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Vaccination and three non-pharmaceutical

interventions determine the dynamics of COVID-19
in the US

Lu Zhong"2, Mamadou Diagne® '™ Qi Wang3 & Jianxi Gao® 24>

The rapid rollout of the COVID-19 vaccine raises the question of whether and when the
ongoing pandemic could be eliminated with vaccination and non-pharmaceutical interven-
tions (NPIs). Despite advances in the impact of NPIs and the conceptual belief that NPIs and
vaccination control COVID-19 infections, we lack evidence to employ control theory in real-
world social human dynamics in the context of disease spreading. We bridge the gap by
developing a new analytical framework that treats COVID-19 as a feedback control system
with the NPIs and vaccination as the controllers and a computational model that maps human
social behaviors into input signals. This approach enables us to effectively predict the epi-
demic spreading in 381 Metropolitan statistical areas (MSAs) in the US by learning our model
parameters utilizing the time series NPIs (i.e., the stay-at-home order, face-mask wearing,
and testing) data. This model allows us to optimally identify three NPIs to predict infections
accurately in 381 MSAs and avoid over-fitting. Our numerical results demonstrate our
approach’s excellent predictive power with R2 > 0.9 for all the MSAs regardless of their sizes,
locations, and demographic status. Our methodology allows us to estimate the needed
vaccine coverage and NPIs for achieving R. to a manageable level and how the variants of
concern diminish the likelihood for disease elimination at each location. Our analytical results
provide insights into the debates surrounding the elimination of COVID-19. NPlIs, if tailored to
the MSAs, can drive the pandemic to an easily containable level and suppress future
recurrences of epidemic cycles.
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Introduction

he ongoing global pandemic of coronavirus disease 2019

(COVID-19) has caused devastating loss of human lives

and inflicted severe economic burden in the US (WHO,
2020). By 20 March 2021, more than 510,000 people were killed
by COVID-19, the unemployment reaches 11.5% (CBO, 2021),
and fiscal shortfall reaches over 200 billion (The Council of State
Governments, 2020). It is known that findings from scientific
research on non-pharmaceutical interventions (NPIs) and phar-
maceutical interventions (e.g., available vaccinations (Le et al.,
2020; Bubear et al,, 2021; Markoviv et al., 2021) and drugs (Rabby,
2020)) have successfully guided policymakers on implementing
public health strategies during a seasonal or pandemic flu. To
control the COVID-19 pandemic, countries of the world have
deployed a wide range of (NPIs) (Haushofer and Metcalf, 2020;
Priesemann et al, 2021), including personal NPIs (e.g., home
isolation, hand hygiene, face mask), community NPIs (e.g., school
closure, social distancing, limiting for mass gatherings), and
environmental hygiene (e.g., surface cleaning) (CDC, 2021).
Methodologies, from randomized controlled trials (Haushofer
and Metcalf, 2020), econometric methods (Hsiang et al., 2020;
Cho, 2020) to mathematical models (Dehning et al., 2020; Chen
et al,, 2020; Ruktanonchai et al., 2020; Brauner et al., 2021; Zhong
et al, 2021; Yang et al, 2021; Wang et al,, 2022), have been
developed to measure the effects of these NPIs. Table 1 provides a
brief overview of some existing methodologies for estimating
NPIs’ effectiveness at reducing COVID-19 transmission. But
many of them are simulation studies, which often cannot be used
without predicting the pandemic when the NPIs are adjusted.
The other data-driven studies, which mostly incorporate binary
data of whether the NPIs are implemented instead of human
behaviors/opinions toward interventions, would fail to capture
the impact of human and social development. Moreover, with-
out considering NPIs’ varieties on space, timing, and duration,
we cannot understand whether these NPIs have had the desired
effect of controlling the epidemic. In this study, we aim to tackle
the challenge by modeling the COVID-19 spreading as a feed-
back control system, where the NPIs and vaccination note the
controllers, and then to help policymakers determine the mag-
nitude and timing of interventions’ deployment as circum-
stances change.

Engineering perspectives are useful in epidemic modeling (Yan
et al,, 2015), including the principle of control theory that pro-
vides a theoretical basis for NPIs’ functioning and transmission
management. Control theory, originally developed for engineered
systems with applications to power grids, manufacturing, aircraft,
satellite, and robots, has been adapted to understand the con-
trollability of complex systems emerging in ecology, biology, and
society. The recent work about network control enables us to
identify the minimal driver nodes (Liu et al., 2011) or the lowest
control costs (Yan et al, 2015, 2012) for node control, edge
control (Nepusz and Vicsek, 2012), target control (Gao et al,
2014), multilayer control (Pdsfai et al., 2016; Menichetti et al.,
2016), temporal control (Li et al., 2017), and data-driven control
(Baggio et al, 2021). However, we continue to lack general
answers to practically applying control theory to human and
natural systems, like the dynamical system for disease spreading.
The difficulty is rooted in, for example. to control a vehicle’s
speed, we know the pedals and the steering wheel are the drivers
prompting a car to move with the desired speed and in the
desired direction, but the practical drivers are unknown for
complex human and natural systems (Liu and Barabdsi, 2016;
L' ober, 2016). Specifically, when focusing on the COVID-19
pandemic, we hypothesize that non-pharmaceutical and phar-
maceutical interventions are the “drivers” to determine the
dynamics of the COVID-19 pandemic in each location through
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controlling the infection, recovery, and death rates (L'’ober,
2016). We validate this hypothesis by developing a parsimonious
model that predicts how the interventions influence the spreads
in 381 MSAs in the US and ultimately estimates the control of
COVID-19.

Model

Model COVID-19 spreading as a feedback control system.
Increasing evidence shows that the spread of COVID-19 follows
compartmental models (Hsiang et al., 2020; Lai et al., 2020; Lopez
and Rodd, 2020; COVID et al, 2020), such as the SIRD
(Susceptible-Infectious—Recovered-Death) model, which is
mathematically described by the nonlinear equations expressing a
population balance as follows (Keeling and Rohani, 2011):

$ = ul(t) + puR(t) — POSHI(E) — V(¢t),

I = BWSMHI®) — y(OI(t) — SOI(E) — ul(1),
R = p(1)I(t) — uR(1),

D = 8(HI(t),

M

where S, I, R, and D are the susceptible, infected, recovered, and
death numbers, respectively. S+1+R+D=CQ and Q is the
population at the given place. Here, V is the count of people fully
vaccinated with an initial efficacy rate 90% (Thompson et al.,
2021) (see that V() changes as a function of the cross variant
immunity and waning immunity in Eq. (14)). The parameter y is
the crude birth and death rate, and the epidemiological para-
meters 3, y, and § are the infection, recovery, and death rates
(@ =[B,y, 6]T). Studies show that epidemiological parameters are
time-dependent, which adapt accordingly to the change in
interventions (Dehning et al., 2020; Chen et al., 2020). By defining
Bo> yo» and Jy as the infection, recovery and death rates before
interventions (@, = [y, ¥, SO]T), we define O(t) = 0, + Ug(t),
where Ug(t) = [Up(t), U,(1), Ua(t)]T is a vector of the control
input signals. As shown in Fig. 1a, the controllers Ug(t) work as
the edge control (Nepusz and Vicsek, 2012) and the vaccination V
works as the node control (Liu et al.,, 2011). Based on nonlinear
feedback control law, we develop the controllers Ug(t) using the
feedback linearization approach. Subject to our designed control
actions, the SIRD model could perfectly track the reference tra-
jectories which is generated from reported real-world pandemic
data. As illustrated in Fig. 1b, the output model trajectory fits the
real-world three-dimensional data when the feedback effect is
included, while it fails to fit when it is not considered. Note that
our approach is general and can be extended to other models that
consider n-dimensional data.

Next, we propose the parsimonious model by employing the
difference-in-difference estimation, which maps human behavior
toward NPIs into the designed controller, as shown in Fig. lc.
Specifically, the human behavior toward NPIs 0, = [6,, 6, Gg]T
which are designated as stay-at-home order 6, face-mask wearing
05 and testing 0, are measured according to Google Trend and
survey data from YouGov (see Dataset for the details). The
designed controller, Ug = [Upg, U, U,]", are the changes in pre-
intervention infection, recovery and death rates. Then, this model
could measure the effect of NPIs 6; on the controllers Ug by
comparing the changes in infection dynamics (designed con-
troller) before and after the same region’s NPIs deployment.
Beyond existing models, which assume the effects on policies are
approximately linear (Hsiang et al., 2020), we also identify the
interactions between NPI policies. Thus, we are able to compile
the compound evolution of human behavior toward the NPIs, to
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Fig. 1 The SIRD-model based feedback control system reveals how the interventions’ magnitudes and timing govern the dynamics of disease. a Based
on nonlinear feedback control law, we develop the controllers Ug = [U/;7 Uy7 Ué]T working as the edge control on infection rate, recovery rate, and death
rate. On the other side, the vaccination V works as the node control on the susceptible population. b With these controllers, the output trajectory of disease
X=1IS,1,R, DIT of the feedback control system fit with the real-world infection data of the disease. ¢ Through the model, which includes the nonlinearity or
interactions between NPIs, the human behavior toward NPIs (e.g., stay-at-home order 6, face-mask wearing 6, and testing 6,) are linked to the controllers
Ue through their effects (e.g., wg, W{_), wf’_)). Icon credits for ¢: stay-at-home logo, Tinypolkadoz/Dreamstime.com; face mask, Elenabsl/Dreamstime.com;

testing, Zubada/Dreamstime.com; vaccination, www.creazilla.com.

the evolution of the control signals with their respective effects,
W = [wh, wh, w1 -

In short, the feedback control system characterizes how the
input of human behavior toward NPIs determines the output of
designed controllers (changes in pre-intervention infection,
recovery, and death rates) in the first step. And it exhibits how
the designed controllers and vaccine rollout determine the final
output of disease dynamics in the second step. Thus, the two-
steps approach captures how the NPIs and vaccine rollout govern
the disease dynamics, through combining the principles of
control theory (L' "ober, 2016; Stewart et al., 2020) and statistical
estimation (Hsiang et al., 2020; Gertler et al.,, 2016).

Deriving the feedback controllers. The feedback controllers
measure the output of the SIRD model and then manipulate the
inputs on infection rate, recovery rate, and death rate as needed to
drive the model output toward the desired COVID-19 pandemic
trajectory. Then we could rewrite the Eq. (1) as

G = [Bo-+ USOI0) = [ro + Uy(010) = [ + Uy(O(®) = ()
O = [y, + U,(OU(®) — uR(D)
AO0 = [8y + Uy(0)li()

2
with the controller set Ug(t) = [Uy, U,, Usl". Up, Uy, Us are t(he):
controllers on infection rate, recovery rate, and death rate. For the
reference COVID-19 pandemic trajectory Xy = [Sy, Iy, Ry, Dyl®
and its corresponding output trajectory X, the error dynamics
X4—X is governed by the following equations:

I(t) = —k,I(t), R(t) = —k,R(t), D(t) = —k;D(®), (3)

where [ =1, —I, R= Ry — R, and D = Dy — D are the differ-
ences/errors between real-word data and simulated data. Here, ki,
k,, and k; are positive gains of the designed feedback controller.
The solution to the linear ordinary differential equations above
are expressed as

I(t) = e M'1(0), R(t) = e ™'R(0) D(t) = e ™'D(0), (4)

and the errors (I(¢), R(¥), D(t)) — (0, 0, 0). Therefore, the error
system is exponentially stable and X(¢) — X4(f). The simulation of
the closed-loop system is performed selecting k; =k, = k; =0.1.
The controllers are

vy | 0 (1400 -+ H10) + [y + U0 + (8 + UsOO) — kyTa0) — 1)) = By, for U)> —
# By, for Ug(H)< — B,

©)

UL = 75 (Ra(6) + uR(t) — Ky (Ry() — R(1))) — 3, for U, (£)> —y,
T —y,, for U, (0 =y,

©)

Unty= 4 T (Dy(t) — ky(Dy(t) — D(1))) — 8y, for Uy(t)> —5,
’ 8, for Us(t)< —8,

@)

The control is subject to a positivity constraint. To prevent non-
physical transmission rate Ug(t) + Bo, recovery rate U,(t) + yo,
and death rate Us(f) + 0y, the controllers are designed as
Us(t) = —PBo, Uy(t) = —yo, Us(t) = —8. Here ©y = [By, ¥y, 51" is

| (2022)9:149 | https://doi.org/10.1057/541599-022-01142-3


http://www.creazilla.com

ARTICLE

the pre-intervention epidemiological parameters learned by
infection of 'New York® MSA from 1 March 2020 to 13 March
2020 with Nelder-Mead simplex algorithm (Gao and Han, 2012).
For the controllers, irrespective to the values of initial condition
©,, the error system is stable and X(¢) — X4(¢).

Using difference-in-difference method to learn the NPIs’
marginal effects to the controllers. For NPI set 6}, we use the
linear regression model for the difference-in-difference to calcu-
late their effects on the vector of infection rate, recovery rate, and
death rate Ug(t) + ©,. Consider the model

Uo(t) + 0 = A1) + f(6,(1)) + € (1) ®)

where A(t) is the factor for time trend and eg(t) is the residual
term. Then, the difference of outcome controllers from time —1
to time ¢ is

Ug(t) = Ug(t — 1) = [A(t) + f(6,(1) + €o(?)]
=M =1 +f(6:(1)) + €0t = )]
Adding up the all difference from time 0 to time ¢
U —Ug0)= X M)— ¥ M)+ X eot)— X eolt)
=i tef0,—1] verLg ref0,t—1]

+1(6:(5) — £(6,(0))
~ f(6,(1) — (6,(0))

©)

(10)
As when t=0 no NPIs are implemented, thus, Ug(t) =0 and
f(6:(0)) =0,

Ue(t) = f(6,(1)) (11)

Vaccination adoption model. Like the innovation adoption
model, the daily newly vaccination adoption (vaccination cover-
age) will follow the bell curve, the normal distribution,
Loy

h(t,u,0) =V
(t,u,0) o/

(12)

where V is the saturation of vaccination coverage. The cumulative
vaccination adoption (vaccination coverage) is H(t) =
Pr(1<x<t)= [/ h(t,u,0)dt with t€[1,T]. It means, the
cumulative vaccination coverage will reach saturation of V in T,
days. For testing the case of a well-controlled COVID 19, we tune
the u and o to fit the real-world vaccination coverage in the
United States from 12 January 2021 to 12 January 2022 in Fig. 6.

To consider the waning nature of vaccine (Mallapaty et al.,
2021), we define a(t — t) as the decreasing vaccine efficacy since
t' with initial efficacy 0.9,

0.9 — b(t —t),0.9> = b(t — t'

) { (t—1) (t—1)
0,09<b(t—1t)

where b is the decreasing rate. When 0.9 < b(t — t'), the vaccine

totally loses its efficacy and the vaccinated people again become

susceptible.
Then, the effectively vaccinated population at ¢ is

V(t) = 2 a(t — thh(t) — ,Z_la(t— 1 —tHh(t)

(13)

(14)

where h(t') is the count of new vaccinated population at ¢

Results

Tracking the pandemic’s trajectory with designed controllers.
To validate its accuracy in predicting the disease evolution in the
future and its applicability in determining the needed interven-
tions to control the infection process, we test the NPIs data and
infection data at 381 Metropolitan statistical areas (MSAs) from 1

April 2020 to 20 February 2021. The MSAs, defined as the core
areas integrating social and economic adjacent counties, are
contiguous areas of relatively high population and traffic density.
We consider each MSA as a “closed population” the disease
evolution could be modeled by the nonlinear SIRD dynamical
model, Eq. (1), in a compact form, as

X = F(X,Ug + ©,), (15)

with X=[S, LR, D]T is the state/output vector and Ug =
[Ug, U,, U;]" is the input vector. Using feedback linearization
control design, we construct a nonlinear feedback control law
Ug = (X, X, X4, Xy), to track the real-world pandemic trajec-
tories X4 = [S4,14, Ry, Dd]T (see Egs. (2)-(7)) in Model). The
feedback law ¢(.) relies on the measurements of the model full
state X and the reference trajectory (X4) and their time derivative
(X and Xd)

Theoretically, for each MSA, the output trajectory X perfectly fits
the reported infection trajectory X4 when the control action Ug is
applied. This fact is illustrated in Fig. 2, which shows the evolution
of the predicted and reported trajectories from 1 April 2020 to 20
February 2021 for two MSAs, namely the “New York” MSA (with
New York as the core) and 'Houston’ MSA (with Houston as the
core). Moreover, the excellent alignments between the real-world
and model data of all 381 MSAs indicate our approach’s predictive
power, as shown in Fig. 2b. On the other side, Fig. 2c shows all
MSAs’ infection rate [y + Ug(t)], recovery rate [y, + U, (#)], and
death rate [0+ Us(f)], respectively, and mark out the respective
rates for the two examples of MSA. Overall speaking, the infection
rate and recovery rate decrease till May, rebound in June, decrease
again to the lowest in September and start to fluctuate till February.
The death rate continues to decrease in October and stays relatively
constant beyond. As validated in literature (Pei et al., 2020), “New
York” MSA enforces interventions more effectively and earlier,
leading to a relatively lower infection rate, recovery rate, and death
rate than most MSAs till October. One can observe that “Houston”
MSA follows medium patterns.

Having the daily transmission rate, recovery rate, and
death rate, we compute the effective reproductive ratio

Um0
Rt) = 550 (o715, + 0,018

of secondary infected cases at time t when no vaccinations are
rolled out. The function R.(tf) is a critical threshold in
understanding whether the outbreak is under control. More
precisely, if R.(f) <1, then the ongoing outbreak will eventually
fade out, whereas R.(t) > 1 means an acceleration of the infection
dynamics leading to a substantial growth of infected cases and
deaths. Fig. 2d, e, respectively visualize the temporal and spatial
distribution of the MSAs’ effective reproductive ratio. Our results
reveal that just a few MSAs’ effective reproductive ratios ever
reach R.(f) <1, implying the need to implement more rigorous
interventions to achieve an effective control of the pandemic. For
example, from 14 February 2021 to 20 February 2021, the average
effective reproductive ratios in “New York” and “Houston” MSAs
are evaluated as 1.468 and 1.393, respectively, revealing a critical
need for stronger interventions.

representing the expected number

Mapping human behaviors as actuators to steer NPIs as con-
trollers. Although our controller, Ug, precisely predicts the
infectious, death toll, and recovery, it is thus far unknown how
the measurable interventions change the controllers. Compared
with the driving car, it is similar that we know the desired speed
and direction in order to move the car to the target location, but
we do not know what the pedals and the steering wheel for
epidemic control are and how the changes in the pedals and the
steering wheel determine the speed and direction. In another

| (2022)9:149 | https://doi.org/10.1057/5s41599-022-01142-3 5



ARTICLE

le5

a
1.0 ] — ritted Infected Cases € Effective reproductive ratio (from Feb-14-2021 to Feb-20-2021)
—— Fitted Recovered Cases
0.8 | — Fitted Dead Cases
- Reported Infected Cases
Reported Recovered Cases .
0.6 Reported Dead Cases a e
—
8 TS ~
3
3
S 0.4
0.2
New York-Newark-Jersey City (NewYork)
0.0 1
20
1e5
New York
3,0 { — Fitted Infected Cases v
—— Fitted Recovered Cases 15
2.5 { — Fitted Dead Cases
" Reported Infected Cases
Reported Re
.20 Repo ed Recovered Cases 10
8 eported Dead Cases
3
S s
1.0 05
0.5
00 e Woodlands-Sugar Land (Houston 0.0
S M N S . AR A 4
PR IO SO SR U R i
10!
108 10° 100 . . .
b %  Northeast d o Effective reproductive ratio
s ] . s ] 5 s
2 10 > Midwest § 10 10 , s
2., < South s, 38 . L
] 3 2
S0 o west <10 g0 S
N 9 5 ) ]
$10°] A £10%] s100 S
S S < s
<1024 2102 S N
$ 3 g 2
K104 F10 1014, S ! e
§ 8 = Houston |+ f»g,h
10° : - 10° . . 100 . . 100 e Yo — .
10° 102 10 10° 10° 102 10* 10° 10° 102 10* 10°
Real infected cases Real recovered cases * Real dead cases S S HFprDH PR D D B
W@ @Y
C
10° 10° 10°
S Infection rate Recovery rate Death rate
g 10
N
gq 102
~ -1
£ SR
158 \
§ \ ot 10°
= % £
_§ . Houston A "’\
= t A Houston, -4
2 N . ” ¥ g 10 i A
= 102 New York s NewYork e /VQ‘F‘:’
2 VN
10 10°
S L FIDF P LD DS S & HFDP P Do S S HFpPD PN D
W@ @Y W @Y <,eQ ob & & F W@ @Y

Fig. 2 The designed feedback controllers Ug drive the output trajectories (X) in the SIRD model ingeniously fits the reported trajectories (X,) for 381

MSAs. a The reported data (dots) of infected/recovered/dead cases are fitted with the output trajectory (solid line) for example MSAs, i.e.,

“New York”

MSA and “Houston” MSA. b Comparison between the reported data and output data at all MSAs. Each MSA represent a dot. ¢ All MSAs' temporal
infection rate, [fo + Uy(t)], recovery rate, [yo + U,(t)], and death rate, [5p + Us(t)] with marking out the examples MSAs' rates. d shows the MSA’s
temporal effective reproductive ratio (R.) and e shows each MSA's average effective reproductive ratio from 14 February 2020 to 20 February 2021 in the
cartogram map, in which the geometry of regions is distorted according to their population. The effective reproductive ratio reaches the lowest as of 20

February 2021.

word, as depicted in Fig. 1, we assume that the changes of
interventions, directly steering the control signals, will shape the
disease dynamics when they are tightened and loosened to dif-
ferent levels. For multiple NPIs 6;, we divide them into two sets,
ie., the set of community NPIs 9¢ (e.g., social distancing and
quarantine) and the set personal NPIs IP (e.g., face covering, test,
and frequent hand wash). Then we develop the following
mathematical model Ug(t) = [Ug, U,, =f(0,(t), W) as
(see [Egs. (8)-(11)] in Model)

Ug(t) = H(1— Ew’@(t))—l

ie{c,p}

(16)

where UG(t) is the estimate of the control action based on NPIs
with their magnitudes 6,(t) and their impact value w’é. 0; is the
vector representing different NPIs 6; = [6,,6,,...,6,,...,0,]".
We is a vector representing the effects of NPIs at 6; and

6

I _ [yl 1,2 i n i T ot wilt
Wo = [Wg, Wg, ..., Wg, .., W] where w®—[wﬁ,wy,w5]. For

each specific NPI j, large w’é value demonstrates that NPI j has
strong impact. If wj, = [0, 0, 0]", the control Ug(t) is independent
with the NPI j. The term [I;gy, 5y indicates that community NPIs
9¢ and personal NPIs 9 have a joint effect on the controller. For

either community NPIs 9¢ or personal NPIs 9, 1 — 29}_ <9 w’é 6;(t)

term denotes the combined impact of the NPI set. Usually, Uy, is
a non-positive value, showing the reductions in each controller.

Given the collected data sets for eight NPIs (see Table 2), we
evaluate the goodness of fit versus different combinations of NPIs
to find an effective parsimonious model for Eq. (16). A
parsimonious model, which has great explanatory predictive
power, accomplishes a better prediction of controllers with as few
NPIs as possible. With 70% of the dataset of NPIs as the training
data, we use the mean absolute error to test the predictive
accuracy for the rest 30% of the dataset. Figure 3 shows that
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Table 2 Non-pharmaceutical interventions considered.

NPIs

Explanation

Type

Data sources

Stay-at-home order
School closure
Quarantine
Working from home
Face-mask wearing
Testing

Frequent hand wash
Avoid crowding

The normalized ratio of excessive time staying at home

Fraction of people support for school closure

Fraction of people willing to be quarantined after contacting infected people
Fraction of people willing to work from home

The fraction of people wearing face masks

Fraction of tested population

Fraction of people improve personal hygiene

Fraction of people avoiding crowded places

Community NPI
Community NPI
Community NPI
Community NPI
Personal NPI
Personal NPI
Personal NPI
Personal NPI

Safegraph

YouGov, Google Trend
YouGov, Google Trend
YouGov, Google Trend
YouGov, Google Trend
Johns Hopkins University
YouGov, Google Trend
YouGov, Google Trend

Ratio

—— Stay-at-home

—— School-closure

—— Quarantined
Work-from-home
Face-mask
Testing
Washing-hand
Avoid-crowd
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Fig. 3 NPIs selection for predicting the designed controllers Ug. Given eight NPIs (a), i.e., stay-at-home order, school closure, quarantine, working from
home, face-mask wearing, testing, frequent hand wash, and avoid crowding, we test the accuracy of the predictive model with different combinations of
NPIs for Ug (b), U, (€), and U, (d). The model achieves high parsimony (with fewer NPIs) and a high level of goodness of fit (with the lowest mean absolute
error) using three NPIs, which are stay-at-home order, face-mask wearing, and testing.

including three NPIs in the model gains the highest predictive
accuracy for the designed controllers (see Supplementary text for
the details). We find that the most representative NPIs for Eq.
(16) are: (1) stay-at-home order, represented by the normalized
ratio of excessive time of staying at home, 8 (2) face-mask
wearing, represented by the fraction of people wearing face
masks, g (3) testing, represented by the normalized fraction of
tested population, 6, Commonly, stay-at-home order and face-
mask wearing have a positive impact on decreasing the number of
reported cases. Differently, testing 0,(f) may positively or
negatively impact the reported infected cases. The reason is that
more testing could allow identifying more cases when the number
of testing is not sufficient, and yet, more testing may also lead to
fewer infected cases (Chiu et al., 2020). Representing the three

NPIs as 6, = [6,, 6, Gg]T, then,
Uo(t) = (1= wy0,(t)) (1 — wh0,(1) — wgeg(t)) —1 a7

In the following studies, we only use these three selected NPIs for
predictions.

Effects of NPIs on shaping the disease dynamics. Based of the
parsimonious model of Eq. (17), we learn the parameter-by-
intervention specific marginal effects w$,, wf,, and w},, reflecting

the variations of Ug as a function of the evolution of the time-
dependent local NPIs 04(f), 0t), and 6,(f) at MSAs. With the
objective to directly infer the Ug with the NPIs data, we first use
70% dataset of NPIs as the training data to learn the marginal
effects. Then, we estimate the counterparts Ug, given as Eq. (17)
using the 30% left testing datasets and evaluate the fit between Ug
and Ug. Taking the “New York” MSA and “Houston” MSA
shown in Fig. 4a, b as illustrative examples; given the evolution of
NPIs, the estimated control signals Uﬂ and Uy with the learned
marginal effects, fit the predicted model-based control law
defined in terms of Uz and Us Based on the proportionality
between U,(t) and Ug(t) (see Fig. S1), ie., Up(t)/U,(t) = 2.664,
here, we only consider Up(t) and Us(?).

It is remarkable that for all MSAs, Eq. (17) stays robust to the
huge heterogeneity of locality. As depicted in Fig. 4c, the NPIs
have a great high standard deviation (o) across MSAs, especially
for stay-at-home order and face-mask wearing. One can notice
that the average magnitude of stay-at-home order decreases from
80% to 40% recently with 0= 0.140. Besides, nearly 53.56% of
people are wearing face masks when being outdoors with o= 0.20
while the average magnitude of testing increases to 9.19% with
0=0.032. To test the robustness of the model of Eq. (17), we
trained and validated the model iteratively on different MSAs’
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Fig. 4 The learned effects enable us to use the magnitude of NPIs to predict infection at each MSA. Using the 70% NPIs and infection data, we learned
the NPIs' effects in the model of Eq. (17). Based on the learned effects, a, b illustrates how the magnitude of NPIs determine the controllers (U (t) and
U5(t)) in the example MSAs. To test the accuracy of model, we compare [Uﬁ(t) and Ua(t)] with analytical controllers [U(t) and Us(t)] with the Ieft 30%
NPIs and infection data (vertical shaded area) in the right-side plots of a, b. ¢ All MSAs' magnitudes of NPIs. The solid line represents the average, and the
shaded area represents the standard variance for all MSAs. Though the large difference between MSAs' magnitudes of interventions, in d, the marginal
effects for stay-at-home order and face-mask wearing are mainly negative. Testing, which may help to find more infection and death, have either negative
or positive effect. Thus, by taking the estimated controllers 09 = [Uﬁ, Uy, Cl(;] as the input of the SIRD model, we find the estimated infection/death

assemble with reported infection/death with R2> 0.9, see the two example dates in e and f. Figure S2 shows the estimation accuracy for all others dates. It

should be noted that as the Uy keeps constantly proportional to Uﬁ (see Fig.

datasets for NPIs. The distributions of marginal effects across the
three NPIs are shown in Fig. 4d. Most MSAs’ marginal effects for
stay-at-home order and face-mask wearing are negative. The
statistics imply the generic feature of Eq. (17) in capturing NPIs’
effects despite the huge regional heterogeneity of human
behaviors. However, the average marginal effect of testing has
two opposite outcomes. For Uﬁ(t), 73.5% of MSAS’ testing’
marginal effects are positive, meaning 26.5% of them are negative.
For Uy(t), 46.0% of MSASs’ testing’ marginal effects are positive,
meaning 54.0% of them are negative. The positive effects suggest
that testing is favorable to finding more infections and deaths,
while the negative effects show that testing reduces infection
or death.

Applymg the estimated control signals U,B(t) Us(t), and
U y() = Uﬁ(t)/ 2.264 to the SIRD model, we find that the new

output trajectories X fit the reported infection Xg with R2> 0.9, as
shown in Fig. S2. As well, Fig. 4e, f depict the predicted infected/
dead cases with reported infected/dead cases on 20 October 2020

8

S1), there is no need for further exploring (Jy.

and 20 February 2021. All the results further validate the model in
assessing NPIs’ effects on disease dynamics.

Needed NPIs and vaccinations for achieving R. to a manage-
able level. The two-steps approach, integrating the designed
controllers in Egs. (1)-(15)) and the effect of NPIs on controllers
in Egs. (17), has successfully mapped human behaviors to NPIs to
infection rate, recovery rate, and death rate of the SIRD model.
Then, the effective reproductive number R, can be equivalently
translated in terms of magnitudes of NPIs (6;) and V (the ratio of
people full vaccinated with an efficacy rate 90% (Thompson et al,,
2021)), that is,

ﬂ() +f(01’ Wk)

R.(t) =
O = 8y Tt 76, W) + (0, W)

s(t).  (18)

From the equation above, we can determine the needed magni-
tude of NPIs for achieving R.(f) < 1, the criterion for the disease
die out, under a given vaccination coverage. Here, the vaccination
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Fig. 5 Needed NPIs to keep effective reproductive ratio R. <1 with different vaccine coverage. Take the “New York” MSA and “Houston” MSA as
examples; a, b show the needed magnitude for NPIs in order to keep R, <1 with zero vaccine coverage. The horizontal slices of the “triangular prism"” are
the visualization for the needed magnitude of stay-at-home order and face-mask wearing if the magnitude of testing is fixed. ¢ When people are fully
vaccinated at different levels (vaccine coverage), how much extents of stay-at-home order and face-mask wearing could be relaxed while keeping R, =1.
The magnitude of testing is fixed, the same as each MSA's recent testing capacity. These results demonstrate relaxing interventions need thorough and

careful consideration when the ratios of full vaccinated people <0.6.

coverage is viewed as an open-loop control action or a given
parameter whose assigned value affects the speed of propagation
of the disease.

When there is no vaccination administered in the US (like
before 12 January 2021 V = 0), the needed magnitude of NPIs to
achieve an effective reproductive number is below the threshold,
R.(t) <1 (Dowdle, 1998), for 'New York’ and "Houston” MSAs are
shown in Fig. 5a, b. The “triangular prism” in three dimensions
represents the needed magnitude of the stay-at-home order, face-
mask wearing, and testing. The horizontal slices of the “triangular
prism” are the visualization for the needed magnitude of stay-at-
home order and face-mask wearing if the magnitude of testing is
fixed. If stay-at-home order and face-mask wearing interventions
are enforced at a level greater than about 80%, R.(t) < 1, which
forms a “triangle” as shown in Fig. 5a, b. As opposed to stay-at-
home order and face-mask wearing, the testing intervention have
a positive marginal effect on 'New York’ MSA and ’Houston’
MSA. Hence, in both cases, the “triangle” becomes smaller for
larger testing. Some MSAs ("Log Angles’ MSA and "Miami’ MSA
in Fig. S4) have a negative marginal effect for testing intervention,
and their “triangle” becomes bigger for larger testing. According
to their testing interventions ’ marginal effects, the shapes of
“triangular prism” for more MSAs are shown in Fig. S4.

Since 12 January 2021, the US began the first jab of vaccine,
and undoubtedly, R.(f) could be smaller with mass vaccinations
according to the Eq. (18). For different ratios of fully vaccinated
people with 90% efficiency, we could find at least how much NPIs
could be relaxed (reduced) to achieve R.() =1 in Fig. 5c. Setting
aside testing intervention, more magnitude of stay-at-home order
and face-mask wearing interventions could be eased if more
people are fully vaccinated. However, when 60% of people are
fully vaccinated, only 55.3% of stay-at-home order and 64.8%
face-mask wearing could be eased. When 70% of people are fully

vaccinated, the stay-at-home order and face-mask wearing could
be eased entirely. However, to achieve R.(f) < 1, the policymakers
should relax NPIs with more caution.

When the variants are considered in the model. The world has
endured multiple variants of the SARS-CoV-2, and there is a
possibility that COVID-19 will become endemic. Although it
means large-scale NPIs enforced by governments are likely to
lessen, it is worth noting that it also means the world may bear
long-term suffering. A COVID endemic could claim millions
more lives each year and cause devastating economic burdens on
immunization, treatment, and prevention (Lee et al., 2020; Hey-
wood and Macintyre, 2020). Additionally, it is possible that
repeated tightening and loosening interventions are needed in the
future due to recurrent outbreaks (Stewart et al., 2020; Metcalf
et al., 2020; Thompson et al., 2020). Therefore, it is valuable to
explore the “zero COVID,” which was achieved temporarily in
New Zealand (Baker et al., 2020), Vietnam, Brunei, and Island
states in the Carbbean (Lee et al., 2020). We utilize the vaccina-
tion data (CDC, 2021) and investigate the possibility of theore-
tically reaching zero infections, i.e., no new cases at least for three
months in a given MSA (Diekmann et al.,, 2012) when within/
without variants. Furthermore, the day when the following
3 months having zero new cases is defined as the curbing day.
We assume that the ratio of fully vaccinated people (also called
vaccination coverage), follows the innovation adoption model
according to Rogers (Oldenburg and Glanz, 2008), which is a
normal distribution, see Eq. (12)). Then, the total number of
immunized people is defined as V(¢) in Eq. (14) with the waning
vaccine effectiveness. As shown in Fig. 6a, the reported data reveal
that the ratio of fully vaccinated people from 12 January 2021 to
18 February 2022 in the US increases to 64%. We obtained the
vaccination coverage as a curve that gradually reaches saturation
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Fig. 6 Disease severity with/without variants of concern. By (1) defining the day reaching zero new infection for 90 days as the curbing day, (2) assuming
that interventions (i.e., stay-at-home order, face-mask wearing, and testing) keep the same as that from 5 January 2021 to 11 February 2021, (3) consider
the ratio of people fully vaccinated as the vaccination coverage, we test the curbing days for MSAs since 12 January 2021. a The vaccination adoption
model H(t) illustrates how the saturation of people fully vaccinated is reached in period T,. Specifically, the orange line is the reported cumulative
vaccination coverage. b MSAs' estimated curbing days if 60% are full vaccinated with 360 days. ¢, d Box plots for MSAS' additional death in the following
1000 days for different saturation of vaccination coverage with/without the presence of variants.

within example periods of 270 and 360 days (T;) by fitting the
real-world ratio. Considering a full vaccination of 60% of people
after 360 days since 12 January 2021, the average curbing day for
all MSAs corresponds to the hundred seventieth day. Under this
configuration, from in Fig. 6b, one can notice that 'New York’
MSA reaches the curbing stage after 197 days while "Houston’
MSA achieves a total curbing stage after 187 days. These results
reveal that broader vaccination coverage further reduces both the
time until the curbing day and the death toll. However, when we
consider variants of concern: Alpha, Beta, Gamma, Delta, and
Omicron in the model, we find that curbing day is hard to achieve
in three years as new cases will re-emerge even after a temporary
period of “zero new cases.” We simply assume that infection rates
increase and death rates decrease according to the emergence of
variants (see Table S2). Though highly contagious variants would
potentially exacerbate the infections, their less-deadly character-
istics would help reduce the deaths. (see Fig. 6¢, d).

Discussion

We present the COVID-19 pandemic as the feedback control
system to show how the evolution of disease adapts to human
behaviors to NPIs and the vaccine coverage. This approach
enables us to model the linear and nonlinear effects of multiple
NPIs on the SIRD model-based feedback controllers on the

10

epidemiological parameters. By reducing eight NPIs to three
representative ones (i.e., stay-at-home order, face-mask wearing,
and testing), we obtain the model having great explanatory pre-
dictive power toward disease dynamics. By studying the NPIs at
381 MSAs from 1 April 2020 to 20 February 2021, we find that the
two-steps approach is robust and efficient to predict daily infec-
tion and death accurately. Beyond in line with existing studies that
NPIs are effective in suppressing the disease outbreaks (Lai et al.,
2020; Flaxman et al., 2020; Group et al., 2021), we could directly
link the NPIs’® marginal effects to the effective reproductive
number R.. Without the need for up-to-date knowledge of current
infections and ‘nowcasting’. Besides accurate forecast on both case
counts and deaths, this approach could provide practical infor-
mation for policymakers regarding the extent of safely relaxing
NPIs and the needed vaccination coverage to manage COVID-19
locally. The approach is also universal and thus can be used by
policymakers elsewhere.

By analyzing the needed NPIs for keeping R, < 1, we find that
MSAs should continue to enforce their stay-at-home order and
face-mask wearing. Loosening the degree below 80% could lead to
a resurgence of COVID-19. Our results show that MSAs should
continue to require wearing masks and unless 60% of people are
fully vaccinated, the MSA should not relax the stay-at-home
order and face-mask wearing intervention.
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It is currently being debated whether COVID-19 ("Zero
COVID”) can be eliminated and some view it as the only means
of preventing future crises and insist that mass vaccination is
necessary (Lee et al., 2020; Heywood and Macintyre, 2020).
However, the goal is undermined by the new variants. The con-
tinuous emergence of new, highly contagious, and less deadly
variants gives rise to a long process with fluctuations in new
infections. The best outcome would be that future mutation of the
COVID-19 virus keeps less lethal and becomes endemic. Thus, to
persistently fight against COVID-19, our experiments reinforce
the argument that maintaining NPIs and encouraging people to
get vaccines are necessary and key strategies to lower the new
deaths as much as possible.

Our study has some limitations. The first limitation is rooted
in the dataset for COVID-19 and the dataset for NPIs. Given the
mass mild or asymptomatic infections, the inaccuracy of
reported infections and deaths would increase the uncertainty of
the SIRD model-based feedback controllers. The second lim-
itation is assuming each MSA as the closed population, which
ignores the fluctuation of infections caused by case importation
and exportation. This simplification would influence the results
from needed NPIs and PIs for suppressing COVID-19 to the
elimination test. The third limitation is assuming vaccination
adoption follows the curve of diffusion of innovations without
considering people’s attitudes to vaccinations. As the attitudes
towards vaccination vary by age, race, ethnicity, and education,
it is hard to capture the full complexity. The fourth limitation is
that our model outcomes are determined by the people’s
responses to NPIs, which are time-dependent. When it’s being
used for prediction, it would be more suitable for predicting
short-term rather than long-term dynamics especially when the
NPIs deployment changes. Nevertheless, our study provides
practical insights into tightening or relaxing NPIs for the aim of
living with COVID-19.

Data availability

All data needed to evaluate the paper’s conclusions are presented
in this paper. Derived Data and codes that support the findings of
this article are available at https://github.com/lucinezhong/
controllers_ode_COVID.git.
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