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Estimating comparable distances to tipping points
across mutualistic systems by scaled recovery
rates

Huixin Zhang', Qi Wang®?, Weidong Zhang', Shlomo Havlin® and Jianxi Gao®452<

Mutualistic systems can experience abrupt and irreversible regime shifts caused by local or global stressors. Despite decades of
efforts to understand ecosystem dynamics and determine whether a tipping point could occur, there are no current approaches
to estimate distances (in state/parameter space) to tipping points and compare the distances across various mutualistic sys-
tems. Here we develop a general dimension-reduction approach that simultaneously compresses the natural control and state
parameters of high-dimensional complex systems and introduces a scaling factor for recovery rates. Our theoretical framework
places various systems with entirely different dynamical parameters, network structure and state perturbations on the same
scale. More importantly, it compares distances to tipping points across different systems on the basis of data on abundance
and topology. By applying the method to 54 real-world mutualistic networks, our analytical results unveil the network charac-
teristics and system parameters that control a system'’s resilience. We contribute to the ongoing efforts in developing a general

framework for mapping and predicting distance to tipping points of ecological and potentially other systems.

utualistic networks, formed when the interactions of two

systems are mutually beneficial, are common in ecologi-

cal', biological*’ and social systems*’. Recently, mutualis-
tic networks have attracted much attention®” because their unique
structural properties make them more resilient to perturbations'®'".
However, species loss"?, invasions'’, human activities'*"* and envi-
ronmental changes'® can cause targeted and unexpected perturba-
tions. In a variety of real ecosystems'’-*, extensive experimental and
observational evidence has shown that perturbations drive systems
past tipping points and cause large-scale global extinctions”. Here
we focus on mutualistic systems and assume the existence of tip-
ping points as previous studies did**~*, although we are aware that
the threshold of an ecosystem is difficult to predict from empiri-
cal data®, possibly due to noise and complicated interactions in
a system?”’.

Whether a particular system would collapse or could recover
from a perturbation highly depends on how close the current sys-
tem state is to a possible boundary?, that is, the distance to the tip-
ping point in a one-dimensional (1D) equation (the length of the
black arrows shown in Fig. 1a). Thus, we mathematically define
resilience as the distance to the boundary of the attraction basin®.
Note that this definition is also called ecological resilience or sys-
tem resilience—a system’s ability to adjust its activity to retain its
basic functionality when errors, failures and environmental changes
occur, which is a defining property of many complex systems®'.
The prediction of distance to a tipping point is a grand challenge for
complex systems**. There are, to our best knowledge, no theoreti-
cal approaches that can predict relative resilience among systems,
considering different types of perturbations. Numerous empirical
studies'”"** have demonstrated how perturbations reshape the
resilience of real ecosystems (Fig. 1b). Here we consider three types
of perturbations: (1) structural perturbations, (2) dynamics per-
turbations and (3) state changes (Fig. 1b). Structural perturbations

include: (1) the extinction of species (node loss) or species invasion
(node addition)®, (2) the partial removal of competitive or mutual-
istic interaction (link loss) or changes in weights of a few links' and
(3) global shifts in interaction (that is, global weight loss of the entire
network) caused by environmental changes such as ocean acidity
or global warming®. Dynamics perturbations refer to changes in
dynamic parameters; for example, the intrinsic growth rate a in the
offspring production dynamics dx/dt=a+x(1 —x) changes due to
changes in habitat types and landscape compositions”. Lastly, state
changes refer to changes in the initial states when solving differen-
tial equations. They include patterns of temporal variation altered
by a sharp drop in species abundance after, for example, a tsunami**,
and the recovery of an ecosystem such as the coastal ecosystem
through the restoration of seagrass habitat in the Chesapeake Bay
in the USA*. Numerous empirical studies'’~*"** have demonstrated
how these different types of perturbations simultaneously reshape
the resilience of real ecosystems. They can happen simultaneously
and add compounding effects on ecological networks and thus,
push them across their tipping point in diverse ways, bringing pro-
found challenges to predicting the distances to their tipping points.

Many research efforts attempt to monitor system-level behav-
iour when a network is approaching its tipping point* (Fig. 1c) in
the hope of preventing the system from collapsing into undesired
states’'. These efforts greatly fructify the development of metrics,
like recovery rate (that is, speed of recovery from perturbation) and
autocorrelation variance (self-similarity near a tipping point)**>*.
However, none of these metrics can explicitly measure distances
to tipping points, let alone compare them across different systems.
Comparing two snapshots can at best inform us whether a given
system is moving towards its tipping point (for example, (i) and (ii)
in Fig. 1¢), providing no information in the units of changes in the
parameter driving a system to its tipping point. Also, one system can
react differently when facing different perturbations (for example,
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Fig. 1| Early-warning signals indicate distance to tipping points of mutualistic networks. a, A common approximation of the behaviour of
mutualistic networks is high-dimensional interacting equations, capturing both dynamical roles (tailed arrows, including: self-dynamics,

F(-) and P(-); competitive-dynamics, G(-) and Q(-); mutualistic-dynamics, H(-) and R(-)) and structural properties (including: interactions
within one system, A; and C;; interactions between two systems, B; and D). How one system behaves after one perturbation (the red arrow) is
predominantly determined by network structure (the brown curve), system dynamics (the green curve) and its current state. Whether this
mutualistic network could collapse (non-resilient) or recover (resilient) from a perturbation highly depends on how close the current resilience of
this system is to the edge (the grey curves), that is, the distance to the tipping point (black arrows). b, Perturbations that challenge the resilience
of one system can be classified as: (1) perturbations in structure, (2) perturbations in dynamics (from one dynamic role, marked as brown, to
another dynamic role, marked as green; the solid curve represents the stable state, while the dashed curve represents the unstable state) and (3)
perturbations in the current state, which leading to (the black arrow) the resilient state or the non-resilient state (the red curve). ¢, We simulated
how a 1D equation % =x(a — px+ #) (p=1,h=0.2) behaves after perturbations (occur at steps 1, 2, 3, 4 and 5), including dynamic perturbation
(green curve, y=[8: =1: 31), structure perturbation (brown curve, a=—-[0.1: 0.3: 1.6]1) and state perturbation (dashed circle, x,=x,[0.85, 0.71).

As the distance to a tipping point shortens (i vs ii), recovery rate becomes slower and autocorrelation (detected during the stable period, marked

as dashed rectangles) becomes larger. However, two systems that have the same metrics may be unequally resilient (brown curve in (i) vs green
curve in (ii)).
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the two green curves for the same location (ii) in Fig. 1c). Moreover,
two systems can have the same values in these metrics but vary in
their distances to tipping points. The difference is due to each sys-
tem being governed by a unique set of high-dimensional dynamical
equations with different network structures’. As shown in Fig. 1c, a
system can have similar recovery rates at step 1 (that is, green curve
(1)) and step 3 (that is, brown curve (ii)). The fact that recovery rates
are a general way of assessing a system’s resilience and that they can
be quantified in a broad range of systems, regardless of their specific
characteristics, hints at its broad applicability and calls for the devel-
opment of a more general framework.

Here we develop a novel mathematical framework to position
various systems with different dynamical parameters, network
structures and state variables on the same scale, making it possible
to directly compare their distances to tipping points. This frame-
work provides: (1) a structural indicator that measures the resilience
of a system and (2) a scaling factor that positions the resilience of
different systems on the same scale. It allows us to measure distances
to tipping points across mutualistic systems with critical thresholds
and thus quantify their resilience on the same scale using data on
abundance and topology (see Extended Data Fig. 1).

Results

To obtain a general framework for mutualistic networks, we first
introduce a well-studied model from the literature which assumes
nonlinear dynamics. Here we use the same set of differential equa-
tions as in ref. **, which considers mutualistic interactions between
plants and animals (for example, plants and their pollinators), as
well as interspecific competitions within plants and animals. The
model incorporates complex and critical elements—such as satu-
rated functional responses® and interspecific competition within
a guild’—recently adduced as essential components of mutu-
alistic interactions. Specifically, the dynamical model has the
following form:

(P)
dp _ p | (P) <P> > 7y A
= o -
, (1)
da, g | o) ) 4 > P
= A; |:a,— - Zﬂ 1+hl(A) Xk:rff)Pk

where (P) and (A) stand for plant and animal, respectively. P, and
A, are their abundances. @; denotes species i’s intrinsic growth rate
in the absence of competition and mutualism, f3; captures the direct
interspecific competition of resources between species i and j, h; is
the saturating constant of the beneficial effect of mutualism”** and
7; defines the per capita mutualistic strength between one plant and
one animal. The last term of equation (1) describes the mutualistic
interaction through nonlinear functional responses representing a
saturation of consumers as the resources increase.

The dimension reduction on mutualistic networks. The high
dimensionality in mutualistic networks, brought about by the com-
plex interactions of competitive and mutualistic effects, determines
the high dimensionality in the basin attractions. In this way, the
distance to the boundary of the attraction basin (a surface) is in all
directions, and thus, it is intractable to calculate how far the system
is to losing its resilience. The difficulty is rooted in the interaction
terms, such as Y g, and > v, where the matrices (for example, y;
for mutualism and f; for competition) link all the nonlinear equa-
tions coupled together. Without loss of generality, we use a matrix
M to represent all possible interactions discussed in this work, such
as competitive interactions (matrix f ) for animals and matrix &)
for plants) and mutualistic relations (matrix y® and y for the
mutualism between the two systems). Here we focus on quantities
related to the average nearest-neighbour node. Consider a scalar
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quantity y, related to node i, for example, i’s activity x,(t) at time ¢.
The mean value of y; over all nodes is given by (y;) = 1/N Zl Vi
This is different, however, from the mean over all nearest-neighbour
nodes, (y;),,. Indeed, when sampling nearest-neighbour nodes, our
selection process is biased towards the more connected nodes, as
nodes with many nearest neighbours are sampled more often*. We
thus construct the following averaging procedure: for each node i, a
neighbour j is selected with probability proportional to j’s outgoing
link M. With this selection procedure, nodes with a greater outgo-
ing degree s = Zl L Mijj are more likely to be selected, and as a
result their weight in the construction of (y,) is proportional to
s, Thus, we compress a sum over all of s nearest neighbours j
as s{"(y;),» where s = 1 Ajj. For networks with little degree
correlations, we take the average over j to be independent of i, that
is, we assume that i’s neighbourhood is, on average, identical to the
neighbourhood of all other nodes. This allows us to write average
state as s (y;) , without specifically attributing the average to near-
est neighbours of i. To formalize the above analysis, we introduce
the operator

17T My

y=LMY) = Tr )

where 1 = (1,...,1)" is the unit vector. This operation, equation (2),
enables us to compress the high-dimension information y into a sca-
lar y. The input vector y can be the element’s states (P; and A,), the
dynamical parameters (e;) and the structural properties (weighted
degrees s).

Since a mutualistic system has four network structures, as the
four inputs of the mean-field operator (equation (2)), we can con-
dense the governing high-dimension dynamics (equation (1)) into
a four-dimensional function

% _pP (aPP+ﬂfPPP+ﬁPPPP+

PP 4P
11 hPPyPPAP

%A _pA (aAA+ﬁ§\AAA+ﬂAAAA+ yAApA )

1+hAA}'AAPA
dpA pA (oPA PA pA PA pP PAAP &
= (0‘ + AP TP+ W)
3 yAPpA
% — AP ( AP +ﬁAPAP 4P AN 4 1+hAP APPA)

Here, PP reflects the average information of plants from the per-
spective of plants themselves, while PA reflects evaluation from the
perspective of animals (more details can be found in Table 1). The
advance of our current study from the previous approaches®* lies
on the ability to: (1) deal with multilayer networks*, whereas the
previous focus is on single networks; (2) map a bipartite network
with a rectangular matrix (N' X N") to a single number, whereas
the previous method can only treat a square matrix of a unipartite
network.

Furthermore, we reconstruct the low-dimensional information
obtained above as an adjacency matrix Z=[g""00y""; 0544y*40; p
00y 0p*Py*P0]. Then we further compress the four-dimensional
function (equation (3)) into a one-dimensional function by putting
matrix Z as the input matrix of operator £(Z, y) and finally get

dx

x| B Pt T h | = Mabrn, @

1+h

where f,=f+p, x captures the mean-field abundance of both
plants and animals (more details in Table 2). The system (equa-
tion (4)) characterizes the one-dimensional abundance x of both
plants, P, and animals, A,. The transformation provides a general
one-dimensional function to study the resilience of mutualistic
networks and apply traditional tools designed for one-dimensional
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Table 1| Effective variables abstracted from adjacency matrices.
Effective variables obtained from the operator £(M, y), with

the input matrix M as competitive structure (5, ) and
mutualistic structure (y®, y»), and the input vector y as states

Table 2 | Effective variables abstracted from the effective
matrix Z. Effective variables obtained from the operator £(M, y)
, with the input matrix M as reconstructed matrix Z, and the
input vector y as effective states ([P", A*, PA, AP]"), effective

e T
(P, A), growth rates (a,), self-competition strength (8.) and growth rates ([ ath aPA AP] ), effective self-competition
the number of i's interactions (s;). We set that the saturating strength ( 1ﬂ ), effective competitive strength
constant h; is homogeneous for all species and thus we have h™ g%, A and effectlve mutualistic strength
=h"M"=hA=hP=h W™ ™, J’PAI J’AP] )
M y Description M y Description
PP /P (P) Effective abundance of plants, X Z [PP, AR, PA, AP Effective abundance for both plants
considering contributions from plants and animals
AR L (A) Effective abundance of animals, a V4 [, o™, a2, o] Effective growth rate for both
considering contributions from animals plants and animals
P 7@ P) Effective abundance of plants, B, Z (6P, oA, gPA, APy Effective self-competition for both
considering contributions from animals plants and animals
AP 7P (A) Effective abundance of animals, p Z 167, p*2, g7 p™|T  Effective competition for both
considering contributions from plants plants and animals
o p® a® Effective growth rate of plants, 7 Z [P, y™A, yPA, AP Effective self-competition for both
considering contributions from plants plants and animals
ahh S a® Effective growth rate of animals,
considering contributions from animals
a™ r? a® Effective growth rate of plants, mutualistic networks can face various perturbations. Each can lead
G el Gomifi AU O e to complex behaviours depending on the system’s size, structure and
at® r® a® Effective growth rate of animals, consequentially, its boundaries of operating space***’!. We examine
considering contributions from plants such complexity by imposing simulated perturbations on 39 pol-
Jid P (P) Effective self-competition of plants, linator networks worldwide (Supplementary Table 1). The pertur-
considering contributions from plants bations are applied on links (reducing/increasing their strength on
A e ™ Effective self-competition of animals, average by a fraction f,, rer.noving/ad.ding a fraction, f;, of tint(s ran-
considering contributions from animals d(;mly? andfnqdes l(remO\\I/I\;lg a fra;ctlorlll ogplants. o (gr ehrlmnattng
a fraction of animals f,,). We simulate the dynamics of species usin
pA ¥ B Effective self-competition of plants, . 1 .df“N) h b g £ all pl 8
considering contributions from animals equation (1), providing the average abundance of all plants ((P))
- W : = : and that of animals ((A)) across 100 realizations. The realization
A r® s Effective self-competition of animals, results for one network with a=-0.3, ,.=3, h=0.2, are shown in

considering contributions from plants
pr pP s' Effective competition of plants,
considering contributions from plants
/A S s! Effective competition of animals,
considering contributions from animals

pA y® s' Effective competition of plants,
considering contributions from animals
i 7 s! Effective competition of animals,
considering contributions from plants
yP 7 s’ Effective mutual strength of plants,
considering contributions from plants
Vo yA sl Effective mutual strength of animals,
considering contributions from animals
Vo el sk Effective mutual strength of plants,
considering contributions from animals
[ A sl Effective mutual strength of animals,

considering contributions from plants

systems with small parameter space®. After the transformation into
the one dimension, the state of a high-dimensional system could
be easily positioned in a line, corresponding to the resilient region
(above the tipping point, non-zero biomass, x> 0 in equation (1))
or the non-resilient region (below the tipping point, zero biomass,
x=0in equation (1)).

The developed one-dimensional function, that is, equation (4),
can predict the dynamical behaviours of mutualistic networks
regardless of the types of perturbations. As illustrated in Fig. 1b,

Fig. 2a—p (see complete results for all 39 networks in Supplementary
Figs. 8-15 and prediction errors in Supplementary Table 5). After
applying the reduction, the numerical results (red points in Fig. 2q)
collapse onto the resilience plane (blue surface in Fig. 2q) predicted
by our approach (equation (4)). The convergence indicates that our
mutualistic function predicts the behaviours of dynamics of eco-
logical networks regardless of the types of perturbation.

The resilience phase space of mutualistic networks. With the
one-dimensional resilience function (equation (4)), we can measure
the resilience of a high-dimensional system with a simple variable
x, which denotes the weighted average biomass of all species using
our reduction approach.

Our framework decouples the intertwined competition and
mutualism in the same one-dimensional function. Thus, the analy-
sis focusing on a one-dimensional resilience function can elucidate
the dynamic roles of competition and mutualism in a mutualistic
system. In a one-dimensional system (for example, a=—1, =4,
h=0.2 in Fig. 3) with fixed competitive interaction ($=0.2 in
Fig. 3a,b), the mutualistic interaction y alone determines the state of
the system. When the mutual strength y is less than its critical value
7. (see Supplementary Note 2 for the derived process), that is, y <y,
the system (equation (4)) will undergo a single first-order transi-
tion from high biomass (x>0) to low biomass (x=0). By setting
fla, o Boy,x) =a— (B, + ) x+ 1+h ~ we get that if y is smaller
than 7! = (, + ) (=l 2y e
than 0 (with the strength £, >0, >0, y>0) and all species eventu-
ally become extinct due to the lack of mutualism. In this scenario, 0
is the only fixed point in equation (4).

, fla, B, P, y) is always smaller
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Comparison between simulation and theory for 39 real ecosystems

® Simulation

Fig. 2 | The resilience function of mutualistic networks to structural perturbations. a-p, We tested the resilience of the system (equation (1),

a=a=-0.3, f;=p,=3, h=h=0.2) with both competition (links random, f;

=0.03 with probability 50%) and mutualism. The network data are from

ref. © as shown in Supplementary Table 1, y; = % with y,=9 and t=0.2. Their resilience is tested against: (1) perturbation in links (a-1); and (2)
perturbation in nodes (m-p). Link perturbation has two variations: increasing/decreasing (that is, competition/mutualism) the average weight to a fraction
f,, of their original value; and extinction of a fraction f, of links. Node perturbation also has two variations: extinction of a fraction f, of plants; extinction

of a fraction f,, of animals. q, All data (red points, simulation) in a-p and in Supplementary Figs. 8-15, comprising 39 highly diverse empirical ecological
networks. They uniformly collapse onto the resilience function (blue surface, theory, 1D equation (4)), indicating that regardless of the network structure
and the form of perturbation, the state of the system is captured by  and y (see prediction error in Extended Data Fig. 2).

Additionally, we introduce y?, which describes the minimal
strength of mutualistic interaction that leads the system from
its initial state (x,) to the fixed point x>0, with the expression
7= ﬁ[Wlﬂf)xﬁl —1]. The system cannot maintain its
resilient state (the stable state with high biomass, blue line in
Fig. 3a) if y < yi = 13.74, and with low initial x, (for example,

x,=0.01), it will lose its resilience if y < y* = 131.67. Intriguingly,
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the existence of y* depends on both the initial state x, and the
competition strength f (Fig. 3b). The competition strength f also
influences y', that is, y! = f(), and thus we can write y as a
function of y,, that is, 2 = f(8) = f(r) (Fig. 3¢). Similarly, the
system exhibits bifurcating behaviour when y is fixed (y=20 in
Fig. 3d,e). For the system with the given mutualistic strength y =20,
it has two critical values for competition: g} = 2.11and > = 0.29
for x,=0.1 (Fig. 3d). This bifurcation phenomenon, that is, the
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Fig. 3 | Detecting the resilience of mutualistic networks. We investigate the role of competition and mutualism on the formation of

resilience patterns (equation (1) with h=0.2, ;=4 and a=-1). a, With f=0.2, the one-dimensional system has two critical values for y (the grey
dotted lines): it could not stay high (blue line) if y < yl = 13.74 (the unidirectional arrows); it will leave the unstable fixed point (the orange dashed
line) and lose its resilience finally if y < y2 = 131.67 with x, = 0.01, otherwise become resilient (the bidirectional arrows). b, The existence of the
second critical value yf depends on x,and y. ¢, yg can be expressed as a function of 71 (blue line), which is stopped when y? < yl (orange line),
depending on the value of g (open circle shows the critical values of y with g = 0.20, while square shows those with g =115.09). d, With y =20,

ﬁl = 2.11and ﬁ? = 0.29 for x,=0.1. e, With y =20, both x, and g influence the existence of critical values. f, With x,=0.1, both $ and y influence

the existence of critical values. g, For y€[19.2,20.8], 39 real systems (points for simulation results) facing perturbations are mapped to the universal
resilience function (lines for theoretical prediction, 1D equation (4)), starting with different initial states (blue for x,=5, red for x,=0.01). h, For
p€[0.18,0.22], with different initial states (blue for x,=5, red for x,=0.1). i, For 28 real weighted networks with h=0.8, we maintained the effective
competition strength #=1.00 but changed the competition topology by assigning three different linking probabilities (cp): 0.2 (light blue), 0.5 (blue)
and 1 (red) and found that all results fit the predicted 1D resilience function (grey curve, equation (4)).j, h=0.5, others asini. k, h=0.2,

others as inii.
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existence of /32, depends on both the initial state x, and the mutu-
alistic strength y (Fig. 3e).

The finding shows that the mutualism factor y, along with the
competition factor f, maps the resilience space of mutualistic net-
works together. When setting x, = 0.1, the interactive effects between
y and g influence the resilience of the system together and sepa-
rate the functional space of the mutualistic system (equation (4))
into three distinct regions (Fig. 3f). In the resilient state (blue region
in Fig. 3f where y > y2(xo = 0.1) > y)), there is only one stable
state x>0 to which the system recovers from perturbations. In
the Bi-stable state (white region in Fig. 3f, y! > y < y2(x0 = 0.1)),
whether the system can recover from perturbations or not depends
on its initial state. In the non-resilient state (orange region in Fig. 3f,
v < y! < y*(x0 = 0.1)), there is only one stable state x=0 in which
the system could not recover to x> 0 after perturbations.

Building on the theoretical mapping, we tested the ability of f and
7 to detect the resilience of real ecological networks. For 28 weighted
pollinator networks with mutualistic interactions (Supplementary
Table 2), we randomly assign the competitive topology with the
linking probability as 50% to explore the systems response to
diverse perturbations. We fix f within a small range centred around
0.2, that is, #€[0.18,0.22], aligning with the f value used to obtain
the theoretical result in Fig. 3g. We then simulate the dynamical
response of the system with two initial values: x,=5 (blue dots in
Fig. 3g, where the system falls to non-resilient state at the point that
corresponds to y!) and x,=0.1 (orange dots in Fig. 3g, where the
system falls to non-resilient state at the point that corresponds to
72). Our resilience function can predict the behaviours of the sys-
tems (curves in Fig. 3g). We observe similar behaviours when fixing
7 in a small range (Fig. 3h).

Next, we examine how different dynamics affect the biomass of a
system at equilibrium. We set three different dynamical parameters
with the saturating constant equal to h=0.8, 0.5 and 0.2 in Fig. 3i-k,
respectively. In each case, we set the competition typologies with the
linking probability equal to 20% (light blue), 50% (blue) and 100%
(red). The simulation results show that the 28 weighted systems
converge onto the grey curve that is predicted by equation (4). More
combinations of parameters, such as growth rate a, can be found in
Extended Data Fig. 3 and Supplementary Fig. 16.

The results from the tests demonstrate that our one-dimensional
function can go beyond mapping the resilience of mutualis-
tic systems; it is able to converge complex behaviours into a
one-dimensional system around the theoretical prediction. It thus
provides a tool to predict seemingly unpredictable behaviours of the
mutualistic systems that are impacted by a variety of perturbations
and governed by different combinations of parameters. Moreover,
this advancement is a critical foundation in calculating distances to
possible tipping points in complex systems with mutualistic interac-
tions, as well as developing an approach to comparing the distances
across different systems in our next steps.

Reflecting the resilience of real-world ecosystems. Existing
approaches and metrics are incapable of measuring the resilience of
a high-dimensional system on the basis of spatiotemporal data due
to the lack of an effective structural indicator. It prevents us from
positioning a network from its possible tipping point or comparing
the distances to tipping points from various systems on the same
scale. Besides, the dearth of empirical data from ecological systems
also adds difficulties in measuring distances to tipping points™; in
most cases, we only have abundance and network data (Fig. 4a),
reflecting mere snapshots of the states of mutualistic systems™. Here
we attempt to use data on abundance and topology to predict real
ecological systems' resilience.

We gathered literature and obtained species abundance data at
eight locations worldwide (Fig. 4b; see Methods (Abundance data)
and Extended Data Fig. 1). These species construct 54 mutualistic
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ecological networks, 51 of which have weighted topologies and
3 unweighted (see Supplementary Tables 3 and 4, respectively).
Putting the real fraction of abundances of all plants y, as the input
of operator x,, constructed by the real mutualistic topology M, we
obtain the effective fraction of abundance y = x> (y) = lTﬁ’l' for
a mutualistic system (see Methods, Fraction and normalization).

We then calculate the geographical distribution of the effective
fractions of abundances (y.q) at the eight locations. The values of
effective abundance y,; come from locations Nahuel Huapi National
Park in Argentina to Isenbjerg, denoted as A to H (see Extended
Data Fig. 1). The two largest y. are in Argentina (location A) and
Morne Seychellois National Park, Mahé (location B), which are both
national parks. There are 47 mutualistic networks at location B, and
thus, y. at this location is the average of the effective fraction of
abundances of these systems (also see Supplementary Note 4 for
more details). To understand whether the high-dimensional equa-
tion (1) is a potential dynamics rule for these networks, we used
these abundance data and the 54 real ecological networks to esti-
mate parameters for each network (see Methods, Parameter estima-
tion). As shown in Fig. 4c, the excellent match between each species’
abundance y;and the simulated one y; helps us to make the assump-
tion that all these networks follow the same rules (equation (1)) and
are thus potentially comparable.

As pointed out in ref. **, there is a positive linear correlation
between species abundance and nestedness. Thus, we test the per-
formance of y when predicting y.; and compare the results to the
ones measured by nestedness indicators. We compute the normal-
ized NODF* (short for 'Nested Overlap and Decreasing Fill', a con-
sistent metric for nestedness analysis in ecological systems; Fig. 4d),
maximum Eigenvalue® (Fig. 4e) and y (Fig. 4f) and then examine
the correlation of these measures to the abundance of the plants.
We find that y shows higher correlation (R*=0.644"") compared
with both nestedness measures (R?*=0.297 for normalized NODF
and 0.538 for maximum eigenvalue) (P <0.001). The residuals are
shown in Fig. 4g. The results indicate that y can be a more effective
structural indicator to identify the crucial components from mas-
sive nodes and evaluate the current state of a system.

The scaling factor for recovery rates. After developing and dem-
onstrating y as an effective structural indicator for the state of
mutualistic networks, our last step is to create a novel approach
to compare the distances of different systems to their respective
tipping points. The approach is a vital contribution because, to our
best knowledge, no available methods can position two systems
with entirely different parameters on the same scale for compari-
son purposes. In other words, existing approaches cannot posi-
tion systems on the same scale and thus cannot evaluate which
system is more endangered and, consequently, require prioritized
resources. This limitation hinders the optimization of global
resource allocation®.

To demonstrate this critical limitation, we tested the performance
of recovery rate*” on indicating the resilience of a system. When a
system approaches the possible tipping point (that is, the distance
y — 7. decreases), the recovery rate decreases and the autocorrelation
variance increases as a result of the shrinkage in the attraction basin
and a longer memory for perturbations®*. Therefore, for a single
one-dimensional system with fixed parameters, both measures can
potentially capture the system’s distance from its tipping point, as
shown in Fig. 5a.

However, neither recovery rate nor autocorrelation can compare
different systems with entirely different parameters. Our experi-
ments demonstrate the limitation of the recovery rate approach: we
choose three real ecological networks, parameterize dynamic roles
through their real abundance data (see Methods, Parameter estima-
tion for more details) and convert them into one-dimensional sys-
tems using equation (4). Although the three systems experience the
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Fig. 4 | Detecting signals from real ecosystems. a, We show the adjacency matrix of a real weighted ecological network (Supplementary Table 3) and a
real unweighted one (Supplementary Table 4), with the proportional abundance of each species indicated by the width of its corresponding block.

b, Real pollinator networks (54) with the real proportional abundance of each plant, which come from 8 locations worldwide (8 colours, Extended Data
Fig. 1), including 51 weighted networks (circle) and 3 unweighted ones (square). €, Assuming all the 54 real pollinator networks are governed by equation (1)
with h=0.2, we adjusted their dynamical parameters (a, f,) to obtain the proportional abundances (y?), which are extremely close to the real ones (y)).

d, Nestedness 7 vs the effective abundance y,¢. €, Maximum eigenvalue 4, vs the effective abundance y.. f, Effective mutualistic strength y vs the effective
abundance y.. 8, We show the three indicators' ability to explain real abundance by comparing their residuals of linear correlation between indicators and
effective abundances. In each box, there are 54 points (the effective abundance for 54 networks). The central red line indicates the median, the bottom
and top edges of the box indicate the 25th and 75th percentiles, respectively, and the whiskers extend to the most extreme data points not considered as

outliers (the outliers are marked with '+").

same levels of state perturbations (Fig. 5b), their distances to tipping
points greatly differ (Fig. 5¢).

To overcome this limitation, we employ our dimension-reduction
approach and describe the tipping point y, as a function of dynami-
cal parameters; thus, the distance to tipping point y —y, becomes a
function of structure and dynamics, that is,

Y =7 :f(a’ﬂw)' (5)

When the system is stable, the effective state of the whole system
can be captured by

X =fla p7). (6)

The recovery rate is defined as the change rate from the stable state
x, after perturbation &:

dbx;

g(6x5) = o =f(a,p,79). (7)
For equation (4), the recovery rate has the form
g (6x5) = bxs (a —6p,xs + lfgi;l‘;xs)
(8)
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Fig. 5 | Early-warning signals predict distances to tipping points of ecosystems. a, A 1D system is forced, changing stochastically by adding white noise
with 0.07 strength to equation (4) with a=-1, f,;=1, h=0.2. When the system approaches its tipping point (the distance y —y. decreases), the basin of
attraction shrinks. The system has a longer memory for perturbations (for example, the state is suddenly reduced by a factor of 0.95), resulting in a lower
recovery rate (blue) and a higher autocorrelation (red). b, When the high-dimensional system collapses into a 1D one, we can observe how the system,
after being disturbed, varies from its original stable state (derivation) as time (t) changes, allowing us to calculate the recovery rate for the system.

¢, Although the three systems (that is, mutualistic networks for the locations Argentina, Hickling and Mahé, respectively) are observed the same recovery
rate after the same level of perturbation (b), their distances to tipping points are greatly differ (black dots). d, We obtain dynamical parameters for 54
real ecological networks and monitor how autocorrelation at lag 1 changes when an empirical system approaches its tipping point. e, We also monitor

the recovery rate for each empirical system. f, The scaled recovery rate (RR)
different systems are to the loss of resilience.

with  two  approximations  g(8x) ~&(1—8)B,x* and
P h—lz[(l‘/;ﬂ)2 — (Hﬂi V;ha)} (see more details in Supplementary
Note 5).

Since both the distance y —y, (equation (5)) and the recovery rate
(equation (7)) are functions of effective parameters a, 3,, y, we can
obtain the relationship between them as

Y — 7. = p x g(6xs), 9)

with the scaling factor

W B,r
5(1—6)(1+ha)*

p= (10)

The scaling factor p is a critical parameter since it contains
multiple effective parameters, h, @, f, and y, extracted from a
high-dimensional system. Therefore, p captures the dynamic
behaviour of a disrupted high-dimensional system by mapping it
to a one-dimensional one. Also, since p is uniquely determined
by a given network, it not only predicts the distance to the tipping
point of a single system but also compares the distances across
multiple ones.

We demonstrate the applicability of our scaling factor p by apply-
ing it to the 54 real mutualistic networks used in Fig. 4. These sys-
tems have diverse resiliences since their dynamic parameters (a;, f;
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reflects the distance to the tipping point. Thus, we could evaluate how far

in equation (1)) and the interaction matrices (f;, y;) are different.
Note that the parameters of these networks were estimated using
abundance data (see Methods, Parameter estimation for details).
The coexistence of species can be captured using system param-
eters*; once the original parameters are determined, we can cap-
ture a system to its domain boundary, that is, the distance to tipping
points. Then, we design simulations that run on both the original
high-dimensional matrix and the converted one-dimensional sys-
tem, which is useful to confirm that our method is applicable to
high-dimensional systems. As shown in Fig. 5d, the seemingly
chaotic behaviours are difficult to capture using autocorrelation.
At the same y—y,, systems can have entirely different autocorre-
lations, making it challenging to compare resilience across differ-
ent systems. We monitor the changes in recovery rates in the same
simulations and observe a similar pattern (Fig. 5¢). In contrast, after
applying our scaling factor p, the distances to tipping points are cap-
tured. The conversion transfers the dynamic behaviours into nearly
linear ones, as shown in Fig. 5f, allowing us to uniquely determine a
system’s resilience and compare the converted recovery rates across
different systems on the same scale.

Discussion

Ecosystems are becoming increasingly vulnerable with the intensifi-
cation of climate change and thus, understanding their resilience and
predicting their tipping points is a critical and challenging issue®’~>".
Suppose a uniform comparison of the resilience across different
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systems around the world could be achieved. In that case, human
beings could identify truly endangered communities in vulnerable
areas and optimize global resource allocation®. This theory-based
paper takes the first step towards achieving such global comparison,
where our developed approach can position diverse systems on the
same scale and consequently compare their resilience.

The study contributes to the understanding of the resilience of
mutualistic systems in three aspects. First and foremost, we develop
a novel scaling factor, p, that positions and compares multiple sys-
tems on a common scale. This approach unprecedentedly measures
distances to tipping points of mutualistic networks with different
parameters and topologies, comparing their resilience. Our study
builds upon previous research in mutualistic network resilience,
especially the works that examine critical tipping points in one net-
work®. It is thus a vital contribution to the theories of critical transi-
tions in mutualistic systems composed of more than one network.
For real systems that could be approximated using equation (1), p
may help optimize the allocation of resources according to their dis-
tances to the tipping point. If successfully validated by real-world
data from ecological systems, our approach can also help protect
vulnerable ecosystems and assist in designing global early-warning
systems to cope with large-scale ecological crises.

Second, wequantifyand exploretheresilience ofhigh-dimensional
mutualistic networks by designing a single-dimensional structural
indicator y. Compared with established measures™°"** used to cap-
ture the nestedness of ecosystems, the condensed values of y show
a high capability of mapping resilience of different systems with a
one-dimensional function. The performance of y makes it a poten-
tial structural indicator and thus contributes to the search for a uni-
versal indicator.

Lastly, we devise an approach to measure the distance of a sys-
tem’s current resilience to its tipping point. Our approach, assuming
the dynamics of all systems follow equation (1), identifies the param-
eters of a system using abundance data, that is, a single snapshot of
a system. The method makes it possible to obtain the tipping points
(7.) of mutualistic networks without relying on time-series data’®.

Additionally, the study develops a method to estimate the param-
eters of ecological systems. Our method helps address the challenge
in the real world: high-quality spatiotemporal data is too scarce to
permit observation of the entire stochastic process of a system®>**.
The abundance data provide only a snapshot of the state of a system.
Our method estimates the parameters of real ecological networks
on the basis of only their abundance data and the network topology,
thus making it possible to monitor globally with limited real data.

Despite the broad discussions on empirical evidence of, as well as
the ongoing efforts in searching for, critical thresholds in ecological
systems, our model advances the capability of capturing and pre-
dicting such critical transitions. At a minimum, it provides a needed
theoretical approach to understand systems whose behaviours fall
into the applicability of our framework (see Methods, Applicability).
In this paper, we study a theoretical model of an ecological sys-
tem with competitive and mutualistic dynamics. We find that this
model may have a tipping point, depending on the parameters. For
example, if the intrinsic growth rate is larger than zero, there will
be no tipping point. However, in this case our dimensional reduc-
tion method still works well (see Extended Data Fig. 3). For the case
with a tipping point (that is, the intrinsic growth rate is smaller than
zero), we can predict the distance to the tipping point using a rescal-
ing factor.

Our study has limitations on heterogeneity and interspecific
competition (see Extended Data Fig. 4). The prediction fails with
large interspecific competition and high heterogeneity, necessitat-
ing future work allowing greater freedom. Additionally, holistic and
empirical validation of our theory is still elusive and beyond the
scope of this study. Observation data of thresholds in mutualistic
networks will broaden the applicability of our theory in the future.

Beyond the application to ecosystems, our developed framework
and operations can be extended to explore the resilience of other
interdependent worldwide systems® (see Extended Data Fig. 5 and
Supplementary Note 7 for supply-chain networks). Moreover, the
work supports current efforts in the field and demonstrates the fea-
sibility of devising a universal framework to quantify, predict and
control mutualistic networks in an increasingly changing global
environment.

Method

Complex systems described by interacting equations. We can
approximate the behaviour of these complex systems by a set of
interacting equations with high dimensionality:

x!
% =F (xf) + > A;G (x}, xJI) + > BipH (x}, x},l) a1

Sa = P (adh) + 30 ConQ (adh, <) + 3 DR (o, 2L

which describes the dynamic roles governing a system composed of
Network I and Network II. The first term on the right-hand side of
each equation (11) captures the self-dynamics of a component, the
second term captures the competitive interactions between compo-
nent i (m) and component j (n) within Network I (II), and the third
term captures the mutualistic interactions between component i
(m) and its interacting partners, p (k), from the other network. The
nonlinear functions F(-), G(-), H(-), P(+), Q(-) and R(-) represent
the dynamical laws governing components, while the connectivity
matrices A, B, C and D describe the interactions between compo-
nents. Their values are negative for competition and positive for
mutualism.

Hypothesis. Assumption 1. Heterogeneity is not overly high. Since
our method relies on the validity of the mean-field theory, overly
high heterogeneity will make the method unable to predict the
behaviour of the complex systems®. It is worth noting that the
empirical network structures applied in Supplementary Tables 1-4
are of high heterogeneity. Also in Supplementary Note 3, it is shown
that our method can tolerate large heterogeneity in parameter h.
Assumption 2. Interspecific competition is much smaller than
self-competition, that is, ;<< ;. Strong competition may lead to
many stable fixed points in a system®® because different combina-
tions of species may become extinct depending on the initial condi-
tions. Consequently, it brings high heterogeneity in the competition
dynamics, which could make the mean-field theory inapplicable.

Dimensional reduction. In a network environment, each node’s state

is affected by its nearest neighbours through the interaction term.
For a mutualistic network governed by equation (12), the interac-
. N ?f I

tion terms have the form i AifG (xi % )-

NI NII
B F () + 3 A5G (x al) + 32 BipH (xh o),
jFi p (12)
dxll 1 N 1 .11 N I
Do — p () + ; ConnQ (s %) + ijDmkR (oem Xk
n#=m

For node i with s; neighbours, s; x £(M,y) naturally incor-
porates the sum of nearest neighbours averaging procedure y.
Thus, equation (12) can be converted into equation (13) without
much cost:

B P () 451G (o £ (A, X)) + stH (<, £ (B,x"))
’i"T];l =P (xm) + smQ (3 £ (C.x")) + 53R (330, £ (D, xl))( |
13
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Here we name xlg = £ (A, X'), Xeco = £ (B,X"), xige = L (Cx")
and xL, =L (D, xI), indicating the mean-field weighted states of
x. Then the four scalars can be obtained by solving the following

equations:

d;i“ = F (xig) + L (As") G (xip xer) + £ (B,s") H (x4gp Xeco)
G = P () + £ (Cs") Qo alh) +£(D ™) R (o ake)

P
Boo = F (xdey) + £ (A,8") G (xeo dlgt) + £ (B, 8Y) H (wheoy %)
P

1T
dxeco

dt

(xIeIco) + ‘C (C) SH) Q (-xgcm eff) + L (D SHC) R (-xgcm x}eco)
(14)

Knowing the effective states through equation (14), equation (13) is
decoupled and the state for every node can also be solved.

For mutualistic networks, a system consisting of more than one
network (P, g4, y\P, g4 in equation (1)), the state of a node is
affected by the neighbours in the same network as well as the neigh-
bours in different networks. Therefore, we characterize four effec-
tive states of the system using the average nearest-neighbour activity

= L(pD, p), AN = L(pD, A), PA

(15)
=Ly, P), A" = L(y?, 4),

where P (A*) reflects the average state of plants (animals)
from the viewpoint of plants (animals) themselves, while P*
(A®) reflects the average state from the viewpoint of animals
(plants). Similarly, we characterize the effective states for the
dynamical parameters (a, f,) and the structural properties s,
which indicate the number of nearest neighbours in one struc-

that i, Z ﬁ ), sth= Z ﬂ<A) )
s = Zk?/(P) ) )= Ekyf}f‘)), as shown in Table 1.

In sum, the input matrix M of the operator £(M,y) can be the
inner-structure in a network and the inter-structure across net-
works, while the input vector y can be the states, the parameter in
the dynamic functions, as well as the structural information for each
species. This allows us to abstract a high-dimensional system (equa-
tion (1)) by a four-dimensional resilience function (equation (3)).

Further, from the abstracted information above, we assemble a
new matrix Z as

ture, S =

ﬂPP 0 0 }/PP

0 ﬂPP }’AA 0

Z= . (16)
ﬂPA 0 0 }/PA
0 ﬂAP }/AP 0

Putting matrix Z as the input matrix of operator £(M, y), there will
be a one-dimensional equation

dx yx
ax a+ (f; +ﬂ)x+1+hyx

17)

where x captures the effective abundance for both plants and ani-
mals (more details can be seen in Table 2).

For the system consisting of more than one network (that is,
PO, PO, ¥, gD in equation (1)), the state of a node is affected by
the neighbours in the same network as well as the ones in differ-
ent networks. However, the existing approach’ only works with one
network. Therefore, we expand our previous work® and develop
a two-step compression approach. The first step compresses the
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original interaction matrix (such as y = £(®, y)) as the case with
just one network. The second step reconstructs a matrix Z with the
scalar y obtained from the first step. For a system consisting of n
networks, the matrix Z is n X n dimensional.

Data of networks. To construct mutualistic networks, we collected
data on symbiotic ecological interactions from the ‘Web of life’ web-
site®, including

(i) Supplementary Table 1, 39 unweighted pollination networks.
We used these networks in Fig. 2 in the manuscript and Sup-
plementary Figs. 8-15.

(ii) Supplementary Table 2, 28 weighted pollination networks. We
used these networks in Fig. 3 in the manuscript and Supple-
mentary Fig. 16.

(iii) Supplementary Table 3, 51 weighted ecological networks with
abundance data. We applied these network data to Figs. 4 and 5
in the manuscript and Supplementary Figs. 19-23 and Table 6.

(iv) Supplementary Table 4, 3 unweighted ecological networks with
abundance data. We applied these network data to Figs. 4 and 5
in the manuscript and Supplementary Figs. 19-23 and Table 6.

Abundance data. We looked through papers that listed pollination
networks in the ‘Web of life®. Seven papers were found®-"°, each
of which recorded real data on abundance. We obtained a total of
54 networks with data on abundance for plant species, including
51 with a weighted topology (Supplementary Table 3) and 3 with
an unweighted topology (Supplementary Table 4). These networks
were spread in eight locations worldwide (Supplementary Table 5).

Proportion and normalization. Since some papers only contain pro-
portional abundance, that is, the ratio of one species’ abundance to
the total abundance of all species, instead of the value of abundance,
we used the proportional abundance y of each plant in this study.
To consider all networks with data on abundance (Supplementary
Tables 3 and 4) consistently, we divided one network by the sum of
all elements to obtain the relationship between network structure
and species abundance, as shown in Fig. 4.

Applicability. Our model has wide applicability. Although we com-
puted the effective parameters using the original state variables in
this study, the information is not a prerequisite to use our model. In
fact, our assumption is that all systems are resilient at the time the
abundance data were obtained. Thus, the model can be applied as
long as the original abundance values are at high levels. However, it
is worth noting that although our theoretical model does not inher-
ently assume ;<< 3, (i#), it is necessary for our model to operate
under such condition (see Extended Data Fig. 4a,b for the allowed
range of f3;). This is because our result is based on the validity of the
mean-field theory, which could not be applied to a system with high
heterogeneity (see ref. *' for more discussion on this limitation).

Parameter estimation. Assuming all pollinator networks follow
dynamics as in equation (1) without competition, we can simulate
species abundance with interaction topology (y,]) and parameters
of each species (a; and /). In turn, one can estimate parameters
with a given value of abundance and interaction topology. The spe-
cific process of parameter estimation is: first, we set the initial val-
ues of a; for all species as —1 and f; as 1; second, we computed the
abundances for certain parameters and calculated the proportional
abundances; third, we compared these proportional abundances of
plants to the real ones and counted the sum Err. If Err>1x107¢,
we adjusted the values of these parameters, went back to the sec-
ond step, and tested again. The process ended when an additional
adjustment on the parameters could not decrease Err anymore. The
estimated parameters for each species in all 54 networks are publicly
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available (see Data availability). Assuming all the 54 real pollina-
tor networks are governed by equation (1) with #=0.2, we adjusted
their dynamical parameters (a, f3,) to obtain the proportional abun-
dances ( y;), which are extremely close to the real ones (y,), as shown
in Fig. 4c.

Statistics. For each boxplot in this paper, the central mark indicates
the median, the bottom and top edges of the box indicate the 25th
and 75th percentiles, respectively, and the whiskers extend to the
most extreme data points not considered outliers (the outliers are
marked with ‘+).

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to this
article.

Data availability
All network and abundance data can be accessed through https://
doi.org/10.5281/zenodo.6784072.

Code availability
All code used in this study is available on Zenodo at https://doi.
org/10.5281/zenodo.6784072.
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LOC | No. ID Ref. Address LAT | LON
A 7 M_PL_051 69] | Nahuel Huapi National Park, Argentina | -41.08 | -71.53
B 8-54 | M_PL_061 70] | Morne Seychellois National Park, Mahé | -4.678 | 55.43
C 3 M_PL_0017 | [71 Bristol, England 51.57 | -2.59
D 1 M_PL_006 72 Hickling, Norfolk, UK 52.76 1.58
E 5 M_PL_034 73 Chiloe, Chile -42.00 | -73.58
F 2 M_PL_007 72 Shelfanger, Norfolk, UK 52.41 1.10
G 4 M_PL_008 74 Tenerife, Canary Islands 28.22 | -16.63
H 6 M_PL_047 75 Isenbjerg 56.07 9.27

Extended Data Fig. 1| 54 real ecological networks with abundance values from 8 locations. We obtained 54 pollination networks with real proportional
abundances from references listed above ('Ref.’), including 51 weighted networks (Table S3) and 3 unweighted ones (Table S4), spread in 8 locations
world-wide. We sorted the effective abundance ratio decently as A - H. 'ID’ is the network’s code shown in ‘web of life’®¢, ‘LAT" refers to the latitude of one
location, and 'LONG' refers to its longitude.
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No. ID |P| | A| | |links] C Hp Ha 0% (err)
1 | M_PL_001 80*97 356 0.091753 | 8.660303 | 5.4783 | 59.38936 | 0.033534
2 | M_PL.002 | 41*62 193 0.151849 | 3.739208 | 3.540806 | 44.53535 | 0.02904
3 | M_PL_.003 | 36%25 81 0.18 1.8483 | 0.954045 | 34.61865 | 0.033047
4 | M_PL.005 | 91*270 918 0.074725 | 12.09665 | 22.37424 | 85.83789 | 0.075643
5 | M_PL_006 11*5 24 0.872727 | 1.812821 | 0.702073 | 31.7511 | 0.038756
6 M_PL_007 28*82 250 0.21777 | 4.699554 | 5.589613 | 52.29448 | 0.034352
7 | M_PL_008 11*38 106 0.507177 | 1.851186 | 2.262785 | 40.64927 | 0.028426
8 M_PL_009 | 24*118 242 0.170904 | 3.364109 | 4.853003 | 43.50656 | 0.045027
9 | M_PL.010 | 31*76 456 0.387097 | 8.751467 | 6.343079 | 78.59856 | 0.037105
10 | M_PL_011 14*13 52 0.571429 | 3.256185 | 0.886577 | 39.56818 | 0.033216
11 | M_PL_012 29%*55 145 0.181818 | 3.707286 | 7.191192 | 53.2207 | 0.032957
12 | M_PL_013 16*44 278 0.789773 | 5.351415 | 4.688446 | 75.56421 | 0.035748
13 | M_PL.014 | 28*80 178 0.158929 | 1.422533 | 10.69497 | 45.53219 | 0.034249
14 | M_PL.015 | 130*663 | 2930 | 0.067989 | 18.24504 | 20.46229 | 105.1997 | 0.134177
15 | M_PL.016 | 26*179 412 0.177052 | 4.315672 | 8.838581 | 56.45261 | 0.066942
16 | M_PL.017 | 19*186 425 0.240521 | 3.866467 | 14.69992 | 56.1374 | 0.067596
17 | M_PL.018 | 39*105 383 0.187057 | 7.31953 | 6.074937 | 61.45058 | 0.045413
18 | M_PL.019 | 30%*236 671 0.189548 | 5.510681 | 24.26356 | 66.86169 | 0.085705
19 | M_PL_020 19*90 189 0.221053 | 1.806237 | 12.07049 | 46.96589 | 0.033203
20 | M_PL_021 | 90*676 1192 | 0.039185 | 4.409285 | 16.98968 | 63.31119 | 0.109679
21 | M_PL_022 21*45 83 0.175661 | 1.005965 | 1.946115 | 33.48591 | 0.034728
22 | M_PL_023 20*70 122 0.174286 | 1.442396 | 5.791987 | 38.34417 | 0.038591
23 | M_PL_024 | 37*225 590 0.141742 | 7.939882 | 9.724699 | 68.66649 | 0.076686
24 | M_PL_025 14*35 86 0.35102 | 2.125964 | 2.738147 | 39.70423 | 0.028032
25 | M_PL_026 99*51 198 0.078431 | 5.299093 | 2.044422 | 74.15525 | 0.045441
26 | M_PL027 | 17*58 118 0.239351 | 2.000322 | 1.331542 | 33.68995 | 0.028459
27 | M_PL_028 | 41*139 374 0.131251 | 4.47164 | 7.304435 | 53.32837 | 0.045958
28 | M_PL_029 | 49*118 346 0.119682 | 8.91505 | 3.291805 | 62.7164 | 0.039262
29 | M_PL_030 23*47 101 0.186864 | 1.653337 | 1.62258 | 32.17102 | 0.02823
30 | M_PL_031 46*45 152 0.14686 | 4.986067 | 2.519069 | 39.71193 | 0.03188
31 | M_PL_032 7*33 65 0.562771 | 1.196749 | 4.818948 | 37.98653 | 0.029091
32 | M_PL_033 14*38 91 0.342105 | 3.075189 | 2.500782 | 41.48556 | 0.030332
33 | M_.PL.034 | 25*%126 310 0.196825 | 5.48773 | 9.328806 | 62.07493 | 0.049749
34 | M_.PL035 | 61*36 178 0.162113 | 5.920006 | 3.527713 | 50.59522 | 0.033486
35 | M_PL_036 10*12 30 0.5 1.098611 | 1.001852 | 28.52018 | 0.030736
36 | M_.PL.037 | 10%40 72 0.36 1.665889 | 2.097024 | 31.38532 | 0.029354
37 | M_PL_038 8*42 79 0.470238 | 1.099888 | 2.218168 | 31.18603 | 0.027827
38 | M_PL_039 17*%51 129 0.297578 | 4.499766 | 2.16238 | 46.06853 | 0.032645
39 | M_PL_040 | 92*272 567 0.045316 | 3.879295 | 5.484114 | 47.22281 | 0.072226

Extended Data Fig. 2 | The characteristics of the real networks analysed in the paper. 'ID’ is the identity of one network recorded in the website®®. ‘|P|",
‘|A]" denotes the number of plant and animal species respectively. ‘|links|" is the number of links in a network. ‘C’ is the connectivity of a network. ‘H," and
'H," are the heterogeneity of the plant and animal sub-networks respectively. 'y’ is the effective mutual strength. ‘(err)" is the prediction error of our method
for each network. For data sources and references, see Supplementary Prediction error.
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Extended Data Fig. 3 | The robustness of the proposed resilience function for non-transition case. The proposed resilience function (the gray curve,
theoretical prediction obtained from equation (1) with ;=100 and p=10) predicts well the resilience of 28 weighted networks (see supplementary Table
S2) without transition, under different parameters: a=2, a=1,a=—-1,h=0.8, h=0.5 and h=0.2. Moreover, it is robust to competition typologies by
assigning three different linking probabilities: 20% (light blue), 50% (blue), and 100% (red).
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Extended Data Fig. 4 | Prediction fails with large inter-competition strengths and high heterogeneity. a-b, Test how inter-competition strength influence
the prediction on a synthetic system with a plants’ inter-competition network A (a 100*100 ER network), an animals’ inter-competition matrix C (a
150*150 ER network), and a mutualistic network (a 100*150 ER network), with homogeneous inter-competition §; and mean degree 5. a, The simulation
results of the effective abundance for all species ('S', obtained by solving the high-dimensional equations equation (2)) fit well with the theoretical
prediction ('T’, obtained by numerically solving 1D function % =x(a — px+ _Z—;”) directly) when the inter-specific competition strength g is small
(;<0.2 for certain mutual strength y,=[3,5,15]). However, the prediction fails with large inter-competition f;. b, For one y,, we calculate the prediction
error (difference between 'S and 'T") for §,=[0.1,0.2,0.5,1] respectively. In each box, there are 15 points (y,=[1:15]). The central mark indicates the
median, the bottom and top edges of the box indicate the 25th and 75th percentiles respectively, while the whiskers extend to the most extreme data
points not considered outliers (the outliers are marked with '+'). ¢, We show how the heterogeneity of a mutualistic network influences the prediction
accuracy applied to 39 real mutualistic networks in Fig. 2q. Firstly, we project each system into two networks® and then calculate the heterogeneity of the
two networks that is, H, and H,, respectively. d, We compare the calculation time between the full system (equation (1)) and the decoupled system (first
solve equation (3) and then put x4 and x., into equation (4)), for 10 random graphs. Data are presented as mean values +/- SEM. CPU: Single core in
Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz. Parameter setting: h=02, a(P) = —0.3y ., a® = —03y, A = diag(By 1) B = diag(3yi)

v = €iro/(s)°, 6=05.
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Extended Data Fig. 5 | The prediction of resilience in supply chain networks. The resilience is tested against: (1) perturbation in links (a-d, for mutualistic
network), and (2) perturbation in nodes (e-h). Link perturbation has two variations: increasing/decreasing (that is competition/mutualism) the average
weight to a fraction f,, of their original value; and extinction of a fraction f, of links. Node perturbation also has two variations: extinction of a fraction f.y

of suppliers; extinction of a fraction f,,, of manufacturers. i, All data (red points) in a-h uniformly collapse onto the resilience function (blue surface),
indicating that regardless of the network structures and the forms of perturbation, the state of the system is captured by g and y (see dynamics for supply
chain networks in Supplementary Note 7).
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