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Abstract—Wireless communications in the terahertz (THz) band
will become a cornerstone of sixth-generation (6G) networks.
The THz channel, however, presents several challenges, such as
distance-dependent absorption coefficients that can change the
bandwidth significantly in case of mobility. Thus, future THz
transmitters will have to switch modulation and bandwidth almost
continuously. Moreover, using the same transmission scheme can
enable adversaries to leverage smart interfering to inflict more
damage with less energy expense. To help enable adaptive and se-
cure THz communications, this article presents the first ever exper-
imental study of modulation and bandwidth classification (MBC) at
THz frequencies through deep learning (DL) techniques. We have
performed an extensive experimental data collection campaign at
120 GHz with different modulation schemes, signal bandwidth (up
to 20 GHz), and different signal-to-noise ratio (SNR) levels, We
prove for the first time the feasibility and effectiveness of MBC
at THz frequencies, with our DL. models reaching accuracy up
to 78% and 90% in low- and high-SNR conditions. Furthermore,
we investigate the memory and latency constraints that need to
be satisfied as a function of the signal bandwidth, and propose
a boosting technique to improve the inference quality by trading
off latency for accuracy. Finally, we experimentally evaluate the
latency of our CNN models through FPGA implementation.

Index Terms—Deep learning (DL), experiments, modulation and
bandwidth classification (MBC), sixth generation (6G) terahertz
(THz) communications, wireless.

I. INTRODUCTION

ADIO frequency (RF) spectrum has become one of the

most scarce resources available nowadays. Ericsson’s lat-
est report forecasts that fifth-generation mobile subscriptions
will reach 3.5 billion in 2026, with worldwide data traffic
surpassing 200 exabytes per month [1]. These numbers clearly
show that in a few years, existing spectrum bands below 6 GHz
(sub-6-GHz) will become saturated. Thus, a significantly large
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number of wireless devices will need to migrate to less congested
spectrum bands. Given the lack of continuous large chunks of
bandwidth (BW) in other frequency bands [2], the upper mil-
limeter wave (mmWave) and terahertz (THz) bands [3]—located
between 0.1 and 10 THz of the RF spectrum—will be used
to relieve the current spectrum crunch at lower frequencies.
Ultimately, this is because ultra-high-BW wireless links able
to multiplex thousands of users at the same time are possible at
THz frequencies [4]. Beyond addressing spectrum congestion,
the THz band will unleash a digital transformation in our soci-
ety, by enabling game-changing applications such as real-time
virtual reality/augmented reality, holographic telepresence, and
Industry 4.0 [5], [6].

Although the THz channel presents unique opportunities, it
also presents a series of unique challenges that are absent in
traditional wireless propagation environments. Indeed, the path
loss in the THz band is strongly impacted by the molecular
absorption loss, which depends on fime- and distance-dependent
factors such as the concentration and the particular mixture of
molecules encountered (particularly water vapor) along the path,
as observed in [7]. Thus, THz channels are extremely frequency-
selective, with BW severely shrinking or expanding over time
as a function of the distance between the transmitter (TXer)
and the receiver (RXer) or the ambient humidity, which also
requires significant adaptability in terms of physical layer (PHY)
waveforms used for transmission.

Indeed, THz frequencies are naturally more secure due to their
unique distance-dependent BW and high directivity. However,
it has been shown that they are still susceptible to interference
and eavesdropping [8], [9], [10], [11], [12]. While such work
focuses on security from a propagation standpoint, we also point
out that flexibility in PHY parameters can provide additional
security to wireless signals. It is well studied in the literature
that fixed parameters of wireless transmission schemes can make
the systems vulnerable to interference and hence affect overall
system throughput. For example, Vo-Huu et al. [13] have shown
that deterministic and predictable structure of the interleavers
and coded bits in the 802.11 a/g/n coding scheme can reveal a
subcarrier-level pattern, which is not a desirable effect for system
security. Clancy [14] has also pointed out the vulnerability of
orthogonal frequency division multiplexing (OFDM) scheme
that are common in cellular and wireless local area networks,
due to its repeated use of pilot tones. Therefore, it is paramount
from the system security point of view that future wireless
systems should employ extremely flexible PHY, and TXer and
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Fig. 1. MBC in THz networks through DL at the PHY.

RXer designs to support the new flexible signaling schemes. By
continuously and seamlessly changing the PHY parameters, it
follows that the transmission scheme becomes not only more
effective, but also more resilient from a security standpoint.

The aforementioned reasons call for extremely flexible and
adaptive PHY protocols where TXer and RXer can change their
BW and modulation (MD) without coordination. While the TXer
can choose MD and BW through channel state information
reports sent periodically by the RXer, to decode the data, the
RXer needs to reconfigure the BW of its baseband finite impulse
response filter before the waveform is demodulated. We define
this process as modulation and bandwidth classification (MBC),
which is shown in Fig. 1. The received THz signal with variable
BW and MD is processed by a THz RF front-end and down-
converted from RF to the baseband frequency. The baseband
signal is then sent to a convolutional neural network (CNN),
which infers BW and MD of the incoming THz signal. The
CNN inference would then be used by a reconfigurable digital
signal processing (DSP) logic, which proceeds to demodulate
and recover the application data.

Although MD classification has been explored in the sub-6-
GHz context [15], [16]. [17], [18], [19], to the best of our knowl-
edge, BW classification has not been attempted yet. However,
this is definitely going to change for THz networks. Although
the Institute of Electrical and Electronics Engineers (IEEE)
802.15-3d standard—the only redacted for THz frequencies [20]
so far—defines eight different possible BWs that can be used, it
does not specify if, when, and how a TXer shall switch to a dif-
ferent BW. For this reason, an investigation into the feasibility of
MBC at THz will directly impact ongoing standardization efforts
in the THz band by the IEEE 802.15 WPAN Terahertz Interest
Group, which seeks to explore the usage of THz spectrum for
future IEEE standards [21].

What makes the problem of MBC at THz frequency chal-
lenging is the extremely high BW of the transmission, which
introduces challenges from both a computational and classifi-
cation standpoint. To the best of our knowledge, the problem
of joint MBC in the THz band has not been investigated yet,
mostly due to the lack of a well-constructed dataset capturing
extremely high-BW transmissions.

In short, the article provides the following key advances.

1) We present the first experimental evaluation of data-driven
MBC at THz frequencies. We utilize a custom-tailored
experimental testbed to create a large-scale dataset com-
posed by in phase/quadrature (I/QQ) samples collected at
the 120-GHz RF frequency, with

a) five MD schemes (BPSK, QPSK, 8PSK, 16QAM, and
64QAM);

b) three BWs (5, 10, and 20 GHz); and

c) two signal-to-noise ratio (SNR) levels (low, high), totaling
150 000 frames.

‘We propose a system model and evaluate the constraints on
memory and latency that the system must satisfy according
to the given maximum system BW.

2) We extensively train and test CNN classifiers based on
the experimental data collected through our testbed. We
first run an extensive hyperparameter exploration by vary-
ing the number of convolutional layers (CVLs) and the
number of filters of the CNN. Our results show that our
CNN classifiers achieve up to 78% and 90% accuracy
in the case of low and high SNR, respectively. Next, we
propose a novel boosting technique where majority voting
among different CNN executions with subsequent frames
is used to trade off better accuracy for increased latency.
‘We show that our technique further boosts accuracy by up
to 91% and >99% in the low- and high-SNR regimes. We
also train with both SNRs to achieve an accuracy of 81%
and 92% for standard and boosted testing, respectively.
We further investigate the latency/accuracy tradeoff by
reporting CNN latency results obtained through FPGA
implementation.

3) We provide to the research community wide access to the
experimental dataset used in this article, which will act as
performance benchmark for every other subsequent work
for data-driven classification at THz frequencies. Without
this dataset, any subsequent work in this field will neces-
sarily rely on simulation data, which cannot capture the
real-world effects imposed by not only the THz channel,
but also the frequency selective nature of ultra-broadband
THz transceivers and antennas. Our contribution will help
addressing the current dearth of datasets in the wireless
community. To the best of our knowledge, this is the first
work in literature shedding light on this crucial problem,
which will inform current standardization efforts in the
THz band.

II. BACKGROUND AND RELATED WORK

We first motivate the need of MBC at THz frequencies in
Section II-A, then discuss existing work in ML for wireless in
Section II-B, and THz security in Section II-C.

A. Problem Motivation

It is well known that the THz propagation environment is
significantly challenging and substantially different from the
sub-6-GHz and mmWave ones [3], [6], [22]. This is mainly
due to the presence of distance-dependent absorption given by
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Fig. 2. 3-dB BW in between two absorption lines around 1 THz caused by

molecular absorption with water vapor.

water vapor molecules between the TXer and the RXer, which
are inevitably present in the atmosphere as long as the ambient
humidity is not absolute zero. The photon energy of THz signals
induces internal vibrations in molecules, which convert the wave
electromagnetic energy into kinetic energy [7]. The situation
becomes more challenging in the presence of rain, where in
addition to absorption, scattering by water droplets comparable
in size to the signal wavelength is present [23].

As humidity levels and TXer—RXer distance are hardly pre-
dictable in advance, the resulting THz channel BW is expected
to change drastically and dynamically in real-world THz de-
ployments. To further quantify such effect, Fig. 2 shows the
normalized channel response around 1.025 THz as a function of
frequency caused by molecular absorption with water vapor.
While absorption is present throughout the THz band, this
provides a clear demonstration of the distance-dependent BW
caused by absorption.

These curves were obtained from the model published
in [7], and are based on the HITRAN molecular spectroscopic
database [24] and radiative transfer theory [25]. We also report
the 3-dB BW for each curve. We can observe that the BW
increases from 58 to 91 GHz in the span of only 10 m, which
is an increase of 56% with respect to the original value. As
a consequence, transmission schemes at the THz frequency
must be BW- and MD-adaptive to deal with the shrinking and
expansion of the channel during the duration of the wireless link,
which ultimately motivates our investigation into MBC at THz
frequencies.

As yet, a few tailored MDs for THz communications that can
dynamically accommodate different BWs have been proposed.
In [26], an optimization framework was developed to select the
duration and number of THz pulses [27] to be transmitted, as
well as the number of molecular-absorption-defined windows to
be utilized according to the distance-dependent available BW

at THz frequencies. In [28], THz modulators with different
MD order and symbol duration were concatenated to generate
multiresolution data able to accommodate users at different
distances with different SNR and different available BW because
of the molecular absorption.

Due to current THz hardware limitations, we are unable to
communicate with BWs and distances to experimentally mea-
sure a changing absorption window. Thus, our methodology uses
our highest capabilities of transmitting with 20 GHz of BW,
which we purposefully lower to 10 and 5 GHz to emulate a
narrowing absorption window.

B. Related Work in ML for Wireless

Bleeding-edge advances in machine learning (ML) are in-
creasingly being used for dynamic spectrum access [29], [30],
[31], [32], optimal multimedia streaming [33], [34], [35]. cel-
Iular network management [36], [37], rate selection [38], and
resource allocation [39], [40], [41], [42], [43]. For an exhaus-
tive survey on the topic, we refer the reader to the excellent
survey [44]. PHY classification issues, such as MD recog-
nition, have gained significant momentum over the last few
years. However, traditional ML techniques based on feature
extraction are computationally expensive, problem specific, and
require the manual establishment of decision bounds [15], [16],
[17], [18], [19]. Conversely, deep learning (DL) techniques
have received significant attention, thanks to the lack of the
feature extraction process [45], [46], [47], [48], [49]. More-
over, DL has been demonstrated to be effective for real-time
hardware-based implementations, since fine-tuning of the model
weights—changeable through software—allows for fast adap-
tation to adverse channel conditions [50], [51]. In [52], Like
et al. provided comparisons between ML models’ effectiveness
for signal recognition when introduced to multipath fading,
while Zhang et al. [53] and Pavlov et al. [54] demonstrated the
effectiveness of modern DL approaches to the tougher task of
fading channels. Amani et al. [55] further explored multipath in
the case of radio fingerprinting.

Among the related work in frequencies below 6 GHz, O’ Shea
et al. [56] presented several DL models to address MD clas-
sification, while Karra et al. [57] identified MD class and
order using hierarchical deep neural networks (DNNs). Kulin
et al. [58] presented a conceptual framework for end-to-end
wireless DL, including a methodology to collect, represent,
and classify waveforms using DNNs. At mmWave and THz
frequencies (above 30 GHz), DL techniques have been used
to classify beam angle and angle of arrival [59], [60], blockage
prediction [61], [62], indoor localization [63], [64], and channel
estimation [65]. However, most of existing datasets at those
frequencies are generated through simulations, which are not
able to capture real-world channel effects.

C. Related Work in THz Security

The higher free-space path loss at THz frequencies, com-
bined with molecular absorption, will govern the use of highly
directional antennas to complete even short-range links. With
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these narrow beamwidths and a frequency selective, distance-
dependent channel, it was once assumed that THz communica-
tions had improved security in both interference and eavesdrop-
ping [66]. However, in recent years, many works have shown
otherwise.

Ma et al. [12], demonstrated the ability to eavesdrop a THz
signal through the introduction of a scatterer into the narrow
transmission beam to deflect the beam in the direction of an
eavesdropper. Moreover, the scatterer is transparent to the RXer
requiring the TXer to listen for back-scatter in order to detect its
presence.

Similarly, highly directional antennas also have side-lobes
that can be leveraged to eavesdrop on non-line-of-sight (NLOS)
paths. Venkatesh et al. [11] mitigated an eavesdropper’s
ability by forcing side-lobe emissions to be time varying and
spectrally aliased while keeping the main-lobe unaffected.
Moreover, Cohen et al. [8] proposed absolute security where the
frequency- and location-dependent antenna minima are encoded
such that an NLOS eavesdropper cannot see enough signal
to decode the transmission. The number of antenna minima
increases with wider BWs and greater directivity, making this
solution well suited for THz communications.

While the aforementioned work improves PHY layer security
from a propagation standpoint, there is also vulnerability to inter-
ference in the design of a transmitted packet. Vo-Huu et al. [13]
demonstrated that reliance on certain OFDM subcarriers in the
802.11 a/g/n coding scheme allows for highly efficient narrow-
band interference. Moreover, Clancy [14] showed that the use of
predictably placed pilot tones in any OFDM waveform can be
leveraged through smart nulling at reduced cost to the interferer.
Thus, inflexibility and predictably of frame structures leaves
communications systems vulnerable at the PHY layer. While
signal classification in literature is primarily tasked to detect
other’s signals (for example, in cognitive radio), it can be used
to secure communications at the PHY layer. By reducing the
amount of control information that is transmitted and instead
relying upon an adaptive RXer to identify key information
from the waveform itself, the more flexible and less predictable
PHY layer becomes harder for adversaries to understand or
disrupt.

III. EXPERIMENTAL TESTBED, DATA COLLECTION
PROCEDURES, AND ML MODELS

Fig. 3 shows TeraNova [67], the experimental testbed used
for our data collection campaign, as well as the positioning of
TXer and RXer in our laboratory setting. Our setup leverages
radio front-ends manufactured by Virginia Diodes Inc. (VDI),
which were custom-designed for the 120-140 GHz frequency
range. The 120-GHz TXer has its local oscillator (LO) driven
by an analog signal generator (SG), a Keysight PSG E8257D,
and employs two frequency doublers (total multiplication of 4x)
to bring the PSG signal into the THz range. The transmitted
waveform is designed in MATLAB and produced by a Keysight
M8196A arbitrary waveform generator (AWG). This interme-
diate frequency (IF) output is fed into the 120-GHz VDI TXer,
where it is mixed with the multiplied LO.

- 38 dBi Antenna - Mixer - Doubler -Power Amplifier (at RF)

- Doubler (under fan)

: —jr_ - : J

Fig. 3. Experimental testbed, TeraNova, used for data collection and floor
layout of the lab environment. The scale of the floor layout is approximately
I cm:l m.

The RXer’s LO is driven by a separate identical SG, and its
downconverted output is read by a Keysight DSOZ632A digital
storage oscilloscope (DSO), where the signal can be analyzed
and saved. For this experiment, the 120-GHz TXer and RXer
were fixed with 38 dBi antennas. The use of the AWG and DSO
allowed us to store the received waveforms for further offline
processing.

The process for changing transmission BW was accomplished
with the flexibility afforded by our communication chain uti-
lizing an AWG, DSO, and MATLAB. The AWG can generate
signals with a BW up to 32 GHz; thus, any waveform we
design in MATLAB within that range can be transmitted at will.
Additionally, the DSO can capture any signal with a BW up to
63 GHz. In our experiments, however, we limit the transmission
BW to 20 GHz due to the BW of the radio front-ends. We
programmatically control the AWG and DSO with MATLAB
to automate changing waveforms and capturing data.

The TXer and RXer were deployed in a laboratory environ-
ment in the bottom side of Fig. 3, with a distance of 5 m sepa-
rating the two link endpoints. The transmissions were dual-side
band, and as such the BW of the signal was two times the symbol
rate. This gave us a maximum data rate of 60 Gb/s for 64QAM,
20 GHz BW.

A. Data Collection and Dataset Structure

The waveforms produced by the AWG were all centered
around the same IF of 20 GHz. The RXer and TXer LO frequency
was set to 135 and 125 GHz, respectively, for all transmissions.
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1

Fig.4. Recovered I/Q constellations with normalized power. (a) and (b) 5-GHz
2PSK, low and high SNR. (c) and (d) 10-GHz 16QAM, low and high SNR. (e)
and (f) 20-GHz 4PSK, low and high SNR.

TABLE 1
AVERAGE Ep/Ng VALUES IN DB FOR ALL SUBSETS OF DATA

BW Es/No

SNR Low 2PSK_4PSK_ 8PSK  16QAM _ 64QAM
5 GHz 10.10 6.80 5.24 2.65 0.07
10 GHz 826 | 557 | 3.05 031 168
20 GHz 599 | 365 | 183 0.17 3.65

SNR High
SGHz [ 2321 | 19.94 | 18.78 15.57 13.27
10GHz [ 2293 | 20.54 | 17.59 15.75 13.07
20 GHz [ 20.84 | 1820 | 1648 I5.14 12.27

Different LO frequencies are utilized to minimize the impact
of the image frequencies and the lack of RF filters at THz-band
frequencies. All received waveforms were then centered at an IF
of 10 GHz. The PSGs were set to 10 dBm output power. For the
two SNR levels recorded, the AWG was set to 75 and 600 mV, for
low and high, respectively. Fig. 4 shows 1/Q constellations of six
different received signals to demonstrate the channel distortion
of this setup.

The average E,/Np for each subset was calculated and is
displayed in Table 1. The lower SNR level caused the QAM
MDs to have negative E;/Ng for all three BWSs (i.e., noise is more
powerful than the signal), which represents a very challenging
scenario for our classifiers.

In our transmitted packet, we use an 18-bit maximal merit
factor sequence [68] for our preamble to perform frame syn-
chronization, which is followed by the data payload. We capture
signals using the DSO’s fastest sampling rate, 160 giga-samples-
per-second (GSa/s), to improve our ability to find the signal in
the low-SNR scenario.

=o(]=0=]={=0
%—J %/_/

1Q Layer

Conv + MaxPool
Samples

Layers

Dense
Layers

Fig.5. Architecture of the CNN used for MBC.

After frame synchronization, the data payload is downcon-
verted from its 10-GHz IF and split into baseband I/Q samples.
Our DSB 20-GHz signals have a symbol rate of 10 giga-symbols-
per-second (GSym/s); thus, our widest baseband BW is 10 GHz.
All signals are therefore filtered with a 10-GHz low-pass filter in
order to remove image frequencies from the IF downconversion
in a BW agnostic manner.

With knowledge of the signal’s BW, the signals could be
downsampled to one sample per symbol and demodulated at this
stage. However, we must assume to not know the signal’s BW
or symbol rate in order to present valid data to the model. Thus,
all waveforms are downsampled by a factor of 8, which keeps
them all partially upsampled at a sampling rate of 20 GSa/s.
This results in the three different BW's having different levels of
upsampling: 8, 4, and 2 for 2.5, 5, and 10 GSym/s, respectively.
This partial upsampling also leaves transition samples in our
signal, which are apparent in Fig. 4(b). We believe the differing
amounts of transition samples is what allows our model to
classify the BW of the signal.

With this setup, we transmit signals with different SNR levels,
MDs, and BWs. With two SNR levels, five MDs, and three
BWs, a total of 30 subsets were collected. Each of these subsets
contains 5000 frames, totaling 150 000 frames, with each frame
containing 2048 1/Q samples. The dataset is formatted as a
concatenation of all samples from all frames. It is sorted in
ascending order first by BW, then SNR, and then MD order.
Each 1/Q sample pair has a corresponding BW, SNR, and MD
label. The starting index s of a frame can be calculated as

s = (BW x 10 4+ SNR x 5+ MD) x 5000 x 2048. (1)
The label values are enumerations of their true value, i.e.,

BW € [0,1,2], SNR € [0,1], MD € [0,1,2,3,4]. (2)

B. ML Architecture and Training Procedures

We leverage CNNs to perform MBC, which have been demon-
strated to be effective in addressing PHY classification problems
such as MD recognition [56] and radio fingerprinting [69]. Their
effectiveness is due to the filters in the CVLs, which are able
to learn patterns in the I/Q constellation plane regardless of
where they occur in the waveform (shiff invariance) [70]. We
consider the CNN architecture shown in Fig. 5. In the article, if
not explicitly mentioned otherwise, we refer to this architecture.

We adapted our CNN from the architecture presented in [56],
which has shown good results in waveform classification tasks.
The input to the network is a tensor of size (@), 2), where @} is the
number of consecutive I/Q samples. In our baseline architecture,
the input is processed by seven CVLs, with 64 output filters
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of size 1x7. Each of the CVLs is followed by a maximum
pooling (MaxPool) layer with filters of size 1x2, which ulti-
mately reduces the output dimension of each CVL in half. Two
dense layers follow the CVL + MaxPool layers, each containing
128 neurons. Finally, a Softmax layer to obtain the probability
distribution over the set of classes. For the training, validation,
and testing phases of learning, the dataset is divided into 65%,
10%, and 25% splits, respectively. The hyperparameters of our
baseline architecture are changed to evaluate their performance
in Section I'V-A, and we show that we can achieve comparable
accuracy to the baseline model with shallower networks that use
far fewer layers.

Regarding training procedures, CVL layers are trained to learn
F filters Py € R%% 1 < f < F, where d and w are the depth
and width of the filter, respectively. For every 1 < i < n' and
1 < j < m/, the output of a CVL, defined as O/ € RA>*m g
computed from the input I € R™*™ as follows:

d—1 w—
:ZZ d—kaw—~t Li ke (3)

k=0 £=0

where ' =1+ |n+d—2|and m' =1+ [m+w—2|. We
use the Adam algorithm [71] as our optimizer with an £5 regular-
ization parameter A = 0.0001, and a learning rate of [ = 0.0001.
We minimize the prediction error through back-propagation,
using categorical cross-entropy as a loss function computed on
the classifier output. We implement our CNN architecture in
Keras running on top of TensorFlow on a system with eight
NVIDIA Cuda enabled Tesla V100 GPU.

C. Majority Voting and System Constraints

We leverage a customized boosting procedure [72] based on
majority voting [73] to improve the performance of the CNN
classifier. The rationale is that, since consecutive PHY frames are
likely to belong to the same class, the accuracy of the CNN can be
boosted by choosing the class that won the majority among the
different runs of the CNN corresponding to the consecutive PHY
frames. In addition, our model operates on a max of 2048 1/Q
samples, and it is likely that a real data packet will be longer. For
our 20-GHz BW signals, this holds 1024 symbols of data, and
for 5 GHz, it holds only 256 symbols. Thus, a single data packet
could be used to generate multiple CNN inferences, which will
ease the constraint of relying on several packets being sent before
the channel changes.

More formally, by defining as V' the number of consecutive
PHY frames, the final class C' is selected as follows:

Q= argmaxZ— - Dij 4)
j=1

where p;; is the probability estimate from the jth classification
rule for the zth class.

Fig. 6 shows an example of our algorithm assuming a number
of V' = 4 consecutive PHY frames. Each of these frames is fed
to the trained CNN model one at a time as soon as it is received.
The output of the CNN corresponding to each frame is coalesced
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Fig. 6. Majority voting algorithms used to boost accuracy.
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Fig. 7.

into a single decision by choosing the class that had the majority
of votes among the individual CNN outputs.

A critical constraint that is related to the utilization of a
CNN in the DSP loop is that the system has to wait until the
CNN computation is completed before the waveform can be
demodulated. This implies that the waveform has to be buffered
before it can be demodulated. More formally, if the signal has
a BW of W MHez, it has to be sampled at S =2 - W MSa/s
according to Nyquist. In our system, each ADC sample is 1 B
long. Therefore, S MB need to be buffered each second to avoid
overflows. For the sake of generality, we assume the memory
available to store waveform samples is B MB, and the latency
of the CNN to be L seconds. Fig. 7 visualizes this scenario.

We assume that if the TXer is switching MD and BW param-
eters every 1" seconds, the system needs to run the CNN at least
once every K times per second to achieve good demodulation
performance. Therefore, every T/K seconds, the following
operations must be performed:

1) insert S - (7'/K) bytes into the waveform buffer;

2) waitforthe CNN to complete its execution after L seconds;

3) read the inference results from the CNN;

4) finally reconfigure the DSP and release the buffered wave-

form.

For simplicity, we will consider (1), (3), and (4) to be negli-
gible with respect to the CNN latency L. As a consequence the
following memory constraint must hold: B > § - ( ) as well
as the following latency constraint must hold: L < . These
constraints become extreme due to the significant BW size (i.e.,
tens of gigahertz) that the RXer has to process.
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For example, let us assume that our widest BW of 20 GHz
is used. If the TXer switches parameters every 7' = 100 ms,
and the RXer runs the CNN K = 25 times during each 100-ms
period, then the CNN latency L < T'/K = 4 ms (which can be
achieved given our results in Section I'V-C). The buffer constraint
becomes: B > 220e3100e3 — 160 MB.

Notice that the buffer size B and the sampling rate S usually
cannot be relaxed in real-world applications, given they are hard
constraints imposed by the platform hardware/RF circuitry. The
only parameters that may be modified to meet the requirements
are L and K. Although increasing K can help meet the memory
constraint, it makes the latency constraint harder to meet. How-
ever, if K’ becomes too small, spectrum data could be stale when
the CNN is run (i.e., the TXer has already switched parameters),
which can lead to poor performance. Thus, the latency of the
CNN, L, has to be decreased in real systems.

IV. EXPERIMENTAL RESULTS

In Section IV-A, we first present the results of a hyperpa-
rameter evaluation of our CNN models, as well as the impact
of our accuracy boosting technique. Then, in Section IV-B, we
present the confusion matrices obtained during the testing phase
of the CNNss. Finally, in Section IV-C, we measure the increased
computation time with synthesized FPGA latency tests with and
without boosting to determine the feasibility of using a CNN on
a real-time system.

A. Hyperparameter Evaluation

The hyperparameters of a CNN are the number of CVLs in
the network and the amount of output filters in each of those
CVLs. We perform hyperparameter evaluation by fully training
and testing different networks while incrementing these values
to find the optimal architecture. The number of CVLs and output
filters affect the number of trainable parameters in the model.
Increasing the number of CVLs lowers the amount of trainable
parameters (due to max pooling), while increasing the number
of output filters raises it. For the models evaluated, the number
of trainable parameters ranges from 23 427 (seven CVLs, four
filters) to 8409103 (one CVL, 128 filters). Fig. 8(a) evaluates
the changes for low-SNR input, while Fig. 8(b) evaluates for
high-SNR input. The results in Fig. 8 were computed with an
input I/Q size of 1024 samples, and the CVLs are followed by
two dense layers of 128 nodes each.

From Fig. 8(a) and (b), we find that the best accuracies ob-
tained without boosting are 78% and 90% for low- and high-SNR
input data, respectively. This is a considerable result given the
amount of classifications and use of experimental data.

We notice that increasing the number of layers and filters
per layer increases accuracy up to an extent. As the number of
CVL increases past a certain point, the CNN starts to overfit the
training dataset, which results in poor accuracy in the test set.
For example, the accuracy decreases by 10% when increasing
the number of CVLs from five to seven in the low-SNR regime
with 128 filters per layer. By the same token, a low amount of
filters per layer with a large amount of CVLs results in a low
amount of trainable parameters, and performs the poorest.

(.84 0.85
0.80 0.8
J o5

0.83 0.85
075 | 0.91

Fig. 8. Hyperparameter evaluation presented with majority voting, V' = 10,
testing accuracy. Plotted as the number of filters per layer versus the number
of CVLs. (a) and (b) Standard testing low and high SNR. (c) and (d) Majority
voting low and high SNR.

The number of filters per layer is the greatest contributing
factor to accuracy. This parameter directly controls the amount
of features extracted from the raw waveform data, which in
turn controls how much extracted knowledge is passed onto the
decision-making dense layers.

To evaluate the effect of our boosting procedure on the
performance, Fig. 8(c) and (d) shows the impact of majority
voting on the performance of the CNN. The models are tested
with V = 10 and the results are averaged on 1000 votes for
each of the 15 classes. We notice that our boosting technique
is able to increase accuracy by up to 21% and 20% in the low-
and high-SNR regimes, and achieve top accuracies of 91% and
>99%, respectively.

Table II further shows the performance of our boosting tech-
nique, as well as evaluating the impact of the input size on the
performance. Table II concludes that the amount of I/Q samples
fed to the CNN significantly improves the performance of the
model. Specifically, the accuracy improves by up to 18% in
the low- and high-SNR regime, respectively, when switching
from 128 to 2048 1/Q samples and using 64 filters per CVL.
We also notice that boosting has a beneficial effect in both SNR
regimes, which helps improve performance by close to 10% in
the high-SNR regime.

Table II also shows the performance of our majority voting
boosting algorithm as a function of the number of consecutive
frames per vote V. Specifically it compares the performance
when testing with two, five, seven, and ten consecutive frames
per vote. The results show that the boosting performance in-
creases with V, yet it reaches a plateau when V' = 10.

B. Confusion Matrices

Fig. 9 reports our specific classification results with confusion
matrix plots for three CNN architectures trained on our two
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TABLE I
COMPARISON OF INCREASING V VOTES IN EACH MAJORITY VOTING, AND
EFFECTS OF MAJORITY VOTING ON MODEL WITH INCREASING INPUT SIZES

Majority votes V

; Standard

SNR K Input testing 2 5 T 10
Low | 16 128 4290% | 435% | 49.6% | 50.5% | 51.1%
Low 16 1024 5890% | 59.2% | 63.9% | 649% | 65.4%
Low | 16 | 2048 66.40% | 655% | 72.6% | 73.9% | 74.8%
Low | 64 128 52.70% | 53.6% | 572% | 57.6% | 57.8%
Low 64 1024 63.20% | 65.1% | 68.7% | 69.0% | 69.7%
Low | 64 | 2048 7020% | 71.7% | 75.7% | 76.4% | 76.4%

Average Increase

AhGve Standard 0.7% 5.6% 6.3% 6.8%

Average Increase

Above Previous V 4.9% 0.8% 0.5%
High 16 128 47.00% | 46.3% | 51.7% | 52.9% | 54.5%
High 16 1024 66.20% | 66.0% | T4.2% | 753% | 75.0%
High | 16 | 2048 63.40% | 628% | 71.7% | 72.8% | 73.4%
High | 64 128 71.60% | 689% | 82.2% | 854% | 87.2%
High | 64 | 1024 83.90% | 86.3% | 89.1% | 90.2% | 92.0%
High | 64 | 2048 90.10% | 91.3% | 953% | 957% | 96.3%

Average Increase

Above Stindard 01% 7.0% 8.4% 9.4%

Awcauge: Increane 71% 14%  1.0%

Above Previous V
Notes: All models used seven CVLs. K is the amount of output filters per CVL.
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Fig. 9. (a), (c), and (e) Confusion matrices for low-SNR and (b), (d), and

(f) high-SNR testing accuracies without boosting. All models use seven CVLs
followed by two dense layers with 128 nodes each, but use different numbers
of filters in each CVL and numbers of samples in the input data. (a) and (b) 16
filters, 128 samples. (c) and (d) 16 filters, 1024 samples. (e) and (f) 64 filters,
1024 samples.

TABLE III
STANDARD TESTING AND MAIJORITY VOTING (V = 10) ACCURACIES FOR SIX
MODELS AND THEIR CORRESPONDING COMPUTATION TIMES ON SYNTHESIZED
FPGA CIRCUITS

Testing accuracy

i Low High Both FPGA
CVLs Filles Nk sNR  SNR latency
Standard testing
1 32 67% 85% 67% 4ms
1 64 68% | 87% | 67% 9ms
1 128 68% | 86% | 67% 95ms
3 32 66% | 82% | 73% T8ms
3 64 69% | 87% | 7T9% 303ms
3 128 % | 90% | 81% 1180ms
Majority voting, V' = 10

1 32 87% 99% 86% 43ms
1 64 86% | 99% | 88% 93ms
1 128 87% | 99% 86% 952ms
3 32 80% | 95% | 88% T80ms
3 64 83% | 96% 91% 3030ms
3 128 85% | 98% | 92% 11 800ms

SNR levels. Our results conclude that all the models are able to
perfectly classify the BW of the signal in both SNR regimes.

We notice that a model trained with less filters is still able
to achieve reliable classification of 2PSK, whereas higher order
MDs become indistinguishable, especially in the low-SNR sce-
nario. However, we find that increasing the number of filters in
the CVLs severely impacts the accuracy of the model, achieving
83.9% in the case of 64 filters and 1024 I/Q input size, as shown
in Fig. 9(f).

C. FPGA-Based CNN Latency Analysis

To have an estimation of the CNN latency involved in a
real system, we have synthesized some of the CNNs trained in
Section I'V-A into FPGA-compliant circuits. Table III shows the
standard and boosted accuracies for select models with different
numbers of CVLs and filters and the added latency when run on
an FPGA. In all these experiments, we have leveraged high-level
synthesis (HLS) to translate the C++-level description of the
CNN directly into hardware-based Verilog language. HLS is by
no means the most efficient synthesis process, and improved
latency results can be reached with different strategies.

The circuits were synthesized assuming a clock period
of 5 ns (clock speed of 200 MHz). The target FPGA is a
XC7Z045FFG900-2 from Xilinx, an FPGA commonly used in
SDR devices. The latency estimations are based upon a pipelined
FPGA design presented in [51].

Table III presents majority voting accuracies using V = 10
compared to standard testing accuracies. The smallest model
tested (one CVL, 32 filters) is able to achieve 99% boosted
accuracy with the high-SNR regime and outperform the largest
model’s (three CVL, 128 filters) standard testing accuracy by
9% while executing more than 20 times faster. We notice that in-
creasing the number of CVLs and filters exponentially increases
the latency. This result validates the efficacy of majority voting
and drives the effort to design small, shallow networks.
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V. CONCLUSION

The THz band is one of the last resorts to withstand the
staggering growth in mobile connectivity experienced over the
last few years, and that is expected to continue in the future.
The severely dynamic channel BW in the THz band implies
that techniques able to demodulate BW-dynamic transmissions
will become mandatory in the years to come. The experiments
presented in this article have proven for the first time that
relatively small neural networks, including single-layer CNNs,
can be successfully used to address the MBC problem at THz
frequencies, which paves the way to their usage in actual THz
systems. Our FPGA analysis has shown that small models can
achieve high accuracies with boosting and still maintain low
latency, though it may not be enough for extremely fast-changing
channels.

Future research efforts will be devoted to further reducing
FPGA latency through smaller neural networks and better op-
timization to enable use in real-time systems. Expanding the
model to classify smaller increments in BW would greatly
increase its capabilities. However, this tougher challenge would
call for changing architecture to a hierarchical model where BW
and MD are different classifiers. We will also leverage transfer
learning to train our models on data affected by absorption
windows when THz and ultra-broadband technology matures.
We hope that our findings will drive existing standardization
efforts in the THz bands, which may consider the usage of
data-driven techniques to implement BW-dynamic systems.
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