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Concurrence percolation threshold of large-scale
quantum networks
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Quantum networks describe communication networks that are based on quantum entan-
glement. A concurrence percolation theory has been recently developed to determine the
required entanglement to enable communication between two distant stations in an arbitrary
quantum network. Unfortunately, concurrence percolation has been calculated only for very
small networks or large networks without loops. Here, we develop a set of mathematical tools
for approximating the concurrence percolation threshold for unprecedented large-scale
quantum networks by estimating the path-length distribution, under the assumption that all
paths between a given pair of nodes have no overlap. We show that our approximate method
agrees closely with analytical results from concurrence percolation theory. The numerical
results we present include 2D square lattices of 2002 nodes and complex networks of up to
104 nodes. The entanglement percolation threshold of a quantum network is a crucial
parameter for constructing a real-world communication network based on entanglement, and
our method offers a significant speed-up for the intensive computations involved.
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physics is a relatively new and rapidly developing field!.

Quantum networks, where the links between nodes
represent entangled qubits?~9, are expected to form the basis of
the quantum internet. Recent advances in quantum repeater
technology have made long-distance, noise-resilient quantum
communication possible’-!1. These networks have quantum
correlations that can be exploited by performing specific local
measurements on any node.

Protocols for quantum communication rely on the conserva-
tion of correlations in entangled states, and the generation and
distribution of entanglement are necessary for quantum
networks!2. For a given network topology, we want to determine
the minimum amount of entanglement necessary between qubits
to maintain a giant component in the network, which is a pro-
blem analogous to percolation on classical networks!3-16. How-
ever, there are crucial differences between classical and quantum
networks, limiting the extent to which we can map a classical
percolation theory to quantum networks. For example, in a
classical random network with N nodes, if an edge between nodes
exists with probability p, a subgraph with n nodes and I edges
exists above a critical threshold of p given by p.o N~"/!17, For a
quantum network, however, p, ~ N~2 for all subgraphs for large
N8, We can also use measurement strategies to alter the topology
of a quantum network, meaning that the optimal entanglement
percolation threshold needs to be minimized over all possible
measurement strategies>.

Quantum networks® are used to model a scalable commu-
nication network based on quantum teleportation. It consists of
nodes that denote a local set of qubits and edges, which represent
a bipartite and entangled state of qubits shared between the two
connected nodes (Fig. 1). The simplest practical quantum net-
work can be built from quantum repeaters!®20 which share only
one entangled pair between nodes’. Quantum communication
networks are expected to have several advantages over classical

T he application of network science to problems in quantum

Fig. 1 Schematic representation of a quantum network. The larger circles
represent nodes. The smaller, enclosed circles represent entangled qubits.
Each link in the network represents a pair of entangled qubits shared
between the two connected nodes. The original network is represented by
the black solid and dashed lines. Node D performs a local measurement
(represented by the red rectangle) on the qubits it shares with nodes B and
C, causing the qubits in B and C to become entangled, represented by the
dotted red line. The previous entanglement, represented by the dashed
black line, is lost. Entanglement swapping can modify the topology of a
quantum network, changing its percolation threshold. In this example, a
fully connected network is split into two disjoint components, consisting of
nodes A-C (in turqoise) and nodes D-F (in gray).

communication networks, including the ability to use quantum
cryptography and send “quantum software”29,

The bipartite state of any entangled qubits in the network can
be defined as

[¥) = cosB|00) + sin0|11) (1)

up to a unitary transformation, where 6 can change from 0 to 77/4.
Each entangled pair can be converted to a maximally entangled
pair with a certain probability p, known as the singlet-conversion
probability (SCP), given by p = 2sin?6?!. This represents the
probability of establishing a perfect communications channel!.
Converting every entangled pair in the network to a singlet is
equivalent to a bond-percolation process and this measurement
strategy is called classical entanglement percolation (CEP)313,

Having established the mapping to percolation, it is natural to
ask what is the minimum level of entanglement necessary for the
formation of a perfect communication channel between any two
stations. Using classical-percolation arguments, we can establish
the minimum level of entanglement necessary for establishing an
infinite cluster under CEP for some simple cases. For example, it
is Oy, = 71/4 for 1D chains and 8y, = 11/6 for 2D square lattices>.

Unfortunately, CEP does not give us the lowest possible perco-
lation threshold value for a quantum network because it is possible
to lower the entanglement threshold necessary for creating an
infinite cluster by changing the network’s topology. This is done
through a process known as entanglement swapping, shown in
Fig. 1, where two previously unentangled qubits are entangled
using local operations and classical communication (LOCC)?2.

The network topology may be altered to lower the percolation
threshold before converting every link to a singlet by performing a
series of entanglement swapping operations. This strategy is known
as quantum entanglement percolation (QEP)323. The limitation of
QEP is that it is not generally adaptable to arbitrary network
topology as CEP is. For most network topologies, QEP cannot
improve the percolation threshold in general. Note also that neither
CEP nor QEP are optimal, meaning that it is impossible to deter-
mine if any given measurement strategy results in the lowest
potential value of the percolation threshold!. A new local statistical
theory, concurrence percolation theory (ConPT), has recently been
proposed to explain the observed quantum advantage in quantum
networks over the prediction of classical percolation theory?4. This
theory is analogous to classical percolation theory but fundamen-
tally different, as it is not built on probability measure p but a new
variable ¢ for each link, which stands for concurrence—a key
measure of bipartite entanglement?®. However, ConPT can be
computationally very expensive?,

Here, we present a fast and tangible solution for calculating the
ConPT threshold. Our method relies on two approximations. The
first is the parallel approximation, which treats all paths in the
network as non-overlapping. The second is what we call the §,,
approximation, where we calculate the total concurrence between
nodes using a subset of paths consisting of the m-th shortest
paths on the network, with m =1 referring to the shortest paths.
We find that our approximate method agrees closely with the
analytical results provided by Meng et al.24, Depending on the
choice of S, the computation based on this method can be
several orders of magnitude faster than the analytical approach.
By combining our method with combinatorial expressions for
shortest and second-shortest paths we can calculate, for the first
time, an approximation for the concurrence for much larger
networks than would be analytically possible. Here, we calculate
the sponge-crossing concurrence for 2D lattices with up to 2002
nodes. We also extend the notion of concurrence to networks
without boundaries and present results for Erd6és-Rényi and
Barabdsi-Albert networks of up to 10% nodes. Our results are
summarized in Table 1.

2 COMMUNICATIONS PHYSICS | (2022)5:193 | https://doi.org/10.1038/s42005-022-00958-4 | www.nature.com/commsphys


www.nature.com/commsphys

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00958-4

ARTICLE

Table 1 Concurrence percolation thresholds of different

network topologies.

Network topology (n/8) 0y, (/) 0,24
(Fast ConPT)

Bethe Lattice (Cayley Tree) 0.5 0.5

(L=100,k=3)

Bethe Lattice (Cayley Tree) 0.39 0.3918

(L=100,k=4)

2D square (n=82,Sy) 0.40 0.416

2D square (n=202,S3) 0.44 N/a

2D square (n=2002,S,) 0.5 N/a

ER (n = 103, (k) = 3, S5) 0.6+0.002 N/a

ER (n = 103, (k) = 4, Ss) 0.53+0.0019 N/a

ER (n = 10%, (k) = 2, S)) 0.85+0.0021 N/a

BA (n=103,z=5,5) 0.3+0.0018 N/a

BA (n=10%2=1,55) 0.86+0.0057 N/a

The concurrence percolation threshold 6y, determines the fundamental long-distance

entanglement transmission capability in large-scale quantum networks, where each link is a

bipartite state of qubits, |¥) = cos 0|00) + sin 6|11), 8 € [0, z/4]. We compare our results to

those provided in Meng et al.24 for the Bethe lattice and 2D square lattice. We also report

results on Erdés-Rényi (ER) and Barabasi-Albert (BA) networks.

Results and discussion
Concurrence percolation theory. For pure bipartite states, the
concurrence is defined as26

¢ = 1/2(1 — Trp?),

where p, is the reduced density matrix of one party (subsystem) of
the bipartite state. For qubits, Eq. (1), the concurrence is simply

¢ = 2cos0Bsinf.

Meng et al. then use this quantity in place of probability to
construct a concurrence percolation theory (ConPT) on arbitrary
network topologies?.

To be more specific, recall that for classical bond percolation on
a lattice, any link in the lattice is active with probability p—a
variable that should be considered as the link weight. We may then
define a “sponge-crossing” quantity, Psc, as the probability that at
least one path connecting the two distant boundaries is fully active.
As a function of p, Psc can be calculated by summing up all paths
that connect the two boundaries of the lattice, following basic
addition and multiplication rules of probability measures!3.
Essentially, we treat Pgc as a “weighted sum of all paths”.

Now, given an #n-node quantum network, Gg(n), where all the
link weights are 6, by the CEP/QEP schemes we have the
mapping p = 2sin’6 (i.e., the SCP). From classical percolation
theory, it is known that a minimum value of p exists, below which
the sponge-crossing probability, Psc, becomes zero in the
thermodynamic limit # — oco:

pe = inf{p C [0,1]llim, , . Psc[Gy(n)]>0}. )

This minimum value, py,, is known as the percolation threshold.

The ConPT is constructed differently, using the mapping ¢ =
sin 26 instead?*. Still, an analogous quantity, Csc, referred to as
the sponge-crossing concurrence can be defined as the weighted
sum of all paths in terms of this new weight ¢24. It is believed that
a nontrivial threshold on c also exists:

¢ = inf{c C [0,1]llim, _,  Csc[Gy(m] >0},  (3)

such that cy, is the minimum value of the concurrence ¢ per link,
below which Csc becomes zero when #n — oo,

It remains to show how the “weighted sum of paths” is
calculated for ConPT. As a problem of path connectivity, the

calculation turns out to closely resemble the analysis of an
electrical resistor network, where a set of series and parallel rules
are needed as the basic connectivity rules??”. Fundamental
quantum communication theorems demand that, for k links
connected in series, the total concurrence must be given by

k
Cseri = Seri(cl’cb Ck) = HCi- (4)
i=1
The rule for k links connected parallel to each other is more
involved, given by

2
T+ /1= Gana Fl+y/1-2 1
— = max ||—,—7
2 2

2

i=1

which yields

Coara = Para(cy, ¢y, ... )

_ {2\/]‘(51, e ) = ey ) ey ) >1/2,
1 fley... ¢) £1/2,
(©)
1+

2

where f(c;... ¢) = Hle % A caveat lies in the fact that if
the network topology is not series-parallel?® but has nontrivial
loops (e.g., a bridge-circuit topology), then Csc cannot be
calculated using only series and parallel rules. Higher-order
connectivity rules are needed, of which general forms are
unknown. There is, however, a heuristic way to approximate
these higher-order rules: by employing the so-called star-mesh
transform, all possible higher-order rules can be approximated
using only the series and parallel rules?*.

Equations (4), (5), together with the star-mesh transform, allow
us to calculate the “weighted sum of paths” between arbitrary two
nodes in a quantum network of arbitrary topology. Formally, we
denote the two nodes as the source node (s) and the target node
(t), respectively, and we define the final concurrence between
them as the s-t concurrence, Cy. Note that although s and ¢ are
named differently, they are symmetric and exchangeable. Hence,
between any two nodes, a Cy; can be calculated by the connectivity
rules mentioned above (see Fig. 2 for example).

On regular lattices, the sponge-crossing concurrence Csc can
be calculated by contracting two separate boundaries into two
“mega” nodes? and calculate the s-t concurrence between them.
As we increase the network size n, a threshold ¢y, will emerge,
accompanied with a sudden jump of Csc as soon as the
concurrence ¢ per link becomes larger than ¢y, This observation
supports the existence of ConPT. Also, the observed cy, is
significantly smaller than all previously known classical-
percolation-theory-based schemes?4, exhibiting in large-scale
quantum networks a quantum advantage that is purely structural.

Despite the fresh insights the ConPT has offered, it has two
main limitations:

1. The heuristic approximation (star-mesh transform) used
for higher-order connectivity rules is a double-recursive
process that is computationally intensive, thus only feasible
for networks of very small size.

2. Although an s-t concurrence can be calculated between any
two nodes in any network topology, the sponge-crossing
concurrence Cgc is only defined for regular lattices that
have apparent boundaries, and thus so is cy,. It is unknown
how to define ¢y, on complex network topology where we
cannot define a boundary, and, provided a proper
definition, how (non)trivial the numerical result of cgy,
would be.
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Fig. 2 Demonstration of calculating the s-t concurrence Cg;. The s-t concurrence between nodes 1 and 6 on a 2D rectangular lattice can be calculated
using ConPT, in the order from (a) to (e). The edge weight @ characterizes the entanglement strength between a pair of entangled particles shared between
nodes (Eqg. 1) and ¢ = sin 20 refers to the corresponding concurrence. a Original lattice. b, ¢ Series rules. d Star-mesh transform on the star-graph (edges
41, 43, 4 6), then parallel rule for edges 1+ 3 and 3« 6. e Series rule for edges 1< 3 and 3 < 6, then parallel rule for edge 1+ 6.

Unlike cluster-based percolation theories, ConPT is based on
path connectivity, which is arguably more general?4. This is why
¢ simply cannot be defined by clusters like in classical
percolation theory for complex network topology. A proper
definition and feasible calculation of ¢y, will be of great interest
for the theory itself as well as for its applications. Below, we will
show our suggested solution that can satisfactorily handle these
two limitations of ConPT.

A fast and tangible solution for concurrence percolation. We
start by generalizing Csc from being defined between two
apparent boundaries to two arbitrary sets of nodes, denoted S and
T. It is reasonable that Eq. (3) will yield a nontrivial ConPT
threshold cy, for this generalized Csc, as long as the lengths of all
paths connecting S and T increase with the network size n. We
contract the two sets S and T into two “mega” nodes, which
amounts to erasing the internal network topologies of S and T,
and then calculate the s-t concurrence between them. This pro-
vides us a definitive way of calculating Csc for arbitrary network
topology and inferring cy, from Eq. (3).

Our numerical computation of ¢y (“Fast ConPT computa-
tion”) on large-scale quantum networks is further made possible
by introducing two key simplifying approximations: the parallel
approximation and the S,, approximation

Parallel approximation. In this Section, we introduce the parallel
approximation, where we treat all paths connecting nodes of interest
to be parallel, i.e., we treat them as if they have no shared edges. For
an arbitrary network with #n nodes and uniform edge-weights ¢, the
parallel approximation Cg, of the true sponge-crossing concurrence
between two sets of nodes, S and T, is given by

1+4/1—Cg n
f—max H

N
1+V/1-c2\ "1 ©)

2 2

=1

where N; is the total number of self-avoiding paths of length [ that
connect s and ¢ for all s S and t € T, respectively. Equation (6) is
the mathematical statement of the parallel approximation, indicat-
ing that we are taking each of the N; paths to be parallel (Fig. 3). We
illustrate the approximation with a simple example, and then show
that on series-parallel networks?® the concurrence calculated under
the parallel approximation forms an upper bound to the true con-
currence. First, we consider the case where our network is essentially

parallel, i.e, it can be expressed as the parallel combination of k
subnetworks each with concurrence c;. In this case, the parallel
approximation is exact:

sc = Csc = para(cy, ¢y, ... )

The more interesting case is that of an essentially series
network, i.e., a network that can be decomposed as a combination
of subnetworks in series. We consider an exemplary network that

splits into k branches, each with concurrence S, (Fig. 3). The

concurrence of the segment before branching is ¢,. Following the
series and parallel rules (Eqs. 4, 5), the sponge-crossing
concurrence from the left of this network segment to the right is

Coo = c (2\/f(cp0, e ) = flepys oo CPA)Z) Flepys oo cp) >1/2,
I Jepy - 6p) < 1/2,
where f(c, ... ¢,) = Hleg(cpi) = Hle(L ﬁ) Under

the parallel approximation, the network is transformed so that the
concurrence of the segment is given by

. - { 2\/f(5s5p07 e 66y ) = fley s cscpk)2
sC .

Sleeyys m665) > 1/2,

flegy,, - c6p) < 1/2.
Since ¢, <¢,, it follows that g(cscp_) > g(cp_) and
fleey s ey > f(c > -+ €, ). There are three cases:

L. 1/2.2f(cscp07 _ ¢y ) 2 f(cp 5 - ). In this case, it is
obvious that Cg = 1 = Cy.
2. f(cscpu, e €Cp) Zf(cpU7 ) > 1/2. Now we consider

<$)2 B flesep,, - € N1 = flesgy - €6p))

Cyc cszf(cp07 e ) = fep s o))

We would like to show that the above expression is no less than
unity by considering some limiting cases. When ¢, = 0 forall i it
results in Cgc = Cqc = 0. If we increase the concurrence of a

single branch i to be greater than zero while holding the other
branches to be zero, then the expression becomes

(%—i—% l—cfcf,l){l—(%—i—% 1—C§C§l>:|
oDl a)
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Fig. 3 A schematic representation of the parallel approximation. The parallel approximation preserves the number of paths and their lengths, but ignores
overlap between the paths. In this example, the source node (in green) is connected to target nodes (in blue) by k branches of the network (represented by

the orange boxes), each with concurrence ¢

. Each branch joins to a segment with concurrence ¢, (represented by the blue box). Under the parallel

approximation the network is transformed scS that the k branches have no overlap with each other.

or gle,e, (1 —glege,)) = ¢ g(c )1 —g(c, )) This is simply to
state that given onfy one branch the parallel approximation is
exact (since there is one and only one path). We now add a
second branch, j, while leaving the remaining k — 2 branches with
zero concurrence. Now we have

Cse g(c,)8(cy) (1 -g(¢,) g(cpj))

For ¢, — 0, the expression above reduces to

2 26, +2¢
lim (ﬁ) =
&0 \Csc o e f—c202+cz\/17c2+c2\/17c2

2%
2c +26

2 2_122 =
ZC -|—2L‘ cpcp

and for ¢, =1, the expression is equal to unity. Hence, since the
derivative of the expression w.r.t. ¢,

© T )

9, \Csc 2g<cp,)g(cp,>( fg<cpi)g<cp,) 1-aq . i-ag

is nonpositive between 0<c¢,<1, we derive that C¢. is no less
than Cgc. This tells us that the addition of another branch results
in the approximated concurrence being an upper bound for the
true concurrence calculated through series-parallel rules. As more
branches are added to the expression, the result can be easily
generalized, so that Cy./Cg: = 1 remains true.

3. f( $Cppr - CCp) > 1/2 Zf(cpo, .- ¢, ). As before, we con-
sider
(/sc)z B Flespys e €y N1 = flesey s -on € Pk))
Csc c2/4
For ¢; — 0, the expression reduces to
Cio\> &
lim (=€) = > & >1.
¢—>0 CSC i=1 i

In particular, the inequality holds because f(c,,...c,) is a
concave function defined on the simplex

{(C;l,... ,CZ)|IZ:ICI = },

where it satisfies f(c, , ... ¢, ) >1 /2 except at the vertices where
all but one c2 are equal to zéro. Thus, due to the monoton1c1ty of
f, one requires Y-F_, ¢ 21to guarantee that f(c, , ... ¢,) < 1/2.

Next, as ¢, — 1 the function fleey, s - e, ) will ecome kless than

1/2 and we will revert to case 1. Therefore, there is an upper
bound on «¢. As ¢ approaches its wupper bound,
flegey, ... cc,) — 1/2, and thus

v 2 1
lim (i> =21
flegy, - cscpk)% 1/2 CSC C

2
. . [of . .
Since for this case, % (CSC) is nonpositive between ¢, — 0
s SC

and the presumed upper bound of ¢, again we derive that

sc/Csc = 1.

Finally, since every series-parallel network can be decomposed
into essentially series or parallel configurations, taken together we
have shown that Cg is an upper bound for Cs¢ on series-parallel
networks. Interestingly, as we will see, this upper bound
seemingly becomes tighter as the network becomes larger. We
hence expect that a new concurrence threshold on Cg. can
emerge, which should numerically approach the true ¢y, from
below and match cy, in the thermodynamic limit # — co.

o

S, approximation. For most regular lattices and complex net-
works, however, the distribution of N; (Eq. 6) is not trivial. When
we look at arbitrary networks, the calculation for the sponge-
crossing concurrence is essentially a path-counting problem
which may require approximation as well.

Although the literature of path counting on graphs is rich and
well studied, we are not aware of any closed-form solutions for
enumeration of self-avoiding walks of arbitrary length for even
the simplest network (like 2D lattices)?®. While approximate path
enumerations exist for both 2D lattices*® and random networks?>!,
we find them impractical, since the concurrence calculation is
very sensitive to N; for small I. Indeed, observation of Eq. (6)
implies that a single path’s contribution to the total concurrence
decreases with increasing / and increases with increasing N. Even
though longer paths (I~n) will outnumber shorter paths by
several orders of magnitude, shorter paths will still contribute
significantly more to the concurrence.

Based on this, if we define S,, as the set which contains up to the
m-th shortest paths (i.e., the shortest paths, the 2nd shortest paths,
and so on up to the m-th shortest paths) between sand tforalls e S
and t € T, then it is possible to approximate the sponge-crossing
concurrence between S and T using only these paths. When
m = my,. S, becomes the set of all sponge-crossing paths.

In this Section, using our Fast ConPT computation, we present
numerical results for different networks of large size n. We
numerically estimate the finite-size ConPT threshold in terms of
6y = 1sin~'cy, determining its position on the critical curve by
matching the corresponding sponge-crossing concurrence at the
half pOiI’lt, CSC =1/2.
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Bethe Lattice (Cayley Tree). Given a finite Bethe lattice (i.e., a
Cayley tree) with L layers and coordination number k3233, all
paths from the root node to any one of the boundary nodes
have the same length, L. Since only one path exists from the
root node to any node on the boundary, the number of paths of

length L is
N, = k(k— D)F (7)

There is no need to employ the S,, approximation since all
paths are exactly known. Only the parallel approximation Cg.
of the sponge-crossing concurrence Cgc is to be calculated,
which is given by (following Eq. 6)

THyIT G max{ <1+m>m 1}. ®)

2 2 2
To solve for cy,, near Cy = 0 we let

NL
14+ /1 =cit

2

©)

=1—c¢

given an arbitrarily small positive e. This gives rise to
2
2=1- [2(1 — /M 1} ~ —4N7'In(1 — ¢) + O(N72),
(10)

and thus

4\T/ 1\ 7T 1
) o
in the limit of large L. This is identical to the exact ConPT
threshold calculated by Meng et al.24 using a recursive renor-
malization trick on the series and parallel rules (Egs. 4, 5).

Interestingly, it is known that a saturation point cg,, <1 also
exists in ConPT24, namely, before ¢ reaches unity, Csc will already
reach unity at ¢ = ¢y, This is because of the maximum function
appearing in the parallel rule (Eq. 5). It is also obvious that
Csat = Cpp» given the monotonicity of the series and parallel rules.
To see if we can solve for ¢y, using the parallel approximation
too, let

N
14+ ,/1—% 1
—2 ] ~2 12)

We see that the saturation point calculated using the
parallel approximation is equal to ¢y, which is underestimated,

since the true saturation point is given by ¢y, =

Va2V — /4325 — (1/4% 24, which can
be calculated similarly using a recursive renormalization trick on
the series and parallel rules (Egs. 4, 5).

For validation purposes, numerical results of the sponge-
crossing concurrence on the Bethe lattice using the parallel
approximation versus the true ConPT results are shown in
Fig. 4. We see that as L increases, both ¢y, and cg, (where

¢ = 2cosBsinf) approach 1/v/k—1 from below and above,
respectively, consistent with our theoretical result. Hence, it is
highly suggested that the parallel approximation can correctly
estimate the true ConPT threshold cy, in the thermodynamic
limit.

2D square lattices. In a 2D square lattice of n nodes (/n € 7),
the length of the mth shortest self-avoiding path, between source
and target nodes of coordinates s=(x,y;) and t=(x; )
(1<x,x <nand 1<y, y, < /n),is simply
by = | = x| + [y, = 7,[ + 2(m = ).
Now, let S and T denote the left (x;= 1) and right (x, = /n)
boundaries. Let s=(1,y;) €S and t = (/n,y,) € T. Under the

Sm approximation, the total number of self-avoiding paths of
length [ between S and T is given by

N
N, ~ 21 218’11N11(5 = D+ ON, (s > B+ 46 N, (s > 1),
=

. (15)

where §;; is the Kronecker delta. This approximation of N; is then
substituted into the parallel approximation (Eq. 6) to calculate
Csc between S and T.

For m<2, it is possible to directly enumerate the Ist
and 2nd shortest self-avoiding paths between every pair of s
and t. The general expressions are given by (w.lo.g., x,<x, and

N (s —> t)=

X' =max(x;2} y =y, |.XS — X/|

+ /
by, =y

X' =x; y =max{y2}

min(xglq/r‘l) ¥,—2 <|xs _ X/| + D}S _y/l

"o minv%hﬁ’(m — Y1+ I, - x/|> (Iyt —y U - - 2|)

X, +1—x|+y,—1—y, ly, + 1=yl +lx, —1—x
—f-B(xS,xt)(lt |+ 1y, y|)+3(ys,)’1)(yt J t )7

|2, + 1 — x|

set by Cqc = 1. This yields
A=1-

sat

{2(1/2)1““ - 1}2 ~ 4AN;'In2+ O(N;?), (13)

and thus

—1

4In2\*/ 1 \7 1
C ~ ~ .
sat k k—l /—k_l

(14)

Ys< o)
N (s — 1) = e =] + [y, = x| : (16)
|'x5_'xt|
and
)('xt_x/+1|+|yt_y/_2|)
lx, —x' + 1]
17)
=y +1
|yt+1_ys|
where the boundary effect
0, u=1lv=./n
Bu,v) =<1, u=1lv<yn or u>l,v=.n (18)
2, u>l,v<i/n

is also taken into account. In particular, Eq. (17) is obtained due
to the fact that every 2nd shortest self-avoiding path in the square
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Fig. 4 The sponge-crossing concurrence for the Bethe lattice under the parallel approximation. Results are shown for coordination numbers (a) k=3
and (b) k= 4. As the number of layers, L, in the network become larger the numerical values of 6y, approaches the analytical value. The solid black lines
represent the true concurrence values for the Bethe lattice?4.
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Fig. 5 Characterization of second-shortest paths using primitive steps.
Every 2nd shortest self-avoiding path must contain one and only one of the
configurations (solid line): either “Z"-shape (a, b) or “L"-shape (c-f), then
the rest connected by shortest paths (dashed lines).

lattice, having length L, = |x; — x| + |ys — »,] + 2, must contain
one and only one of the configurations as shown in Fig. 5. The
first and second terms in Eq. (17) account for the two “Z”-shape
configurations (Fig. 5a, b), respectively; the third term for the two
“L”-shape configurations (Fig. 5¢, d); and the last term for the
other two “L”-shape configurations (Fig. 5e, f).

Piecewise path enumeration algorithm. For m>2, it becomes
difficult to write down a closed-form combinatorial expression
like Egs. (16, 17) for N; (s — f). A path enumeration algorithm
is thus needed. We treat paths of length [,, with m > 2 as devia-
tions from the 1st and 2nd shortest paths. For a given m, these
deviations can only take a finite number of shapes. Once we have
identified these primitive deviations, we must next identify
positions in the lattice where these deviations can be placed.
Finally, we count the total number of paths by counting the
number of shortest paths between deviations using Egs. (16, 17).

For example, given source and target nodes s and t, all 3rd-
shortest paths (m = 3) have either two single-step deviations or
one double-step deviation from the 1st shortest path. For the
case where we have two single-step deviations, we first identify
two sets of points, D; and D,, where the first and second
deviations can happen respectively. Then we calculate N, ,

(the number of shortest paths from s to every point in D),
Np, p, (the number of shortest paths from every point in D; to

every point in D,), and Np , (the number of shortest paths
from every point in D, to t). The total number of 3rd-shortest

paths is then given by N;(s — t) = N,p Ny p Np ;. This
algorithm, while significantly faster than a brute-force path
enumeration, is still too involved for large m. We use this
algorithm to calculate S; exclusively.

Numerical calculations. The final numerical results of Cgc, cal-
culated using the exact combinatorial expressions (S;, S,) and/or
the piecewise path enumeration algorithm (S;), are shown in
Fig. 6. We can see from Fig. 6a that the transition in the value of
the sponge-crossing concurrence becomes sharper as the network
size increases. From Fig. 6b-d we see that for large enough m or
n, the numerical threshold 6y, levels out at constant values that
are very close to those calculated using the star-mesh transform.
For example, for n2 = 8 the Fast ConPT method yields 6, = 0.4,
compared to the value of Oy, =0.416 calculated using the star-
mesh transform?4. This suggests that our Fast ConPT calculation
can yield a good approximation of the ConPT threshold. We can
also see from Fig. 7 that the Fast ConPT computation is over 100
times faster than the star-mesh transform method.

Complex network topologies. Unlike 2D square lattices, we
cannot write down any analytical expressions for the path-length
distribution of complex networks. While techniques to enumerate
paths give a good estimate of the total number of paths3!, they
approximate the path-length distribution poorly. This means that
we must enumerate paths through brute-force methods and this
restricts our analysis to sparse graphs.

For complex networks, we simply define the sponge-crossing
concurrence as the C,; between two nodes s and ¢ which means
that S={s} and T= {t}. We pick s and ¢ such that the shortest
path between them is equal to the diameter of the network. In
general there might be multiple choices for s and t that meet this
criterion, and we randomly choose one of these pairs.

We randomly generate 100 network realizations of a given size
and degree distribution and average the concurrence percolation
threshold of all networks. These results are reported in Table 1
along with the standard error, 0/+/N, where ¢ is the standard
deviation and N=100 is the number of realizations of each
random graph.

Erdés-Rényi Network. Results for Erdés-Rényi (ER) networks34
are shown in Figs. 8, 9a, 10a, b. The concurrence is calculated
under the S¢ approximation for different settings of network sizes
and average degrees. The results are averaged over 100 network
realizations for each setting. For small values of m, the behavior of
the concurrence for ER networks can be approximated with a
power-law fit, as shown in Fig. 8. Figure 10a shows that the value
of Oy, converges with increasing network size for smaller values of
the average degree, e.g., (k) = 4. For larger values of the average

COMMUNICATIONS PHYSICS| (2022)5:193 | https://doi.org/10.1038/s42005-022-00958-4 | www.nature.com/commsphys 7


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00958-4

n=10?

- 2
0.81 n=15
n=20?

0.6

Csc

0.4

0.24

0.0

0.0 02 0.4 0.6 0.8 1.0
6(n/4)~t

S
S
0.44 S3

)—1

h(1T/!

52 102 152 202
n

0.45 52
0.44 n=8
< 0.431
o042
S
S 0.411
0.40
0.391
1 2 3 4 5 6 7
m
d 0.50
0.49
T
;\? 0.48
E
< 0.47
[0s}
0.46 s,
s
0.45 2
202 502 1002 1502 2002
n

Fig. 6 Fast ConPT calculation on 2D square lattices. a Sponge-crossing concurrence Csc as a function of link weight 6, calculated under the $;-Ss3
approximations. Only the result of Ss is plotted. The results of S; and S, are nearly identical to S3. b Numerical ConPT threshold 6y, under the S,
approximation. As m increases, 0y, approaches a constant value. ¢ 6, for different size n. d Same as (c) but for larger n. S3 becomes too computationally
intensive to calculate for n>202. As n increases, 6y, also approaches a constant value.
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Fig. 7 The speed-up obtained by the Fast ConPT algorithm over star-
mesh reduction. The figure shows the computing time (in seconds) to
calculate Cg, the s-t concurrence between two nodes s and t, on 2D square
lattices with n nodes using the Fast ConPT method with the S; and S,
approximation, as well as using the star-mesh reduction method of Meng
et al.24 We can see that the Fast ConPT method speeds up the calculation
over the star-mesh transform method by two orders of magnitude.

degree, such as (k) = 8, we do not see the value of the threshold
converging for the same network size.

The calculation of the number of paths becomes increasingly
computationally intensive for larger values of the average degree
and we must restrict our analysis to small values of m. Figure 10b
shows how the concurrence percolation threshold changes as a
function of average degree under the S; approximation.

Barabdsi-Albert network. Many real-world networks show
power-law degree distribution, such as the Internet, WWW, sci-
entific collaboration networks, protein-protein interaction net-
works, and actor networks!43>. Barabasi—Albert (BA) model3 is
the first model to describe the structure property of such net-
works, using preferential attachment. In this model, every new
node in the graph is assigned z edges, where z is known as the
coordination number, and nodes with higher degrees are more
likely to be selected. The classical bond-percolation threshold for
a BA network with z> 1 and n — oo is p. = 03738,

7x107!
(k)=3, $=-0.137
(k)=4, $=-0.174
(k)=5, $=-0.204

6x10714 f——

5x1071 1 "o TTvee

On(m)
/
/

4x107 4 AEN ' 15

1 2 3 4 5 6780910

m
Fig. 8 The concurrence percolation threshold as a function of m for
Erdés-Rényi (ER) networks. The relationship can be approximated with a
power law, 6;,(m) x m¢?, which is represented by the dashed black lines.
The networks have size n=100.

Results for BA networks are shown in Figs. 9b, 10c, d. For z=1
there are no loops in the network and the relatively small number
of paths connecting any two nodes allows us to calculate the
concurrence for up to 104 nodes, shown in Fig. 10c. We also look
at smaller networks with higher coordination numbers, up to
z =25, shown in Fig. 10d. Unlike ER networks, the value of 6,
decreases with the increasing network size.

Comparison with Classical Entanglement Percolation (CEP). As a
baseline comparison, we numerically calculate 65F, the
percolation threshold associated with classical entanglement
percolation®!3 (CEP) for ER networks. As before we define the per-
colation threshold on random networks as the minimum entangle-
ment necessary for the existence of a path between two nodes s and ¢,
where s and t are a randomly selected pair of nodes with the property
that their distance is the diameter of the network. We generate 100
random networks and eliminate edges with probability 1 — p, where
p = 2sin®0 is the singlet-conversion probability. For each network
we perform 1000 simulations and calculate 65 as the average
minimum value of 6 such that the probability of the existence of a path
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Barabasi--Albert (BA) networks with z=1and z=2 under the S; approximation with increasing network size. d The behavior of 8y, for BA networks with
n="500 and n=1000 as a function z under the S; approximation. All results are averaged over 100 network realizations and the error bars represent one

standard deviation.

between s and ¢ is 0.5. We also calculate 6,(m) for these networks. The
results are shown in Fig. 11. We can see that for all our samples
Op(m=1)< GSIEP. Since CEP represents the naive, baseline mea-
surement strategy it is encouraging that our approximate ConPT
threshold always lies below it even when we restrict ourselves to
m = 1. Therefore 0y, heuristically approaches a lower bound on the
true concurrence and even for low values of m it predicts a lower
concurrence percolation threshold than that predicted by CEP.

Conclusion

Table 1 summarizes the numerical results of our fast concurrence
percolation theory (Fast ConPT) computation compared with
previously known results?4. The algorithm we have presented in
this report utilizes two approximations to allow for numerical
calculations of ConPT. Where available, our results are in good

agreement with the analytical values of the concurrence perco-
lation. We have also extended the analysis of the ConPT
threshold to complex networks and demonstrated that our
method could be applied to square lattices of 200 nodes and
complex networks of 300 nodes. Combining our method with
more efficient path-counting algorithms would allow us to probe
a more significant fraction of the total paths of a network for the
ConPT calculation and provide a more robust estimate for the
ConPT threshold. We believe that this work is an important step
towards understanding the structural and communication prop-
erties of large-scale quantum networks.

We believe that ConPT is a promising tool for practically
designing and analysing quantum networks. It offers crucial
insights into how entanglement strength, viewed as a costly
resource, should be distributed throughout a network to ensure
resilient communication. In full-optical quantum communication
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networks, for example, entanglement strength is usually expressed
as a function of the number of entangled photons shared between
nodes®. Current methods used in simulations to determine the
entanglement strength necessary for the emergence of a giant
component in quantum networks or the connectivity of two
random nodes implicitly assume the CEP measurement strategy,
i.e., they assume that the topology of the quantum network is
immutable like that of a classical network3?40, The numerical
methods we have presented in this paper allow concurrence
percolation theory to be practically useful in the analysis of large
complex networks, providing a lower bound on the entanglement
strength necessary for communication between distant nodes,
therefore allowing the cost associated with establishing commu-
nication channels of a certain strength in these networks to be
lowered. As we showed in our comparison with CEP, even for
m =1 the Fast ConPT method already predicts a lower entan-
glement percolation than CEP, demonstrating its effectiveness for
determining how close any given measurement strategy is to
being optimal.

Still, the critical behaviors of ConPT near 0y, remain an inter-
esting and open question. Previous studies have indicated that
some critical phenomena, such as the emergence of subgraphs, are
drastically different in quantum random networks than in classical
networks®. While Meng et al. has provided a finite-size analysis of
the critical behaviors of Bethe lattices, their analysis of 2D lattices is
limited by the size of the lattices they could investigate?%. Their
initial results indicate that the critical exponent v associated with
ConPT on 2D lattices are the same as those of classical percolation

theory. This can now be investigated more thoroughly using the
algorithm presented in the present work.

Code availability

The code used in this study is available upon request.
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