrix of the aggregate topology is included in the model parameters
because we add an aggregation step to the EM framework to obtain the aggregated topology
of all layers. In this way, information on the interlayer dependence of the multiplex network
is leveraged to improve the reconstruction accuracy. Without this step, the topologies of

layers are independent of each other and are hence reconstructed separately.

3.2.3. Full Algorithm for the EMA Framework

This section presents details about how to reconstruct multiplex networks using the
EMA framework, including the E-step, M-step, and A-step.

In the E-step, the task is to obtain the posterior of Z given by Equation (2). According
to the configuration model, the probability of a link between nodes i and j in layer ¢ before
it is not observed yet can be given by

d!dt
14 Lt
Pii = glef -1 @)
Lqt
1%
21€0-1
Equation (4) is changed to

Considering that can be greater than 1 and certain entries are observed,

ald 5)

, X;;., ifi € Vopsandj € Vps
Y otherwise

. id;
min(1, 72‘511_1)/

Then, g (Zf/) is expressed as

zL 1-7f,
a(zf) = (% (1-p) ' Zh e {01}, ©)
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Next, in the M-step, given the current g (ij) , we solve for df foranyi € N, t e Las
follows. In the ELBO, the term involving df is

dd! Zj atdl \1Z
Z (Zf)l 2101 1= 2101 )
q(Z;:) In
z, ! q (ij)
df
To simplify the term involving df in Equation (7), weleta; = W Then differentiate
with respect to an arbitrary d! and we obtain
0 1 -zt
ZW (g(zfj) ‘In [(ajdf)zuu —a;d!)! Zu] ) (8a)
z
d/,/
= — 8b
un Wﬁ (8b)
4 i
E [zi].] — ad!
=t (8c)
i(1—a;d;)
Let Equation (8c) = 0 and we get
didf = (2|54| —1)E[zf]}, Vie N, )

To ensure that the solution to df does not involve d]’?, we sum both sides of the above
equation over j and obtain

¢ _ 2E" ,
d! 2|€f|fdf]; E[ } Vie N. (10)
Solving for df, we have
= |8t - \/|5f|2 —20¢! Y E[Zf] + ¥ E|Zf]. (11)
JEN jEN

Note that Equation (10) has two solutions to df, but the other solution is discarded
because it is greater than the number of links in layer ¢. For d! to have a real-valued
solution, it is easy to show that the following condition should be satisfied

2 2
<|ge| _]ng[Z’ﬂ) > (}gf&z{zﬂ) —jng{ij}, Vie N, (12)

Since |£¢] — ZjeNIE[Zf]} > 0, we have

& | DevB[Z] -1
LevE[Z] N\ TiewE[Z]

+1, Vi€ N, (13)

which indicates that a layer should not have giant hub nodes that are incident with over 50%
of the edges of a layer. This condition is typically satisfied for sparse multiplex networks.
For layers with a sufficiently large number of edges but no giant hub node, |£¢| > dﬁ thus
the solution to Equation (10) can be approximately given by



Entropy 2023, 25, 142

7 of 18

d~Y E [ij] =Y pl VieN. (14)
jeN jeN
In the A-step, the aggregate topology from topologies of all layers in the multiplex
network is obtained using the OR aggregation mechanism [22]. Specifically, the respective
entries in the aggregate adjacency matrix should be equal to those calculated from the
observed part of the adjacency matrix for each layer, which is expressed as

L
A=z}, 2l =1-T](1-Z) (15)
tel
where ¢(-) is the aggregation function. Apparently, A;; = 1 when there exists at least one ¢
such that Zf]- = 1land A;; = 0 only when ij = 0 for all 4. The aggregate topology (where

nodes are connected) is used to update the estimated complete topology of each layer as
follows. According to the Bayes’ Theorem, we have

_ 0 _ ¢ _
P(A;=1| Z; = 1)- P(Zij =1) (16a)
P(A;;=1)
1-pfj

S 1-TI(-ph)
hel

P(Zjj=1]|A;j=1) =

(16b)

In the implementation, this means that the latest pg for all 7, j, which is equivalent to
P(ij = 1| A;j = 1) at this point, is updated according to Equation (16b).

The complete EMA algorithm is summarized in Algorithm 1. Note that we can treat
the aggregate topology as part of the parameters for generating the multiplex network,
ie., ® = (A,d). From this perspective, the EMA framework is reduced to an EM framework
and the A-step is regarded as a component of the M-step for estimating the optimal model
parameters. This is because given the current estimate of the unobserved part of the
multiplex network, the aggregate topology obtained by Equation (15) is the only solution
and hence the optimal solution to the aggregate topology.

Algorithm 1: EMA for multiplex network reconstruction

Input: Error tolerance e, maximum number of iterations Ifermax, number of unique nodes
in the multiplex network ||, and partially observed topology X.
Output: Reconstructed complete topology Z for the multiplex network.
1: Initialize the degree sequences and predicted adjacency matrices: df ~ U(1, |N|), Vi €
{L...,V[}and Z{ ~ U(0,1), Vi € {1,..., [N}
2: foriter in 1 to Itermax do

3. E-step: Update q(Z) according to Equation (6).
4: A-step: Update Z using the aggregate topology according to Equation (16).
5: M-step: Update d according to Equation (14).
6: Calculate the error €
7: if € > er then Continue
8: else Break
9: end if
10: end for
4. Datasets

This section presents the details about the real-world multiplex network we use in
validating the EMA framework. Covert multiplex networks include the drug trafficking
multiplex network and the Sicilian Mafia multiplex network. To demonstrate that the
EMA framework is general, we validate it against the other two models on overt multiplex
networks, including the London transportation multiplex network and the C. elegans neural
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multiplex network. This set of networks provide an opportunity to test the EMA framework
under varying fractions of observed components of multiplex networks and permit the
comparison between social networks, biological, and physical networks.

4.1. Drug Trafficking Multiplex Network

The dataset on drug trafficking networks in this study was obtained from the 2007 ‘E’
Division Provincial Threat Assessment (PTA) report generated by Criminal Intelligence
Service Canada and the Royal Canadian Mounted Police (RCMP) [39]. This report contains
information about all individuals associated with the criminal operations of 129 differ-
ent groups. This extensive data collection effort maps a community of drug trafficking
operations, revealing how individuals interact within and between groups to sustain
regional illicit drug supply and distribution. Individual-level information includes demo-
graphic characteristics, a description of three years of drug trafficking activity, their role in
drug trafficking, and their current and historical relationships among each other, includ-
ing co-offenders (individuals who commit crimes together), legitimate business partners
(including friends), their kinship, and involvement in a formal criminal organization (in-
cluding enemies) (Figure 2). This multiplex network integrates information obtained from
official records management systems, surveillance, and non-criminal justice information
sources. The layers for co-offenders and legitimate business partners are used to build
a two-layer multiplex network (representing surveillance data capturing current activity,
criminal or otherwise), the layers for co-offenders, legitimate business partners, and formal
criminal organization are used to build a three-layer multiplex network (adding social
embedding in a community of criminal actors), and the four-layer multiplex network adds
familial relations (adding trusted relations that bolster network resiliency). It is obvious
from the figure that both layers do not have giant hub nodes that are incident with over 50%
of the edges of a layer. Some key network statistics of each of the four layers are presented
in Table 1. We can see from the table that each layer has a low link density (p), low average
degree ((d)), and the average size of the connected component ((|CC|)). Although the size
of the greatest connected component is not small, particularly the one in the co-offender
network, the coefficient of variance (CoV, i.e., ratio of standard deviation and mean) of the
size of the connected component is small, indicating that members in the drug trafficking
community are generally isolated.

Table 1. Network statistics of each layer in the drug trafficking multiplex network. FCO is the
shorthand for formal criminal organization.

Layer |V €] p(x1073) (d) {ccyy |GCC|  CoV of |CC]|
Co-offender 1645 1808 1.32 2.19 19.00 1024 5.71
Legitimate 1022 1041 2.00 2.04 10.99 462 4.43
FCO 560 597 3.81 2.13 14.36 150 2.24

Kinship 399 308 3.88 1.54 3.22 25 0.99
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A. Co-offenders B. Legitimate

Large Small
Size of connected component

Figure 2. Layers of the drug trafficking multiplex network. The size of a node is proportional to

its degree.

4.2. Sicilian Mafia Multiplex Network

The Sicilian Mafia multiplex network (Figure 3) was derived from the pre-trial deten-
tion order issued by the local court in 2007 in response to a major investigation [44]. The
Italian civil law system is substantively different than federalist case law systems (such as
the U.S. system), and as such, the court documents filed in support of the detention order
provide sufficient information to map individual-level involvement in criminal enterprise
activities [15]. Network information captures five years of observations (2003 to 2007)
for two Mafia clans, known as the Mistretta family and the Batanesi clan. These familial
clans are embedded within a community of illicit entrepreneurs collectively referred to
as the Sicilian Mafia. This data set includes two types of layers: (i) meeting data among
suspected (101 nodes and 256 edges) and (ii) phone calls among individuals (100 nodes and
124 edges). These layers represent different modes of communication commonly observed
during surveillance activity in support of major investigations. Some key statistics of each
layer are presented in Table 2. It can be observed from the figure that both layers do not
have giant hub nodes as well.

Table 2. Network statistics of each layer in the Sicilian Mafia multiplex network

Layer N |€]  p(x1073)  (d)  (|cC|])  |GCC|  CoV of |CC]|

Meeting 101 256 55.77 5.07 19.02 86 1.76
Call 100 124 27.45 248 23.50 85 1.51
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A. Meeting B. Call

Large . Small
Size of connected component

Figure 3. Layers of the Sicilian Mafia multiplex network. The size of a node is proportional to
its degree.

4.3. London Transportation Multiplex Network

The London transportation multiplex network [45] (Figure 4) consists of underground
(260 nodes and 225 edges), overground (81 nodes and 62 edges), and lightrail (44 nodes
and 34 edges). The overground and light rail layers are selected to construct a two-layer
multiplex network. The third layer adds the underground edges. While the modalities
(layers) of transit systems are designed to intersect forming a fully connected giant compo-
nent, single layers will not always form a connected component. Moreover, this network is
intentionally incomplete in that buses that may link different modalities (e.g., underground
to light rail) were not included. Some key statistics of each layer are presented in Table 3.
Each layer of this transportation multiplex network has many connected components and
the size of the greatest connected component is not very large compared to the number of
nodes in each layer.

A. Underground B. Overground C. Lightrail

Large Small
Size of connected component

Figure 4. Layers of the London transportation multiplex network. The size of a node is proportional
to its degree.

Table 3. Network statistics of each layer in the London transportation multiplex network.

Layer |N| €] p(><10_3) (d) (ccl) |GCC| CoV of |CC|
Underground 260 225 6.68 1.73 5.65 98 248
Overground 81 62 19.14 1.53 4.26 17 0.83
Lightrail 44 34 35.94 1.55 4.00 8 0.54

4.4. C. elegans Multiplex Network

The C. (Caenorhabditis) elegans neural multiplex network [46] (Figure 5) consists of three
layers for different types of synaptic junctions, including electric (242 nodes and 450 edges),
chemical (260 nodes and 869 edges), and polyadic (277 nodes and 1666 edges). Layers for
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chemical and polyadic junctions are selected to construct a two-layer multiplex network.
Some key statistics of each layer are presented in Table 4. Compared to the covert multiplex
networks introduced earlier, all layers of the C. elegans multiplex network are much denser
because each layer has a higher density. In each layer, the size of the greatest connected
component is large. In particular, all the nodes in the polyadic layer are connected because
the size of the greatest connected component is equal to the number of nodes.

A. Electric B. Chemical C. Polyadic

Large Small
Size of connected component

Figure 5. Layers of the C. elegans multiplex network. The size of a node is proportional to its degree.

Table 4. Network statistics of each layer in the C. elegans multiplex network.

Layer V| ] p(x1073%)  (d)  {|cC])  |GCC|]  CoVof [CC]
Electrical 242 450 15.43 3.72 80.67 237 1.37
Chemical 260 869 25.81 6.68 130.00 258 0.98
Polyadic 277 1666 43.58 12.03 277.00 277 0.00

5. Experiments
5.1. Experiment Setup

For each multiplex network, we use 50 random simulations at each fraction of missing
nodes to obtain the average predictive performance (we find that 50 repetitions can already
achieve a stable mean value). When a node is not observed, the links connected to this
node are also considered unobserved. For both EMA and EM, the error tolerance €7 is
set to 1 x 1075, i.e., the solution is considered converged if the difference in the mean
absolute error (MAE) of the predicted adjacency matrices (unobserved entries only) at two
consecutive iterations for all unobserved links is lower than the tolerance.

Because covert networks are sparse, the associated datasets are typically imbalanced
toward negatives (no links between nodes), we employ the Matthews Correlation Coeffi-
cient (MCC) and G-mean to measure the prediction (classification) accuracy [47,48]. MCC
can be computed as

MCC — TP x TN — FP x EN (17)
/(TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)
where TP represents true positives, TN represents true negatives, FP represents false
positives, and FN represents false negatives. Note that the value of MCC can be negative.
G-mean is given by

TP TN Yy

G-mean = \/ TP L FN X TNFP v/Recall x Specificity (18)

We also include the random model (RM), i.e., a binary uniformly random classifier,

as a baseline model. Among all possible links, except for the links among observed nodes,

the RM selects a number (i.e., the number of links left) of links in a uniformly random
manner as the predicted links.
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5.2. Results

We first check the performance of EMA under different fractions of missing compo-
nents. The predictive performances measured by G-mean and MCC for different multiplex
networks under 10% to 90% of missing components are presented in Figures 6-9 where
c represents the fraction of observed components. We can see that EMA achieves the
best MCC regardless of the multiplex networks and the fraction of missing components.
In terms of G-mean, EMA outperforms EM in all cases and random model when the ob-
served fraction of components is large. Note that the trends of G-mean and MCC over
different fractions of observed components obtained by EMA and EM are close to each
other because the values of FP x FN are much smaller than TP x TN.

A. Two layers

0.4
-@ EMA -@ EMA
0.4 -¥- EM -¥- EM
-l RM 0.3 -l RM
c
@ .0
; o| g2 o«
; ¥ o .
02 e -
/.". 0'1 "’.
& ¥
0.0 jzlfi:l:!:!:!:l:l 00l p-m-n-u-5-u-
0.1 0.3 05 07 09 0.1 0.3 05 07 09
c c
B. Three layers
0.4
-®- EMA » -®- EMA e
041 -V EM oY 03] ¥ EM iy 4
-B- RM et 2] -m RM oy
c /./Y ’,,,,
$ i o2 N
£ o s o 8
%02 o7 =
PG 0.1 "
' 2
» Rl
0.0 EE-E-E-m-8-8-8-a 00 -
041 0.3 05 07 09 0.1 0.3 05 07 09
c c
C. Four layers
0.4
-@ EMA -@ EMA r,
04{ -v- EM - -V- EM WP 4
-B- RM ./’:f” 03| @ rm R 4
c niPig & y
© K 2D 4 (&) g
[3} zv/ 00.2 & b 4
£ ,‘,/ s ,"’
0.2 ol g 5
,c"' 0.1 //"”
- ’ ""
0.0 I:I—I-I—I—I—I—I—!_ 00{E-E-8-8-8-8-8-8-8
01 0.3 05 07 09 0.1 0.3 05 07 09
c c

Figure 6. G-mean and MCC for drug trafficking networks.
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Figure 9. G-mean and MCC for London transportation networks.

Next, we examine the impact of the number of layers on the EMA and EM approaches.
As the number of layers increases from two to three in drug trafficking (Figure 6), C. elegans
(Figure 8), and London transport networks (Figure 9), the performance improvement of
EMA when compared to EM in both G-mean and MCC decreases, indicating that the
benefits of adding the aggregation step drops. This is because when there are more layers,
there are more choices of values for individual entries in the layers, making a positive entry
in the aggregate topology less informative about the positive value of each layer.

We also compare the convergence of EMA and EM algorithms on the drug trafficking
multiplex networks (Figure 10) and London transportation multiplex networks (Figure 11).
Regardless of the size of multiplex networks and the fraction of components observed, EM
converges more quickly than EMA. In the worst-case tested, EMA can reach convergence
within 40 iterations given a convergence error of 1 x 10~3. However, if the convergence
error can be set to a larger value, such as 1 x 10~#, then EMA can achieve convergence much
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faster (within 10 iterations across the networks considered). Therefore, both algorithms can
be applied to moderately large-scale multiplex networks.
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Figure 10. Convergence of EMA and EM on the two-layer (I) and four-layer (II) drug trafficking
multiplex networks under different fractions of observed components: (A) 0.2; (B) 0.4; (C) 0.6; (D) 0.8.
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Figure 11. Convergence of EMA and EM on the two-layer (I) and three-layer (II) London transporta-

tion multiplex networks under different fractions of observed components: (A) 0.2; (B) 0.4; (C) 0.6;

(D) 0.8.

6. Discussion

From a criminal justice perspective, mapping networks using available data on illicit
activities is typically not sufficient to obtain the complete structure of the covert networks
under study. As a result, networks of criminal operations are always incomplete, thereby
compromising the potential practical contributions network science can make toward
developing effective interdiction strategies. Two major implications for Disrupting Illicit
Networks arise from this investigation for reconstructing a more complete structure of
multiplex networks.

First, with regard to the broad context of disrupting covert networks, the experiments
support arguments that criminal enterprise is intimately embedded within a complex
social system wherein a pair of individuals can be connected by multiple relations or a
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criminal actor could tap into different social networks to resolve a pressing issue [35,49,50].
For example, a drug smuggler uses legitimate business assets (helicopter and employed
pilot) to transport illicit products (multiple relations) and, in a pinch, the smuggler could
launder proceeds through a relative’s real-estate business (temporary use of a different type
of relation for criminal ends). The extent to which associates and kin are aware of these
illegalities is not necessarily relevant; what is critical is that this interwoven social fabric
must be fully understood before effective interdiction strategies can be developed and
implemented. Results on the performance of the EMA framework for the drug trafficking
network and the Sicilian mafia network show that networks generated from the surveillance
of current criminal activity are insufficient. Interpolating latent connections by adding at
least one more layer that captures historic criminogenic relations (i.e., formal organized
crime membership), business or professional associations, or purely social and familial
connections significantly improves network completeness. This finding coincides with
applied network criminology [34,39] and crime opportunity theory [51,52].

Second, while inference can improve network completeness, such modeling frame-
works do not constitute a silver bullet for all methodological issues. Continued efforts
are needed to improve data collection protocols to enhance the capacity to generate more
complete information about covert operations and the complex social systems within which
they are embedded. To this aim, our experiments show that identifying additional layers
composing a multiplex network makes the EMA algorithm more accurate. Supporting
prior arguments to establish methodological conventions regarding the use of criminal
justice system data in network applications [53,54], this finding confirms that the key to
uncovering more of the covert multiplex network is to tap different layers of information
sources [34,51]. However, additional tests are needed to understand the nature of informa-
tion benefits. For example, how does the dependency between layers, particularly in social
networks, impact information benefits? When does identifying additional layers of covert
networks benefit more than identifying more components within known layers? Finally,
given that the covert networks were mapped from observations made over many years,
does the model offer more information benefits when used with shorter observations, such
as six months?

7. Conclusions

In this study, we develop the EMA framework for reconstructing multiplex networks
and validate this approach against the EM approach and the random model on several
multiplex networks given different fractions of the observed part of the complete networks.
We find that EMA achieves the best predictive performance in terms of G-mean and
MCC over different levels of available observed parts of the true networks. The findings
are consistent across experiments conducted on different types of multiplex networks
(social and non-social). This indicates that integrating the estimation of the aggregate
topology, which encodes the interlayer dependency of multiplex networks, can improve
the reconstruction accuracy. By inferring a more complete structure of covert multiplex
networks, the EMA framework can support interdiction efforts aimed at disrupting criminal
operations, especially when the observations are only available for two or three types of
interactions. As the fraction of observed actors and the type of interactions among actors
increases, the added benefits of the EMA framework when compared to the EM framework
decrease. In cases where quick decisions are required for interdicting multiplex with many
layers, the EM framework is recommended due to a lower computational load.

Future work will consider the use of graph neural networks to reconstruct sparse mul-
tiplex networks. Although GNN has been widely applied to predict missing links [23,55,56],
research efforts that apply GNN to reconstruct multiplex networks are limited. As such, it
is valuable to compare the reconstruction accuracy of EMA and GNN on multiple datasets
and identify where each approach performs the best. Furthermore, since the accuracy of
the EMA framework reduces for multiplex networks with many layers, future research
can explore how to improve the predictive accuracy using network generative models
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with a prescribed level of interlayer dependency [57-60], and use the dynamics of the
networks [61].
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Notations

Sets & Indices

i, j Indices of nodes

L Index of layers

L Set of layers

N, € Sets of nodes and links

Vobs Set of observed nodes

X Set of the observed topologies (by layer) of a multiplex network
V4 Set of complete topologies (by layer) of a multiplex network
Variables & Parameters

c Fraction of observed nodes in a layer

d Degree sequences

(d) Average degree

m Number of layers

uv Generic random variables

X! Observed adjacency matrix (subnetwork) for layer ¢

z! Adjacency matrix (complete topology) for layer £

A Adjacency matrix for the aggregate topology of a multiplex network
|CC|, |GCC| Size of a connected component and size of the greatest connected component
(|cCl) Average size of connected components

€,€T Convergence error and error tolerance

Pij Probability of a link between node i and node j.

q(Z) Posterior distribution for the complete multiplex network

14 Link density

(©) Model parameters
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