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ABSTRACT: Borole-doped polycyclic aromatic hydrocarbons
(PAHs) have garnered attention in recent years due to their
attractive photophysical properties and potential utility in
electronic devices. In this work, a borole-doped PAH, 12-
boradibenzofluorene, is synthesized and formal intermolecular
nitrene and oxygen atom insertion reactions were employed to
access 1,2-azaborine- and 1,2-oxaborine-containing analogues of
the carbonaceous PAH pentaphene. Iodosobenzene is established
as a versatile reagent for oxygen atom insertion reactions into a
variety of borole species to access 1,2-oxaborine systems.

■ INTRODUCTION

Boroles are unsaturated five-membered heterocycles with four
π-electrons and can be viewed as analogues to the cyclo-
pentadienyl cation (C5H5

+) where one of the carbon atoms is
replaced by a trigonal planar boron center (Figure 1).1 The
unsaturated BC4 ring exhibits an antiaromatic character that
enhances the Lewis acidity at boron and reactivity of the
boracycle. Kinetic stabilization is necessary to prevent
dimerization or decomposition in monocyclic species, and
annulation of the BC4 ring also serves as a means of
attenuating reactivity.2 Borole derivatives have been known
since the 1960s including arene-fused boroles, such as 9-
borafluorenes, that represent variants of boron-doped poly-
cyclic aromatic hydrocarbons (PAHs), which have electronic
and photophysical properties appealing for electronic materi-
als.3,4

Boroles and their polycyclic variants not only have
interesting electronic properties but can also serve as reagents
to access larger ring systems via insertion into the endocyclic
boron−carbon bond.5,6 In particular, 1,1-insertion reactions
generate six-membered aromatic boracycles if the inserted
atom bears a lone pair. These BEC4 aromatic heterocycles are
analogues of benzene and are actively being studied for use in
medicinal chemistry and electronic materials.7 Unfortunately,
there are synthetic challenges of incorporating B−N and B−O
units into polyaromatic scaffolds in comparison to their
carbonaceous counterparts. Recently, intermolecular nitrene
insertion reactions of organic azides with boroles and 9-
borafluorenes have been effective in accessing 1,2-azaborine
ring systems (Scheme 1a).8 In these reactions, the majority of
the products are 1,2-azaborine systems formed from the

insertion of a nitrene unit and expulsion of N2 (I), but in rare
cases, the γ-nitrogen atom of the azide reagent inserted to
make diazene systems (II) or other products. In regard to
oxygen atom insertion, pentaarylboroles undergo insertion
with N-methylmorpholine N-oxide to furnish 1,2-oxaborines
(Scheme 1b, III)9 and 9-Mes-9-borafluorene reacted with
molecular oxygen to access 9,10-oxaboraphenanthrene
(Scheme 1c, IV).10 To date, these methods have only been
demonstrated with boroles or 9-borafluorenes leading to
monocyclic and tricyclic PAH systems. Other polycyclic
boroles are attractive targets as they could be reagents to
access new boron-doped PAHs and have interesting electronic
properties themselves. Here, we report the synthesis of a
pentacyclic borole system, 12-boradibenzofluorene, and
explore its reactivity to access boron-doped pentaphene
analogues.

■ RESULTS AND DISCUSSION
An effective route to access antiaromatic BC4 rings is via tin−
boron transmetallation from a SnC4 stannole precursor and a
dihaloborane.11 To prepare the dibromo intermediate
precursor to the stannole, the literature procedure was
followed.12 Dibromo species 1 could be converted to the
magnesium Grignard in situ and reacted with nBu2SnCl2 to
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access stannole 2 in a 72% yield (Scheme 2). The target 12-
boradibenzofluorene (3) was generated by tin−boron
exchange between 2 and PhBCl2 in a 95% yield as a yellow
solid. The structures of 1−3 were determined by single-crystal
X-ray diffraction studies (Figure S1 for 1 and Figure 2 for 2
and 3).
In general, 9-borafluorenes are less Lewis acidic than the

unfused parent species, boroles,8g and coordination has been
reported to be the first mechanistic step for insertion into
borole ring systems.5 To determine if the extended conjugation
in 12-boradibenzofluorene affects the Lewis acidity and
insertion reactivity, we evaluated the Lewis acidity of 3 by
the Gutmann−Beckett method.13 Mixing a solution of 3 with
OPEt3 formed 3·OPEt3 (Scheme 3), featuring a 31P{1H} NMR
chemical shift of 74.0 ppm in CDCl3, which translates to an
acceptor number (AN) of 72.9.14 The structure of 3·OPEt3
was confirmed by a single-crystal X-ray diffraction study

(Figure 2). The AN of 3 is lower than pentaphenylborole (80.4
in CDCl3) but comparable to 9-Ph-9-borafluorene (73.6 in
CDCl3), suggesting that it is sufficiently Lewis acidic for
insertion chemistry.
Reaction of 3 with 2 equivalents of phenyl azide at room

temperature for 24 h only resulted in a 29% conversion based
on 1H NMR spectroscopy, but heating the reaction to 90 °C
for 6 h resulted in the consumption of 3.15 Upon scale-up, the
product was purified by flash column chromatography in the
open atmosphere and was isolated in a 79% yield (Scheme 3).
The structure of α-N insertion product 4 was determined by a
single-crystal X-ray diffraction study (Figure 3).
Next, we attempted oxygen insertion reactions with 3 by

following the existing protocols employed for pentaarylboroles
and 9-Mes-9-borafluorene using N-methylmorpholine N-oxide
and dry air, respectively.9,10 In both reactions with 3, complex
mixtures were obtained with no conclusive evidence of 6,7-

Figure 1. General structures of borole, 9-borafluorene, and targeted 12-boradibenzofluorene.

Scheme 1. Intermolecular Nitrene and Oxygen Insertion Reactions of Borole and 9-Borafluorenes to Access 1,2-Azaborine and
1,2-Oxaborine Systemsa

aNMMO, N-methylmorpholine N-oxide; Mes, 2,4,6-trimethylbenzene.

Scheme 2. Synthesis of 12-Boradibenzofluorene 3
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oxaborapentaphene (5) formation (Table 1, entries 1 and 2).
Other oxygen atom donors were screened, namely, triethyl-
amine N-oxide, pyridine-N-oxide, and the hypervalent iodine
reagent tetra-n-butylammonium benziodoxolone,16 but none
were successful (Table 1, entries 3−5). All of these reagents
provided complex reaction mixtures (Table 1, entries 1−5).
We believe that the reagents or side products could form
complexes or react further with 3 and 5. The relatively mild
oxidant dimethylsulfoxide produced the O-coordinated adduct
cleanly (3·DMSO), which did not undergo further reactivity
upon heating (Table 1, entry 6).17 Gratifyingly, freshly
prepared iodosobenzene18 proved to be effective to access
6,7-oxaborapentaphene 5, which was isolated in a 72% yield.
Iodobenzene is the sole side product observed in this reaction,
which did not react with either 3 or 5. Despite numerous
attempts, we could not grow single crystals of sufficient quality
for X-ray diffraction studies. However, the pyridine adduct (5·
pyr) could be prepared and the structure was confirmed by a
single-crystal X-ray diffraction study (Figure 3). Interestingly, 4
is inert to pyridine, which is in line with theoretically calculated
binding energies of pyridine to the boron center in 4 (ΔG° =
+23.6 kJ mol−1; Table S2) and 5 (ΔG° = −2.5 kJ mol−1).
Examination of the lowest unoccupied molecular orbital

(LUMO) of 5 indicates a significant contribution from
boron. Conversely, no contribution from boron is observed
in the LUMO of 4, highlighting the enhanced Lewis acidity of
the boron center in 5 (Figures S69 and S70).
Nucleus-independent chemical shift (NICS) calculations

were performed as a means to assess the aromatic character of
4 and 5. Interestingly, the NICS(1)ZZ value for the azaborine
(0.43 ppm) and oxaborine (2.84 ppm) central moieties in 4
and 5, respectively, indicates a nonaromatic character
according to NICS calculations (Figure 4). Expectedly, the
annulated phenyl rings in both 4 and 5 were calculated to
possess a significant aromatic character (NICS(1)ZZ = ∼ −26
ppm). These results contrast the calculated NICS(1)ZZ values
for the dibenzo analogues of 4 (−7.1 ppm) and 5 (−3.1 ppm),
which exhibit a minor-to-moderate aromatic character based
on NICS values. This information initially suggested that 4 and
5 may be superaromatic systems possessing a peripheral
macrocyclic conjugation. However, further analysis of the
induced magnetic current density revealed two independent
naphthalene moieties possessing diatropic ring-currents
annulated to the 1,2-heteroborine ring (Figure 4). Although
both azaborine and oxaborine moieties in 4 and 5 are formally
aromatic according to Hückel’s rule (6-π electrons), the

Figure 2. Solid-state structures of 2, 3, and 3·OPEt3 (left to right). Hydrogen atoms are omitted for clarity, and thermal ellipsoids are drawn at the
50% probability level. Selected bond lengths (Å) and angles (°) of 2: Sn(1)−C(1) 2.142(4), Sn(1)−C(4) 2.140(4), C(1)−C(2) 1.440 (6), C(2)−
C(3) 1.499 (6), C(4)−C(3) 1.432(6), and C(1)−Sn(1)−C(4) 83.39(17); selected bond lengths (Å) and angles (°) of 3: B(1)−C(1) 1.571(6),
B(1)−C(4) 1.568(6), B(1)−C(5) 1.559(6), C(1)−C(2) 1.441(6), C(2)−C(3) 1.475(5), C(3)−C(4) 1.442(5), C(1)−B(1)−C(4) 104.0(3),
C(1)−B(1)−C(5) 126.8(4), C(4)−B(1)−C(5) 129.1(4), B(1)−C(1)−C(2) 107.4(3), B(1)−C(4)−C(3) 107.9(3), C(1)−C(2)−C(3) 110.7(3),
and C(2)−C(3)−C(4) 109.9(3); selected bond lengths (Å) and angles (°) of 3·OPEt3: B(1)−C(1) 1.626(4), B(1)−C(4) 1.625(4), B(1)−C(5)
1.613(4), B(1)−O(1) 1.561(4), C(1)−C(2) 1.434(4), C(2)−C(3) 1.480(4), C(3)−C(4) 1.436(4), O(1)−P(1) 1.521(2), C(1)−B(1)−C(4)
99.4(2), C(1)−B(1)−C(5) 110.3(2), C(1)−B(1)−O(1) 112.4(2), C(4)−B(1)−O(1) 113.4(3), C(4)−B(1)−C(5) 116.8(2), C(5)−B(1)−O(1)
104.8(2), B(1)−O(1)−P(1) 140.09(19), C(1)−C(2)−C(3) 110.4(3), and C(2)−C(3)−C(4) 110.3(3).

Scheme 3. Synthesis of Adduct 3·OPEt3 and 6,7-Azaborapentaphene 4
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bonding in the central rings for these systems is localized based
on the NICS data.
Prior routes to access 1,2-oxaborine systems were not

universal, prompting us to examine the efficacy of iodoso-
benzene as an oxygen atom source to access 1,2-oxaborine
systems from borole reagents. The corresponding oxygen
insertion reactions with pentaphenylborole and 9-Ph-bora-
fluorene generated pentaphenyl-1,2-oxaborine (6, Scheme 4)9

and 9,10-oxaboraphenanthrene (7), respectively. The pre-
viously reported NMMO route to 6 is comparable in yield (66
vs 64%), and the yield for 7 using iodosobenzene is 74%, while
the route using dry air to access 9,10-oxaboraphenanthrene IV
did not have an isolated yield.10 Although we could not obtain
a single crystal of 7, the corresponding pyridine-coordinated

product 7·pyr was synthesized and its structure was confirmed
by single-crystal X-ray diffraction studies (Figure 3). The
outcome of these reactions indicates that iodosobenzene is a
versatile reagent for oxygen insertion reactions into boroles
given the good yields, mild reaction conditions, and benign
iodobenzene byproduct.
The connectivity of all insertion products has been

confirmed by single-crystal X-ray diffraction studies. In 3
(Figure 2), both the endocyclic and exocyclic C−B bonds are
similar in length [B(1)−C(5) 1.559(6) Å, B(1)−C(1)
1.571(6) Å, and B(1)−C(4) 1.568(6) Å], which elongated
upon coordination by OPEt3 [B(1)−C(1) 1.626(4) Å, B(1)−
C(4) 1.625(4) Å, and B(1)−C(5) 1.613(4) Å] attributed to
the disruption of conjugation in the central ring. The B−O

Figure 3. Solid-state structures of 4, 5·pyr, and 7·pyr (left to right). Hydrogen atoms are omitted for clarity, and thermal ellipsoids are drawn at the
50% probability level. S− elected bond lengths (Å) and angles (°) of 4: B(1)−N(1) 1.4223(18), B(1)−C(4) 1.5442(19), B(1)−C(5) 1.5730(19),
N(1)−C(1) 1.4320(16), N(1)−C(6) 1.4532(16), C(1)−C(2) 1.4339(17), C(2)−C(3) 1.4758(17), C(3)−C(4) 1.4331(17), C(4)-B(1)−N(1)
116.93(11), C(4)−B(1)−C(5) 122.07(11), N(1)−B(1)−C(5) 120.82(11), B(1)−N(1)−C(1) 122.42(11), B(1)−N(1)−C(6) 122.28(10),
C(1)−N(1)−C(6) 114.99(10), N(1)−C(1)−C(2) 119.42(11), C(1)−C(2)−C(3) 120.39(11), and C(2)−C(3)−C(4) 118.96(11); selected
bond lengths (Å) and angles (°) of 5·pyr: B(1)−O(1) 1.4632(18), B(1)−C(4) 1.610(12), B(1)−C(5) 1.614(2), B(1)−N(1) 1.6594(19), O(1)−
C(1) 1.3551(16), C(1)−C(2) 1.4344(19), C(2)−C(3) 1.4799(19), C(3)−C(4) 1.4339(19), C(4)−B(1)−O(1) 112.42(12), C(4)−B(1)−C(5)
112.06(11), C(4)−B(1)−N(1) 110.75(11), O(1)−B(1)−C(5) 109.38(12), O(1)−B(1)−N(1) 104.56(11), C(5)−B(1)−N(1) 107.29(11),
B(1)−O(1)−C(1) 119.30(12), O(1)−C(1)−C(2) 121.60(12), C(1)−C(2)−C(3) 120.01(12), and C(2)−C(3)−C(4) 118.58(12); selected
bond lengths (Å) and angles (°) of 7·pyr: B(1)−O(1) 1.470(2), B(1)−C(4) 1.600(2), B(1)−C(5) 1.614(2), B(1)−N(1) 1.672(2), O(1)−C(1)
1.3624(19), C(1)−C(2) 1.402(2), C(2)−C(3) 1.482(2), C(3)−C(4) 1.410(2), C(4)−B(1)−O(1) 112.18(13), C(4)−B(1)−C(5) 114.32(13),
C(4)−B(1)−N(1) 108.31(12), O(1)−B(1)−C(5) 109.45(13), O(1)−B(1)−N(1) 103.67(12), C(5)−B(1)−N(1) 108.29(12), B(1)−O(1)−
C(1) 121.98(11), O(1)−C(1)−C(2) 122.59(14), C(1)−C(2)−C(3) 120.30(14), and C(2)−C(3)−C(4) 118.61(14).

Table 1. Reactions Investigated to Synthesize 6,7-Oxaborapentaphene 5 from 3

entry reagent reaction conditions isolated yield of 5

1 dry O2 CH2Cl2, 23 °C, 16 h a

2 NMMO CH2Cl2, −78 to 23 °C, 1 h a

3 ONEt3 CH2Cl2, −78 to 23 °C, 1 h a

4 pyridine-N-oxide CH2Cl2, −78 to 23 °C, 1 h a

5 [NnBu4] [benziodoxolone] CH2Cl2, −30 to 23 °C, 2 h a

6 DMSO C7H8, 100 °C, 36 h b

7 PhIO CH2Cl2, 23 °C, 1 h 72%
aComplex reaction mixture was observed in 1H and 11B NMR spectroscopies. bFormation of 3·DMSO (see the Experimental Section).
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[1.561(4) Å] and the O−P [1.521(2) Å] bond lengths in 3·
OPEt3 are comparable to the corresponding 9-Ph-9-bora-
fluorene−OPEt3 adduct [B−O 1.567(4) Å and O−P 1.524(2)
Å],8g which matches the similar Gutmann−Beckett values for
Lewis acidity. The bond lengths in the central azaborine ring of
4 match those for monocyclic systems.8g

The photophysical properties of 3−5 and 7 were
investigated by UV−vis and fluorescence spectroscopy
(Table 2). In dichloromethane, compounds 3−5 and 7 have
absorption maxima (λabs) at 310 nm (ε = 6.8 × 104 M−1 cm−1),
306 nm (ε = 4.8 × 104 M−1 cm−1), 301 nm (ε = 3.8× 104 M−1

cm−1), and 272 nm (ε = 1.8 × 104 M−1 cm−1), respectively.
The emission maxima (λem, with Stokes shifts in parentheses)
are 523 nm (1.3 × 104 cm−1), 395 nm (7.4 × 103 cm−1), 408

Figure 4. (a) Scan of the ZZ component of the nucleus-independent chemical shift (NICSZZ-scan). (b) ACID isosurface (0.04) of the π system of
4 (left) and 5 (right). The current vectors plotted onto the ACID isosurface indicate a strong diatropic ring current in the naphthalene moieties.

Scheme 4. Efficacy of Iodosobenzene as an Oxygen
Insertion Reagent to Pentaphenylborole (a) and 9-Ph-9-
Borafluorene (b)

Table 2. Photophysical Properties of Compounds 3−5 and
7

compound
λabs
(nm)

λem
(nm)

εa

(M−1 cm−1)
Stokes shift
(cm−1) Φn

b

3 310 523 6.8 × 104 1.3 × 104 0.27c

4 306 395 4.8 × 104 7.4 × 103 0.51d

5 301 408 3.8× 104 8.7 × 103 0.38d

7 272 360 1.8 × 104 9.0 × 103 0.21e

aε is the molar extinction coefficient. bΦn is the fluorescence quantum
yield. cΦ3 is calculated in dichloromethane using quinine sulfate
(quantum yield 0.546 in 0.5 M H2SO4) as a reference.

dΦ4 and Φ5 are
calculated in dichloromethane using anthracene (quantum yield 0.36
in cyclohexane) as a reference. eΦ7 is calculated in dichloromethane
using naphthalene (quantum yield 0.23 in cyclohexane) as a reference.
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nm (8.7 × 103 cm−1), and 360 nm (9.0 × 103 cm−1) for 3−5
and 7, respectively. The Stokes shift of 3 is notably higher than
that of the corresponding pentaphene (λabs 308 nm, λem ∼ 432
nm, Stokes shift 9.3 × 103 cm−1 in cyclohexane).19 The Stokes
shifts for 4 and 5 are lower than those of pentaphene. The
fluorescence quantum yields of compounds 3−5 and 7 are
found to be 0.27 (reference: quinine sulfate), 0.51 (reference:
anthracene), 0.38 (reference: anthracene), and 0.21 (reference:
naphthalene), respectively, in dichloromethane.20 Theoretical
excitation and emission energies are in excellent agreement
with experimental observations. The lowest-energy excitations
in 3−5 and 7 indicate predominantly π → π* transitions
distributed throughout the PAH framework with oxaborines 5
and 7 exhibiting a minor charge-transfer character between the
heterocycle and the phenyl group bound to boron (Figures
S70 and S71).

■ CONCLUSIONS
In this work, a conjugated pentacyclic borole variant, 12-
boradibenzofluorene, was prepared, which is a reagent to
access hybrid boron−oxygen-containing analogues of penta-
phene via intermolecular nitrene and oxygen atom insertion
reactions, respectively. The hybrid organic/inorganic boron−
oxygen-containing analogue of pentaphene, 6,7-oxaborapenta-
phene reacted with pyridine, while 6,7-azaborapentaphene did
not, indicating increased Lewis acidity at boron and decreased
aromaticity. Iodosobenzene proved to be an effective oxygen
atom reagent for other borole systems, namely, pentaphenyl-
borole and 9-Ph-9-borafluorene, based on good yields, mild
reaction conditions, and benign iodobenzene byproduct.

■ EXPERIMENTAL SECTION
General Considerations. All manipulations were performed

under an inert atmosphere in a nitrogen-filled MBraun Unilab
glovebox or using standard Schlenk techniques unless specified.
Chloroform-d and benzene-d6 for NMR spectroscopy were purchased
from Cambridge Isotope Laboratories, Inc., dried by stirring for 5
days over CaH2, distilled, and stored over 4 Å molecular sieves. m-
Xylene was dried in the same manner. All other solvents were
purchased from commercial sources as anhydrous grade, dried further
using a JC Meyer Solvent System with dual columns packed with
solvent-appropriate drying agents, and stored over 3 or 4 Å molecular
sieves. 2,3-Dibromonaphthalene, nBuLi, nBu2SnCl2, Me2SnCl2, PhN3,
and PhBCl2 were purchased from commercial sources and used
without further purification. Mg metal turnings were purchased and
activated with dilute HCl, washed with acetone, and dried before use.
Pentaphenylborole and 9-Ph-9-borafluorene were prepared according
to the literature procedure.3c,11 Compound 1 was prepared, with the
only modification being stirring the reaction for 24 h instead of 10
min.12 The purity of new complexes was established by elemental
analysis or multinuclear NMR (1H, 11B, 13C{1H}); the spectra are
available in the Supporting Information.
Multinuclear NMR spectra (1H, 13C{1H}, 31P{1H}, 11B, 119Sn)

were recorded on a Bruker Avance III HD 400 MHz or 600 MHz
instrument. High-resolution mass spectra (HRMS) were obtained in
the Baylor University Mass Spectrometry Center on a Thermo
Scientific LTQ Orbitrap Discovery spectrometer using +ESI or at the
University of Texas at Austin Mass Spectrometry Center using CI.
Elemental (C, H, and N) analyses were performed by Atlantic
Microlab, Inc. (Norcross, GA). Melting points were measured with a
Thomas Hoover Uni-melt capillary melting point apparatus and are
uncorrected. Fourier transform infrared (FT-IR) spectra were
recorded on a Bruker Alpha ATR FT-IR spectrometer on solid
samples. UV−vis and fluorescence data were collected on a Varian
UV−vis spectrometer and a Fluoromax-4 fluorescence spectrometer,
respectively. Single-crystal X-ray diffraction data were collected on a

Bruker Apex III-CCD detector using Mo Kα radiation (λ = 0.71073
Å). Crystals were selected under paratone oil, mounted on MiTeGen
micromounts, and immediately placed in a cold stream of N2.
Structures were solved and refined using SHELXTL, and figures were
produced using OLEX2.21

2: A 250 mL two-necked flask fitted with a reflux condenser and a
rubber septum was charged with magnesium turnings (16.02 mmol,
389.0 mg) and catalytic I2 in tetrahydrofuran (THF) (20 mL). A THF
solution (30 mL) of 1 (7.814 mmol, 3.200 g) was slowly added (over
1 h) to the reaction mixture via a syringe under refluxing conditions
(65 °C) and heated for 16 h. The reaction mixture was cooled to −78
°C, and a THF solution (50 mL) of nBu2SnCl2 (8.204 mmol, 2.490 g)
was added slowly via a syringe. The cold bath was removed, and the
reaction was allowed to warm to 23 °C and stirred for 24 h. Water (20
mL) was added, and the reaction mixture was extracted with ethyl
acetate (2 × 30 mL). The collected organic layer was dried over
Na2SO4, and the volatiles were removed in vacuo. The residue was
purified by silica gel flash column chromatography using NEt3/
hexanes (1:20) as an eluant to afford 2 in a 72% yield. Single crystals
for X-ray diffraction studies were by vapor diffusion of a CH2Cl2
solution of 2 into m-xylene. Rf: 0.75 (hexanes); yield: 72%, 2.750 g;
physical appearance: white solid; mp: 98−101 °C; 1H NMR (400
MHz, CDCl3): δ = 8.62 (s, 2H, ArC‑H), 8.17 (s, 2H, ArC‑H), 7.96 (d, J
= 7.6 Hz, 2H, ArC‑H), 7.84 (d, J = 7.6 Hz, 2H, ArC‑H), 7.49 (p, J = 6.7
Hz, 4H, ArC‑H), 1.80−1.49 (m, 4H, CH2), 1.54−1.26 (m, 8H, -CH2-
CH2-), 0.88 (t, J = 7.3 Hz, 6H, -CH3) ppm; 13C{1H} NMR (101
MHz, CDCl3): δ = 145.6 (Cquat.), 140.3 (Cquat.), 136.9 (t, J = 20.2 Hz,
ArC‑H), 134.4 (Cquat.), 133.4 (Cquat.), 128.7 (ArC‑H), 127.6 (ArC‑H),
126.3 (ArC‑H), 125.9 (ArC‑H), 121.3 (t, J = 16.1 Hz, ArC‑H), 29.2 (t, J =
12.1 Hz, -CH2-), 27.3 (t, J = 28.3 Hz, -CH2-), 13.8 (-CH3), 12.7 (dt, J
= 180.8 Hz, 8.1 Hz, -CH2-) ppm; 119Sn NMR (149 MHz, CDCl3): δ
= −35.1 ppm; FT-IR (ranked intensity, cm−1): 2914 (5), 1490 (13),
1461 (8), 1313 (11), 1189 (9), 943 (10), 874 (3), 842 (12), 740 (1),
689 (6), 658 (15) 628 (14), 594 (7), 512 (4), 471 (2); HRMS (ESI):
calcd 487.1422 for C28H30Sn [M + H]+, found 487.1443.

3: In a glovebox, dichlorophenylborane (1.890 mmol, 245.0 μL)
was added to a solution of 2 (1.850 mmol, 900.0 mg) in toluene (15
mL) over a period of 5 min at −30 °C. The reaction mixture was
allowed to warm to 23 °C and stirred for 60 h. The solution was
concentrated in vacuo to a volume of ∼2 mL, and n-pentane (20 mL)
was added. The reaction mixture was stirred for 1 h and filtered to
collect a yellow powder, which was dried in vacuo to obtain 3. Single
crystals for X-ray diffraction studies were grown from a CH2Cl2
solution of 3 by vapor diffusion into toluene. Yield: 95%, 600.0 mg;
physical appearance: yellow solid; mp: 204−206 °C; 1H NMR (400
MHz, CDCl3): δ = 8.39 (s, 2H, ArC‑H), 8.32−8.26 (m, 2H, ArC‑H),
8.06 (s, 2H, ArC‑H), 7.87−7.80 (m, 4H, ArC‑H), 7.68−7.63 (m, 3H,
ArC‑H), 7.51 (ddd, J = 8.1, 6.9, 1.3 Hz, 2H, ArC‑H), 7.41 (ddd, J = 8.1,
6.9, 1.3 Hz, 2H, ArC‑H) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ =
148.8 (Cquat.), 137.5 (Cquat.), 137.3 (ArC‑H), 135.6 (ArC‑H), 134.2
(ArC‑H), 131.8 (Cquat.), 130.5 (ArC‑H), 128.7 (ArC‑H), 128.6 (ArC‑H),
128.5 (ArC‑H), 126.2 (ArC‑H), 118.7 (ArC‑H) ppm; 11B NMR (193
MHz, CDCl3): δ = 63.7 ppm; FT-IR (ranked intensity, cm−1): 1627
(14), 1594 (6), 1493 (13), 1445 (9), 1315 (10), 1292 (5), 1144 (12),
1112 (8), 981 (15), 872 (2), 737 (1), 691 (4), 590 (7), 517 (11), 469
(3); HRMS (CI): calcd 341.1499 for C26H18B [M + H]+, found
341.1499; elemental analysis: calcd C 91.99, H 5.04 for C26H17B;
found: C 91.39, H 5.11.

3·OPEt3: Triethylphosphine oxide (0.20 mmol, 27.0 mg) in
benzene (2 mL) was added slowly at 23 °C to a solution of 3 (0.20
mmol, 68.0 mg) in benzene (4 mL) and stirred for 1 h. The volatiles
were removed in vacuo, and the residue was washed with cold n-
pentane (2 × 2 mL) and dried in vacuo to obtain 3·OPEt3. Single
crystals for X-ray diffraction studies were grown by vapor diffusion of
a CH2Cl2 solution of 3·OPEt3 into toluene. Yield: 94%, 89 mg;
physical appearance: white solid; mp: 156−159 °C; 1H NMR (400
MHz, CDCl3): δ = 8.16 (s, 2H, ArC‑H), 7.86 (s, 2H, ArC‑H), 7.80 (dd,
J = 8.3, 1.4 Hz, 2H, ArC‑H), 7.65 (dd, J = 8.0, 1.4 Hz, 2H, ArC‑H), 7.48
(d, J = 7.0 Hz, 2H, ArC‑H), 7.30 (ddd, J = 13.6, 6.1, 1.5 Hz, 3H,
ArC‑H), 7.27−7.24 (m, 1H, ArC‑H), 7.18−7.13 (m, 2H, ArC‑H), 7.10−
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7.04 (m, 1H, ArC‑H), 1.46 (dq, J = 12.1, 7.7 Hz, 6H, -CH2-), 0.89 (dt,
J = 17.6, 7.7 Hz, 9H, -CH3) ppm; 13C{1H} NMR (101 MHz, CDCl3):
δ = 147.3 (Cquat.), 134.5 (Cquat.), 134.4 (ArC‑H), 131.9 (ArC‑H), 130.8
(Cquat.), 128.5 (Cquat.), 128.4 (ArC‑H), 128.3 (ArC‑H), 127.2 (ArC‑H),
125.5 (Cquat.), 125.2 (ArC‑H), 124.7 (ArC‑H), 117.7 (ArC‑H), 17.6 (d, J
= 65.6 Hz, -CH2-), 5.5 (d, J = 4.9 Hz, -CH3) ppm; 31P{1H} NMR
(162 MHz, CDCl3): δ = 74.0 ppm; 11B NMR (128 MHz, CDCl3): δ
= 8.4 ppm; FT-IR (ranked intensity, cm−1): 1490 (10), 1420 (9),
1322 (13), 1179 (8), 1137 (12),1057 (15), 1031 (11), 894 (3), 862
(7), 793 (6), 759 (14), 728 (1), 707 (4), 611 (5), 479 (2).
3·DMSO: Dimethylsulfoxide (0.20 mmol, 7.1 μL) was added to a

solution of 3 (0.10 mmol, 34 mg) in toluene (4 mL) at 23 °C and
stirred for 15 min. The volatiles were removed in vacuo, and the
product was recrystallized from DCM/n-pentane (1:9). The powder
was dried in vacuo to obtain 3·DMSO. Yield: 88%, 37 mg; physical
appearance: white solid; mp: 178−181 °C; 1H NMR (400 MHz,
CDCl3): δ = 8.24 (s, 2H, ArC‑H), 8.06 (s, 2H, ArC‑H), 7.91−7.84 (m,
2H, ArC‑H), 7.78 (dd, J = 7.9, 1.4 Hz, 2H, ArC‑H), 7.75−7.68 (m, 2H,
ArC‑H), 7.44−7.29 (m, 6H, ArC‑H), 7.25−7.21 (m, 1H, ArC‑H), 2.55 (s,
6H, -CH3);

13C{1H} NMR (101 MHz, CDCl3): δ = 147.6 (Cquat.),
135.0 (Cquat.), 134.3 (Cquat.), 132.7 (ArC‑H), 131.5 (ArC‑H), 128.6
(ArC‑H), 128.4 (ArC‑H), 127.6 (ArC‑H), 126.8 (Cquat.), 125.8 (ArC‑H),
125.1 (ArC‑H), 118.0 (ArC‑H), 38.7 (-CH3);

11B NMR (193 MHz,
CDCl3): δ = 16.4 ppm; FT-IR (ranked intensity, cm−1): 1490 (10),
1420 (8), 1322 (13), 1137 (12), 1056 (4), 947 (14), 893 (3), 862
(9), 792 (7), 726 (1), 707 (6), 665 (11), 612 (5), 524 (15), 478 (2).
4: A solution of phenyl azide (0.80 mmol, 95 mg) in toluene (2

mL) was added to a solution of 3 (0.400 mmol, 136.0 mg) in toluene
(4 mL) in a pressure tube. The reaction was heated at 90 °C for 6 h.
The volatiles were removed in vacuo, and the residue was purified by
silica gel flash column chromatography using CH2Cl2/hexanes (1:10)
as the eluant to afford 4. Caution: phenyl azides are potentially
explosive. Although we never experienced any accidents during these
studies, all of the experiments were carried out behind a safety shield
in a fume hood. Single crystals for X-ray diffraction studies were
grown by vapor diffusion of a chloroform solution of 4 into toluene.
Yield: 79%, 137 mg; physical appearance: white solid; mp: 223−227
°C; 1H NMR (400 MHz, CDCl3): δ = 9.05 (s, 1H, ArC‑H), 9.01 (s,
1H, ArC‑H), 8.27 (s, 1H, ArC‑H), 8.04 (d, J = 8.3 Hz, 1H, ArC‑H), 7.99−
7.94 (m, 1H, ArC‑H), 7.81 (d, J = 8.2 Hz, 1H, ArC‑H), 7.53 (ddd, J =
8.3, 4.5, 1.4 Hz, 2H, ArC‑H), 7.41 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H,
ArC‑H), 7.38−7.32 (m, 2H, ArC‑H), 7.31−7.20 (m, 5H, ArC‑H), 7.19−
7.14 (m, 3H, ArC‑H), 7.13−7.08 (m, 3H, ArC‑H) ppm; 13C{1H} NMR
(101 MHz, CDCl3): δ = 144.4 (Cquat.), 141.5 (Cquat.), 139.5 (ArC‑H),
135.1 (Cquat.), 135.1 (Cquat.), 133.1 (Cquat.), 133.0 (ArC‑H), 132.3
(Cquat.), 129.9 (ArC‑H), 129.4 (ArC‑H), 129.3 (Cquat.), 128.9 (ArC‑H),
128.4 (ArC‑H), 128.0 (ArC‑H), 127.6 (ArC‑H), 127.2 (ArC‑H), 127.2
(ArC‑H), 127.1 (ArC‑H), 127.0 (ArC‑H), 126.4 (ArC‑H), 125.9 (ArC‑H),
125.5 (Cquat.), 124.7 (ArC‑H), 123.7 (ArC‑H), 121.1 (ArC‑H), 115.4
(ArC‑H) ppm; FT-IR (ranked intensity, cm−1): 1626 (14), 1594 (6),
1493 (13), 1445 (9), 1315 (10), 1292 (5), 1144 (12), 1112 (8), 981
(15), 872 (2), 737 (1), 691 (4), 590 (7), 517 (11), 496 (3); HRMS
(ESI): calcd 432.1918 for C32H22BN [M + H]+, found 432.1922.
Preparation of 5 and 7. A dichloromethane solution containing

0.40 mmol of boron reagent (3 for the synthesis of 5 or 9-Ph-9-
borafluorene for the synthesis of 7) was added dropwise to a
dichloromethane solution of freshly prepared iodosobenzene (0.40
mmol, 88 mg), and the mixture was stirred at 23 °C for 1 h. The
volatiles were removed in vacuo, and the residue was dissolved in a
minimum amount of dichloromethane and loaded on a pipette silica
column. First, 10 mL of n-pentane was used as an eluent to remove
iodobenzene; then, 20 mL of 20% dichloromethane/pentane was
employed as an eluent to collect 5 or 7. Removal of the volatiles under
vacuum gave the products.
Characterization of 5. Yield: 72%, 103 mg; physical appearance:

white solid; mp: 157−161 °C; 1H NMR (400 MHz, CDCl3): δ = 8.87
(br. s, 3H, ArC‑H), 8.21−8.15 (m, 2H, ArC‑H), 8.10−7.98 (m, 3H,
ArC‑H), 7.93 (s, 1H, ArC‑H), 7.88 (d, J = 7.8 Hz, 1H, ArC‑H), 7.69−7.59
(m, 4H, ArC‑H), 7.53 (dt, J = 21.9, 7.6 Hz, 3H, ArC‑H) ppm; 13C{1H}
NMR (101 MHz, CDCl3): δ = 149.5 (Cquat.), 140.2 (ArC‑H), 135.8

(Cquat.), 134.7 (ArC‑H), 134.7 (Cquat.), 134.0 (Cquat.), 132.5 (Cquat.),
130.6 (ArC‑H), 130.3 (Cquat.), 129.3 (ArC‑H), 128.5 (ArC‑H), 128.4
(ArC‑H), 128.3 (ArC‑H), 128.2 (ArC‑H), 127.1 (ArC‑H), 126.7 (ArC‑H),
126.4 (ArC‑H), 125.1 (ArC‑H), 124.1 (Cquat.), 123.3 (ArC‑H), 121.1
(ArC‑H), 116.2 (ArC‑H) ppm; 11B NMR (128 MHz, CDCl3): δ = 43.7
ppm; FT-IR (ranked intensity, cm−1): 1621 (15), 1592 (7), 1459 (6),
1430 (12), 1332 (14), 1287 (1), 1057 (9), 982 (11), 906 (13), 865
(4), 742 (2), 700 (5), 611 (8), 563 (10), 472 (3); HRMS (CI): calcd
356.1372 for C26H17BO [M + H]+, found 356.1366.

Characterization of 7. Yield: 74%, 76 mg; physical appearance:
white solid; mp: 89−93 °C; 1H NMR (400 MHz, CDCl3): δ = 8.43−
8.34 (m, 2H, ArC‑H), 8.30 (dd, J = 8.1, 1.6 Hz, 1H, ArC‑H), 8.10−8.06
(m, 2H, ArC‑H), 7.82 (ddd, J = 8.3, 7.2, 1.5 Hz, 1H, ArC‑H), 7.61−7.52
(m, 5H, ArC‑H), 7.49 (ddd, J = 8.3, 7.1, 1.6 Hz, 1H, ArC‑H), 7.35 (ddd,
J = 8.3, 7.1, 1.4 Hz, 1H, ArC‑H) ppm; 13C{1H} NMR (101 MHz,
CDCl3): δ = 151.6 (Cquat.), 139.6 (Cquat.), 137.5 (ArC‑H), 134.7
(ArC‑H), 133.1 (ArC‑H), 130.4 (ArC‑H), 129.3 (ArC‑H), 128.1 (ArC‑H),
127.3 (ArC‑H), 123.6 (ArC‑H), 123.5 (ArC‑H), 123.3 (Cquat.), 122.0
(ArC‑H), 120.6 (ArC‑H) ppm; 11B NMR (128 MHz, CDCl3): δ = 42.0
ppm; FT-IR (ranked intensity, cm−1): 1598 (12), 1484 (7), 1446 (5),
1431 (15), 1284 (2), 1122 (14), 914 (8), 762 (10), 740 (3), 719 (6),
701 (1), 631 (4), 615 (9), 562 (13), 429 (11); HRMS (CI): calcd
256.1059 for C18H13BO [M]+, found 256.1059; elemental analysis:
calcd C 84.42, H 5.12 for C18H13BO; found: C 83.58, H 5.36.

Preparation of 5·pyr and 7·pyr. Neat pyridine (0.80 mmol, 64
μL) was added via a micropipette at 23 °C to a dichloromethane
solution containing 0.20 mmol of 5 or 7 (2 mL). The reaction mixture
was stirred for 1 h, and the volatiles were removed in vacuo to give the
products. Single crystals for X-ray diffraction studies were grown by
vapor diffusion of a CH2Cl2 solution 5·pyr into toluene.

Characterization of 5·pyr. Single crystals for X-ray diffraction
studies were grown by vapor diffusion of a CH2Cl2 solution 5·pyr into
toluene. Yield: 98%, 85 mg; physical appearance: white solid; mp:
149−152 °C; 1H NMR (400 MHz, CDCl3): δ = 8.59 (dt, J = 4.8, 1.6
Hz, 3H, ArC‑H), 8.48 (s, 1H, ArC‑H), 8.41 (s, 1H, ArC‑H), 7.89 (d, J =
8.1 Hz, 1H, ArC‑H), 7.79−7.68 (m, 4H, ArC‑H), 7.61 (d, J = 8.1 Hz,
1H, ArC‑H), 7.44 (s, 1H, ArC‑H), 7.40 (ddd, J = 8.2, 6.8, 1.5 Hz, 1H,
ArC‑H), 7.37−7.34 (m, 1H, ArC‑H), 7.33−7.25 (m, 6H, ArC‑H), 7.24−
7.17 (m, 2H, ArC‑H) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ =
154.3 (Cquat.), 147.7 (ArC‑H), 138.7 (ArC‑H), 135.0 (Cquat.), 134.8
(Cquat.), 133.8 (ArC‑H), 133.8 (ArC‑H), 132.9 (Cquat.), 132.4 (ArC‑H),
128.8 (Cquat.), 128.2 (ArC‑H), 128.1 (ArC‑H), 127.9 (ArC‑H), 127.6
(ArC‑H), 127.5 (Cquat.), 126.6 (ArC‑H), 126.1 (ArC‑H), 125.8 (ArC‑H),
125.5 (ArC‑H), 124.7 (ArC‑H), 123.6 (ArC‑H), 123.1 (ArC‑H), 121.4
(ArC‑H), 114.4 (ArC‑H) ppm; 11B NMR (128 MHz, CDCl3): δ = 7.9
ppm; FT-IR (ranked intensity, cm−1): 1597 (9), 1484 (8), 1446 (15),
1430 (5), 1257 (2), 1070 (12), 997 (13), 911 (7), 739 (3), 719 (10),
701 (1), 631 (14), 615 (4), 565 (11), 476 (6).

Characterization of 7·pyr. Single crystals for X-ray diffraction
studies were grown from a CH2Cl2 solution of 7·pyr by vapor
diffusion into toluene. Yield: 95%, 64 mg; physical appearance: white
solid; mp: 160−162 °C; 1H NMR (400 MHz, CDCl3): δ = 8.63 (ddt,
J = 5.1, 3.5, 1.6 Hz, 2H, ArC‑H), 8.00 (dd, J = 7.9, 3.2 Hz, 1H, ArC‑H),
7.97−7.93 (m, 1H, ArC‑H), 7.85 (ddt, J = 9.5, 5.8, 1.8 Hz, 1H, ArC‑H),
7.63−7.58 (m, 1H, ArC‑H), 7.49 (ddt, J = 8.4, 6.9, 2.4 Hz, 1H, ArC‑H),
7.46−7.40 (m, 4H, ArC‑H), 7.38−7.29 (m, 4H, ArC‑H), 7.28−7.22 (m,
2H, ArC‑H), 7.00 (ddd, J = 8.2, 5.4, 3.4 Hz, 1H, ArC‑H) ppm; 13C{1H}
NMR (101 MHz, CDCl3): δ = 154.4 (Cquat.), 146.7 (ArC‑H), 139.5
(ArC‑H), 137.2 (Cquat.), 134.9 (ArC‑H), 132.9 (ArC‑H), 129.1 (ArC‑H),
128.8 (ArC‑H), 127.6 (ArC‑H), 127.3 (ArC‑H), 126.8 (ArC‑H), 125.0
(ArC‑H), 124.8 (Cquat.), 123.8 (ArC‑H), 121.9 (ArC‑H), 120.4 (ArC‑H),
120.1 (ArC‑H) ppm; 11B NMR (128 MHz, CDCl3): δ = 14.6 ppm; FT-
IR (ranked intensity, cm−1): 1600 (8), 1483 (6), 1446 (15), 1430 (4),
1252 (2), 1122 (12), 1069 (9), 996 (11), 914 (7), 740 (5), 701 (1),
630 (14), 615 (3), 564 (13), 428 (10).

6: A dichloromethane solution of pentaphenylborole (0.10 mmol,
44 mg) was added dropwise to a dichloromethane (2 mL) solution of
freshly prepared iodosobenzene (0.10 mmol, 22 mg) at −30 °C. The
dark blue solution turned pale-yellow upon mixing. The bath was
removed, and the reaction was allowed to warm to room temperature
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(23 °C) and stirred for an additional 15 min. The volatiles were
removed in vacuo, and the residue was dissolved in a minimum
amount of dichloromethane and loaded on a pipette silica column.
First, 10 mL of n-pentane was used as an eluent to remove
iodobenzene; then, 20 mL of 20% dichloromethane/pentane was
employed as an eluent to collect 6. Removal of the volatiles gave 6.
Solution 1H, 11B, and 13C{1H} NMR spectroscopies matched the
literature values.9 Yield: 64%, 30 mg.

■ THEORETICAL CALCULATIONS

Geometries were optimized using the B3LYP hybrid functional
with dispersion corrections (D3(BJ)) and the def2-TZVP(−f)
basis set using Orca 5.0.3.22 All geometry optimizations
included the CPCM solvation model with DCM or toluene
solvent parameters.23 All optimizations utilized the resolution
of identity approximation for both Coulomb and Hartree−
Fock exchange integrals and a 590-point integration grid.
Harmonic frequency calculations were conducted analytically
to confirm that optimized geometries were minima and to
provide thermochemical data. Nucleus-independent chemical
shift (NICS) scan calculations were performed using the
Aroma plug-in package interfaced to Gaussian 16 at the
B3LYP-D3(BJ)/6-311+G(d) level of theory.24 Induced
magnetic current densities were calculated using the
continuous set of gauge transformation (CSGT) method of
Bader et al. at the B3LYP-D3(BJ)/def2-TZVP level of theory
and visualized using ACID 3.0.2.25 Time-dependent density
functional theory (TD-DFT) and excited-state dynamics
(ESD) calculations were performed using ORCA 5.0.3. TD-
DFT calculations were performed at the CAM-B3LYP-
D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-TZVP(−f) level
of theory using the CPCM solvation model with parameters
for DCM.26 Vibrationally resolved electronic spectra were
calculated adiabatically utilizing Franck−Condon approxima-
tions from the reference STEOM-DLPNO-CCSD/def2-
TZVP(−f) (CPCM, CH2Cl2)//B3LYP-D3(BJ)/def2-TZVP-
(−f) excitation energies and transition dipole moments
inclusive of the CPCM solvation model with parameters for
DCM, with inhomogeneous line widths set to 300 cm−1.27
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