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Mutualistic networks, formed when the interactions of two 
systems are mutually beneficial, are common in ecologi-
cal1, biological2,3 and social systems4,5. Recently, mutualis-

tic networks have attracted much attention6–9 because their unique 
structural properties make them more resilient to perturbations10,11. 
However, species loss12, invasions13, human activities14,15 and envi-
ronmental changes16 can cause targeted and unexpected perturba-
tions. In a variety of real ecosystems17–21, extensive experimental and 
observational evidence has shown that perturbations drive systems 
past tipping points and cause large-scale global extinctions22. Here 
we focus on mutualistic systems and assume the existence of tip-
ping points as previous studies did23–25, although we are aware that 
the threshold of an ecosystem is difficult to predict from empiri-
cal data26, possibly due to noise and complicated interactions in  
a system27.

Whether a particular system would collapse or could recover 
from a perturbation highly depends on how close the current sys-
tem state is to a possible boundary28, that is, the distance to the tip-
ping point in a one-dimensional (1D) equation (the length of the 
black arrows shown in Fig. 1a). Thus, we mathematically define 
resilience as the distance to the boundary of the attraction basin29. 
Note that this definition is also called ecological resilience or sys-
tem resilience—a system’s ability to adjust its activity to retain its 
basic functionality when errors, failures and environmental changes 
occur, which is a defining property of many complex systems30,31. 
The prediction of distance to a tipping point is a grand challenge for 
complex systems32,33. There are, to our best knowledge, no theoreti-
cal approaches that can predict relative resilience among systems, 
considering different types of perturbations. Numerous empirical 
studies17–21,34 have demonstrated how perturbations reshape the 
resilience of real ecosystems (Fig. 1b). Here we consider three types 
of perturbations: (1) structural perturbations, (2) dynamics per-
turbations and (3) state changes (Fig. 1b). Structural perturbations 

include: (1) the extinction of species (node loss) or species invasion 
(node addition)35, (2) the partial removal of competitive or mutual-
istic interaction (link loss) or changes in weights of a few links1 and 
(3) global shifts in interaction (that is, global weight loss of the entire 
network) caused by environmental changes such as ocean acidity 
or global warming36. Dynamics perturbations refer to changes in 
dynamic parameters; for example, the intrinsic growth rate α in the 
offspring production dynamics dx/dt = α + x(1 − x) changes due to 
changes in habitat types and landscape compositions37. Lastly, state 
changes refer to changes in the initial states when solving differen-
tial equations. They include patterns of temporal variation altered 
by a sharp drop in species abundance after, for example, a tsunami38, 
and the recovery of an ecosystem such as the coastal ecosystem 
through the restoration of seagrass habitat in the Chesapeake Bay 
in the USA39. Numerous empirical studies17–21,34 have demonstrated 
how these different types of perturbations simultaneously reshape 
the resilience of real ecosystems. They can happen simultaneously 
and add compounding effects on ecological networks and thus, 
push them across their tipping point in diverse ways, bringing pro-
found challenges to predicting the distances to their tipping points.

Many research efforts attempt to monitor system-level behav-
iour when a network is approaching its tipping point40 (Fig. 1c) in 
the hope of preventing the system from collapsing into undesired 
states41. These efforts greatly fructify the development of metrics, 
like recovery rate (that is, speed of recovery from perturbation) and 
autocorrelation variance (self-similarity near a tipping point)23,42,43. 
However, none of these metrics can explicitly measure distances 
to tipping points, let alone compare them across different systems. 
Comparing two snapshots can at best inform us whether a given 
system is moving towards its tipping point (for example, (i) and (ii) 
in Fig. 1c), providing no information in the units of changes in the 
parameter driving a system to its tipping point. Also, one system can 
react differently when facing different perturbations (for example, 
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Fig. 1 | Early-warning signals indicate distance to tipping points of mutualistic networks. a, A common approximation of the behaviour of  
mutualistic networks is high-dimensional interacting equations, capturing both dynamical roles (tailed arrows, including: self-dynamics,  
F(!⋅!) and P(!⋅!); competitive-dynamics, G(!⋅!) and Q(!⋅!); mutualistic-dynamics, H(!⋅!) and R(!⋅!)) and structural properties (including: interactions 
within one system, Aij and Cij; interactions between two systems, Bij and Dij). How one system behaves after one perturbation (the red arrow) is 
predominantly determined by network structure (the brown curve), system dynamics (the green curve) and its current state. Whether this  
mutualistic network could collapse (non-resilient) or recover (resilient) from a perturbation highly depends on how close the current resilience of 
this system is to the edge (the grey curves), that is, the distance to the tipping point (black arrows). b, Perturbations that challenge the resilience 
of one system can be classified as: (1) perturbations in structure, (2) perturbations in dynamics (from one dynamic role, marked as brown, to 
another dynamic role, marked as green; the solid curve represents the stable state, while the dashed curve represents the unstable state) and (3) 
perturbations in the current state, which leading to (the black arrow) the resilient state or the non-resilient state (the red curve). c, We simulated 
how a 1D equation dx

dt

= x(α − βx+ γx

1+hγx

) (β!=!1,!h!=!0.2) behaves after perturbations (occur at steps 1, 2, 3, 4 and 5), including dynamic perturbation 
(green curve, γ!=![8: −1: 3]), structure perturbation (brown curve, α!=!−[0.1: 0.3: 1.6]) and state perturbation (dashed circle, x0!=!xs[0.85, 0.7]).  
As the distance to a tipping point shortens (i vs ii), recovery rate becomes slower and autocorrelation (detected during the stable period, marked  
as dashed rectangles) becomes larger. However, two systems that have the same metrics may be unequally resilient (brown curve in (i) vs green  
curve in (ii)).
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the two green curves for the same location (ii) in Fig. 1c). Moreover, 
two systems can have the same values in these metrics but vary in 
their distances to tipping points. The difference is due to each sys-
tem being governed by a unique set of high-dimensional dynamical 
equations with different network structures7. As shown in Fig. 1c, a 
system can have similar recovery rates at step 1 (that is, green curve 
(i)) and step 3 (that is, brown curve (ii)). The fact that recovery rates 
are a general way of assessing a system’s resilience and that they can 
be quantified in a broad range of systems, regardless of their specific 
characteristics, hints at its broad applicability and calls for the devel-
opment of a more general framework.

Here we develop a novel mathematical framework to position 
various systems with different dynamical parameters, network 
structures and state variables on the same scale, making it possible 
to directly compare their distances to tipping points. This frame-
work provides: (1) a structural indicator that measures the resilience 
of a system and (2) a scaling factor that positions the resilience of 
different systems on the same scale. It allows us to measure distances 
to tipping points across mutualistic systems with critical thresholds 
and thus quantify their resilience on the same scale using data on 
abundance and topology (see Extended Data Fig. 1).

Results
To obtain a general framework for mutualistic networks, we first 
introduce a well-studied model from the literature which assumes 
nonlinear dynamics. Here we use the same set of differential equa-
tions as in ref. 44, which considers mutualistic interactions between 
plants and animals (for example, plants and their pollinators), as 
well as interspecific competitions within plants and animals. The 
model incorporates complex and critical elements—such as satu-
rated functional responses45 and interspecific competition within 
a guild7—recently adduced as essential components of mutu-
alistic interactions. Specifically, the dynamical model has the  
following form:
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where (P) and (A) stand for plant and animal, respectively. Pi and 
Ai are their abundances. αi denotes species i’s intrinsic growth rate 
in the absence of competition and mutualism, βij captures the direct 
interspecific competition of resources between species i and j, hi is 
the saturating constant of the beneficial effect of mutualism7,44 and 
γij defines the per capita mutualistic strength between one plant and 
one animal. The last term of equation (1) describes the mutualistic 
interaction through nonlinear functional responses representing a 
saturation of consumers as the resources increase.

The dimension reduction on mutualistic networks. The high 
dimensionality in mutualistic networks, brought about by the com-
plex interactions of competitive and mutualistic effects, determines 
the high dimensionality in the basin attractions. In this way, the 
distance to the boundary of the attraction basin (a surface) is in all 
directions, and thus, it is intractable to calculate how far the system 
is to losing its resilience. The difficulty is rooted in the interaction 
terms, such as 

∑
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 and 
∑

γ

ik

, where the matrices (for example, γik 
for mutualism and βik for competition) link all the nonlinear equa-
tions coupled together. Without loss of generality, we use a matrix 
M to represent all possible interactions discussed in this work, such 
as competitive interactions (matrix β(A) for animals and matrix β(P) 
for plants) and mutualistic relations (matrix γ

(P) and γ

(A) for the 
mutualism between the two systems). Here we focus on quantities 
related to the average nearest-neighbour node. Consider a scalar 

quantity yi related to node i, for example, i’s activity xi(t) at time t. 
The mean value of yi over all nodes is given by 〈y
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nodes with many nearest neighbours are sampled more often46. We 
thus construct the following averaging procedure: for each node i, a 
neighbour j is selected with probability proportional to j’s outgoing 
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is, we assume that i’s neighbourhood is, on average, identical to the 
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est neighbours of i. To formalize the above analysis, we introduce 
the operator
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where 1 = (1, ..., 1)
T is the unit vector. This operation, equation (2), 

enables us to compress the high-dimension information y into a sca-
lar y. The input vector y can be the element’s states (Pi and Ai), the 
dynamical parameters (αi) and the structural properties (weighted 
degrees s).

Since a mutualistic system has four network structures, as the 
four inputs of the mean-field operator (equation (2)), we can con-
dense the governing high-dimension dynamics (equation (1)) into 
a four-dimensional function
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Here, PP reflects the average information of plants from the per-
spective of plants themselves, while PA reflects evaluation from the 
perspective of animals (more details can be found in Table 1). The 
advance of our current study from the previous approaches31,47 lies 
on the ability to: (1) deal with multilayer networks48, whereas the 
previous focus is on single networks; (2) map a bipartite network 
with a rectangular matrix (NI × NII) to a single number, whereas 
the previous method can only treat a square matrix of a unipartite 
network.

Furthermore, we reconstruct the low-dimensional information 
obtained above as an adjacency matrix Z = [βPP00γPP; 0βAAγAA0; βPA

00γPA; 0βAPγAP0]. Then we further compress the four-dimensional 
function (equation (3)) into a one-dimensional function by putting 
matrix Z as the input matrix of operator L(Z, y) and finally get

dx

dt

= x

[

α − (β

s

+ β) x+

γx

1+ hγx

]

= Δf(α, β

w

, γ, x), (4)

where βw = β + βs, x captures the mean-field abundance of both 
plants and animals (more details in Table 2). The system (equa-
tion (4)) characterizes the one-dimensional abundance x of both 
plants, Pi, and animals, Ai. The transformation provides a general 
one-dimensional function to study the resilience of mutualistic 
networks and apply traditional tools designed for one-dimensional 
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systems with small parameter space49. After the transformation into 
the one dimension, the state of a high-dimensional system could 
be easily positioned in a line, corresponding to the resilient region 
(above the tipping point, non-zero biomass, x > 0 in equation (1)) 
or the non-resilient region (below the tipping point, zero biomass, 
x = 0 in equation (1)).

The developed one-dimensional function, that is, equation (4), 
can predict the dynamical behaviours of mutualistic networks 
regardless of the types of perturbations. As illustrated in Fig. 1b, 

mutualistic networks can face various perturbations. Each can lead 
to complex behaviours depending on the system’s size, structure and 
consequentially, its boundaries of operating space8,50,51. We examine 
such complexity by imposing simulated perturbations on 39 pol-
linator networks worldwide (Supplementary Table 1). The pertur-
bations are applied on links (reducing/increasing their strength on 
average by a fraction fw, removing/adding a fraction, fl, of links ran-
domly) and nodes (removing a fraction of plants fpN or eliminating 
a fraction of animals faN). We simulate the dynamics of species using 
equation (1), providing the average abundance of all plants (〈P〉) 
and that of animals (〈A〉) across 100 realizations. The realization 
results for one network with α = −0.3, βs = 3, h = 0.2, are shown in 
Fig. 2a–p (see complete results for all 39 networks in Supplementary 
Figs. 8–15 and prediction errors in Supplementary Table 5). After 
applying the reduction, the numerical results (red points in Fig. 2q) 
collapse onto the resilience plane (blue surface in Fig. 2q) predicted 
by our approach (equation (4)). The convergence indicates that our 
mutualistic function predicts the behaviours of dynamics of eco-
logical networks regardless of the types of perturbation.

The resilience phase space of mutualistic networks. With the 
one-dimensional resilience function (equation (4)), we can measure 
the resilience of a high-dimensional system with a simple variable 
x, which denotes the weighted average biomass of all species using 
our reduction approach.

Our framework decouples the intertwined competition and 
mutualism in the same one-dimensional function. Thus, the analy-
sis focusing on a one-dimensional resilience function can elucidate 
the dynamic roles of competition and mutualism in a mutualistic 
system. In a one-dimensional system (for example, α = −1, βs = 4, 
h = 0.2 in Fig. 3) with fixed competitive interaction (β = 0.2 in  
Fig. 3a,b), the mutualistic interaction γ alone determines the state of 
the system. When the mutual strength γ is less than its critical value 
γc (see Supplementary Note 2 for the derived process), that is, γ < γc, 
the system (equation (4)) will undergo a single first-order transi-
tion from high biomass (x > 0) to low biomass (x = 0). By setting 
f(α, β

s

, β, γ, x) = α − (β

s

+ β) x+
γx

1+hγx

, we get that if γ is smaller 

than γ

1

c

= (β
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(1−hα)+2

√
−hα

(1+hα)2
, f (α, β

s

, β, γ) is always smaller 
than 0 (with the strength βs ≥ 0, β ≥ 0, γ ≥ 0) and all species eventu-
ally become extinct due to the lack of mutualism. In this scenario, 0 
is the only fixed point in equation (4).

Table 1 | Effective variables abstracted from adjacency matrices. 
Effective variables obtained from the operator L(M, y), with 
the input matrix M as competitive structure (β(P), β(A)) and 
mutualistic structure (γ(P), γ(A)), and the input vector y as states 
(Pi, Ai), growth rates (αi), self-competition strength (βsi) and 
the number of i’s interactions (si). We set that the saturating 
constant hi is homogeneous for all species and thus we have hPP 
= hAA = hPA = hAP = h

M y Description

PP β(P) (Pi) Effective abundance of plants, 
considering contributions from plants

AA β(A) (Ai) Effective abundance of animals, 
considering contributions from animals

PA γ(A) (Pi) Effective abundance of plants, 
considering contributions from animals

AP γ(P) (Ai) Effective abundance of animals, 
considering contributions from plants

αPP β(P) α(P) Effective growth rate of plants, 
considering contributions from plants

αAA β(A) α(A) Effective growth rate of animals, 
considering contributions from animals

αPA γ(A) α(P) Effective growth rate of plants, 
considering contributions from animals

αAP γ(P) α(A) Effective growth rate of animals, 
considering contributions from plants
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βPP β(P) sI Effective competition of plants, 
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βAA β(A) sII Effective competition of animals, 
considering contributions from animals

βPA γ(A) sI Effective competition of plants, 
considering contributions from animals

βAP γ(P) sII Effective competition of animals, 
considering contributions from plants

γPP γ(P) sIc Effective mutual strength of plants, 
considering contributions from plants

γAA γ(A) sIIc Effective mutual strength of animals, 
considering contributions from animals

γPA γ(A) sIc Effective mutual strength of plants, 
considering contributions from animals

γAP γ(P) sIIc Effective mutual strength of animals, 
considering contributions from plants

Table 2 | Effective variables abstracted from the effective 
matrix Z. Effective variables obtained from the operator L(M, y)

, with the input matrix M as reconstructed matrix Z, and the 
input vector y as effective states ([PP, AA
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Additionally, we introduce γ
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, which describes the minimal 
strength of mutualistic interaction that leads the system from 
its initial state (x0) to the fixed point x > 0, with the expression 
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system exhibits bifurcating behaviour when γ is fixed (γ = 20 in  
Fig. 3d,e). For the system with the given mutualistic strength γ = 20, 
it has two critical values for competition: β1
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= 2.11 and β2
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for x0 = 0.1 (Fig. 3d). This bifurcation phenomenon, that is, the  
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Fig. 2 | The resilience function of mutualistic networks to structural perturbations. a–p, We tested the resilience of the system (equation (1), 
αi!=!α!=!−0.3, βsi!=!βs!=!3, hi!=!h!=!0.2) with both competition (links random, βij!!=!0.03 with probability 50%) and mutualism. The network data are from 
ref. 66 as shown in Supplementary Table 1, γ

ij

=
γ

0
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i

)t
 with γ0!=!9 and t!=!0.2. Their resilience is tested against: (1) perturbation in links (a–l); and (2) 

perturbation in nodes (m–p). Link perturbation has two variations: increasing/decreasing (that is, competition/mutualism) the average weight to a fraction 
fw of their original value; and extinction of a fraction fL of links. Node perturbation also has two variations: extinction of a fraction fpN of plants; extinction 
of a fraction faN of animals. q, All data (red points, simulation) in a–p and in Supplementary Figs. 8–15, comprising 39 highly diverse empirical ecological 
networks. They uniformly collapse onto the resilience function (blue surface, theory, 1D equation (4)), indicating that regardless of the network structure 
and the form of perturbation, the state of the system is captured by β and γ (see prediction error in Extended Data Fig. 2).
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resilience patterns (equation (1) with h!=!0.2, βs!=!4 and α!=!−1). a, With β!=!0.2, the one-dimensional system has two critical values for γ (the grey 
dotted lines): it could not stay high (blue line) if γ < γ

1

c

= 13.74 (the unidirectional arrows); it will leave the unstable fixed point (the orange dashed 
line) and lose its resilience finally if γ < γ

2

c

= 131.67 with x0!=!0.01, otherwise become resilient (the bidirectional arrows). b, The existence of the 
second critical value γ2

c

 depends on x0 and γ. c, γ2
c

 can be expressed as a function of γ1
c

 (blue line), which is stopped when γ2
c

< γ

1

c

 (orange line), 
depending on the value of β (open circle shows the critical values of γ with β = 0.20, while square shows those with β = 115.09). d, With γ!=!20, 
β

1

c

= 2.11 and β

2

c

= 0.29 for x0!=!0.1. e, With γ!=!20, both x0 and β influence the existence of critical values. f, With x0!=!0.1, both β and γ influence  
the existence of critical values. g, For γ!∈![19.2,!20.8], 39 real systems (points for simulation results) facing perturbations are mapped to the universal 
resilience function (lines for theoretical prediction, 1D equation (4)), starting with different initial states (blue for x0!=!5, red for x0!=!0.01). h, For 
β!∈![0.18,!0.22], with different initial states (blue for x0!=!5, red for x0!=!0.1). i, For 28 real weighted networks with h!=!0.8, we maintained the effective 
competition strength β!=!1.00 but changed the competition topology by assigning three different linking probabilities (cp): 0.2 (light blue), 0.5 (blue) 
and 1 (red) and found that all results fit the predicted 1D resilience function (grey curve, equation (4)). j, h!=!0.5, others as in i. k, h!=!0.2,  
others as in i.
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existence of β2

c

, depends on both the initial state x0 and the mutu-
alistic strength γ (Fig. 3e).

The finding shows that the mutualism factor γ, along with the 
competition factor β, maps the resilience space of mutualistic net-
works together. When setting x0 = 0.1, the interactive effects between 
γ and β influence the resilience of the system together and sepa-
rate the functional space of the mutualistic system (equation (4))  
into three distinct regions (Fig. 3f). In the resilient state (blue region 
in Fig. 3f where γ ≥ γ

2

c

(x
0

= 0.1) > γ

1

c

), there is only one stable 
state x > 0 to which the system recovers from perturbations. In 
the Bi-stable state (white region in Fig. 3f, γ

1

c

≥ γ < γ

2

c

(x
0

= 0.1)), 
whether the system can recover from perturbations or not depends 
on its initial state. In the non-resilient state (orange region in Fig. 3f, 
γ < γ

1

c

< γ

2

c

(x
0

= 0.1)), there is only one stable state x = 0 in which 
the system could not recover to x > 0 after perturbations.

Building on the theoretical mapping, we tested the ability of β and 
γ to detect the resilience of real ecological networks. For 28 weighted 
pollinator networks with mutualistic interactions (Supplementary 
Table 2), we randomly assign the competitive topology with the 
linking probability as 50% to explore the system’s response to 
diverse perturbations. We fix β within a small range centred around 
0.2, that is, β ∈ [0.18, 0.22], aligning with the β value used to obtain 
the theoretical result in Fig. 3g. We then simulate the dynamical 
response of the system with two initial values: x0 = 5 (blue dots in 
Fig. 3g, where the system falls to non-resilient state at the point that 
corresponds to γ

1

c

) and x0 = 0.1 (orange dots in Fig. 3g, where the 
system falls to non-resilient state at the point that corresponds to 
γ

2

c

). Our resilience function can predict the behaviours of the sys-
tems (curves in Fig. 3g). We observe similar behaviours when fixing 
γ in a small range (Fig. 3h).

Next, we examine how different dynamics affect the biomass of a 
system at equilibrium. We set three different dynamical parameters 
with the saturating constant equal to h = 0.8, 0.5 and 0.2 in Fig. 3i–k, 
respectively. In each case, we set the competition typologies with the 
linking probability equal to 20% (light blue), 50% (blue) and 100% 
(red). The simulation results show that the 28 weighted systems 
converge onto the grey curve that is predicted by equation (4). More 
combinations of parameters, such as growth rate α, can be found in 
Extended Data Fig. 3 and Supplementary Fig. 16.

The results from the tests demonstrate that our one-dimensional 
function can go beyond mapping the resilience of mutualis-
tic systems; it is able to converge complex behaviours into a 
one-dimensional system around the theoretical prediction. It thus 
provides a tool to predict seemingly unpredictable behaviours of the 
mutualistic systems that are impacted by a variety of perturbations 
and governed by different combinations of parameters. Moreover, 
this advancement is a critical foundation in calculating distances to 
possible tipping points in complex systems with mutualistic interac-
tions, as well as developing an approach to comparing the distances 
across different systems in our next steps.

Reflecting the resilience of real-world ecosystems. Existing 
approaches and metrics are incapable of measuring the resilience of 
a high-dimensional system on the basis of spatiotemporal data due 
to the lack of an effective structural indicator. It prevents us from 
positioning a network from its possible tipping point or comparing 
the distances to tipping points from various systems on the same 
scale. Besides, the dearth of empirical data from ecological systems 
also adds difficulties in measuring distances to tipping points33; in 
most cases, we only have abundance and network data (Fig. 4a), 
reflecting mere snapshots of the states of mutualistic systems52. Here 
we attempt to use data on abundance and topology to predict real 
ecological systems' resilience.

We gathered literature and obtained species abundance data at 
eight locations worldwide (Fig. 4b; see Methods (Abundance data) 
and Extended Data Fig. 1). These species construct 54 mutualistic  

ecological networks, 51 of which have weighted topologies and 
3 unweighted (see Supplementary Tables 3 and 4, respectively). 
Putting the real fraction of abundances of all plants y, as the input 
of operator ϰ2, constructed by the real mutualistic topology M, we 
obtain the effective fraction of abundance y

eff

= ϰ

2

(y) =
1

!
My

1

!
M1

 for 
a mutualistic system (see Methods, Fraction and normalization).

We then calculate the geographical distribution of the effective 
fractions of abundances (yeff) at the eight locations. The values of 
effective abundance yeff come from locations Nahuel Huapi National 
Park in Argentina to Isenbjerg, denoted as A to H (see Extended 
Data Fig. 1). The two largest yeff are in Argentina (location A) and 
Morne Seychellois National Park, Mahé (location B), which are both 
national parks. There are 47 mutualistic networks at location B, and 
thus, yeff at this location is the average of the effective fraction of 
abundances of these systems (also see Supplementary Note 4 for 
more details). To understand whether the high-dimensional equa-
tion (1) is a potential dynamics rule for these networks, we used 
these abundance data and the 54 real ecological networks to esti-
mate parameters for each network (see Methods, Parameter estima-
tion). As shown in Fig. 4c, the excellent match between each species’ 
abundance yi and the simulated one ys

i

 helps us to make the assump-
tion that all these networks follow the same rules (equation (1)) and 
are thus potentially comparable.

As pointed out in ref. 53, there is a positive linear correlation 
between species abundance and nestedness. Thus, we test the per-
formance of γ when predicting yeff and compare the results to the 
ones measured by nestedness indicators. We compute the normal-
ized NODF54 (short for 'Nested Overlap and Decreasing Fill', a con-
sistent metric for nestedness analysis in ecological systems; Fig. 4d), 
maximum Eigenvalue55 (Fig. 4e) and γ (Fig. 4f) and then examine 
the correlation of these measures to the abundance of the plants. 
We find that γ shows higher correlation (R2 = 0.644***) compared 
with both nestedness measures (R2 = 0.297 for normalized NODF 
and 0.538 for maximum eigenvalue) (***P < 0.001). The residuals are 
shown in Fig. 4g. The results indicate that γ can be a more effective 
structural indicator to identify the crucial components from mas-
sive nodes and evaluate the current state of a system.

The scaling factor for recovery rates. After developing and dem-
onstrating γ as an effective structural indicator for the state of 
mutualistic networks, our last step is to create a novel approach 
to compare the distances of different systems to their respective 
tipping points. The approach is a vital contribution because, to our 
best knowledge, no available methods can position two systems 
with entirely different parameters on the same scale for compari-
son purposes. In other words, existing approaches cannot posi-
tion systems on the same scale and thus cannot evaluate which 
system is more endangered and, consequently, require prioritized 
resources. This limitation hinders the optimization of global 
resource allocation56.

To demonstrate this critical limitation, we tested the performance 
of recovery rate40 on indicating the resilience of a system. When a 
system approaches the possible tipping point (that is, the distance 
γ − γc decreases), the recovery rate decreases and the autocorrelation 
variance increases as a result of the shrinkage in the attraction basin 
and a longer memory for perturbations32,42. Therefore, for a single 
one-dimensional system with fixed parameters, both measures can 
potentially capture the system’s distance from its tipping point, as 
shown in Fig. 5a.

However, neither recovery rate nor autocorrelation can compare 
different systems with entirely different parameters. Our experi-
ments demonstrate the limitation of the recovery rate approach: we 
choose three real ecological networks, parameterize dynamic roles 
through their real abundance data (see Methods, Parameter estima-
tion for more details) and convert them into one-dimensional sys-
tems using equation (4). Although the three systems experience the 

NATURE ECOLOGY & EVOLUTION | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ARTICLES NATURE ECOLOGY & EVOLUTION

same levels of state perturbations (Fig. 5b), their distances to tipping 
points greatly differ (Fig. 5c).

To overcome this limitation, we employ our dimension-reduction 
approach and describe the tipping point γc as a function of dynami-
cal parameters; thus, the distance to tipping point γ − γc becomes a 
function of structure and dynamics, that is,

γ − γ

c

= f (α, β

w

) . (5)

When the system is stable, the effective state of the whole system 
can be captured by

x

s

= f (α, β

w

, γ) . (6)

The recovery rate is defined as the change rate from the stable state 
xs after perturbation δ:

g (δx
s

) =

dδx

s

dt

= f (α, β

w

, γ, δ) . (7)

For equation (4), the recovery rate has the form

g (δx
s

) = δx

s

(
α − δβ

w

x

s

+
δγx

s

1+δhγx

s

)

≈ δ (1− δ)
1

h

2

[
(1+hα)2

β

w

−

(
1+

√
−hα

)

γ

]

.

(8)
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Fig. 4 | Detecting signals from real ecosystems. a, We show the adjacency matrix of a real weighted ecological network (Supplementary Table 3) and a 
real unweighted one (Supplementary Table 4), with the proportional abundance of each species indicated by the width of its corresponding block.  
b, Real pollinator networks (54) with the real proportional abundance of each plant, which come from 8 locations worldwide (8 colours, Extended Data  
Fig. 1), including 51 weighted networks (circle) and 3 unweighted ones (square). c, Assuming all the 54 real pollinator networks are governed by equation (1)  
with h!=!0.2, we adjusted their dynamical parameters (α, βs) to obtain the proportional abundances (ys

i

), which are extremely close to the real ones (yi).  
d, Nestedness η vs the effective abundance yeff. e, Maximum eigenvalue λ1 vs the effective abundance yeff. f, Effective mutualistic strength γ vs the effective 
abundance yeff. g, We show the three indicators' ability to explain real abundance by comparing their residuals of linear correlation between indicators and 
effective abundances. In each box, there are 54 points (the effective abundance for 54 networks). The central red line indicates the median, the bottom 
and top edges of the box indicate the 25th and 75th percentiles, respectively, and the whiskers extend to the most extreme data points not considered as 
outliers (the outliers are marked with '+').
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with two approximations g (δx
s

) ≈ δ (1− δ) β

w

x

2

s

 and 
x

2

s

≈ 1

h

2

[(
1+hα

β

w

)

2

−
(1+

√
−hα)

β

w

γ

] (see more details in Supplementary 
Note 5).

Since both the distance γ − γc (equation (5)) and the recovery rate 
(equation (7)) are functions of effective parameters α, βw, γ, we can 
obtain the relationship between them as

γ − γ

c

= ρ × g(δx
s

), (9)

with the scaling factor

ρ =

h

2

β

w

γ

δ (1− δ) (1+ hα)
2

. (10)

The scaling factor ρ is a critical parameter since it contains 
multiple effective parameters, h, α, βw and γ, extracted from a 
high-dimensional system. Therefore, ρ captures the dynamic 
behaviour of a disrupted high-dimensional system by mapping it 
to a one-dimensional one. Also, since ρ is uniquely determined 
by a given network, it not only predicts the distance to the tipping 
point of a single system but also compares the distances across  
multiple ones.

We demonstrate the applicability of our scaling factor ρ by apply-
ing it to the 54 real mutualistic networks used in Fig. 4. These sys-
tems have diverse resiliences since their dynamic parameters (αi, βsi 

in equation (1)) and the interaction matrices (βij, γij) are different. 
Note that the parameters of these networks were estimated using 
abundance data (see Methods, Parameter estimation for details). 
The coexistence of species can be captured using system param-
eters44; once the original parameters are determined, we can cap-
ture a system to its domain boundary, that is, the distance to tipping 
points. Then, we design simulations that run on both the original 
high-dimensional matrix and the converted one-dimensional sys-
tem, which is useful to confirm that our method is applicable to 
high-dimensional systems. As shown in Fig. 5d, the seemingly 
chaotic behaviours are difficult to capture using autocorrelation. 
At the same γ − γc, systems can have entirely different autocorre-
lations, making it challenging to compare resilience across differ-
ent systems. We monitor the changes in recovery rates in the same 
simulations and observe a similar pattern (Fig. 5e). In contrast, after 
applying our scaling factor ρ, the distances to tipping points are cap-
tured. The conversion transfers the dynamic behaviours into nearly 
linear ones, as shown in Fig. 5f, allowing us to uniquely determine a 
system’s resilience and compare the converted recovery rates across 
different systems on the same scale.

Discussion
Ecosystems are becoming increasingly vulnerable with the intensifi-
cation of climate change and thus, understanding their resilience and 
predicting their tipping points is a critical and challenging issue57–59. 
Suppose a uniform comparison of the resilience across different 
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Fig. 5 | Early-warning signals predict distances to tipping points of ecosystems. a, A 1D system is forced, changing stochastically by adding white noise 
with 0.01 strength to equation (4) with α!=!−1, βs!=!1, h!=!0.2. When the system approaches its tipping point (the distance γ!−!γc decreases), the basin of 
attraction shrinks. The system has a longer memory for perturbations (for example, the state is suddenly reduced by a factor of 0.95), resulting in a lower 
recovery rate (blue) and a higher autocorrelation (red). b, When the high-dimensional system collapses into a 1D one, we can observe how the system, 
after being disturbed, varies from its original stable state (derivation) as time (t) changes, allowing us to calculate the recovery rate for the system.  
c, Although the three systems (that is, mutualistic networks for the locations Argentina, Hickling and Mahé, respectively) are observed the same recovery 
rate after the same level of perturbation (b), their distances to tipping points are greatly differ (black dots). d, We obtain dynamical parameters for 54 
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the recovery rate for each empirical system. f, The scaled recovery rate (RR) reflects the distance to the tipping point. Thus, we could evaluate how far 
different systems are to the loss of resilience.
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systems around the world could be achieved. In that case, human 
beings could identify truly endangered communities in vulnerable 
areas and optimize global resource allocation60. This theory-based 
paper takes the first step towards achieving such global comparison, 
where our developed approach can position diverse systems on the 
same scale and consequently compare their resilience.

The study contributes to the understanding of the resilience of 
mutualistic systems in three aspects. First and foremost, we develop 
a novel scaling factor, ρ, that positions and compares multiple sys-
tems on a common scale. This approach unprecedentedly measures 
distances to tipping points of mutualistic networks with different 
parameters and topologies, comparing their resilience. Our study 
builds upon previous research in mutualistic network resilience, 
especially the works that examine critical tipping points in one net-
work31. It is thus a vital contribution to the theories of critical transi-
tions in mutualistic systems composed of more than one network. 
For real systems that could be approximated using equation (1), ρ 
may help optimize the allocation of resources according to their dis-
tances to the tipping point. If successfully validated by real-world 
data from ecological systems, our approach can also help protect 
vulnerable ecosystems and assist in designing global early-warning 
systems to cope with large-scale ecological crises.

Second, we quantify and explore the resilience of high-dimensional 
mutualistic networks by designing a single-dimensional structural 
indicator γ. Compared with established measures55,61,62 used to cap-
ture the nestedness of ecosystems, the condensed values of γ show 
a high capability of mapping resilience of different systems with a 
one-dimensional function. The performance of γ makes it a poten-
tial structural indicator and thus contributes to the search for a uni-
versal indicator.

Lastly, we devise an approach to measure the distance of a sys-
tem’s current resilience to its tipping point. Our approach, assuming 
the dynamics of all systems follow equation (1), identifies the param-
eters of a system using abundance data, that is, a single snapshot of 
a system. The method makes it possible to obtain the tipping points 
(γc) of mutualistic networks without relying on time-series data58.

Additionally, the study develops a method to estimate the param-
eters of ecological systems. Our method helps address the challenge 
in the real world: high-quality spatiotemporal data is too scarce to 
permit observation of the entire stochastic process of a system63,64. 
The abundance data provide only a snapshot of the state of a system. 
Our method estimates the parameters of real ecological networks 
on the basis of only their abundance data and the network topology, 
thus making it possible to monitor globally with limited real data.

Despite the broad discussions on empirical evidence of, as well as 
the ongoing efforts in searching for, critical thresholds in ecological 
systems, our model advances the capability of capturing and pre-
dicting such critical transitions. At a minimum, it provides a needed 
theoretical approach to understand systems whose behaviours fall 
into the applicability of our framework (see Methods, Applicability). 
In this paper, we study a theoretical model of an ecological sys-
tem with competitive and mutualistic dynamics. We find that this 
model may have a tipping point, depending on the parameters. For 
example, if the intrinsic growth rate is larger than zero, there will 
be no tipping point. However, in this case our dimensional reduc-
tion method still works well (see Extended Data Fig. 3). For the case 
with a tipping point (that is, the intrinsic growth rate is smaller than 
zero), we can predict the distance to the tipping point using a rescal-
ing factor.

Our study has limitations on heterogeneity and interspecific 
competition (see Extended Data Fig. 4). The prediction fails with 
large interspecific competition and high heterogeneity, necessitat-
ing future work allowing greater freedom. Additionally, holistic and 
empirical validation of our theory is still elusive and beyond the 
scope of this study. Observation data of thresholds in mutualistic 
networks will broaden the applicability of our theory in the future. 

Beyond the application to ecosystems, our developed framework 
and operations can be extended to explore the resilience of other 
interdependent worldwide systems65 (see Extended Data Fig. 5 and 
Supplementary Note 7 for supply-chain networks). Moreover, the 
work supports current efforts in the field and demonstrates the fea-
sibility of devising a universal framework to quantify, predict and 
control mutualistic networks in an increasingly changing global 
environment.

Method
Complex systems described by interacting equations. We can 
approximate the behaviour of these complex systems by a set of 
interacting equations with high dimensionality:
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which describes the dynamic roles governing a system composed of 
Network I and Network II. The first term on the right-hand side of 
each equation (11) captures the self-dynamics of a component, the 
second term captures the competitive interactions between compo-
nent i (m) and component j (n) within Network I (II), and the third 
term captures the mutualistic interactions between component i 
(m) and its interacting partners, p (k), from the other network. The 
nonlinear functions F( ⋅ ), G( ⋅ ), H( ⋅ ), P( ⋅ ), Q( ⋅ ) and R( ⋅ ) represent 
the dynamical laws governing components, while the connectivity 
matrices A, B, C and D describe the interactions between compo-
nents. Their values are negative for competition and positive for 
mutualism.

Hypothesis. Assumption 1. Heterogeneity is not overly high. Since 
our method relies on the validity of the mean-field theory, overly 
high heterogeneity will make the method unable to predict the 
behaviour of the complex systems67. It is worth noting that the 
empirical network structures applied in Supplementary Tables 1–4 
are of high heterogeneity. Also in Supplementary Note 3, it is shown 
that our method can tolerate large heterogeneity in parameter h.

Assumption 2. Interspecific competition is much smaller than 
self-competition, that is, βij ≪ βii. Strong competition may lead to 
many stable fixed points in a system68 because different combina-
tions of species may become extinct depending on the initial condi-
tions. Consequently, it brings high heterogeneity in the competition 
dynamics, which could make the mean-field theory inapplicable.

Dimensional reduction. In a network environment, each node’s state 
is affected by its nearest neighbours through the interaction term. 
For a mutualistic network governed by equation (12), the interac-
tion terms have the form 
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(12)

For node i with si neighbours, s
i

× L(M, y) naturally incor-
porates the sum of nearest neighbours averaging procedure y. 
Thus, equation (12) can be converted into equation (13) without  
much cost:
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(13)
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Here we name xI
eff
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)
, indicating the mean-field weighted states of 

x. Then the four scalars can be obtained by solving the following 
equations:
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(14)

Knowing the effective states through equation (14), equation (13) is 
decoupled and the state for every node can also be solved.

For mutualistic networks, a system consisting of more than one 
network (β(P), β(A), γ(P), β(A) in equation (1)), the state of a node is 
affected by the neighbours in the same network as well as the neigh-
bours in different networks. Therefore, we characterize four effec-
tive states of the system using the average nearest-neighbour activity

P

P

= L(β

(P)
, P), A

A

= L(β

(A)
, A), P

A

= L(γ
(A)

, P), A
P

= L(γ
(P)

, A),

(15)

where PP (AA) reflects the average state of plants (animals) 
from the viewpoint of plants (animals) themselves, while PA 
(AP) reflects the average state from the viewpoint of animals 
(plants). Similarly, we characterize the effective states for the 
dynamical parameters (α, βs) and the structural properties s, 
which indicate the number of nearest neighbours in one struc-
ture, that is, s
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), as shown in Table 1.
In sum, the input matrix M of the operator L(M, y) can be the 

inner-structure in a network and the inter-structure across net-
works, while the input vector y can be the states, the parameter in 
the dynamic functions, as well as the structural information for each 
species. This allows us to abstract a high-dimensional system (equa-
tion (1)) by a four-dimensional resilience function (equation (3)).

Further, from the abstracted information above, we assemble a 
new matrix Z as

Z =
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Putting matrix Z as the input matrix of operator L(M, y), there will 
be a one-dimensional equation

dx

dt

= x

[

α + (β

s

+ β)x+

γx

1+ hγx

]

, (17)

where x captures the effective abundance for both plants and ani-
mals (more details can be seen in Table 2).

For the system consisting of more than one network (that is, 
β(P), β(A), γ(P), β(A) in equation (1)), the state of a node is affected by 
the neighbours in the same network as well as the ones in differ-
ent networks. However, the existing approach31 only works with one 
network. Therefore, we expand our previous work31 and develop 
a two-step compression approach. The first step compresses the 

original interaction matrix (such as y = L(β

(P)
, y)) as the case with 

just one network. The second step reconstructs a matrix Z with the 
scalar y obtained from the first step. For a system consisting of n 
networks, the matrix Z is n × n dimensional.

Data of networks. To construct mutualistic networks, we collected 
data on symbiotic ecological interactions from the ‘Web of life’ web-
site66, including
 (i) Supplementary Table 1, 39 unweighted pollination networks. 

We used these networks in Fig. 2 in the manuscript and Sup-
plementary Figs. 8–15.

 (ii) Supplementary Table 2, 28 weighted pollination networks. We 
used these networks in Fig. 3 in the manuscript and Supple-
mentary Fig. 16.

 (iii) Supplementary Table 3, 51 weighted ecological networks with 
abundance data. We applied these network data to Figs. 4 and 5 
in the manuscript and Supplementary Figs. 19–23 and Table 6.

 (iv) Supplementary Table 4, 3 unweighted ecological networks with 
abundance data. We applied these network data to Figs. 4 and 5 
in the manuscript and Supplementary Figs. 19–23 and Table 6.

Abundance data. We looked through papers that listed pollination 
networks in the ‘Web of life’66. Seven papers were found69–75, each 
of which recorded real data on abundance. We obtained a total of 
54 networks with data on abundance for plant species, including 
51 with a weighted topology (Supplementary Table 3) and 3 with 
an unweighted topology (Supplementary Table 4). These networks 
were spread in eight locations worldwide (Supplementary Table 5).

Proportion and normalization. Since some papers only contain pro-
portional abundance, that is, the ratio of one species’ abundance to 
the total abundance of all species, instead of the value of abundance, 
we used the proportional abundance y of each plant in this study. 
To consider all networks with data on abundance (Supplementary 
Tables 3 and 4) consistently, we divided one network by the sum of 
all elements to obtain the relationship between network structure 
and species abundance, as shown in Fig. 4.

Applicability. Our model has wide applicability. Although we com-
puted the effective parameters using the original state variables in 
this study, the information is not a prerequisite to use our model. In 
fact, our assumption is that all systems are resilient at the time the 
abundance data were obtained. Thus, the model can be applied as 
long as the original abundance values are at high levels. However, it 
is worth noting that although our theoretical model does not inher-
ently assume βij ≪ βii (i ≠ j), it is necessary for our model to operate 
under such condition (see Extended Data Fig. 4a,b for the allowed 
range of βij). This is because our result is based on the validity of the 
mean-field theory, which could not be applied to a system with high 
heterogeneity (see ref. 31 for more discussion on this limitation).

Parameter estimation. Assuming all pollinator networks follow 
dynamics as in equation (1) without competition, we can simulate 
species abundance with interaction topology (γ

ij

) and parameters 
of each species (αi and βsi). In turn, one can estimate parameters 
with a given value of abundance and interaction topology. The spe-
cific process of parameter estimation is: first, we set the initial val-
ues of αi for all species as −1 and βsi as 1; second, we computed the 
abundances for certain parameters and calculated the proportional 
abundances; third, we compared these proportional abundances of 
plants to the real ones and counted the sum Err. If Err > 1 × 10−6, 
we adjusted the values of these parameters, went back to the sec-
ond step, and tested again. The process ended when an additional 
adjustment on the parameters could not decrease Err anymore. The 
estimated parameters for each species in all 54 networks are publicly 
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available (see Data availability). Assuming all the 54 real pollina-
tor networks are governed by equation (1) with h = 0.2, we adjusted 
their dynamical parameters (α, βs) to obtain the proportional abun-
dances ( ys

i

), which are extremely close to the real ones (yi), as shown 
in Fig. 4c.

Statistics. For each boxplot in this paper, the central mark indicates 
the median, the bottom and top edges of the box indicate the 25th 
and 75th percentiles, respectively, and the whiskers extend to the 
most extreme data points not considered outliers (the outliers are 
marked with ‘+’).

Reporting summary. Further information on research design is 
available in the Nature Research Reporting Summary linked to this 
article.

Data availability
All network and abundance data can be accessed through https://
doi.org/10.5281/zenodo.6784072.

Code availability
All code used in this study is available on Zenodo at https://doi.
org/10.5281/zenodo.6784072.
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Extended Data Fig. 1 | 54 real ecological networks with abundance values from 8 locations. We obtained 54 pollination networks with real proportional 
abundances from references listed above (‘Ref.’), including 51 weighted networks (Table S3) and 3 unweighted ones (Table S4), spread in 8 locations 
world-wide. We sorted the effective abundance ratio decently as A - H. ‘ID’ is the network’s code shown in ‘web of life’66, ‘LAT’ refers to the latitude of one 
location, and ‘LONG’ refers to its longitude.
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Extended Data Fig. 2 | The characteristics of the real networks analysed in the paper. ‘ID’ is the identity of one network recorded in the website66. ‘∣P∣’, 
‘∣A∣’ denotes the number of plant and animal species respectively. ‘∣links∣’ is the number of links in a network. ‘C’ is the connectivity of a network. ‘HP’ and 
‘HA’ are the heterogeneity of the plant and animal sub-networks respectively. ‘γ’ is the effective mutual strength. ‘〈err〉’ is the prediction error of our method 
for each network. For data sources and references, see Supplementary Prediction error.
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Extended Data Fig. 3 | The robustness of the proposed resilience function for non-transition case. The proposed resilience function (the gray curve, 
theoretical prediction obtained from equation (1) with βs!=!100 and β!=!10) predicts well the resilience of 28 weighted networks (see supplementary Table 
S2) without transition, under different parameters: α!=!2, α!=!1, α!=!−!1, h!=!0.8, h!=!0.5 and h!=!0.2. Moreover, it is robust to competition typologies by 
assigning three different linking probabilities: 20% (light blue), 50% (blue), and 100% (red).
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Extended Data Fig. 4 | Prediction fails with large inter-competition strengths and high heterogeneity. a-b, Test how inter-competition strength influence 
the prediction on a synthetic system with a plants’ inter-competition network A (a 100*100 ER network), an animals’ inter-competition matrix C (a 
150*150 ER network), and a mutualistic network (a 100*150 ER network), with homogeneous inter-competition βij and mean degree 5. a, The simulation 
results of the effective abundance for all species (‘S’, obtained by solving the high-dimensional equations equation (2)) fit well with the theoretical 
prediction (‘T’, obtained by numerically solving 1D function dx

dt

= x(α − β

w

x+ γx

1+hγx

) directly) when the inter-specific competition strength βij is small 
(βij!<!0.2 for certain mutual strength γ0!=![3,!5,!15]). However, the prediction fails with large inter-competition βij. b, For one γ0, we calculate the prediction 
error (difference between ‘S’ and ‘T’) for βij!=![0.1,!0.2,!0.5,!1] respectively. In each box, there are 15 points (γ0!=![1:!15]). The central mark indicates the 
median, the bottom and top edges of the box indicate the 25th and 75th percentiles respectively, while the whiskers extend to the most extreme data 
points not considered outliers (the outliers are marked with ‘+’). c, We show how the heterogeneity of a mutualistic network influences the prediction 
accuracy applied to 39 real mutualistic networks in Fig. 2q. Firstly, we project each system into two networks31 and then calculate the heterogeneity of the 
two networks that is, HP and HA, respectively. d, We compare the calculation time between the full system (equation (1)) and the decoupled system (first 
solve equation (3) and then put xeff and xeco into equation (4)), for 10 random graphs. Data are presented as mean values +/- SEM. CPU: Single core in 
Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz. Parameter setting: h!=!0.2, 
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Extended Data Fig. 5 | The prediction of resilience in supply chain networks. The resilience is tested against: (1) perturbation in links (a-d, for mutualistic 
network), and (2) perturbation in nodes (e-h). Link perturbation has two variations: increasing/decreasing (that is competition/mutualism) the average 
weight to a fraction fw of their original value; and extinction of a fraction fL of links. Node perturbation also has two variations: extinction of a fraction fsN 
of suppliers; extinction of a fraction fmN of manufacturers. i, All data (red points) in a-h uniformly collapse onto the resilience function (blue surface), 
indicating that regardless of the network structures and the forms of perturbation, the state of the system is captured by β and γ (see dynamics for supply 
chain networks in Supplementary Note 7).
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Provide a description of all commercial, open source and custom code used to collect the data in this study, specifying the version used OR 
state that no software was used.

Data analysis Matlab

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
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- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 
design questions and have nothing to add here, write "See above."
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how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We use the network structure data and the abundance data to simulate the growth of species in an ecosystem.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Huixin Zhang downloaded the network structure data from the webstie "web of life" (https://www.web-of-life.es/). Huixin Zhang 
collected the abundance data from 7 previous papers.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.
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