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Discrimination reveals reconstructability of
multiplex networks from partial observations
Mincheng Wu1, Jiming Chen1✉, Shibo He1✉, Youxian Sun1, Shlomo Havlin2 & Jianxi Gao 3,4✉

An excellent method for predicting links in multiplex networks is reflected in its ability to

reconstruct them accurately. Although link prediction methods perform well on estimating

the existence probability of each potential link in monoplex networks by the set of partially

observed links, we lack a mathematical tool to reconstruct the multiplex network from the

observed aggregate topology and partially observed links in multiplex networks. Here, we fill

this gap by developing a theoretical and computational framework that builds a probability

space containing possible structures with a maximum likelihood estimation. Then, we dis-

covered that the discrimination, an indicator quantifying differences between layers from an

entropy perspective, determines the reconstructability, i.e., the accuracy of such recon-

struction. This finding enables us to design the optimal strategy to allocate the set of

observed links in different layers for promoting the optimal reconstruction of multiplex

networks. Finally, the theoretical analyses are corroborated by empirical results from biolo-

gical, social, engineered systems, and a large volume of synthetic networks.
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Multiplex networks, composed of a collection of layers
sharing the same set of nodes, can describe multiple
types of interactions between nodes in different layers

more precisely than the corresponding aggregate networks1–6.
Neglecting the layers topology in the multiplex structure may lead
to significant inaccurate predictions7–10. For example, a tiny
fraction of node removal in one layer may cause cascading fail-
ures between layers and a catastrophic collapse of the entire
multiplex network11 (Fig. 1a). However, the corresponding
aggregate network may be predicted to remain unscathed for the
same set of node removal (Fig. 1b), which are corroborated by
recent results that an interdependent network is significantly
more vulnerable than its isolated layers and from the aggregate
network against random failures12–14. Another example is the
random walk process over a multiplex transportation network.
The cost of switching between two layers determines the navig-
ability of a multiplex transportation network15. The walker may
need an extra cost to switch from one layer to other layers
(Fig. 1c), while one can walk along with any link without extra
cost within the aggregate network (Fig. 1d). Such an extra cost
causes a lower coverage of the nodes that are visited by the walker
in a multiplex transportation network. A further example is the
dynamic of the spreading process in a temporal network, mod-
eling rumor circulation in a social network or disease outbreak
(e.g., COVID-19) in a susceptible population network16–19. The
topology of a temporal network may change at each time
(Fig. 1e), while it is regarded as static in the aggregate network
(Fig. 1f), leading to a lower infected fraction in a temporal net-
work compared to the aggregate one.

However, it is practically difficult to obtain data representing
the detailed layers of a full multiplex topology accurately, since it
is costly, time-consuming, and even impossible to measure all
types of interactions and heterogeneity of nodes, especially in a
large-scale complex system. On the contrary, the aggregate net-
work of a multiplex network is relatively feasible, aggregating all
interactions without distinguishing their specific types.
Researchers, for example, can construct the entire connectome of
Caenorhabditis elegans’ neural system20,21 (Supplementary
Fig. 1), potentially offering a better understanding of brains’
functionality. However, this information is of limited use, as
discussed above, because of the unidentified multiplex layers
topology, reflecting on the types of interactions (e.g., gap-junction
or synapse) between any two connected neurons without exten-
sive experiments22. Analogous cases widely appear in various
aspects of life, including social networks23 and transportation
networks24. Since dynamical phenomena on a multiplex network
significantly differ from those on its aggregate one, it pressingly
promotes the need for effective tools that can leverage limited
information (the aggregate network) to accurately and efficiently
predict unobserved links in each layer.

Recent studies have attempted to predict links in multiplex
networks based on the structures (e.g., multiplex links and mul-
tilayer neighborhoods) when partial observations of a subnetwork
in each layer are available25,26. These methods are efficient in
retrieving missing links in different layers; however, they ignore
the useful information of the aggregate network. Building on the
results of link prediction, a more exciting and vital issue in
multiplex networks is developing an efficient reconstruction
method based on knowledge of both the aggregate topology and
partial observations of layers beyond link prediction. Recent
research demonstrates that one can reconstruct a multiplex net-
work with a given generating model (e.g., the stochastic block
model)27–29 or specific dynamics data (e.g., random walk or a
spreading process) is available24,30. Furthermore, efforts have
been devoted to estimating the number of multiplex layers
from the knowledge of the aggregate network or a dynamic

process24,31. However, to the best of our knowledge, it remains
lacking a framework to reconstruct multiplex layer structures and
to display the specific topology of each hidden layer, when the
number of layers is known. Thus, the following fundamental
questions remain open.

The same aggregate network can be generated by different
combinations of single-layer networks, which is a combinatorial
optimization problem. There exists an enormous number of
possible mappings from the potential multiplex layers structures
to the observed aggregate topology. Specifically, the probability
space composed by potential multiplex structures has an expo-
nential (ð2L " 1ÞjA

Oj) possibilities with the number of layers L and
the number of links in the aggregate network jAOj (see Supple-
mentary Fig. 2 for more details). Q1. Can one conceive a low-
complexity framework to reconstruct multiplex layer structures,
avoiding the enormous cost of ergodic methods32? Various
characteristics of a multiplex structure affect the reconstruct-
ability. For example, the average degrees and overlap of edges in
different layers has a different impact on the reconstruction
accuracy. Q2. Is there an indicator that can quantify the funda-
mental relation between the reconstructability and diverse net-
work characteristics? More known links yield higher
reconstruction accuracy while they are more costly. Furthermore,
there is a huge number of possibilities to allocate a limited budget
in different layers, which is also a combinatorial optimization
problem. Q3. Is there an optimal strategy to allocate a limited
budget that will enable the highest reconstruction accuracy for
various multiplex networks using the above indicator?

In this article, we propose a mathematical and computational
framework that can reconstruct a multiplex network and predict
its dynamic process on it. We found a discrimination indicator
derived from information entropy, integrated by multiple net-
work characteristics, that linearly determines the reconstruction
accuracy of multiplex networks. This discovery enables us to
design an optimal strategy to allocate a fixed budget for partial
observations of the layers, promoting the optimal reconstruction
of layers in multiplex networks for the considered network model.
Empirical results based on nine real-world multiplex networks
and several synthetic networks corroborate our analytical results
(see Supplementary Table 1 for details of the real-world datasets).
Therefore, our answers to the open questions above are “yes”.

Results
Framework for reconstructing multiplex layer structures. We
will first introduce the notations by denoting the adjacency
matrix of layer α in a multiplex network M by Mα

(α= 1, 2,⋯ , L), andMα
ij ¼ 1 if there is an edge between nodes i, j

in layer α and vice versa (i, j= 1, 2,⋯ ,N). It is hypothesized that
each multiplex network M is generated by some process such that
the probability of generating a multiplex network with adjacency
matrices Mα is ∏αP(Mα∣θ), where θ represents the parameters of
such a process. An aggregate mechanism is a mapping from a
multiplex network M to a monoplex (single-layer) topology AO,
where AO 2 RN ´N describes the adjacency matrix. In this article,
for illustration, we describe the framework using multiplex net-
works aggregated by the OR mechanism, which is the most
common case ranging from biological networks to social net-
works (see Supplementary Note 1 for other aggregate mechan-
isms). Then, we have

AO
ij ¼ 1"

YL

α¼1

ð1"Mα
ijÞ: ð1Þ

Partial observation Γ indicates a set that contains the observed
edges in the multiplex network, where Γ ¼ fði; j; αÞjAO

ij ¼ 1; and
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Mα
ij is observedg. Supposing that we have the aggregate topology

AO and the partial observation Γ from a multiplex network M
with L layers, our goal is to predict whether there is a link
between any two nodes i, j in layer α when (i, j, α)∉ Γ (Fig. 2a).
Once given an aggregate topology AO, there are in total L % jAOj
links are expected to predict, where jAOj indicates the number of
edge in the aggregate topology AO. Notice that, among the L %
jAOj potential links, we have already observed card(Γ) links,
where card(⋅) indicates the elements number of a set. Thus, we
denote the fraction of partial observations by c (0 ≤ c < 1),
indicating the ratio between the number of observed edges in
layers and all edges in the multiplex network, i.e., c ¼ cardðΓÞ

L%jAOj .
The first step of the reconstruction is to find the most probable

value of θ by maximizing the posterior probability PðθjAO; ΓÞ,
where θ is the network model parameter. Notice that the
probability here provides a general description for any form of the
network parameter θ (see Supplementary Note 2 for specific
forms with a certain network model). Since there is no prior
knowledge about the parameter θ, we assume it to have a uniform
distribution, i.e., P(θ)= const.33. In this case, based on the
Bayesian rule, the maximum posterior estimate is equivalent to
maximizing the log-likelihood function

lðθÞ ¼ lnPðAO; ΓjθÞ; ð2Þ

which performs the maximum likelihood estimation (MLE). The
second step is to reconstruct the multiplex structure M, inferring
the probability for each possible structure specifically. Since many
potential layer structures can produce the same multiplex
aggregate topology, we denote the probability distribution for
all multiplex structures by Q(M), where ∑MQ(M)= 1. Then, the
estimated parameter θ can reconstruct the multiplex structure by
calculating the posterior distribution

QðMÞ ¼ PðMjAO; Γ; θÞ: ð3Þ

However, there is a gap between the observations and network
model parameters θ, since the multiplex structure M is a hidden
variable in l(θ), where lðθÞ ¼ ln∑MPðA

O; Γ;MjθÞ. Notice that the

sums over M here are expected to be over M that are consistent
with AO and Γ. For any distribution Q(M), by employing the
Jensen’s inequality, we have

lðθÞ ¼ ln∑
M
PðAO; Γ;MjθÞ≥ ∑

M
QðMÞ ln

PðAO; Γ;MjθÞ
QðMÞ

; ð4Þ

where the equality holds if and only if the Eq. (3) is satisfied.
Thus, l(θ) and Q(M) are interdependent, and we perform an
iterative process to obtain the MLE of the parameter θ and the
posterior distribution Q(M) as follows. Given an arbitrary initial
value θ(0), we find the optimized posterior distribution Q(k)(M) by
Eq. (3). Then, we update the parameters θ(k) that maximize the
right-hand side of Eq. (4) by posterior distribution Q(k−1)(M),
which performs a coordinate ascent to maximize the log-
likelihood function (Fig. 2b). The iterations above are derived
from the expectation-maximization (EM) algorithm34 (details in
the “Methods” section), and a toy example is shown (Fig. 2c).
Note that if there is any prior on the parameters θ, the proposed
framework above can be improved by maximizing the product of
the likelihood function PðAO; ΓjθÞ and the prior P(θ), i.e., the so-
called maximum a posterior estimation (MAP).

In estimation and statistics theory, an unbiased estimator is
called efficient if the variance of the estimator reaches Cramer-
Rao lower bound (CRLB)35. Fortunately, the proposed framework
yields a maximum likelihood estimation, which is an unbiased
estimator, and performs asymptotic normality indicating the
estimator converges in distribution to a normal distribution36.
With this, we prove that the variance of the estimator designed in
our framework decreases as the fraction of partial observations c
increases, and further reaches the CRLB when the network size N
approaches infinity (see Supplementary Note 3 and Supplemen-
tary Fig. 4 for more details).

Evaluations for the performance of the reconstruction. We now
analyze the performance of reconstruction on various real-world
multiplex networks. Notice that the framework works for any
given analytical generative model, such as Erdos-Rényi random
network model and stochastic block model. For illustration, we
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Fig. 1 The different consequences for dynamics occurring on a multiplex network and the corresponding aggregate monoplex network. a Once a node
fails due to attack, the cascade of failures will result in a catastrophic removal of nodes (red nodes in the network) in an interdependent multiplex network.
b Attacking the same node in the aggregate network will not trigger such a catastrophic outcome (only another one node disconnects from the giant
connected component). c A random walk process in a multiplex transportation network, where the black dashed line indicates a possible path of the
random walk process and the arrows indicate the direction of the random walk. d A random walk process in the corresponding aggregate network, where
the red dashed line indicates a possible path of the random walk process. e In a temporal contact network, the topology changes in time and, as a
consequence, an infection (red individuals) spreads slowly in time, leading to a lower number of infected individuals at time t= T with respect to f the same
epidemics spreading on the aggregated network. The geographic data are provided by OpenStreetMap.
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employ the configuration model as our network model, which
exploits the parameter set D to describe model parameters. For
a multiplex network composed by L layers, specifically, the

parameter set D contains L vectors dα
!

2 RN (α= 1, 2,⋯ , L),
encoding the degree sequences in each layer, where the compo-
nent dα(i) describes the degree of node i in layer α. The config-
uration model can significantly reduce the complexity from
exponential to polynomial by exploiting the independence of each
link and this model has been widely applied to analyze the rela-
tionship between structure and function of complex
networks37–39.

As we mentioned in the last section, once a certain network
model is determined, we can conduct specific derivations to find
the most probable values of all parameters in D by maximizing
the likelihood PðAO; ΓjDÞ (see Supplementary Note 2 for detailed
derivations). After estimating degree sequences D, the posterior
probability Qα

ij can be calculated by

Qα
ij ¼ PðMα

ij ¼ 1jAO; Γ;DÞ; ð5Þ

which is called here link reliability, measuring the probability that
a link exists between node i and node j in layer α (see
Supplementary Note 2 for complete algorithm and complexity

analysis in this case). We examine the reliability of all links in the
testing set ET consisting of potential links except those of the
partial observations, i.e., ET ¼ fði; j; αÞ =2 ΓjAO

ij ¼ 1g (see Supple-
mentary Fig. 5 for a schematic illustration). For this purpose, we
calculate the TP (true positive rate) PðMα

ij ¼ 1jQα
ij > qÞ, FP (false

positive rate) PðMα
ij ¼ 0jQα

ij > qÞ, TN (true negative rate) PðMα
ij ¼

0jQα
ij < qÞ and FN (false negative rate) PðMα

ij ¼ 1jQα
ij < qÞ in ET,

where q is the threshold that determines the classifier boundary
for varying classes.

We first vary the threshold q from 0 to 1, and calculate AUC
(area under the receiver operating characteristic (ROC) curve) for
two real-world datasets (C. elegans neural network and London
transportation network) against different c. In the meantime, we
compare our results with three-link prediction methods that
performed well on inference tasks by partial observations so far.
The first relevant work is referred to De Bacco et al., who have
proposed a generative model, and an efficient expectation-
maximization algorithm, which allows to perform inference tasks
such as community detection and link prediction40. It works for
multiplex networks with groups, but it may fail in networks
without group-based structures. The second is referred to Tarres-
Deulofeu et al., who introduced a stochastic block model, which
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where the parameter θ indicates the degree sequences d
!

1 and d
!

2 in two layers. Once given initial d
!ð0Þ

1 and d
!ð0Þ

2 , we can obtain the expectation of the
structure distribution E[Q(1)(M)], where the gray level and the thickness of each link indicates the existent probability estimated by the proposed method.

When repeating this process, we can obtain the convergent degree sequences d
!ð1Þ

1 , d
!ð1Þ

2 , and the convergent expectation E[Q(∞)(M)].
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can take full advantage of the information contained in the whole
network41. The third baseline is calculated by a single-layer link
prediction method, layer by layer, in the multiplex network
(Layered model). Notice that all of them did not take the
aggregate topology into consideration, while our method can
provide valuable insights into how to aggregate topology
information helps reconstruction. The AUCs by four methods
for C. elegans neural network and London transportation are
shown in Fig. 3a, displaying that the aggregate topology truly
provides important information (see Supplementary Fig. 13 for
more empirical results).

Further, we display the ROC curves in the ROC space for
c= 0.01, 0.05, 0.25, 0.5, respectively (Fig. 3b, c). Here, the ROC
space is defined by plotting the false positive rate on the x-axis and
the true positive rate on the y-axis, displaying the relative trade-
offs between false positive (costs) and true positive (benefits).
Notice that the ROC curve describes the performance as a
continuous function of the threshold q, and can well quantify the
true positive rate and the false-positive rate for any given
threshold q. Thus, AUC is a scalar that quantifies the performance
and it does not depend on the choice of threshold. The results of
the ROC analysis show that our proposed framework is very

effective for any threshold in the interval of (0, 1), and thus it is
stable for different thresholds in various real-world networks.
Further, the true positive rate is positively correlated with the
false-positive rate, and there exists a threshold, above which a false
positive rate increases faster than the true positive rate. It is,
thereby, not justified anymore to improve a true positive rate by
increasing the false positive rate beyond such a threshold.

Next, we will set specific thresholds for further analysis. For
example, since we do have any prior knowledge about the
threshold q in the task, we set q= 0.5 to avoid arbitrary choice, i.e.,
when the link reliability is larger than 0.5, an edge is considered to
exist, and vice versa. Then, we calculate the four metrics to
evaluate the performance of multiplex reconstruction for the nine
real-world datasets. As a result, the fraction of partial observations
c, indicating the portion of the observed edges, exhibits a positive
correlation with the accuracy of the reconstruction, showing good
performance even for a quite small c (Fig. 3f) (see the “Methods”
section and Supplementary Fig. 6 for more details for the
evaluations). In practice, we sample the partial observations by
vertex sampling, and repeat the reconstruction 100 times for each
value of c (see the “Methods” section for more details about the
sampling of partial observations).
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Besides link reliability, network characteristics also include
average degree, degree distribution, length distribution of the
shortest paths, which are significant to network reconstruction.
One prominent advantage of the reconstruction framework is
that we can simultaneously obtain other micro- or mesoscale
network properties. For example, the expectation of the degree
distribution in layer α can be obtained by E(pα)=∑MQ(M) ⋅
pα(M), where pα(M) is the degree distribution in layer α for any
specific multiplex structure M. The reconstructed degree
distributions in two layers with different values of c are compared
to the ground truth (c= 1), demonstrating that the degree
distributions in all layers can also be well reconstructed as c
increases (Fig. 3d, e). Generally, the expectation of property X is
the first raw moment obtained by E(X)=∑MQ(M) ⋅ X(M), while
the corresponding variance is the second central moment,
DðXÞ ¼ ∑MQðMÞ % XðMÞ " EðXÞ½ '2. Moreover, we can obtain
skewness, kurtosis, and higher moments of a property X. We will
discuss how different network characteristics (e.g., average
degrees and overlap of edges in different layers) impact the
performance of reconstruction in the next section.

Reconstructability determined by the discrimination indicator.
It is of great significance to investigate how various characteristics
of multiplex networks affect the reconstructability, i.e., the
reconstruction accuracy we measured. Without loss of generality,
we conduct an analysis of two-layer multiplex networks to illus-
trate the method in detail. Once a link is observed in the aggre-
gate network, the probability space of the potential multiplex
structure contains three events: the potential link exists (i) only in
layer 1, (ii) only in layer 2, or (iii) in both layers. Then, the
uncertainty of all links in the multiplex network M can be
quantified by the information entropy

HðMjAOÞ ¼ HðM1jAOÞ þHðM2jAOÞ: ð6Þ

Generally speaking, the smaller the information entropy H is,
the more certain the potential multiplex structure is, and
vice versa.

To study how different characteristics of multiplex networks
impact the information entropy, we first introduce the ratio of

average degrees of two layers denoted by r, i.e., r ¼ k1h i
k2h i, where

k1
! "

and k2
! "

are the average degrees in layer 1 and layer 2,
respectively. We assume, without loss of generality, that
k1
! "

≤ k2
! "

, such that 0 < r ≤ 1. Then, we consider the overlap
of edges denoted by v between the two layers. A high overlap
indicates that a link is more likely to exist in one layer if the
corresponding link exists in the other layer, i.e., a low uncertainty.
To measure the overlap v of a multiplex network, we refer to the
Jaccard index of E1 and E2 that indicate the two edge sets in the
two layers, i.e., v ¼ jE1 \ E2j=jE1 ∪ E2j (see Supplementary Fig. 9
for more details about multiplex network characteristics).

We next explore how these factors impact the information
entropy of a multiplex network and further determine the
performance of reconstruction. By Eq. (6), we can calculate the
information entropy H with a mean-field approximation, and
obtain

HðMjAOÞ ¼ "jAOj % ∑
2

α¼1
½!pα % ln !pα þ ð1" !pαÞ % lnð1" !pαÞ'; ð7Þ

where

!p1 ¼ E½PðM1
ij ¼ 1jAO

ij ¼ 1Þ' ¼
v̂ þ r̂
1þ r̂

; ð8Þ

and

!p2 ¼ E½PðM2
ij ¼ 1jAO

ij ¼ 1Þ' ¼
1þ v̂ % r̂
1þ r̂

; ð9Þ

indicating the average probability for the existence of any link in
layer 1 and layer 2, respectively. Notice that in Eqs. (8) and (9), v̂
and r̂ are the estimations of v and r when we only have partial
observations Γ, and we approximate them by c ⋅ v and rc
empirically (see Methods section for more details). Thus, we
find that the information entropy of a given multiplex network is
highly related to the fraction of partial observations c, the ratio of
average degrees r and overlap v. It is clear that the uncertainty of
the probability space decreases with the increasing of c and v.
Hence, the information entropy H is a monotonously decreasing
function of c and v over the domain. For r, however, the
information entropy is a monotonously increasing function when
r increases from 0 to 1 (Fig. 4a). Clearly, H describes the
microscale discrimination between layers of a multiplex network,
since a high discrimination (e.g., r tends to 0) leads to a low
information entropy.

Generally, the reconstruction accuracy is expected to be
determined by the information entropy H, since H is the
primary variable that affects the uncertainty of the distribution of
potential multiplex structures. Empirically, we find that the
accuracy is linearly determined by the indicator ρ %H (Fig. 4b),
i.e.,

Accuracy ) 1" ρ %H; ð10Þ

where ρ is a scaling factor satisfying

ρ ¼
1

2 ln 2 % jAOj
% 1"

1" v
1þ v

% cs
# $

: ð11Þ

In Eq. (11) above, s= s(M) is a constant related to the topology
of the multiplex network M (see Supplementary Table 2 for
approximate values of s(M). The term (1− v)/(1+ v) in Eq. (11)
indicates the uncertainty of links in the testing set can be reduced
by partial observations. The parameter s describes the scale how
partial observations can reduce the uncertainty of links in the
testing set (details in Methods section). We further find that s(M)
is closely proportional to the cosine similarity of the two degree

sequences in each layer, i.e., s / coshd1
!

; d2
!

i (Fig. 4c). Clearly,

coshd1
!

; d2
!

i describes the similarity between degree sequences of
the two layers in a multiplex network, indicating the mesoscale
discrimination, which is not relevant to microscale discrimination
including r, v, and H generally (Fig. 4d).

Thus, the reconstructability is determined by the discrimina-
tion indicator (1" ρ %H) from both microscale and mesoscale
views. This discovery indicates that the reconstruction can be
predicted accurately by the discrimination indicator, obtaining a
high accuracy of reconstruction where either ρ or H is small. For
example, the reconstructability can be enhanced when the
difference in average degrees between layers is vast (r tends to
0). Notice that we can approximate s by the cosine similarity if we
do not meet the exact value of s empirically, since s is highly
related to the cosine similarity. We will next discuss how to
allocate the partial observations in different layers when a specific
budget !c is given.

Allocating limited budget for partial observations. Usually, we
have a limited budget for conducting observations in practice. It
is, thereby, necessary to investigate budget allocation (partial
observations Γ) in different layers to optimize the performance of
reconstruction (e.g., the accuracy) as far as possible. We denote
the average fraction of partial observations in each layer by !c, i.e.,
!c ¼ ∑αcα=L, where cα indicates the fraction of partial observation
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in layer α, and denote HðMαjAOÞ by Hα for simplicity. Similarly,
employing the mean-field approximation (details in the “Meth-
ods” section), we can predict the accuracy by the function F
defined as

Fðc1; c2Þ ¼ 1"
1" c1

1" c1 þ ð1" c2Þ=r̂

%ρ1 %H1 "
ð1" c2Þ=r̂

1" c1 þ ð1" c2Þ=r̂
% ρ2 %H2;

ð12Þ

where

ρα ¼
1

2 ln 2 % jAOj
% 1"

1" v
1þ v

% cs3"α

# $
; α ¼ 1; 2: ð13Þ

We next explore how the performance of reconstruction is
impacted by the ratio c1/c2 when a certain budget is given for
partial observations. Once !c is given, we regard the function F as a
unary function of c1, i.e., F= F(c1), since c2 ¼ 2!c" c1. Then, the
domain of F(c1) is ½0; 2!c' if !c ≤ 0:5, and is ½2!c" 1; 1' if !c > 0:5.

We notice that the function F(c1) is monotonically increasing
over the domain if !c is small, but decreases at first and increases
later if !c is large. Theoretical analysis shows that Fð0Þ≥ Fð2!cÞ if
!c≤ 0:5, and Fð2!c" 1Þ≥ Fð1Þ if !c > 0:5 (details in the “Methods”
section). The result indicates that it is always better to allocate the
budget as much as possible to the layer whose average degree is
lower, and we can reach the optimal strategy to obtain the highest
accuracy for the given network model then. Moreover, there
exists a threshold 0 < !c0ðMÞ < 1 for each multiplex network M,
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Fig. 4 The impact of multiplex network characteristics on reconstruction. a The discrimination indicator for reconstruction is influenced by c
(fraction of partial observations), r (ratio of average degrees), and v (overlap of edges). b The relationship between accuracy of reconstruction and the
discrimination indicator (ρ %H) for nine real-world networks and several synthetic networks in two dimension, showing the discrimination indicator is a
good predictor (Pearson correlation is 0.98) for accuracy of reconstruction. c The correlation (Pearson correlation is 0.95) between the parameter s(M) and

the cosine similarity of two degree sequences, coshd1
!

; d2
!

i, for nine real-world networks and several synthetic networks in two dimension, where the
parameter s for different multiplex networks are shown in Supplementary Table 2. d Three synthetic networks corresponding to the degree sequence
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; d2
!

i ¼ 0:15;0:47;0:76, respectively.
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where !c0 is the solution to the equation

Fð0Þ ¼ Fð2!c0Þ: ð14Þ

If the budget !c is less than !c0, the accuracy increases when c1/c2
increases, and reaches the maximum as c1/c2 tends to ∞. If the
budget !c is large (!c > !c0), however, the accuracy increases when
c1/c2 tends to 0 or ∞, and reaches the maximum as c1/c2 tends to
∞ (Fig. 5a), indicating that the multiplex network can be
reconstructed when the aggregate topology and either of the two
layers is observed (Fig. 5b). The reason is as follows. The partial
observations in different layers can capture the maximal
characteristics of each layer when c1/c2= 1. However, it will lead
to more redundancy and lower accuracy if the partial observa-
tions in different layers have a high overlap of observations,
making the performance even worse when c1/c2= 1 and !c is large.
The theoretical results enable us to make the best strategy to
allocate budget and thus obtain the optimal reconstruction of
multiplex networks in this case. Furthermore, results from real-
world data sets verified our theoretical analysis (Fig. 5a, c). We
will discuss how different multiplex network characteristics
impact the performance of reconstruction from a dynamical
behavior point of view in the next section.

Predicting dynamic processes in multiplex networks. We pro-
ceed to investigate the performance of the reconstructed multi-
plex networks on the prediction of dynamic processes, which is
critical to the network functionality. First, we study a percolation
process occurring on a two-layer interdependent multiplex net-
work. In such a multiplex network, once a set of nodes is removed
(e.g., being attacked or random failure) in one layer, nodes dis-
connected to the GCC (giant connected component) in the same
layer and the counterparts of the removed nodes will also fail and
thus be removed. The new removed nodes result in more node
removal, and the repetitive processes lead to the catastrophic
cascade of failures. For the reconstructed multiplex network
encoded by the expectation E[Q(M)], we binarize the matrix

E[Q(M)] and randomly remove nodes in one layer with prob-
ability 1− p (see Supplementary Note 4 for more details of the
process). We calculate the size of GMCC (giant mutually con-
nected component) as a function of p and the critical threshold pc,
above which the GMCC exists. We compare the average size of
GMCC in the reconstructed network (repeated 100 times) to the
real one with the C. elegans neural network against ranging c
(Fig. 6a). The performance of reconstruction is well as seen from
the size of GMCC, even if c is small. The estimates of the size of
GMCC and the critical probability pc approach those of the real
networks (c= 1) as c increases 1. However, the proposed method
slightly underestimates both the size of GMCC and the critical
threshold pc for the C. elegans neural network. Further, simula-
tions on synthetic networks reveal that the method under-
estimates much more the robustness and pc of the interdependent
networks when r is small (Fig. 6b). When r is small and close to 0,
the edges in the multiplex network are concentrated on one layer,
leading to the extreme vulnerability. However, the reconstructed
method could not capture the unbalance, especially for a small
fraction of partial observation.

Second, we consider a random walk process taking place on
interconnected multiplex networks, where interlayer links only
exist between counterparts. We suppose that a number of walkers
start from randomly chosen nodes and walk along with intralayer
links with a probability pintra, and along with interlayer links with
probability pinter (see Supplementary Note 5 for more details). We
employ the coverage ϕ(t) as the performance metric, indicating
the fraction of nodes that have been visited by the walkers before
time t. The coverage at each time on reconstructed multiplex
networks are compared to the real one (London multiplex
transportation network) against different c, showing an out-
standing good prediction as c increases (Fig. 6c). Simulations on
synthetic networks show that the coverage will be overestimated
no matter r is small or large (Fig. 6d). Moreover, we conduct
more simulations with real-world multiplex networks with more
than two layers. For example, we simulated the random walk
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Fig. 5 Allocating budget for reconstruction. a The accuracy of reconstruction as a function of c1/c2 from 0 to ∞ for the London transportation multiplex
network, where c1 and c2 indicate the fractions of partial observations in layer 1 and layer 2, respectively. The colored symbols indicates the simulation
results corresponding to different budgets !c, while the magenta lines are the predictive results based on the discrimination indicator. b Different strategies
to allocate limited budget are illustrated in five toy multiplex networks, where the dashed white area is the partial observations of multiplex networks. c The
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standard deviation in this figure.
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processes on the European air transportation network which has
three layers (Ryanair, Lufthansa, EasyJet), and the air transporta-
tion network in the U.S. which has four layers (SkyWest,
Southwest, American Eagle, American Airlines) (see Supplemen-
tary Fig. 10c, d for more results on real-world networks).

Last, we investigate a spreading process based on the SI
(susceptible-infected) model on temporal networks, where
interlayer links only exist between two counterparts at two
adjacent time slots23. In the SI model, each node has only two
states: “susceptible” (S) or “infected” (I), and 5% nodes are
randomly chosen to be sources (infected) at initial time t= 0 in
our simulations. At each time (which corresponds to one layer in
the temporal network), the infected nodes will infect the
susceptible neighboring nodes with a specific infection rate λ
(see Supplementary Note 6 for more details). In the spreading
process, the fraction of infected nodes I(T) at time t= T on the
reconstructed networks is calculated and compared to the real
one with the network of social interactions at SFHH (La Société
française d’Hygiène Hospitalière) conference (Fig. 6e). Simula-
tions on synthetic networks reveal that the method overestimates
I(T) when r is close to 1 (Fig. 6f). We also compare these results
with the existing methods (see Supplementary Fig. 11 for more
details). Further, we simulated the spreading processes on the
Wiki-talk network which has 14 layers (14 weeks), and the
CollegeMsg network that has 22 layers (22 days) (see Supple-
mentary Fig. 10e, f for more results on real-world networks).

Moreover, we have studied how the performance of reconstruc-
tion for dynamics is influenced by more network characteristics,
including the overlap of edges and ratio of heterogeneity (see
Supplementary Fig. 12 for more results on synthetic network with
different characteristics).

Discussion
Network reconstruction has attracted much research attention
recently24,31,42, since it has wide applications such as link pre-
diction, community detection and systems’ vulnerability analysis.
Most previous studies focused on monoplex networks, and
therefore there is a pressing need to develop a reconstruction
framework for multiplex networks. Existing work have met suc-
cess to determine if an observed monoplex network is the out-
come of a hidden multilayer process by assuming generative
models for each layer of the multiplex network. However, it is
necessary to further explore the multiplex layers structure and
predict the dynamics once it is verified that there is a hidden
multiplex structure. Our primary goal is to reconstruct the mul-
tiplex structure from the knowledge of both an observed aggre-
gate monoplex network and partial observations.

However, there are many challenges preventing us to build a
framework for the reconstruction of multiplex networks. Given
the aggregation mechanism (e.g., the OR mechanism), apparently,
there are a large number of potential structures given the same
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aggregate network. To avoid the ergodic methods, we propose a
framework by building a probability space Q(M), and reduce the
complexity from exponential to polynomial by employing the
configuration model that allows an arbitrary degree sequence.
Generally, priors on generating models or other dynamic infor-
mation are almost unavailable, while the local information
(referred to as partial observations in this article) in some specific
layers is more accessible. For this purpose, we need to estimate
the network model parameter θ based on very limited partial
observations and, unfortunately, it is interdependent on the
posterior probability distribution Q(M). We design here an effi-
cient mathematical framework based on the Expectation-
Maximization method performing a maximum likelihood esti-
mation, and prove that the variance of the estimation reaches the
CRLB when network size N approaches infinity. We evaluate the
performance of the reconstruction using various empirical mul-
tiplex networks, ranging from microscale (e.g., the accuracy of
link reliability) to mesoscale (e.g., degree distributions). Empirical
results demonstrate that the performance of reconstruction
mounts quickly initially with a small fraction of partial observa-
tions, exhibiting the power of the proposed reconstruction fra-
mework. Applying mean-field approximation, we find that a
discrimination indicator that integrates all considerable factors
determines the accuracy of the reconstruction, which theoretically
aids us to have a deep understanding the relation between the
reconstructability and the network characteristics. Thus, the
indicator enables us to make the best strategy to allocate limited
budget and obtain the highest accuracy for the given network
model, i.e., the optimal reconstruction. Notice that though our
analysis was illustrated by the configuration model that was based
on the degree sequence, we found that the empirical results did
not rely on the degree sequence. Finally, we investigate the per-
formance from a dynamical view, finding that our proposed
framework can well predict dynamic processes taking place on
multiplex networks, and the impact of network characteristics
(e.g., average degree, heterogeneity and overlap of edges in dif-
ferent layers) on performance is analyzed.

To the best of our knowledge, we provide here a comprehen-
sive mathematical framework for reconstructing a multiplex
network layer structures although there exist several good related
works. For example, Bianconi et al. studied an ensemble con-
sisting of all multiplex networks submitted to a given degree
sequence, which is a constraint in their case43. In our work,
however, the degree sequence is the parameter (of the config-
uration model) to be estimated, which is a fundamental distinc-
tion between our work and Bianconi’s case. Thus, our framework
paves insight on the relation between the structure and the
reconstructability of multiplex networks, and our finding reveals
the essential features of multiplex network reconstruction. In
future work we will focus on improving the reconstruction per-
formance by data other than node-pair interactions that can be
helpful in terms of reconstructing multiplex networks. We took
the configuration model as an illustration for our framework,
since it is a relative general model that allows an arbitrary degree
sequence. However, it remains necessary to study how well does
the framework perform with group-based models or centrality-
based models. Note that it is also interesting to reconstruct
multiplex networks through the dynamics and steady state of the
system44,45. We believe that our proposed framework will have an
impact in many different applications including link prediction,
missing links recovery, spurious links location drawn from bio-
logical, social, transportation domains.

Methods
Expectation maximization framework. In this section, we will present details on
how to obtain the maximum likelihood estimation of network model parameter θ.

The primary objective is to find θ that maximizes the likelihood function
PðAO; ΓjθÞ. In practice, we will maximize its logarithm lðθÞ ¼ lnPðAO; ΓjθÞ rather
than PðAO; ΓjθÞ for computational convenience. Clearly, by employing the law of
total probability, we have

lðθÞ ¼ lnPðAO; ΓjθÞ ¼ ln∑
M
PðAO; Γ;MjθÞ; ð15Þ

which is a summation over all possible potential multiplex structure M. Employing
the Jensen’s inequality then, we have

lðθÞ ¼ ln∑
M
PðAO; Γ;MjθÞ≥ ∑

M
QðMÞ ln

PðAO; Γ;MjθÞ
QðMÞ

; ð16Þ

where the inequality holds as long as Q(M) is a distribution of the multiplex
structure M satisfying ∑MQ(M)= 1. For simplicity, we denote the right-hand side
of equation (16) by J(Q, θ), i.e.,

JðQ; θÞ ¼ ∑
M
QðMÞ ln

PðAO; Γ;MjθÞ
QðMÞ

: ð17Þ

Notice that J is a function of the distribution Q(M) and the parameter θ
simultaneously, and it is obviously a lower-bound function of the log-likelihood
function l(θ).

In the expectation-maximization (EM) algorithm34, we will maximize the
lower-bound function J by recursively executing two steps: E-step and M-step. In
the E-step, we maximize J(Q, θ) while keeping θ constant. It is easy to see that the
equality in Eq. (16) holds if and only if Q(M) is the posterior distribution of the
multiplex structure M, i.e.,

QðMÞ ¼
PðAO; Γ;MjθÞ

∑MPðA
O; Γ;MjθÞ

¼
PðAO; Γ;MjθÞ
PðAO; ΓjθÞ

¼ PðMjAO; Γ; θÞ: ð18Þ

In the M-step, we differentiate Eq. (17) with respect to θ while fixing Q(M), and
find the solution to the following equation

∂
∂θ

∑
M
QðMÞ ln PðAO; Γ;MjθÞ ¼ 0: ð19Þ

Notice that the item ∑MQðMÞ lnPðAO; Γ;MjθÞ is the posterior expectation of
the log-likelihood function ln PðAO; Γ;MjθÞ with respect to the distribution Q(M).
Thus, given an arbitrary initial value denoted by θ(0), we can iteratively update the
distribution Q(M) and the parameter θ until convergence. The two steps can be
written as the iteration scheme

QðkÞðMÞ ¼ PðMjAO; Γ; θðkÞÞ:
θðkþ1Þ ¼ argmax

θ
EM*QðkÞ ln PðAO; Γ;MjθÞ

% &
:

(

ð20Þ

Next we will briefly prove that the seris {θ(k)} converges to the value that
maximizes the log-likelihood. On one hand,

lðθðkþ1ÞÞ ¼ lnPðAO; Γjθðkþ1ÞÞ ¼ ln∑
M
PðAO; Γ;Mjθðkþ1ÞÞ ð21Þ

≥ ∑
M
PðMjAO; Γ; θðkÞÞ ln

PðAO; Γ;Mjθðkþ1ÞÞ
PðMjAO; Γ; θðkÞÞ

ð22Þ

≥ lnPðAO; ΓjθðkÞÞ: ð23Þ

¼ lðθðkÞÞ ð24Þ

We can see that the sequence {l(θ(k))} monotonously increases as k grows. On the
other hand, the log-likelihood sequence {l(θ(k))} obviously has a upper bound, i.e.,
max ln PðAO; ΓjθÞ. Then {θ(k)} converges to the value that loccally maximizes the
log-likelihood function l(θ)46. In practice, however, the log-likelihood function may
have more than one local maximum values in more complex situations, while the
EM algorithm is not guaranteed to converge to the global one. To overcome the
problem, we try different random initial values for the parameter repeatedly, and
find the global maximum of the likelihood value when they converge47.

Evaluation indices for reconstruction. Accuracy, precision, recall, and AUC (area
under the receiver operating characteristic curve) have been widely adopted to
evaluate classification methods48. Accuracy is defined by the fraction between true
results (both true positives and true negatives) and the total number of tests, i.e.,
accuracy = (TP+ TN)/(TP+ TN+ FP+ FN); Precision gives the probability that
a link exists in real network when reliability Qα

ij>q, i.e., precision= TP/(TP+ FP);
Recall equals to the proportion of true positive rate over true positive rate and false-
negative rate, i.e., recall= TP/(TP+FN). In addition, for those links whose relia-
bility Qα

ij ¼ q, they have half contribution to the proportion. The AUC quantifies
the expectation that the proposed method ranks a positive one higher than a
negative one. Thus, all the tested links are ranked decreasingly according to their
values of reliability, and the probability that a real link has a higher reliability than
a nonexistent link is calculated. For imbalanced datasets (networks always tend to
be sparse), the area under the precision-recall curve (AUPRC) is also a meaningful
metric. Moreover, the Matthews correlation coefficient (MCC) is another popular
choice, which produces a more informative and truthful score in evaluating binary
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classifications49. These six metrics are used to evaluate the proposed framework for
the nine real-world data sets (Supplementary Figs. 6 and 7).

Partial observation sampling. In this section, we would clarify the sampling of
partial observations in our simulations. We sampled them by vertex sampling for a
given fraction c. Specifically, for a large undirected network, there are N2

2 pairs of
nodes, where N is the number of nodes. Note that, once we have observed these N2

2
pairs, the network is certain and we do not need to infer the edge probability any
more. Then, we randomly choose n ¼

ffiffi
c

p
% N nodes, and the subgraph consisting

of these nodes includes ð
ffiffi
c

p
%NÞ2

2 ¼ c % N2

2 edges in the original network. For each value
of c, we repeated the reconstruction 100 times to avoid randomness, and drawn
error bars in relevant figures of the manuscript.

Mean-field approximation. Our goal in this section is to clarify the discrimination
indicator introduced in Results section by mean-field approximation. First we will
calculate the information entropy HðMjAOÞ determined by the ratio of the average
degrees r, overlap of edges v, and fraction of partial observations c.

Notice that r ratio of average degrees of two layers and v is the overlap of the edge
sets in two layers, and they are not available when we only have partial observations,
and thus they are estimated by r̂ðr; cÞ and v̂ðv; cÞ. Since the average degree kα

! "
is a

mesoscale property, we estimate k̂α
! "

by E½ kα
! "

' ¼ ∑M½QðMÞ % kα
! "

ðMÞ', indicating
the expectation of kα

! "
for all potential multiplex structure. The results shown in

Supplementary Fig. 8 allow us to estimate k̂α
! "

approximately by

k̂1
D E

¼ k1h iþ k2h i
2 þ ½1" ð1"

ffiffi
c

p
Þ2=r ' % k1h i" k2h i

2 ;

k̂2
D E

¼ k1h iþ k2h i
2 " ½1" ð1"

ffiffi
c

p
Þ2=r ' % k1h i" k2h i

2 :
ð25Þ

Thus, we have

r̂ðr; cÞ ¼
k̂1

D E

k̂2
D E ¼

2r þ ð1" rÞ % ð1"
ffiffi
c

p
Þ2=r

2" ð1" rÞ % ð1"
ffiffi
c

p
Þ2=r

: ð26Þ

Noticing that we can approximate r̂ by r̂ ) rc , and approximate v̂ by v̂ ) c % v
for simplicity in practice. Moreover, we also designed nonlinear approximation
with a higher precision. However, the approximations that are more precise but
more complex would only slightly improve the final results (see Supplementary
Note 7 for the evaluations of the approximations).

Next, we explore the expression ofH with parameters c, r, and v. Supposing that
links between different nodes are independent, we obtain

HðMjAOÞ ¼ ∑
N

i¼1
∑
N

j¼1
HðM1

ijjA
O
ij Þ þHðM2

ijjA
O
ij Þ

h i
: ð27Þ

For the OR-aggregation mechanism, HðM1
ijjA

O
ij Þ and HðM2

ijjA
O
ij Þ are both equal

to 0 if AO
ij ¼ 0. When AO

ij ¼ 1, we have

E½HðMα
ijjA

O
ij Þ' ¼ "!pα % ln !pα " ð1" !pαÞ % lnð1" !pαÞ; α ¼ 1; 2; ð28Þ

where

!p1 ¼ E½PðM1
ij ¼ 1jAO

ij ¼ 1Þ' ¼
v̂ þ r̂
1þ r̂

; ð29Þ

and

!p2 ¼ E½PðM2
ij ¼ 1jAO

ij ¼ 1Þ' ¼
1þ v̂ % r̂
1þ r̂

: ð30Þ

Thus, we obtain

E½HðMjAOÞ' ¼ "jAOj % !p1 % ln !p1 þ ð1" !p1Þ % lnð1" !p1Þ þ !p2 % ln !p2 þ ð1" !p2Þ % lnð1" !p2Þ
% &

;

ð31Þ

We empirically find that the accuracy of the reconstruction is linearly determined
by the product of H and scaling factor ρ, i.e.,

Accuracy ) 1" ρ %H; ð32Þ

where

ρ ¼
1

2 ln 2 % jAOj
% 1"

1" v
1þ v

% cs
# $

: ð33Þ

Notice that

E½PðM2
ij ¼ 1jM1

ij ¼ 1Þ' ¼
v % ð1þ rÞ
r % ð1þ vÞ

; ð34Þ

and

E½PðM1
ij ¼ 1jM2

ij ¼ 1Þ' ¼
v % ð1þ rÞ
1þ v

: ð35Þ

When observing an edge in layer α, the probability that the edge exists in the
other layer satisfies

1" E½PðMβ
ij ¼ 1jMα

ij ¼ 1Þ' ¼ 1"
v%ð1þrÞ
r%ð1þvÞ þ

v%ð1þrÞ
1þv =r

1þ 1=r
¼

1" v
1þ v

; α; β 2 f1; 2g; α ≠ β:

ð36Þ
Thus, the term (1− v)/(1+ v) in Eq. (33) indicates the fraction of uncertainty

that can be reduced by partial observations, and s describes the scale how partial
observations can reduce the uncertainty of links in testing set.

Budget allocation. We consider the case when we have different fractions of
partial observations in each layer denoted by c1 and c2. We denote HðM1jAOÞ by
H1 for simplicity, and use !c ¼ ðc1 þ c2Þ=2 to denote the given budget. Empirically,
we can predict the accuracy by the function F defined by

Fðc1; c2Þ ¼ 1"
1" c1

1" c1 þ ð1" c2Þ=r̂
% ρ1 %H1 "

ð1" c2Þ=r̂
1" c1 þ ð1" c2Þ=r̂

% ρ2 %H2;

ð37Þ

where

ρ1 ¼
1

2 ln 2 % jAOj
% 1"

1" v
1þ v

% cs2

# $
; ð38Þ

and

ρ2 ¼
1

2 ln 2 % jAOj
% 1"

1" v
1þ v

% cs1

# $
: ð39Þ

Once a certain budget (!c) is given, we regard the function F as a unary function
of c1, i.e.,

Fðc1Þ ¼ 1"
1" c1

1" c1 þ ð1" 2!cþ c1Þ=r̂
%

1
2 ln 2 % jAOj

% 1"
1" v
1þ v

% ð2!c" c1Þ
s

( )
%H1

"
ð1" 2!cþ c1Þ=r̂

1" c1 þ ð1" 2!cþ c1Þ=r̂
%

1
2 ln 2 % jAOj

% 1"
1" v
1þ v

% cs1

# $
%H2:

ð40Þ

We next study the property of F with c1, and we will first prove that H1 ≥H2
here. According to the definition,

Hα ¼ "!pα % ln !pα " ð1" !pαÞ % lnð1" !pαÞ; α ¼ 1; 2; ð41Þ

where

!p1 ¼
v̂ þ r̂
1þ r̂

; !p2 ¼
1þ v̂ % r̂
1þ r̂

: ð42Þ

Notice that the function

f ðxÞ ¼ "x % ln x " ð1" xÞ % lnð1" xÞ ð43Þ

is a monotone increasing function when 0 < x ≤ 1
2, and a monotone decreasing

function when 1
2 ≤ x < 1. For !p2, we have

!p2 ¼
1þ v̂ % r̂
1þ r̂

≥
1

1þ r̂
≥
1
2
: ð44Þ

When !p1 ≤
1
2,

!p2 " ð1" !p1Þ ¼ v̂ ≥ 0; ð45Þ

indicating 1=2≤ 1" !p1 ≤ !p2. Thus, f ð1" !p1Þ≥ f ð!p2Þ, i.e., H1 ≥H2. When !p1 ≥
1
2,

!p2 " !p1 ¼
ð1" v̂Þ % ð1" r̂Þ

1þ r̂
≥ 0; ð46Þ

indicating 1=2≤ !p1 ≤ !p2. Thus, f ð!p1Þ≥ f ð!p2Þ, i.e., H1 ≥H2.
Then, we will consider the maxima of function F. When !c≤ 1=2 (c1 2 ½0; 2!c'), we

have

Fð0Þ ¼ 1"
1

2 ln 2 % jAOj
%

r̂
r̂ þ 1" 2!c

% 1"
1" v
1þ v

% ð2!cÞs
( )

%H1 "
1" 2!c

r̂ þ 1" 2!c
%H2

* +
;

ð47Þ

and

Fð2!cÞ ¼ 1"
1

2 ln 2 % jAOj
%

r̂ð1" 2!cÞ
r̂ þ 1" 2r̂!c

%H1 "
1

r̂ þ 1" 2r̂!c
% 1"

1" v
1þ v

% ð2!cÞs
( )

%H2

* +
:

ð48Þ
Thus, we have

Fð0Þ " Fð2!cÞ ¼
4r̂!cð!c" 1Þ % ðH1 "H2Þ þ 1"v

1þv % ð2!cÞ
s % ½̂rðr̂ þ 1" 2!cr̂ÞH1 " ðr þ 1" 2!cÞH2'

2 ln 2 % jAOj % ðr̂ þ 1" 2!cÞ % ð̂r þ 1" 2r̂!cÞ
≤ 0;

ð49Þ

indicating Fð0Þ≤ Fð2!cÞ.
When !c > 1=2 (c1 2 ½2!c" 1; 1'), we have

Fð2!c" 1Þ ¼ 1"
1

2 ln 2 % jAOj
%

2v
1þ v

%H1; ð50Þ
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and

Fð1Þ ¼ 1"
1

2 ln 2 % jAOj
%

2v
1þ v

%H2: ð51Þ

Thus, we have

Fð2!c" 1Þ " Fð1Þ ¼
1

2 ln 2 % NðN " 1Þ
%

2v
1þ v

% ðH2 "H1Þ≤ 0; ð52Þ

indicating Fð2!c" 1Þ≤ Fð1Þ.

Synthetic networks generation. To have a deep exploration of the framework
proposed in this article, we generate several synthetic networks with various net-
work characteristics for performance evaluation. Here we mainly focus on two-

layer networks with different r, v, and coshd1
!

; d2
!

i as we defined in the Results
section.

As shown in Fig. 4b, we test synthetic networks ranging 0 < r ≤ 1 and 0 ≤ v ≤ 1/2.
We first clarify how to generate a multiple network with a given r* and v*. When
given r* and v*, we generate the adjacency matrix M1 (the first layer in the
multiplex network) by the Erdős-Rényi model, which indicates the edge M1

ij

between any two nodes i and j submitted to the Bernoulli distribution

PðM1
ij ¼ kÞ ¼

p; if k ¼ 1

1" p; if k ¼ 0

*
: ð53Þ

Without loss of generality, we take p ¼ 5
N"1 such that the average degree k1

! "
¼

5 to avoid being too sparse. Then, we generate the adjacency matrixM2 (the second
layer in the multiplex network) by a specific way, where M2

ij is submitted to the
distribution

PðM2
ij ¼ kjM1

ij ¼ 1Þ ¼
v+%ðr+þ1Þ
r+%ðv+þ1Þ ; if k ¼ 1

1" v+ %ðr+þ1Þ
r+%ðv+þ1Þ ; if k ¼ 0

8
<

: ; 8i ≠ j ð54Þ

and

PðM2
ij ¼ kjM1

ij ¼ 0Þ ¼
5

N"6 %
1"v+%r+
r+%ðv+þ1Þ ; if k ¼ 1

1" 5
N"6 %

1"v+%r+
r+%ðv+þ1Þ ; if k ¼ 0

(

; 8i ≠ j: ð55Þ

Next we prove that the parameters r and v of the generated multiplex network
M satisfy r= r* and v= v*.

Obviously, the expectation for average degree k1
! "

satisfies

Eð k1
! "

Þ ¼
2
N
%
N % ðN " 1Þ

2
%

5
N " 1

¼ 5; ð56Þ

and the expectation for average degree k2
! "

satisfies

Eð k2
! "

Þ ¼
2
N
%
N % ðN " 1Þ

2

%
5

N " 1
%
v+ % ðr+ þ 1Þ
r+ % ðv+ þ 1Þ

þ 1"
5

N " 1

# $
%

5
N " 6

%
1" v+ % r+

r+ % ðv+ þ 1Þ

* +
¼

5
r+
:

ð57Þ

Thus,

EðrÞ ¼
Eð k1
! "

Þ
Eð k2
! "

Þ
¼ r+: ð58Þ

Then, the expectation of jE1 \ E2j satisfies

EðjE1 \ E2jÞ ¼
5N
2

%
v+ % ðr+ þ 1Þ
r+ % ðv+ þ 1Þ

; ð59Þ

and the expectation of jE1 ∪ E2j satisfies

EðjE1 ∪ E2jÞ ¼
5N
2

þ
N % ðN " 1Þ

2
"

5N
2

( )
%

5
N " 6

%
1" v+ % r+

r+ % ðv+ þ 1Þ
; ð60Þ

Thus,

EðvÞ ¼
EðjE1 \ E2jÞ
EðjE1 ∪ E2jÞ

¼ v+: ð61Þ

As shown in Fig. 4c, we test a number of synthetic multiplex networks ranging

0< coshd1
!

; d2
!

i<1. Since coshd1
!

; d2
!

i is determined by degree sequences of the two
layers, we generate multiplex networks with given expectation of degree sequences.

Specifically, we first randomly generate positive vectors d1
!

and d2
!

such that the

inner product d1
!

% d2
!

ranges from 0 to 1. Then, we generate a number of multiplex

networks with each layer being generated by the given degree sequence d
!α

. For
adjacency matrix Mα, the element Mα

ij is submitted to a Bernoulli distribution, i.e.,

PðMα
ij ¼ 1Þ ¼ dαðiÞ%dαðjÞ

jj d
!α

jj1"1

. This generating process can also provide multiplex

networks of different 0 < rh ≤ 1 as shown in the Supplementary Fig. 12a, b, c, since
we can also generate the degree sequences with a given variance.

Data availability
All data needed to evaluate the conclusions in the paper are available online as follows.
The C. elegans multiplex connectome dataset used in this study is available at https://
comunelab.fbk.eu/data.php. The London multiplex transportation network is available at
https://comunelab.fbk.eu/data.php. The temporal social interactions at the SFHH (La
Société française d’Hygiène Hospitalière) conference is available at www.sociopatterns.
org/datasets/sfhh-conference-data-set/. The multiplex GPI (genetic and protein
interactions) network of the Saccharomyces Pombe is available at https://comunelab.fbk.
eu/data.php. The Yeast landscape multiplex interaction networks of genes is available at
https://comunelab.fbk.eu/data.php. The multiplex air transportation network of Europe
is available at http://complex.unizar.es/ãtnmultiplex/. The multiplex air transportation
network of the U.S.A. is available at http://stat-computing.org/dataexpo/2009/the-data.
html. The temporal network of Wikipedia users editing each other’s Talk page is
available at http://snap.stanford.edu/data/wiki-talk-temporal.html. The CollegeMsg
temporal social network is available at http://snap.stanford.edu/data/CollegeMsg.html.

Code availability
Code reproducing the key results of this paper is available from the corresponding author
upon reasonable request.
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