msp






ANALYSIS AND PDE
Vol. 15, No. 8, 2022

https://doi.org/10.2140/apde.2022.15.2061

QUANTITATIVE INDUCTIVE ESTIMATES FOR
GREEN’S FUNCTIONS OF NON-SELF-ADJOINT MATRICES

WENCAI L1u

We provide quantitative inductive estimates for Green’s functions of matrices with (sub-)exponentially
decaying off-diagonal entries in arbitrary dimensions. Together with Cartan’s estimates and discrepancy
estimates, we establish explicit bounds for the large-deviation theorem for non-self-adjoint Toeplitz
operators. As applications, we obtain the modulus of continuity of the integrated density of states with
explicit bounds and the pure point spectrum property for analytic quasiperiodic operators. Moreover, our
inductions are self-improved and work for perturbations with low-complexity interactions.

1. Introduction

The dynamics and spectral theory of quasiperiodic operators have seen significant progress in the last 40
years: first, through earlier perturbative methods [Dinaburg and Sinai 1975; Eliasson 1992; Frohlich et al.
1990; Sinai 1987; Chulaevsky and Sinai 1989; Moser and Poschel 1984], and then through nonperturbative
methods by controlling Green’s functions/transfer matrices [Jitomirskaya 1994; 1999; Bourgain and
Jitomirskaya 2002; Bourgain 2005a; Bourgain and Goldstein 2000; Bourgain et al. 2001] or by reducibility
[Hou and You 2012; Avila et al. 2011]. The case of one-dimensional lattice and one-frequency potentials
has been well understood for both small and large coupling constants, with the recent discovery of
global theory [Avila 2015] and universal structure [Jitomirskaya and Liu 2018a; 2018b]. In particular,
remarkable developments have been achieved for several models motivated by physics: the almost Mathieu
operator (the Harper’s model), the extended Harper’s model and the Maryland model [Avila et al. 2017;
Jitomirskaya and Liu 2017; 2018a; 2018b; Simon 1985; Han and Jitomirskaya 2017; Jitomirskaya and
Marx 2012; Jitomirskaya 1999; 2021, Liu and Yuan 2015a; 2015b; Avila and Jitomirskaya 2009; Liu
2020; Jitomirskaya et al. 2020a; Jitomirskaya and Krasovsky 2019; Avila and Damanik 2008; Avila 2008;
Avila and Krikorian 2006; Liu and Shi 2019; Jitomirskaya and Kachkovskiy 2016; Jitomirskaya and
Zhang 2022]. We refer readers to [Marx and Jitomirskaya 2017; You 2018] for more details.

Problems are known to be much more complicated if one increases the underlying dimension » of
the torus or the dimension d of the lattice. The high-dimensional picture is still far from clear. For the
one-dimensional lattice d = 1 and multifrequencies b > 1, some special cases have been studied by
transfer matrices or Schrédinger cocycles [Goldstein et al. 2019; Goldstein and Schlag 2001; Bourgain
2005a; Damanik et al. 2018; Hadj Amor 2009; Cai et al. 2019; Eliasson 1992]. The first multidimensional
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localization result was obtained by perturbative (KAM) methods in [Chulaevsky and Dinaburg 1993]
for operators on lattices 7% and a torus T for arbitrary d. Bourgain, Goldstein and Schlag developed a
celebrated method in the spirit of nonperturbative approaches from [Bourgain and Goldstein 2000] to
handle the two-dimensional and two-frequency case [Bourgain et al. 2002] (b = d = 2) and established
the Anderson localization for large coupling constants. This is the first high-dimensional lattice and
multifrequency result. Moreover, the large-deviation theorem in [Bourgain et al. 2002], which is a key
ingredient to proving the Anderson localization, is purely arithmetic in the sense that removed sets of
frequencies are independent of the potential. Roughly speaking, by imposing some purely arithmetic
condition on (w1, w2) € RZ, for any algebraic curve I' C [0, 1]2 with degree at most N €, the number of
lattice points

{(n1,n2) €Z%: |n1| < N, |n2| < N, (n1@1,n202) mod 7% € T} (D)

is bounded by N 1=8 for some § > 0, where T'; is the e N° neighborhood of T'. The quantity N 1-6 js
referred to as the sublinear bound. It is still open whether the analogous statement for d > 3 is true or not.

Bourgain [2007] developed a new scheme to prove the large-deviation theorem for arbitrary b = d by
a delicate study of the semialgebraic sets. Jitomirskaya, Liu and Shi [Jitomirskaya et al. 2020b] extended
Bourgain’s result to the case of arbitrary b and d (also see [Shi 2022] for some extensions in particular
cases). It is worthwhile to mention that the removed set of frequencies in [Bourgain 2007; Jitomirskaya
et al. 2020b] depends on the potential.

Bourgain, Goldstein and Schlag [Bourgain et al. 2002] mentioned that the sublinear bound (1) is the
only obstruction to establishing an arithmetic version of the large-deviation theorem in high dimensions.
However, there is no detailed proof available yet. Our first goal of this paper is to provide such a proof.
Moreover, we are going to establish the quantitative version of the main results in [Bourgain et al. 2002]
with generalizations, in particular, that it can be applied to quasiperiodic operators on arbitrary lattices 74
driven by any dynamics on tori Z? under the assumption on sublinear bounds.

Instead of Laplacians or long-range operators, we will study Toeplitz matrices with (sub-)exponentially
decaying off-diagonal entries. Among all the motivations of our generalizations, we want to highlight
one. Anderson localization receives a lot of attention from both mathematics and physics. The approach
to establishing Anderson localization for quasiperiodic operators with analytic potentials turns out to be
a breakthrough component to constructing quasiperiodic solutions for nonlinear Schrédinger equations
and nonlinear wave equations [Bourgain 2005a; Wang 2016a; 2019b; 2020]. It is known that the
quasiperiodic solutions in PDEs are only subexponentially, not exponentially, decaying [Bourgain 1998;
2005a; Wang 2016a]. Therefore, the (sub-)exponentially decaying matrices are more natural settings
in PDEs.

In our arguments, the matrices are not necessarily self-adjoint and every entry of the matrices is allowed
to be a function. For d > 2, this is the first study of operators that goes beyond long-range cases. For
d =1, our assumptions are weaker than those of [Bourgain 2002]. See Remark 3.2 for details. Moreover,
our arguments hold under perturbations with low complexity.

Our proof is definitely inspired by [Bourgain et al. 2002]. However, there are a lot of important
ingredients being added into the arguments to make it quantitative in our more general settings. Moreover,
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we significantly simplify the arguments even for the case appearing in [Bourgain et al. 2002]. The
analysis of that work required dealing with many different types of elementary regions, say rectangles
and L-shapes in Z2 We largely reduced the elementary regions to be square related. See Figure 1. Two
novelties are added here. Firstly, we introduce the concept “width” of subsets of lattices. In our arguments,
we always keep the involved regions A having large width so that every lattice point in A can be covered
by a square-related elementary region with preset size contained in A. For example, a region like Figure 2
was not allowed because the width determined by the distance between B and C is too small. Secondly,
we reconstruct the exhaustion of x in every elementary region. In our new construction, the annuli with
small width are absorbed into bigger ones. See Figure 3.

There are several other technical improvements in this paper, which we believe to be of independent
interest. For example, we establish the Cartan’s estimates for non-self-adjoint matrices.

We will prove a quantitatively inductive theorem about the Green’s functions in high dimensions,
as stated in Theorem 2.3. This is a deterministic statement, which can be applied to study operators
even without dynamics. Based on a matrix-valued Cartan-type theorem (estimates on subharmonic
functions) in [Bourgain et al. 2002], with further developments in [Bourgain 2005a; Goldstein and
Schlag 2008; Jitomirskaya et al. 2020b], we will establish the measure estimates in Theorem 2.6.
Imposing proper dynamics on tori, the quantitative inductive estimate for Green’s functions is obtained
(Theorem 2.7). Moreover, the relation among all constants and parameters is displayed clearly so that
the whole picture becomes extremely transparent. We will see how arithmetic conditions on frequencies
affect the discrepancy, how structures of semialgebraic sets affect the number of bad Green’s functions,
and how the dimensions of lattices and frequencies contribute to bounds.

Finally, we want to talk about the applications. As far as we know, there is no explicit bound for the large-
deviation theorem except for the case d = 1 and b = 1, 2. Our approaches (Theorems 2.3, 2.6 and 2.7) are
the first to establish the explicit bounds in high dimensions and multifrequencies. We show that in the arith-
metic sense, for d = 1 and any b, the bound is arbitrarily close to 1/b3 for shift dynamics and 1/(42~153)
for skew-shift dynamics. For b = 1 and arbitrary d, we show that the bound is arbitrarily close to 1.

Another application we want to mention is the regularity of the integrated density of states (IDS) of
quasiperiodic operators. The log-Hoélder continuity of the integrated density of states is quite general
[Craig and Simon 1983; Bourgain and Klein 2013]. The Holder continuity in one-dimensional settings is
well established [Bourgain 2000; 2005a; Goldstein and Schlag 2001; 2008; Avila and Jitomirskaya 2010;
2011; Hadj Amor 2009; Liu and Yuan 2015¢; Cai et al. 2019; Zhao 2020; Han and Zhang 2020] for both
large and small coupling constants. What we will investigate in this paper is the modulus of continuity
f(x) = e *oexI* Unfortunately, like the large-deviation theorem, except for the case d = 1 and b =1, 2,
there are no explicit bounds of 7 in the region of large coupling constants. Based on the ingredients
from [Bourgain 2000; Schlag 2001] and the large-deviation theorem, the modulus of continuity of the
integrated density of states with explicit estimates will be obtained in Theorem 2.10.

Finally, we mention that the quantitative estimates for Green’s functions developed in this paper have
been used to establish the explicit power law logarithmic bounds of moments for long-range operators
[Liu 2022; Shamis and Sodin 2021].
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Figure 1. Elementary regions in Z2.

2. Main results
Let A be a (operator) matrix on (2(z%) satisfying, for any n # n’ € 74,
1A, n')| < Ke= =71 g 50 ¢;>0,0<6 <1, )

where |n| :=max<j<4 [ni| forn = (n1,n2,...,nq) € 7%. We say that the off-diagonal entries of A are
subexponentially decaying if A satisfies (2). Sometimes, we just say A is subexponentially decaying for
simplicity.
For d = 1, the elementary region of size N centered at O is given by
For d > 2, denote by Q n an elementary region of size N centered at 0, which is one of the regions
On =[-N,NY or Qny=[-N.N¥\{nez?:n;0;0, 1<i <d},

where O0; € {<,>,2} fori =1,2,...,d and at least two [J; are not &.
Denote by ER, the set of all elementary regions of size N centered at 0. Let £y be the set of all
translates of elementary regions with center at 0, namely,

5N1={n+QN:n€Zd,QN652,}.
We call elements in £y elementary regions.
Example 2.1. For d = 2, there are five types of elementary regions, shown in Figure 1.

The width of a subset A C Z¢ is defined by the maximum M € N such that for any n € A there exists
M e Epm such that
neMCA

and
dist(n, A\M) > 1 M.

Example 2.2. In Figure 2, the width of A is determined by the distance between B and C.
A generalized elementary region is defined to be a subset A C 7% of the form
A= R\(R+2),
where z € 79 is arbitrary and R is a rectangle,

R={n=(ni.na.....ng) €% |ny—n} <Mi,....|ng—nly| <My}
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Figure 2. A region with small width.

For A C Zd, we introduce its diameter,

diam(A) = sup |n—n'|.
n,n’ €A
Denote by R all generalized elementary regions with diameter less than or equal to N. Denote by
R% all generalized elementary regions in R ; with width larger than or equal to M. For A C 7% let R
be the restriction operator; i.e., (Rau)(n) = u(n) forn € A, and (Rpu)(n) =0 forn ¢ A.
We say an elementary region A € Ey- is in class G (good) if

I(RAARA) " (n,n")| < =217 for |n—n'| > LN/, 3)

where 0 < ¢z < ((5% —1)/5%)c; and 0 < & < 1. We remark that the upper bound ((5% — 1)/5%)c; arises
from %N’ in (3). See (72) for the explanation. If we change |[n —n’| > %N’ to |n—n'| > v/N'in (3),
we can take any ¢ with 0 < ¢ < (1—20/N"0/2)¢;.

Denote by | x| the largest integer smaller than or equal to x.

Theorem 2.3. Assume A satisfies (2). Let ¢, 0,& € (0,1) and 0 <& < 1. Let Ao € Ex be an elementary
region with the property that for all A C Ao, A € Rivé, with N§ < L < 2N, the Green’s function
(RAARA)_1 satisfies

I(RAARN) M <™. @)

Assume that, for any family F of pairwise disjoint elementary regions in Ao with size M = [N Ig”J,

NS
#{AE]-":AisnotinclassG}fm. (5)
Then, for large N (depending on K, ¢, 0,0, &, ¢1 and the lower bound of c¢3),
— — _N—? _n’l0
(Rg, ARz ) (n.n")| < e NI forjn —n/| = N, (6)

where ¥ = ¥ (0,0,&,¢) > 0.
Here are several comments about Theorem 2.3.

Remark 2.4. (1) For d =1 and ¢ = 1, a similar statement was proved in [Bourgain 2002]. For d = 2
and 6 = 1, a similar statement was proved in [Bourgain et al. 2002] for the particular case where A is
given by the discrete Laplacian.
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(2) The statement in Theorem 2.3 is a robust approach to deal with the spectral theory for quasiperiodic
operators and also the construction of quasiperiodic solutions for nonlinear Schrodinger/wave equations.
See [Bourgain and Wang 2004; 2008; Bourgain 2002; Bourgain et al. 2001; 2002] for applications. Some
particular cases of Theorem 2.3 have been used as ingredients to construct quasiperiodic solutions for
PDEs and have been stated in [Bourgain and Wang 2004; 2008; Wang 2016a; 2016b; 2019a] without
detailed proof. There are no explicit bound estimates in their arguments either.

(3) In applications, ¢ is chosen to be arbitrarily close to 1, namely ¢ = 1 — & with arbitrarily small ¢ > 0.
Then the upper bound in (5) equals N 1~§7¢. Theorem 2.3 says that the “goodness” of Green’s functions
at small size N will ensure the “goodness” of Green’s functions at larger size N under the following
two conditions:

e The number of bad Green’s functions of size N¢ in [-N, N1 is less than N !1~§7¢ (referred to as the
sublinear bound).

e The Green’s functions cannot be “super bad” in the sense that they are controlled by (4). The upper
bound L’ with o < 1 is referred to as the subexponential bound.

Letb:Zf;lb,-,where b; e N. Let x = (x1, x2,...,X}), where x; eTbi = (R/Z)b", i=1,2,....k.
For any x eTland 1 <i <k, let

X; = (X1, X1, X1 -, X)) e Tobi
For any y € T and X  T91%%2 denote the y-section of X by
X(y):={z eT?%: (y,z) € X}.

Write Leb(S) for the Lebesgue measure.

Assume each element of the operator A is a function on T, Sometimes, we indicate the depen-
dence and denote by the element A(x;n,n’). Assume every element A(z;n,n’) is analytic in the strip
{z € Cl:|3z| <p}, p> 0, and satisfies, for any n,n’ € Z4 and x € T2,

1AGen,n)| < Ke= =" K50 ¢, >0 0<5<1. (7)

Assume there exists K; > 1 such that for any x € T? and z € {z € C? : |3z| < p}, with ||x —z|| <
o—(og(In|+n’|+2)) K1

|A(x;n.n")— A(z:n.n")| < K|x —z|”, ®)
where ||z|| = dist(z, Z?).

Example 2.5. If A satisfies (7) and, for any n,n’ € Zd, A(x;n,n’) is a trigonometric polynomial of
degree at most e1oe(nl+1n'1+2)%1 hen (8) holds.

We say an elementary region A € Ey is in class SGy (strongly good with size N) if
I(RAARA) ™ <™, )

[(RAARA) " (n,n")| < =217 for |n—n'| > 4N, (10)
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where 0 < ¢; < ((5° —1)/5%)c1 and 0 < 0 <& < 1. When there is no confusion, we drop the dependence
of N from the notation SGy .

Theorem 2.6. Assume A satisfies (7) and (8). Fix 0,6,6,¢ € (0,1) and u € (1 —-46,1), 0 <a&. Suppose
R C [—N3, N3]? has width at least N». For x € T?, define Br(x) as

Br(x) ={n € R: there exists QnN, € 52,1 such thatn + Q N, ¢ SGn, }.

Assume that, for any x € Tb,
#Br(x) < L'79. (11)

Assume that there exists a subset Xy, C T? such that

sup Leb(Xy,(x]) < e V2, (12)

lfiﬁk,xi_'ETFb_bi
and, for any Q N, € 52,2, X ¢ Xn, and n € R, the region n + Qy, is in class SGy,. Let
Xr(x) = {x € T” 1 |(RRAG)RR) ! | = 2.
Suppose N3 < eNll/(ZKl), Ny > N12/§ and L > N2(2d+b+2)/(”_1+8). Then there exists

No = No(K1.K,c1,¢2,6,0,8,9,p, 1)

(depending on the lower bound of c3) such that, for any Ny > Noandi =1,2,...,k,

_(Lu—1+8/N22d+b+2)l/bi

sup  Leb(Xr(x])) <e (13)
x;eThbi
Let f be a function from 74 xTb to TP. Assume, for any my,my, ..., my ez? andny,na,...,ng eZd,
f(my+ny,my+na,....mg+ng,x)= f(my,ma,...,mg, f(n1,n2,...,04,Xx)).

Sometimes, we write down f™(x) for f(n, x) for convenience, where n € Z% and x € T?. We say A is a
Toeplitz (operator) matrix on £2(Z%) with respect to f if

AGcn+k.n’ +k)=A(f*(x):n,n') (14)

for any n € 7%, n’ € 7% and k € Z%. We note that A is not necessarily self-adjoint.
We say the Green’s function of an operator A(x) satisfies Property P with parameters (u, ¢, cp) at
size N if the following statement is true: there exists a subset Xy C T? such that

sup Leb(Xn(x;7)) < e_N't,

1§i§k,xi_'ETb_bi
and, for any x ¢ Xy mod Z? and Qy € &9,
I(Roy A(X)Roy) | <M,
|(Roy AR ) (xsn,n)| < e 21" for n—n'| = LN
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Theorem 2.7. Assume A(x) satisfies (7), (8) and (14), and
O<cz<(1—5_&)c1, I-§<o<a6<1, §>1>0, and 0<u<o.

Let ¢ = % min{1/ Ky, 6}. Fix any sufficiently small € > 0. There exists a large constant C depending on
all parameters such that the following statements are true. Let Ny be sufficiently large, Ny € [N 1C eV 0 /2]
and N3 € [N2C eV lc]. Assume that the Green’s function satisfies Property P with parameters (1, ¢, c2) at
sizes N1 and N;. Assume, for any L € [NZ‘?_‘, N3] and any x € T?,

#nez%:n|<L,f(n.x)e Xy, modZb}y < L178, (15)
Then there exists X n, C T such that
o— i 2 [ —¢
sup Leb(XN3(xl—')) < e—N3( 1)/b; 8+68%/b ’ (16)
lsigk,xi“ev”*”i
and, for any x ¢ Xn, and Q N, € 51(3,3,
IRy, A(X)Rg )~ < ™3, (17)
and, for |n —n'| > %N3,

- &
(Roy, AR y,) ™ (xin,n')| < e=(©72N1 =Ny ) n=n'l” (18)
where 11 = 91(0, 1, c) and ¥, = 92(0,0,0, &).
Our theorems work for Toeplitz matrices with low-complexity interactions. Let U be an operator on
02(7%) satisfying ~
\U(n,n')| < Ke~€1ln=n'%,
Given m € 7¢, define the operator U™ by
U™n,ny=Um+n.m+n'), nez?, n ez?.
We say U has low complexity if there exists 0 < a < 1 such that, for any N > 1,

#HRo UMRgy :meZ%, Qn ey} < KeM" (19)

For any m € Zd, let
A" (xin,n') = A(x;n,n’) +U™(n,n"). (20)

We say that the Green’s function of an operator A(x) satisfies Property P with parameters (1, , ¢2) at
size N if the following statement is true: there exists a set Xy C T? such that

sup Leb(Xy (x]) <e N,

1<i<k,x;eT’~bi
and, for any x ¢ Xy mod Zb, m e Zd, and Oy € 8]({,,
I(Roy A" (x)Roy) "' <M,

(Roy fmeQN)_l(x;n,n’)| < e—c2ln=n'1% for |n—n'| > LN.
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Theorem 2.8. Assume A(x) satisfies (7), (8) and (14), U has low complexity,

O<c2<(1—5_‘~7)c1, l-6<o0<6=<l, §>1>0, O<u<a,
and

N El PO @1)
a_imiln T E .

Let A™ be given by (20) and ¢ = % min{l/K1,6}. Fix any sufficiently small € > 0. Then there exists a large
constant C depending on all parameters such that the following statements are true. Let N1 be sufficiently
large, Ny € [N 1C eV 0 /2] and N3 € [N2C ,eN1). Assume the Green’s function satisfies Property P with
parameters (|4, £, c3) at sizes Ny and N,. Assume, for any L € [Nég_‘, N3] and any x € T,

#{n ez?: |n| <L, f(n,x) € Xn, mode} <L'79,

Then there exists a subset X n, C T? such that
- N (o—1)/b; 8482 /b;—&
sup Leb(Xn,(x]) <e™ N3 ' "

1<i<k,x;eT’~bi
and, for any x ¢ Xn,, m € 7% and On; € 52,3,

I(Roy, A" (x)Ro ) ' < ™3,

and, for |n —n'| > %Ng,

- I .
|(RQN3 AmRQN3)_1(x; n, n,)| < e~ (€2—=N, LN ") n—n'|
where 01 = 01(0, i, ¢) and > = 95(7, 0,6, €).

Remark 2.9. (1) Theorem 2.7 improves the parameters from (i, £, ¢2) to

o—1 82 9 9
(O', b—i§+b_i_8’C2_N1 1—N3 2).
Theorem 2.7 gives us opportunities to combine perturbative approaches with nonperturbative approaches.
After establishing Property P for initial scales by nonperturbative methods, we can adapt the parameters
to establish Property P with explicit bounds for larger scales. See Theorems 3.4, 3.5 and 3.6, and
Corollaries 3.8, 3.9 and 3.10 for examples.

(2) Roughly speaking Theorem 2.7 says that under the assumption on the sublinear bound, the large-
deviation theorem at sizes N = Nj and N = N, will ensure the large-deviation theorem at size N = N3.

We are going to discuss the modulus of continuity of the integrated density of states (IDS). In order to
make it as general as possible, we do not require the existence of the integrated density of states first. Let
E1 < E5 and define

k(x, E1, E2) =limsup

v —(2N n 1)daf#{eig_z;envallues of Ri_y nj¢ AX)R_y yje in [ET, E2]}. (22)
—00
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Fix x € T?. Assume for any measurable set S C T? we have

lim sup #{neZd:|n|§N,f(n1,n2,...,nd,x)eS}fLeb(S). (23)

N—oo (2N +1)4
For an operator A(x) on £2(Z?), denote by the energy-dependent Green’s functions
GA(E,x) = (RA(A(x) = E)Rp) ™. (24)

Instead of G (E, x), we will write Gp, GA(E), or G (x) when there is no ambiguity. We will write
Ga(n,n'), GA(E;n,n"), Ga(x;n,n"), or Gp(E, x;n,n’) for the element of matrices.

Theorem 2.10. Assume A(x) is a Toeplitz (operator) matrix on £2(Z%) with respect to f in the sense
of (14). Let £ € (0,1) and 0 < 0 < & < 1. Assume, for any E € R, there exists a set Xy C T? such that

Leb(Xy) < e N°
and, for any x ¢ Xy and any Qn € 9,
IGoy (E.x)|| <™.
|Goy (E,x;n,n')| <e " for in—n'| > 15N,
where ¢ > 0. Assume (23) holds for some x¢ € T, Then, for any € > 0, we have
lk(xo, E1, E2)| < e—IIOgIEl—E2IIZ/“_8,
provided that | E1 — E3| is sufficiently small.

The rest of this paper is organized as follows. Except for some statements in applications (Section 3),
this paper is entirely self-contained. We will introduce many applications to quasiperiodic operators in
Section 3. Sections 4, 5, 6, 7 are devoted to prove Theorems 2.3, 2.6, 2.7, 2.8 and 2.10. We will introduce
the discrepancy for semialgebraic sets in Section 8. In Section 9, we will give the proof for all the results
in Section 3.

3. Applications
Let S be a Toeplitz (operator) matrix on £2(Z%) with respect to f, namely,
S(xin+k,n' +k)=S(f*x):n.n) (25)

for any n € Zd, n' €79 and k € 79. Assume every element S(z;n,n’), n,n’ € Zd, is analytic in a strip
{z :|3z| < p} with p > 0 and satisfies, for any x € R and n,n’ € 79,

|S(x;n,n)| < Ke~ctln=n'l g 0, c; > 0. (26)

Assume that there exists K; > 1 such that, for any x € T? and z € {z € C? : |3z] < p} with ||x —z|| <
o~ (log(In|+In’|+2))K1

|S(x;n,n")y—S(z;n,n")| < K|x—z|. 27)
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Assume, for any N > 1, n,n’ € Z% with |n| < N and |n’| < N, there exists a trigonometric polynomial
S(x;n,n’) of degree less than (o2 M*1 gch that

sup |S(x;n,n')—§(x;n,n')|fKe_Nz. (28)

x€Tb
Define a family of operators H(x) on £2(Z%):
H(x)=2A"'S +v(f(n,x)nn. (29)
where v is an analytic function on T®.
In this section, we always assume
* v is nonconstant,
e f is a frequency shift or skew-shift, which is defined explicitly in each subsection,

o except for in Section 3F, S is a Toeplitz (operator) matrix on £2(Z%) with respect to f and satisfies
(25)—(28).

Example 3.1. « If S is a long-range operator, namely, S does not depend on x and
S(n,n')y < Ke=ctl="l -y y' e 79,

then (26), (27) and (28) hold.

o Let ¢y (x), k € Z, be a trigonometric polynomial on T? of degree less than e (log(1 [k 1 satisfying

sup |¢ (x)] < Ke™c1lkl,
x€eTb
Let

Sx:n,n")y =gpp(f(n,%) + ¢w—n(f(, x)).
Then (26), (27) and (28) hold.

Remark 3.2. For d > 2, our setting (25)—(28) is the first to allow every entry of S to depend on x, which
goes beyond the long-range operators. For d = 1, Bourgain [2002] studied the case in Example 3.1 under
the assumption that ¢ (x) is a trigonometric polynomial of degree at most N €.

Remark 3.3. In the applications, all potentials are assumed to be analytic. It is possible to investigate
potentials in the Gevrey class by combining approaches in the present paper with [Klein 2005; 2014].

We will apply Theorems 2.3, 2.6, 2.7 and 2.10 to operators
A(x) = H(x) = 27'S + v(f (1. X)8nn.

In this section, the Green’s functions always depend on energy E. See (24).
The IDS appearing in applications always exists, namely, the limit

k(x,E)= lim

1
——#ei 1 f R;_ AX)R;_ ller than E'},
N—>oo (2N + 1)d {elgenva ues o [-N,N14 (x) [-N,N]e smaller than }

converges to k(E) for almost every x. We write k(E) for the IDS when it exists.
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For the large-deviation theorem, S is not necessarily self-adjoint and v is not necessarily real-valued.
However, to establish the pure point spectrum property or regularity of the IDS, self-adjointness of H is
necessary because of the energy elimination. In the following, we always assume that S is self-adjoint
and v is a real analytic function if we study the pure point spectrum property or regularity of the IDS.

3A. Shifts: d = 1, arbitrary b. Denote by A the discrete Laplacian on £2(Z), that is, for {u(n)} € £2(Z),
(Auw)(m)= > u(n).

[n—n’|=1
We say that w = (w1, w2, ..., wp) satisfies Diophantine condition DC(k, ) if
lkwl| > lij,k e 7:\{(0,0,...,0)}. (30)

By the Dirichlet principle, one has « > b. When « > b, | J,. o DC(k, 7) has full Lebesgue measure.
We say that w € R satisfies strong Diophantine conditions if there exist ¥ > 1 and t > 0 such that

T
kol > —————— forallk e N. 31
I w”_k(l—i—logk)" orall k (31)

It is easy to see that almost every w satisfies strong Diophantine conditions.
Let
fM(x)=x+nw=(x1 +nwy,x2 +nws,...,xp+nwp) mod 7?,

where x = (x1,X2,...,Xp) eTb, neZand w = (w1, wy,...,wp) € RY.
Let H(x) on £%(Z) be given by

Hx)=A4+v(f"(x))=A+v(x1+nwi, x2+nwa, ..., xp +nwp)nn, (32)
where n,n’ € Z.
Let o
Af ()= ] AP+ jo) = AP (x + (k = Dw)AF (x + (k —2)w) - A" (x) (33)
j=k—1
and
AE, () = (A (x —kw))™! (34)
for k > 1, where
E . E—U(X) —1
A% (x) = ( 1 0) .

Alf is called the (k-step) transfer matrix. The Lyapunov exponent is given by

L(E) = lim L / In [ AE (x)] dx. (35)
k—oo k Th

Theorem 3.4. Let w € DC(k,t) and 1 — 1/(bk) < 0 < 1. Let H(x) be given by (32). Assume the
Lyapunov exponent L(E) is positive. Then, for any ¢ > 0 and large N, there exists a subset Xy C T
such that

_N@=1D/bZi)+1/(03k2)—¢
Leb(Xy) <e VN ,
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and, for any x ¢ X, we have

IGn.N(E, x)|| <M,

—(L(E)—¢)In—n’|

|GIN,—N1(E.x;n,n')| <e for|n—n'| = {:N.

Theorem 3.5. Let w € DC(k, 1) and H(x) be given by (32). Suppose the Lyapunov exponent L(E) is
positive for every E in an interval 1. Then, for any € > 0,
. 1/(h312)—e

lk(E1) —k(E»)| Se—(log‘\Elezw) ,
provided that |E1 — E»| is sufficiently small and E1, E5 € 1.
Theorem 3.6. Let H(x) be given by (32). Then the following statement is true for almost every @. Assume
the Lyapunov exponent L(E) is positive for every E in an interval 1. Then, for any ¢ > 0,
(1 . )1 /b3—¢

|k(E1) —k(E2)| < e VETEI=El

provided that | E1 — E3| is sufficiently small and E1, E5 € 1.

Remark 3.7. Under the same assumptions, the large-deviation theorem and the modulus of continuity of
the IDS were shown in [Goldstein and Schlag 2001] (also see [Bourgain 2005a]). When b = 2, a better
bound b = % was obtained in [Goldstein and Schlag 2001]. However, there are no explicit bounds in
[Goldstein and Schlag 2001; Bourgain 2005a] when b > 3.

Putting a coupling constant A~ ! in front of the Laplacian A, the operator given by (32) becomes
Hx)=A""A+v(x +nw)dpn. (36)

For large A only depending on the potential v, the Lyapunov exponent L(FE) is positive for every E
[Bourgain 2005b]. Therefore, we have the following three corollaries.

Corollary 3.8. Assume w € DC(k,t) and 1 —1/(bk) <o < 1. Let H(x) be given by (36). Then there
exists Ao = Ao(v) such that, for any ¢ > 0, A > Ao and large N, there exists Xy C T? such that

—No—1/B2)+1/(b3k2)—¢

Leb(Xy) <e , (37)
and, for any x ¢ Xy, we have

IGn.N(E, x)|| <M,

—(L(E)—e)ln—n’| for|n—n'| > %N.

Corollary 3.9. Let w € DC(k, t) and H(x) be given by (36). Then there exists Lo = Ao(v) such that, for
any ¢ > 0 and A > Ay,

|Gin,—N1(E.x:n,n')| <e

)1/(b3;<2)—s

k(Ev) — k(Ea)| < ¢~ (e |

provided that | E1 — E3| is sufficiently small.
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Corollary 3.10. Let H(x) be given by (36). Then there exists Ao = Ag(v) such that the following statement
is true for almost every w. For any ¢ > 0 and A > Ay,

. 1/b3—¢
|k(E1)—k(E2)| fe_(10g|El—Ez|) ,
provided that | E1 — E3| is sufficiently small.
Let H(x) on £%(Z) be given by

H(x) =27'S +u(f"(x) = 27'S + v(x + no)8un, (38)
where x,w € RO
Theorem 3.11. Let H(x) be given by (38). Assume w € DC(x, 1) and 1 —1/(bk) < o < 1. Then, for any

& > 0, there exists
Ao = Ao(e. k. T,p,0,7, K, Ky, c1,0)

such that, for any A > Ao and any N, there exists Xy C T? such that

_NOo—1/(b%0)+1/b3k2)—¢
Leb(Xy) <e N ,

and, for any x ¢ Xy, we have
IGn.N(E, )| < e,
|Gn—N1(E,x:n,n")| < el oy | > L.

Theorem 3.12. Assume S is self-adjoint and w € DC(k, t). Let H(x) be given by (38). Then, for any
& > 0, there exists
Ao =Ao(e kT, 0,7, K, Ky,c1,0)
such that, for any A > Ay,
. 1/(b3k?)—e
K(En)—k(En)| < e temten)
provided that | E1 — E3| is sufficiently small.

Theorem 3.13. Assume S is self-adjoint. Let H(x) be given by (38). Then for almost every w € R? the
following is true. For any € > 0, there exists

Ao =Ao(e,w,p, 7, K, K1,c1,0)

such that, for any A > Ay,
. 1/b3—¢
k(B —k(E)| < ¢~ (ermite)

provided that |E1 — E3| is sufficiently small.

Theorem 3.14. Let H(x) be given by (38). Then, for any o > 0, thereis Ag = Ag(0. p, ¥, K, K1,¢c1,v) >0
such that the following statement holds. For any A > Ao and any x €T, there exists Q= Q(x,1,S,v,0)CT?
with Leb(T? \ Q) < o such that, for any w € Q, H(x) satisfies Anderson localization.
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3B. Shifts: b = 1, arbitrary d. Let v be analytic on T. Let
f"(xX)=x+nw=x+njw +nywy +---+ngwg mod7,
where n = (n1,ns,...,ng) € Z% and x € T. Let H(x) on £2(Z%) be given by
H(x) =27'S +v(f"(x)8nn = A7'S +v(x +n1w1 +nawa + -+ +1gwq)8nn'- (39)

Theorem 3.15. Let w € DC(k, t) and H(x) be given by (39). Then, for any & > 0, there exists Ly =
ro(e k. T, p,0,v, K, K1, c1,v) such that, for any A > Ao and any N, there exists Xy C T such that
Leb(Xy) <e™M77 (40)
and, for any x ¢ Xn and any Qn € E%,, we have
1Goy (E.x)|| <",
Gy (E,xin,n)| <e 371 forn—p'| > LN, (41)
Theorem 3.16. Assume S is self-adjoint and w € DC(k, t). Let H(x) be given by (39). Then, for any
& > 0, there exists
Ao = Aok, 7,0, 7. K, K1,¢1,0)
such that, for any A > Ay,
—(log —1L_)'"¢
K(E) —k(Ey)| < Pemten)
provided that | E1 — E3| is sufficiently small.

Theorem 3.17. Assume S is self-adjoint. Let H(x) be given by (39). Then, for any o > 0, there is
Ao =Ao(o, p, Y, K, K1, c1,v) > 0 such that the following statement holds. For any A > Ao and any x € T,
there exists Q = Q(x, A, S,v,0) C T¢ with Leb(T? \ Q) < o such that, for any w € Q, H(x) satisfies
Anderson localization.

Remark 3.18. Theorem 3.17 is a generalization of [Bourgain 2005a, Theorem 2 p. 138] and the main
result in [Chulaevsky and Dinaburg 1993].
3C. Skew-shifts: d = 1, arbitrary b. Let f: T? — T? be the skew-shift defined as
fx1,x2,.00,xp) = (X1 + @, X2 + X1, ..., Xp + Xp—1). (42)
Let H(x) on £%(Z) be given by
H(x) = 2A71S() +v(f" (x)dnn'. 43)
where v is analytic on T?.

Theorem 3.19. Let H(x) be given by (43). Assume o € DC(k, t) and 1 —1/(20~bi) < o < 1. Then, for
any ¢ > 0, there exists Aoy = Ao(e,k, 7, p,0,y, K, K1, 1, V) such that, for any A > Ag and any N, there
exists Xy C T such that

o—1 + 1 _e
Leb(XN) < e_N 2b—1p2, T 4b—1p3,2



2076 WENCAI LIU

and for any x ¢ X, we have
IGn.N(E, )| < eV,
|Gpy,—ny(Exinn)| < e 21 forjn—n'| = LN,

Remark 3.20. Under the stronger assumption that w € DC(2, t), v and each element of S are nonconstant
trigonometric polynomials, the large-deviation theorem appearing in Theorem 3.19 without explicit bounds
was proved for d = 2 [Bourgain 2005a] and arbitrary d [Shi and Yuan 2020].

Theorem 3.21. Assume S is self-adjoint and w € DC(k, t). Let H(x) be given by (43). Then, for any
& > 0, there exists
Ao =Lo(e k7, p, ¥, K, K1,c1,0)
such that, for any A > Ag, we have
. 1/4b=1p3,2)—¢
k(E1) —k(Ey)| < (o mrtEs) ,
provided that |E1 — E3| is sufficiently small.

Corollary 3.22. Assume S is self-adjoint. Let H(x) be given by (43). Then, for almost every w € R the
following is true. For any & > 0, there exists Ao = Ao(e, w, p, y, K, K1, c1, V) such that, for any A > Ay,

1/4b=1p3)—¢

k(En)—k(Ep)| < ™ (o2 mtn) ,
provided that |E1 — E3| is sufficiently small.

Assume S is taken to be the particular case S = A. Let b = 2. In this case, by Corollary 3.22,
1/(40-1p3) = 3% A bound 21—4 was shown by Bourgain, Goldstein and Schlag [Bourgain et al. 2001]. By
combining the arguments in that work with the proof of Corollary 3.22, we are able to improve the bound.

Corollary 3.23. Assume S is self-adjoint. Let b = 2 and H (x) be given by (43). Then, for almost every
€ R the following is true. For any € > 0, there exists Ao = Ag(e, w, p, ¥, K, K1, c1, v) such that, for any
A > Ao,

1/18—¢

k(B —k(Ey)| < temten)
provided that |E1 — E3| is sufficiently small.
3D. Skew-shifts: d = b = 1. Let P}, be the projection on the b-th coordinate of T, namely,
Pp(x1,x2,...,xp) = Xp,
where (X1, X2, ...,xp) € R2. Define H(x) on £2(Z),
H(x) =27 A+ v(Py(f" ())nn. (44)

where v is analytic on T and f is the skew-shift on T?.
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Theorem 3.24. Let H(x) be given by (44). Assume o is strong Diophantine and 1 —1/(2071b) <o < 1.
Then there exists Ao = Ao(v) such that for any & > 0, X > Ag and large N, there exists Xy C T? such that

_N=D/207 4174071

Leb(Xy) <e ,
and for any x ¢ X, we have
IGn.N(E, )| < e,
(Giw-wi(E.xim ) =729 for in—n'| = J5N.
eorem 3.25. Let w be strong Diophantine an. x) be given by . Then there exists Ao = Ao (v
Th 3.25. L b Diophanti d H(x) be given by (44). Then th ists Ao = A

such that, for any € > 0 and A > Ao,
)1/4’7—1—5

“(log -1
k() —k(Ep)| < e~ Vemtm) @s)
provided that |E1 — E»| is sufficiently small.

Remark 3.26. ¢« Comparing to Theorems 3.19 and 3.21, there is no dimension (b3) loss in the bounds of
Theorems 3.24 and 3.25. This is because the potential v is defined on T.

e The large-deviation theorem and the modulus of continuity of Lyapunov exponents (the IDS) without
explicit bounds were obtained in [Tao 2019a].

e Let b = 2. The constant in (45) becomes 1/ (4b—1) = %. It is possible to improve the bound from %
to % by incorporating arguments in [Bourgain et al. 2001]. A weaker result was proved in [Tao 2019b],
where a constant 3—10 was obtained.

3E. Shifts: d = b = 2. Assume v is analytic on T? = (R/Z)% Let
F(x) = (x1 +n1w1, X2 + n2wz) mod 72,
where n = (n1,n3) € 7, o = (w1, wz) € R? and x = (x1, x2) € T2 Let H(x) on £?(Z?) be given by
H(x) =A71S(x) + v(f™(x))8nn = A7 S(x1, %2) + v(x1 + 1101, X2 +1202)8pn. (46)

Theorem 3.27. Let H(x) be given by (46). Suppose v is nonconstant on any line segment contained
in [0,1)2, w; € DC(k, v) and wy € DC(k, 7) with 1 <k < % Assume

3K—%<0<1.

Then there exists Ao = Ag(e, &, T, p,0,y, K, K1, c1,v) such that for any A > Ao and any N, there exists
Xy C T2 such that, for any line segment L C [0, 1)2,

_N(—=1)(13/4=3K)+(13/4—3K)%>—¢

Leb(XyNL)<e , 47
and, forany x ¢ Xy and QN € 52,, we have
1Goy (E.x)| <",

1
|Goy (E,x;n,n')| < e 2¢1ln—n’| for|n—n'| > %N.
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Theorem 3.28. Assume S is self-adjoint, v is nonconstant on any line segment contained in [0, 1)?,
w1 € DC(x, 1) and wy € DC(k, 7)) with 1 <k < % Let H(x) be given by (46). Then, for any ¢, there
exists Ag = Ao(e,k, T, p, 9, K, K1, c1,v) such that, for any A > Ay,

. (13/4—3i)2—¢
k(B —k(Eo)| < ¢~ (¢ 731 ,
provided that |E1 — E3| is sufficiently small.

Corollary 3.29. Assume S is self-adjoint and v is nonconstant on any line segments contained in [0, 1)2
Let H(x) be given by (46). Then, for almost every w € R?, the following is true. For any & > 0, there
exists Ao = Ao(e, w, p, ¥, K, K1, c1,v) such that, for any A > Ay,

1/16—¢
k(E1) — k(Ey)| < & (e mrs)

provided that |E1 — E»| is sufficiently small.

Remark 3.30. Theorems 3.27 and 3.28 follow from the arguments in [Bourgain and Kachkovskiy 2019].
Our quantitative approaches developed in the paper allow us to obtain the explicit bounds.

3F. Subexponentially decaying matrices with interactions. Our applications can be wider. Here are
several examples. Instead of (26), assume
|S(x;n,n/)|§Ke_c””_”/l&, 0<6 <1, c; >0, (48)

for any n,n’ € 7¢.
Assume for any N > 1, n,n’ € Z4, with |n| < N and |n’| < N, there exists a trigonometric polynomial
S(x;n,n’) of degree less than eV such that

sup |S(x;n,n/)—§(x;n,n/)|fKe_Nz. (49)

x€Tb

In this subsection, assume S satisfies (27), (48) and (49).
Let U be a diagonal matrix on £2(Z4) satisfying

Ul < K.
Given m € 74, define the diagonal matrix U™ on £2(Z%) by
U™(n)=U(m+n), nez%.
We say U has low complexity if there exists 0 < a < 1 such that, for any N > 1,

#HRo N U™()SpwRoy :meZ%, Qn €Y} < KeN', (50)
Let
Hx)=Hx)+A'U+U =271 S +U) + )+ v(f(1,%))8nn- (51)
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For any m € 79, let
H™(x) = Hx) + 2710 + 0" =271 (S + U™) + (0" +0(f (11, 5))Snn. (52)
Denote by G™ the Green’s function of H™.

Theorem 3.31. Assume « is strong Diophantine, and U and U have low complexity in the sense of (19)
and (50) respectively. Assume

) 1< -5 J <1 10—1+1
booan a_4K1’b2 53 ("

Let H(x) and H™(x) be given by (38) and (52) respectively. Then, for any & > 0, there exists
Ao =Ao(e,a, p,c1,0,0,y, K, K1,¢1,v)

such that, for any X > Ao and any N, there exists Xy C T? such that

_N©=1)/b%2+1/p3—¢
Leb(Xy) <e ™ :

and, for any x ¢ Xy and m € Z, we have
1GE ) (. 2) | < €N,
|G[WiN,N](E’X;”’”/N <e 2" forn—n'| > 5N,
where ¢ = (5 —1)/5°.

Theorem 3.32. Assume @ € DC(k, 1), and U and U have low complexity. Assume 0 < o <6 <1 and
a< % min{l/Ky,0}. Let H(x) and H™ (x) be given by (39) and (52) respectively. Then, for any ¢ > 0,
there exists

Ao =Ao(e,k,7,0,0,p,9, K, Ky, c1,v)
such that, for any A > Ao and any N, there exists Xy C T such that
Leb(Xy) < e N (53)
and, for any x ¢ X, any m € 7% and any Oy € £, we have
1GG, (E.x)] <",
GG (E.xin.n')| < e8I forln—n'| > 5N, (54)
where ¢ = (5% —1)/5°.

Theorem 3.33. Assume S is self-adjoint, w € DC(k, 1) and a < %min{l/Kl,G}. Let H(x) be given
by (39). Then, for any € > 0, there exists

Ao =Ao(e,k,7,6,p0,9, K, K1,c1,0)
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such that, for any A > Ay,

(B ~k(Ep)| < o~z
provided that |E1 — E3| is sufficiently small.

Using Theorem 2.8 instead of Theorem 2.7, the proofs of Theorems 3.31, 3.32 and 3.33 follow from
that of Theorems 3.11, 3.15 and 3.16 respectively. In order to avoid repetitions, we skip the details.

4. Multiscale analysis

4A. Exhaustion construction for an elementary region. For m € 7% and A C 72, define the distance by

dist(m, A) = in:f\ |m —n|.
ne

Fix an elementary region A € . Let x € A. Given M < %ON , we will construct the exhaustion at x
with width M. Set
So(x) = (x + [-2M.2M]H) N A

Sio= |J o+4Mmam?nA, 1<) <,
y€S;—1(x)

where [ is the minimum such that §l~(x) = A. We set S_1(x) = & for convenience.

When 5,_1(x) is very close to the boundary of A, /fj (x) = §j (x)\§,-_1(x) and §j may have
width less than M. However, there are at most finitely many j with 0 < j < ] , say C(d), such that
/I (x)= S; Y (x)\§J 1(x) has width less than M, where C(d) is a constant depending on d.

We will delete j if A (x) = S; ¥ (x)\S i—1(x) has small width and then rearrange the exhaustion.
Here are the details. Let jo € {0, 1,. - 1} be the smallest poss1ble number such that both S; o (%)
and S; (x)\S]O(x) have width at least M. Otherwise, set jo = I. Let So(x) = § ]O(x) Let j; €
{jo,jo+1,. - 1} be the smallest poss1b1e number such that both S]1 (x)\S]O (x) and S; ()C)\S]l (x)
have width at least M. Otherwise, set j; = I. Let Sy (x)= S; i1 (). Suppose we have defined jo, j1-- , Jk
and corresponding S1(x), S2(x),... S (x) Let jx+1 € {jk, jk +1,. — 1} be the smallest pos51ble
number such that S]k+, (x)\S]k (x) and S; ()c)\S]kJrl (x) have width at least M. Otherwise, set ]k+1 =1.
Let Sg41(x) = Sijrl (x). Let [ be such that S;(x) = A. By our constructions, [ — Cd)<l< I.

For example, assume x is located exactly at the uppermost left corner. In Figure 3, Ag(x) =
Sk (x)\Sk_; (x) and §I~(x) = §i(x)\§i_1(x) are the only two annuli which have width less than M.
Therefore,

o] =]—

¢ Si(x)=S;(x)forj =0,1,2,..., k=2,

. Sj(x)=§j+1(x) forj=k—-1,k-2,...,1-3,
° Si_2(x) = Sj(x).
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So(x)

T Ai(x)

Figure 3. Exhaustion construction.

For any elementary region A, x € A and M, we call {S; (x)}j-=0 the exhaustion of A at x with width M.
We call 4;(x) =S;(x)\S;—1(x) the j-th annulus. Forany y € S; (x)\S;—1(x), j =1,2,...,/, one has
4(j =DM <|y—x|<4jM + C(d)M. (55)

By our constructions, any {4;(x)} has width at least M. Namely, for any n € A;(x), there exists
W(n) € Epr such that
neWm)CA(x)
and
dist(n, A; (x)\W(n)) > + M.

4B. Resolvent identities. For simplicity, assume K = 1, namely, for any n # n’,

1A, )| <e 1= 0 <5 <1, ¢ >0, (56)

forany n,n’ € 74. For any A C Zd, let Ax = Ry AR, where Ry is the restriction on A, and the Green’s
function is given by
Ga = (RAARA) T,

provided Ry AR is invertible. Denote by G (n,n’) its elements, n,n’ € A C Z4.
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Assume A; and A, are two disjoint subsets of 74, Namely, A1, Az C 79 and A1NA, =a. Let
A = A1 UA>. Suppose that RA ARA and Rp; ARp;, i = 1,2, are invertible. Then
GA=GA, +Gp,—(GA, +Gp) (AN —Ar, — AN,)GA.
If me Ay and n € A, we have

GA(m.n)| <|Ga,(m.m)xa, )+ Y e GA ) |GA@ 0)]. (5T)
n'eA,n"eh,
If n € Ap and m € A, we have

|Ga(m.n)| < |Ga,(m,n)|ya,(n)+ Z p—ciln’=n

neAN,n”€N,

//|6

|GA(m,n)||Gp, (0", n)|. (58)

Lemma 4.1 (Schur test). Suppose A = A;; is a matrix. Then

1= (s0p 3 141) )

The following lemma is a generalization of Lemma 3.2 in [Jitomirskaya et al. 2020b].

Lemma 4.2. Let ¢y € [C1,c1], 0 <6 and My < M1 < N. Assume A is a subset of 79 with diam(A) <
2N + 1. Suppose that, for any n € A, there exists some W = W(n) € Epp with Mg < M < M such that
neW CA, distin, A\W) > 1M and

|Gwanll <2eM”. (59)
|Gwny(n,n")| < 2e—c2ln—n'l° for|n—n'| > %M. (60)
We assume further that My is large enough so that
o0
sup sup  2eM7 (@M + 1)4 2/ 1ODMTN (A 40 4 1)d UM <10 (61)

Mo=M <M, c2€[éy,c1] j=0

Then
IGAll <4C2M; + 1)ZeMT.

Proof. Under the assumption of (61), it is easy to check that for any M with My < M < M, and any
neA,

2(2M + l)deMa'f'(Cz/lO&)M& Z e—cz\n—n2|& < % (62)
np€eA
lno—n|=M/2

By (59) and (60), one has

|Gwny (1, 1] < 2M°+(2/109MT g=ealn=n'l? (63)

For each n € A, applying (57) with A1 = W(n), one has

GA(m. 1) < |Gy . n)xwey@)+ Y e M2 Gy (n.n1)[|G A (n2.1")].

n1eWmn)
nyeA\W(n)
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It is easy to see, for 0 <o <1,
|x +»17 < [x|7 + || (64)

By (63) and the fact that |W(n)| < (2M + 1)¢, one has

|Ga(n.n")| < |Gy (n.n") xweny(n')
+2 Z oM +(c2/10°9)M? ,—ca|n—n1|” ,—ciln1—n2|” |G A (12, n/)|

n1eW(n)
nyeA\Win)

< |Gwuy (. n") | xwmy(n")
+ 2(2M + l)deMU-i-(cz/l()a)M(T Z e—62|n—}12|(7 |GA (n23 I’l,)|

nyeA\W(n)
< |Gwmy(m.n") xwmy(n")

+202M + 1)4M7HENODMT N pmealn=mal? |G (g, n')]. (65)

nyeA
[np—n|=M/2

where the second inequality holds by (64) and the last holds by the assumption dist(n, A\W(n)) > %M .
Summing over n” € A in (65) and noticing (62) yields

sup Z |Ga(n,n')| <202M; +1)%eM7 + 3 sup Z |GA(na,n")). (66)
neA rca n2€A ;o p

Similarly, using (58) instead of (57), one has

sup " |Ga(n' )| <202My + 1)9eMT + 1 sup Y |Ga(n n2)l. (67)
neAn,eA nzeAn,eA
Now the lemma follows from (66), (67) and Lemma 4.1. o

4C. Proof of Theorem 2.3. Choose a constant p with p? € (1,14 & — o). Calculation shows p?0 < 5.
Define inductively M; 11 = | M jp |, My = M. Let yp = c,. Fix an elementary region A€ Em, and
A1 C Ag. For any x € Ay, consider the exhaustion {S ' (x)}j.=0 of A1 at x with width M. Denote by
{Ay (x)} the annuli.
We call the annulus Ay (x) good if, for any y € Ag(x), there exists W(y) € Ep, such that

y € W(y) C Ar(x), dist(y, Ax(x)\W(y)) > 1 Mo,
and, for |[n —n'| > %MO’
|(RwnARw() ™" (n,n')] < e7voln=n'1” (68)

Otherwise, we call the annulus Ay bad.
Fix « > 0, which will be determined later. An elementary region A1 C Ay is called bad if there exists
x € A1 such that the number of bad annuli {Ar (x)} exceeds
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Otherwise, we call A4 good. Let 1 be an arbitrary family of pairwise disjoint bad elementary regions in
Eum, contained in Ag. Since every annulus in {4y} has width at least Mo by our construction, one has
that every bad annulus contains at least one elementary region in £y, without satisfying (68) and hence

NS
#F1 < My (69)

Assume that Kl - 7\0 is a good elementary region in &y, . We will first show that /~\1 is in class G with
slightly smaller yo. Consider the exhaustion {S; (x)} of A1 at x with width Mo. By the assumption, there
are no more than B; bad annuli in this exhaustion. Denote by {A; (x)}§=0 annuli. By putting adjacent
good annuli or bad annuli together, we obtain a new exhaustion

g=J1CJoCJiC---CJg=At. (70)
More precisely, {Js(x)}, s =0,1,2,..., g, satisfies the following rules:
o Jo(x)\Js—1(x) ={4; ()c)}]j:;é for some 75 < t{.
* X c J()(x).
e The annuli 4;(x), j =ts,ts+1,...,1;, are either all good or all bad.
e Take Jg(x) maximal with the above three properties.

Recall that Js(x)\Js—1(x) has width at least My for any s =0, 1,2,..., g. By our construction, if all
annuli in Jg(x)\Js—1(x) are good (bad), then all annuli in Js41(x)\Js(x) are bad (good).
For any n € A1, let k(n) be the number of good annuli between x and n. Namely, for any n € 4;(x),

k(n) = #{A;(x) : A;(x) is a good annulus,0 < ¢ < j}.

Before we start the estimates, let us give several facts, which will be used constantly later in the proof.
By our constructions, Js is a generalized elementary region, s =0, 1, ..., g. By the assumption (4), one
has, forall s =0,1,..., g,

(Rj, ARy )1 <eM7. (71)
Assume

0<c=<(1-59).
If |n —ns| > %M and |[n—nq| < %M, one has

c1|ny —n2|& >ci(|n —n2|5 —n=n1|%) = c|n—ny v (72)

It is clear that, for any ny,n, € Kl,

4M0k(n1) + |n1 —I”l2| > 4M0k(n2) —4M,. (73)

Without loss of generality, assume all the annuli in Jy are bad (the other case is similar).
For any n € Kl, define
I's(n) = max{4 Mok (n) — 10(s + 1) My, 0}.
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By (73), we have, for any n; € Kl and nj, € Kl,
[s(ny) 4 [np —nq| = max{s(nz) —4 My, 0}.
We shall inductively obtain estimates of the form
G gy (x.2)| = Te 70T )
where z € Jg, s =0,1,...,¢.

First step: s = 0. Since all annuli in Jy are bad, one has k(z) = 0 and hence
Fo (Z) =0.
By (71) and (76), one has, for z € Jo(x),

|Gy, (x,2)| < M7 = M7 =v0T§ (),

It implies that (75) holds for

o
To ZeM‘.

Assume (75) holds at s-th step for a proper 7.

(74)

(75)

(76)

(77)

Case 1: All annuli in Jg41\Js are bad. Pick any z € Jg41. Let 711 € Jg and 715 € Js41\Js be such that

Ls(iy) + | —na2| = inf (Ts(n1) + [n1 —n2l).
ny€Js

n2€JS+| \Js

Case 1y: z € Jy4+1\Js. In this case, for any n, € Js41\Js, one has

k(z) =k(nz), TIs(z)=Ts(ny),

since all annuli in Jg41\J are bad.
Applying (57) (A1 = Jg and Ay = Jg41\Js), one has

_ _ o4
Gl (.= Y |Gy (xonple MGy L (na,2)]

nj€Js
n26JS+1 \Js

< Z Tse—yof‘é’(nl)e—yolm—nzl"|GJS+1(n2’2)|

ni€Js
ﬂ2€JS+1\JS

<e IJTS E : e~ Yol§ (1) ,—voln1—n2|”

ni€ls
n2€JS+1 \Js

=@M+ 1)2d€MF Ts  sup o YoTd (n1) ,—yoln1—n2|®

ni€Js
nZEJs—‘,-l \Js

<QM; + I)Zder’ Tse—VO(Fx(ﬁl)Hﬁl—ﬁzD&
< (2M1 + I)ZderT Tse_VO(maX{rs(ﬁz)_“'MO:O})&

< (2M1 + I)ZdeMiT Tse—yo(max{rs(Z)—4M0,0})&,

(78)

(79)
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where the second inequality holds by the induction (75) and yo < c1, the third inequality holds by (71),
the fifth inequality holds by (64), the sixth inequality holds (74), and the last inequality holds by (78).

Case 15: z € J;. In this case, we have, for any ny € Js4+1\Js,
k(nz) = k(2). (30)
Applying (57) (A1 = Jg and Ay = Jg41\Js), one has
Gy (0.2 <G, (x| + Y |Gy (en)le M2 1Gy L (s, 2)|

ni1€Js
n2€JS+1\JS

< Tye VoIV @) 4 Z Tye YoTs () p=volni—n2|” G,y (12, 2)]

ny€Js

nzé./s_;’_l\./s
— G [ _ _ I
S Tse yOFS (Z) + (2M1 _|_ 1)2d€M1 TS Sup e yO(FS(nl)—'—lnl nZD
ni€Js
712€JS+1\J5

= T,e 7T @ 4 (M + 1)24 M7 =0 Es i)+ —iia)®

< Tse—yor;?(z) M+ 1)24eMT Tse—yo(max{Fs(ﬁz)—4Mo,O})5

< Tse—yorf(z) LM + l)zdeM;’ Tse—yo(max{rs(z)—4M0,0})5

<2(2M; + 1)29 M7 Tye=vomax(Ts(2)=4Mo,01) (81)

where the second inequality holds by the induction (75), the third inequality holds by (71) and (64), the
forth inequality holds by (74), and the fifth inequality holds by (80).

Case 2: All the annuli in Jg41\Js are good. By our constructions, Js4+1\Js has width at least M.
Therefore, for any k € Js41\Jy, there exists some W = W(k) € Ep, such thatk e W C A,

dist(k, Jy1-1\Js\W) = 3 Mo, (82)
and

1Gwall <™, (83)
|GW(k)(n1,n2)| < e—)/()|n1—n2|5 for |ny —ny| > %Mo, (84)

where (83) holds by the assumption (4).
Since M| is large enough, one has (61) is satisfied. Applying Lemma 4.2, we have

1G 7\ g, | < 42Mo + 1)9 M7, (85)

We remark that we cannot use the assumption (4) to bound G\, since Js41\Js is not necessary to
be a generalized elementary region. It is worth pointing out that Js41\Js may not be connected.
We will first prove that, for any m,n € Jg41\Js,

G 1y gy lmom)] = b, MM g motmaxim =200 (86)

Assume |m —n| < 2My. (86) holds by (85).
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Assume |m —n| > 2My. Applying (57) with A1 = W(m) and using that |m —n| > 2M,, one has

_ _ o
G < Y el Gy . n)[|GA(n2.n). (87)
npeWw@m)
n2€JS+1\./s\W(m)

Applying (82) with k =m and by (72), one has, for any n; with |ny—m| < 11—0M0 andnj € Jy41\Js\W(m),

c1lny —nz|% = calm—ny|®. (88)
By (83), (84) and (87), we have

_ _ Ilod
Gy p\g, (m.n)| < > e ctIm=m2 | Gy (m, n )Gy Vg, (n2.1)]
n1EW@m).lny—m|<Mqy/10—1
ny€Jg1\Js\Wm)

E —cilni—n2|®
+ e |GW(m)(m,l’l1)| |GJS+1\JS(n29n)|
nyeW@m).lny—m|=Mqy/10
n,2€JS+1\JS\W(m)
M§ ,—cilni—n2|°
= § eroe |G gy i\, (n2,1)]
nyeW@m),lny—m|<Mgqp/10—1
el y 1 \Js\W0m)
§ —c1ln1—n2|%—yolm—n1|°
+ e e |GJS+1\JS(7”!2,I’[)|

nyeEW@m),lny—m|=M¢y/10
n2€JS+1 \Js\W(m)

E : M§ ,—yolm—n2|®
= e 0e |GJS+1\JS(n2’n)|
nyeW(m).in —ml<Mqy/10—1

np€Jg1\Js\W(np) 5
—yolm—nz|
+ >, e [XRRVACING]

nyeW@m),lny—m|=Mgy/10
np€Jg 1 \Js\W(m)

<@M+1D)XME sup eIl Gy (), (89)
n2€J541\Js\W(m)
where the third inequality holds because of (88).
Recall that |m —ny| > %Mo. Iterating (89) until |12 —n| < 2Mj or at most [2%|m —nl‘N’/MgJ +1
times, we have

|GJS+1\JS ()| < eMg(2&|m_n‘5/Mg+1)(2M1 + l)2d(25Im—n|6/Mg+1)e—yo(|m—n|—2Mo)& ||GJS+1\JS I
- MfdM?Mg—f’e_y0(|m—n|—zMo)5 1G s,y i
- Mfde” ME™2 g=yolm—nl—2M0)° 43 0, + 1) MS
- MllodM{’Mg*f’ ¢~ vo(lm=n|—2Mo)° (90)

where the first inequality holds by |m —n| < 2M; and the third inequality holds by (85).

Case 21: z € J;. For this case, following the proof of Case 1, (see (81)), one has

T (x,2)| < 1 e”s—om . ,5'
Gy (x,2)] < 22M; + 1)24 M7 Ty vomax{Ts (2)=4Mo.0}) o
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Case 2;: z € Jg41\Js. Applying (58) (A1 = Js and Ay = Jg4+1\Js), one has

- |G
|G (2 2) = Z Gy i\g, (2, 2)le crlm=na| |Gy (x,01)]

ni€Js
n2€JS+1\Js

<202M; + 1)?2 MU T,
X Z |GJ'+1\J_(n2’Z)|e—61\nl—nzlée—yo(max{f‘s(n1)—4Mo,0})5’

nj€Js
nyeJgi1\Js
o 10dM? MZ~%
<202M; + D) eMi p PO
X sup e—yo(max{|n2—2|—2Mo,0})c~’e—cl \n1—n2|&e—yo(max{l"s(n1)—4M0,0})5’
ni€Js
nZEJsJ,-l\JS
SMllldM‘UMg_aTs sup ¢~ vomax{lni=z1=2Mo,0)7 ,—yo(max{T's (+1)—4Mo,0H)7
ni€Jy
1dMIMZ™% . . (e B s
fMl 1 Mo Tye yo(max{['s(z) IOMO,O})’ 92)

where the second inequality holds by (91), the third inequality holds by (86), the fourth inequality holds
by (64) and the fifth inequality holds by (64) and (74).
Putting all cases together and by (79), (81), (91) and (92), one has if (75) holds at the s-th step, then

12dMoMZ—% _ _ 5 12dM% Mo—F% _ 5
|GJS+1(X,Z)| 5 M1 1 0 Tse yO(max{FS(Z) 10M030})0§ M1 1 0 Tse )/OFA$,+1(Z)‘ (93)

By (77) and (93), we obtain that (75) is true for

To =M, (94)
Tysr = MMM 7 (95)

By (75), (94) and (95), one has

|ng(x,z)| < M113ng1&M(()7_6e—yoFg(z)_ (96)
By the assumption that A1 is good, one has
<28, =M (97)
= K—,
g = 1 Mo
and hence (by (55))
|x —z]| lx —z| M,
k(z) > —2B1—-C(d) > —2k— —C(d). 98
(z2) = M, 1—C(d) > M, “My (d) (98)
By (98) and the definition of I'y, we have for |x —z| > %Ml,
Ig(2) = (Jx —z| —8cM1 — 10(g + 1) Mo)®
> (|x —z| =30k M1)? > |x —z|% (1 — 160k)% > |x —z|® (1 — 2006 &), (99)

where « will be chosen to be sufficiently small.
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By (96), (97) and (99), we have, for |x —z| > 15 M1,

136dMO MO _ _
|G7\1(X’Z)| = |GJg(x’Z)| S Ml & 1 Y e VOFg(Z)

—)/0(1—ZOOK&—Z’:OOd/qoyO_1 Ml%iMo) |x—z|®

<e o T (100)
Inductions: Define
m—1
- _1 logM;
Ym = l_[ )/0(1 —C(d)ke — C(d)kpy; IA/[IT-H;—G)' (101)
i=0 i

Recall that 1 —p+ 6 — o > 0. Fix an glementary region Kl € &m, with Kl C /~\0. For any x € Kl,
consider the exhaustion {S; (x)}j-=0 of Ay at x with width M,,_;. We say the annulus A j(x) is good if,
for any y € A;(x), there exists W(y) € Epm,,_, such that

y € W(y) C Aj(x), dist (v, 4; CO\W () = 5 M1,
and, for |n —n'| > 1—10Mm_1,
|(Rw(y) ARw(y) ™ (1, n)] < e ¥min=n'l"
Otherwise, we call the annulus bad. An elementary region A1 C Ay is called bad provided for some

x € A1 the number of bad annuli {A;(x)} exceeds

Mm
Mm—l .

Otherwise, we call Kl good. Let F;, be an arbitrary family of pairwise disjoint bad elementary regions

in &y, contained in Ao. By induction, it is easy to see that

#F, L N®
= em M,

Replace My, M1, yo, B1 witll My, 1, Mm’,v)/m_l, B,. By induction and following the proof of (100),
for good elementary regions A C Ao and A; € &um,,, we have, for |[x —z| > ll—OMm,

G35, (x.2)| < e7rmb=zl”, (102)
In order to reach Ay after k steps, we expect that

M, = MP“ =N,
and hence
e 1
o =—. (103)

To ensure that k is a positive integer, we need to modify the scale at the last step. More precisely, let
k = |log&~!/logp]. For j <k —1, let .
M; =M
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and for j =k let

My =N
Choose k = N~ and |
1 ogp
§=—=(1—
2( <) log &1
Direct computations show that
1 N*
#Fe < ——— <1,
K k

which implies that M = N is good. Therefore, (6) holds for
€3 = Yk,
where k solves (103). Computations show that
c3=c— N7,

where ¥ = 9 (0,5,&,¢) > 0.

5. Proof of Theorem 2.6

(104)

The proof of Theorem 2.6 is based on matrix-valued Cartan-type estimates [Bourgain et al. 2002; Bourgain
2005a; Goldstein and Schlag 2008; Jitomirskaya et al. 2020b]. For our purpose, a new version of Cartan’s
estimate, which works for non-self-adjoint matrices, is necessary. For convenience, we include a proof in

the Appendix.

Lemma 5.1. Let T(x) be an N x N matrix function of a parameter x € [—8,8]? (J € N) satisfying the

following conditions:

() T(x) is real-analytic in x € [—8, 8]’ and has a holomorphic extension to
Dss, = {x = (xi)1<i<s €CT: sup [Mx;| <8, sup |dx;| <81}
1<i<J 1<i<J
satisfying
sup [ T(x)| <B1, Bi>1.

x€Ds, 8,

(ii) Forall x € [=8,8]’, there is subset V C [1, N] with

Vi<M,
and
IR~y TR Npv) I < B2 Bo> 1.
(iii) mes{x € [-8,8]7 : [T (x)| = B3} <1073 77§71+ B)) ™/ (1+ By)77.
Let

0<e<(l+Bi+ By) 1M,

(105)

(106)

(107)

(108)
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Then
ge—1 )I/J

lo
mes{x € [—%8, %S]J T )| = e_l} < CSJe_C(Mlog(B1+Bz+Bs) (109)

where C = C(J), c=c(J) > 0.

Proof of Theorem 2.6. Without loss of generality, we assume i = 1. Fix x; € Tbt and x| € Tb=b1, Recall
that x = (x1,x7) € T?.

Let A =R C [-N3, N3]¢. By making Br (x) slightly larger, we have there exists A C A such that,
for any j € A\A, there exists W(j) € Ey, such that W(j) C A\A,

dist(j, A\NA\W(j)) = 3 N1

and
IGw il < e, (110)
Gwjy(n.n) < e 217 for |n—n'| = LNy, 111

and
Al < Cd)L' N34, (112)

Indeed, A can be chosen so that
A c{nez? :dist(n, Br(x))} < C(d)Nj. (113)
Let n = c¢1/y. Let D be the e~"V1 neighborhood of x; in the complex plane, i.e.,
D={zeCll:|3z| <e ™ Rz —xq| <e "N}

/K1)
1

By the assumption that N3 < eN , one has, for any y € D,

_plog2N34+2)K1
[x—yll<e™® :

and hence (by (8))
|A(x;n,n') = A(ysn,n')| < K|x—y])” < Ke=@™ (114)

forn,n’ € [-N3, N3]d and large N;. By (110), (111), (114), and standard perturbation arguments, we
have, for any y € D, and j € A\A,

IGw() 1 + v 2Dl < 26N, (115)
(Gweiy (et + v, 375, n)] <272 for |n—n'| = 5Ny, (116)
Substituting A with A\A in Lemma 4.2, one has, for any y € D,
1G A& (1 + 3,67 < €M, (117)
We want to use Lemma 5.1. For this purpose, let
T(y)=RaARA, J=by, §=68 =e ™1,

Now we are in the position to check the assumptions of Lemma 5.1. By (114) and (7), one has By = O(1).
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Let V = A. By (112) and (117), one has
M =|A|<C(d)L" N2, By =N (118)
Applying Lemma 4.2 with My = M; = N3 and (12), one has
1T () <4@N2 + D9eM” <M = s,
except on a set of y € T?! with measure less than e~ 3
Since N, > N 12 / E, direct computation shows that

107301570161 (14 By) ™21 (14 By) ™21 = M2

This verifies (iii) in Lemma 5.1.
Lete = e L". By (118) and the assumption that L > N2(2d+b+2)/(“_1+8), one has

€ <(1+4 By + By)~'M,
Let
Y={yeD: T ="}
By (109) of Lemma 5.1,
( Li—1+8 )1/b1

2d+o

—C
mes(Y)<Ce NZMi ) (119)

By covering T?! with balls with radius e~""1, we have

C( Lu—1+8 )l/bl (LM_I"I‘S )l/bl
v - “C\yon2dto —\2dFbp+2
Leb(Xp(x7)) <eNie "MIMTTTT <o M : (120)

where the second inequality holds by the assumption L > N2(2d+b+2) /(=1+8) g implies (13). O

6. Proof of Theorems 2.7 and 2.8

Theorem 6.1. Let 0,6,k,s € (0,1) and 6 > k. Assume diam(A) < 2N + 1. Let My = (log N)'/5.
Assume
Cy € (0, (1 — 5_0)6‘1]. (121)

Suppose that, for any n € A, there exists some W = W(n) € Epy with Mg < M < N* such thatn € W,
dist(n, A\W) > 1M, W C A and

IGw | <2¢™”,

G (n.n)] < 2e™" " for |n—n'| = 4 M.
Then
[GAll <41 42N%)4eN*, (122)

|Ga(n,n)| < e~ Cln—n'l? for|n—n'| > %N,

where
B o) B o(l) B o)

M(c;r—s Mg—a NOG—« :

c=cp (123)
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Proof. Inequality (122) follows from Lemma 4.2 immediately.
Assume |n —n’| > {5 N. Applying (57) with Ay = W = W(n), one has n’ ¢ W(n) and

_ _ o
Ga(n, ) < Y e T2 |Gy (n,01)[ |G (g, ).
w
n;éi\w

This implies

_ T
|GA(n,n)| < Z e M=% |Gy (n,n1)] |G A (n2. 1)
nyeW,lny—nl<M/10—1
noeAN\W - - o
: Y M Gy ()| [Ga(na )|
nieW.lny—n|=M/10
nyEA\W
< Z eM"e—01|n1—n2|G|GA(n2,n/)|
njeW.lnj—nl<M/10—1 & Y
e AW n Z e—c1|n1—n2|0€—c2|n—n1|0|GA(n2’n/)|

n1eEW.lny—n|=M/10
anA\W

< Z eMge_Cl|”1_”2|6|GA(n2,n,)|
nlgw,|21;;z\\§WM/lo—l _ ST /
! n Z o—C2ln—n2| |G A (n2,n))]

nieW.lny—n|=M/10
nyeA\W

D D NGl

nyeW.lny—nl<M/10—1
nzeA\W

—C2|n—n G /
D D e (NPT
nieW.lny—n|=M/10
nyeA\W

feM0(2N+1)2d sup e_czln_”2|6|GA(n2,n’)|
nzeA\W
—(e2— 2L ) |n—n,|®
5(2N+1)2d sup e (2 Mg ) : |G (12,1, (124)
n2€A\W

where the third inequality holds by (64) and the fourth inequality holds by (72).
Iterating (124) until [n —n’| < 4N* (but at most [2°|n —n’| /M | times) and applying (122), we
have for |n —n'| > %N,

M —\c2— 06(1—)0 (ln_n/|_4NK)6 Ko
|Ga(n.n )| < (2N +1) Mo e (e Mg ) 4(1+2N9)4eN

4ln—n’|% o) ’ K&
A=A Jog N —(02—~7_)(|n—n |—4NX) s
<e M§ e My=o 4(1 +2N<)4eN

=% pps (ey—- QL) (jn—n'|—4N¥)7 ko
<e Mo e ( M ) 4(1 +2Nx)deN
B~ (125)

completing the proof. O



2094 WENCAI LIU

It is easy to see that the number of generalized elementary regions in [—-N, N]¢ with width greater

than or equal to N £ is bounded by N Cd); more precisely, for any £ > 0,
#A C[-N.N1?:AC RN} < NC@D, (126)

Proof of Theorem 2.7. Since the Green’s function satisfies Property P with parameters (u, ¢, c») at size Nj,
there exists X N, C T? with
~ ¢
sup Leb(Xy,(x77)) < NE@e=Ns | (127)
1<i<k,x; eT?—bi
such that
“w
|Gt 0w, @)l < €M%,
and, for [n —n'| > %Nz,

_ VAT
Gmton, (xin,n)| < e~

forany On, € 52,2 and |m| < N3. Indeed, we only need to set
Y= U Xw(m@).
Im|<N3
By the assumption N3 > NZC and N, > N 1C with large C depending on &, one has
Ny <N3., Ni<Nj. (128)

Let £ = 6 —5¢. Applying (15) to Theorem 2.6, and by (126) and (128), there exists Xy, C [0, 1)® such
that

f(a—l/bi—i-S/bi)—s _N

(0—1/b;)5+82/b;—¢
3

sup  Leb(Xp;(x;)) < N3C(d)e_N <e ) (129)
x;eTb0i
N§ . £
and, for any x ¢ Xy, RCR,> with N; <L < N3,
|Gr() <. (130)

Let F be any pairwise disjoint elementary regions in [—N3, N3]¢ with size LN§ |. By (15), it is easy to see

that there are at most Nlc(d)N31_8 = NB.I_SJ“9

in F that will intersect elementary regions not in SGy, . By
Theorem 6.1, any elementary region in [—N3, N3]¢ with size |_N3S |, that do not intersect any non-SGy,
elementary regions, will satisfy (3). It implies (5) is true for ¢ = 1—¢. Applying Theorem 2.3 and (130), we
obtain Theorem 2.7. Let us explain where the bound c2 — N, % _ Ny %2 in (18) is from. Since N§ <8N
one has s = %c in Theorem 6.1. Applying My = Ny, N = N§, o = u to Theorem 6.1, we obtain the

bound ¢, — O(I)Nl_(&_(ll/lo)c) — O(l)Nl_(&_“) — N3_l92. Theorem 2.3 will only contribute N3_l92. O

Proof of Theorem 2.8. Fix any m € Z%. Applying Theorem 2.7 with A™, one has there exists a subset
X 1’3}3 C T? such that

4 N (0—1)/b; 5+(82/b;)—
sup Leb(X}, (x;) <e N3 e

1<i<k,x;eT?~bi
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and, for any x ¢ X 1’{,13 and Oy, € 5213,

I(Roy, A" (x)Ro ) | < ™3,
and, for [n —n'| > 1—10N3,

&
|

- L, L /
|(RQN3AmRQN3)_1(x;n,n’)| Ee—(c’z—Nl 1_N; "2)|n—n
Let

By (19) and (21) , we have

- a _ n(O—1/bp)8+82/bij—e  \(6—1/bj)8+8%/bj—¢
sup Leb(Xn; (x; ) <eMNie™Ns <e ™M . |
1<i<k,x;er?bi

7. Proof of Theorem 2.10

Proof. Once we have the LDT at hand, the modulus of continuity of the IDS is standard. The proof here
follows from the corresponding part in [Bourgain 2000; Schlag 2001]. Let N = [log |E; — E»||}/9 ¢,
Without loss of generality, assume E1 < E, and let E be the center of [Eq, E3]. Therefore,

_NO+e

|Ey1—Ez| <e (131

By the assumption, there exists a set Xy C T? such that
Leb(Xy) <e N,
and, forany x ¢ X and any Qn € SR,,
1Goy (E.x)| <e™’,
|Goy (E,x;n,n')| < ecln=n"l” gor n—n'| > %N,
where ¢ > 0. We should mention that X depends on E. By the assumption (23), for large N1, one has
#ne 79 |n| < N1, f'(x) € Xy} <22Ny + 1)%e N,

Let A = [-Ny, N1]%. By making #{n € Z% : |n| < N1, f"(x) € Xn} slightly larger, we have there exists
A C A such that, for all j € A\A, there exists W(j) € En such that W(j) C A\A,

dist(j, ANA\W(j)) = 5N
and
IGwll < e’ (132)

Gy (n.n)| < eI for |n—n'| = 5N, (133)
and

IA] < C(d)N* 2N, + 1)%e N,

Here, A is obtained in a similar way as (113).
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Substituting A with A\A in Lemma 4.2, we have
IG A & (E. )] 4N + 1)%e™”.
By standard perturbation arguments, we have, for any Ee [E1, E3],
1G A& (E 0] <8N + 1D?e™". (134)

Denote by §;, j =1,2,..., M, the normalized eigenfunctions of H with eigenvalues falling into the
interval [Eq, E»]. Let £ be one of them with eigenvalue E. By definition,

Ry\a(HA — E)Rp\xE + Ry\x (HA — E)R3€ = (E — E)Ry\ 5. (135)
Applying GA\A(E’ x) to (135), one has
Ra\a§ +GAA(E. X)Rp\\g(Ha — E)Rj§ = (E — E)Gp\\A(E, X)Rp\zE. (136)

Denote by P the projection onto the range of G A\A (E,x)R A\ A (HA — E)Ry. Clearly, the dimension
of this range does not exceed A. Thus rank(P) < A. By (131) and (134), one has

I(E = E)G p\5 (. 1) Rp\5 €l < g€l (137)
Applying I — P to (136) and by (137), we have
IRp\z6 — PRA\REN < 105611 (138)

Applying (138) to each &;, we have

N M M
M= |17 <3M+4) [IPRyRE > +2) IRz 117

j=1 j=1 j=1
< %M + 4 Trace(PR 5\ 5) + 2 Trace(Ry )
<iM +6|A|

<iM+CW@)N* 22N, +1)%e V"
Therefore,
M < C(d)N?? 2N, + 1)V,

which implies
t/o—e
k(x,Eq, Ez) < C(d)NZde_Nz < e_(log ﬁ)

8. The discrepancy and semialgebraic sets

8A. Discrepancy. Let X1,..., %y €[0,1)? and S C [0, 1)0. Let A(S; {¥,}_,) be the number of Xy,
(I <n < N) such that X, € S. We define the discrepancy of the sequence {X, },11\’:1 by

A(S; {)—én},jlv=1)
N

Dy({Falh_y) = sup —Leb(5)|, (139)
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where C is the family of all intervals in [0, 1)?, namely S has the form of

S = [o1, B1] x [02, B2] x --- X [0p. Bs].

withO0<o, <Bn<1,n=1,2,...,b. Leta = (21,02, ...,ap) € [0, l)b. The b-dimensional sequence
Xn = (nay,nas, ..., nap) mod 7° (na for short), n = 1,2, ..., is called the Kronecker sequence. We
denote by Dy (o) the discrepancy of {noz}fyzl. The following lemmas are well known.

Lemma 8.1 [Drmota and Tichy 1997]. Assume o € DC(k, 7). Then
Dy (@) < C(b,x, 7T)N "% (log N)2.
Lemma 8.2 [Schmidt 1964]. For almost every o, we have
Dy (a) < C(a)N " (log N)2+2.
Let f: T? — T? be defined as

T(1,y2,-- ) = (V1 4+, Y2+ Y150, Yo + Vp—1)-
Let T" be the n-th iteration of 7" and 17” =T"(y1,...,Vp).

Lemma 8.3. Assume a € DC(«, 7). Then, for any ¢ > 0,
DN(Y V) < Cb. k1. e) N~/ @ T0+e,

Remark 8.4. Lemma 8.3 follows from the Erdés—Turan inequality (see [Montgomery 1994, Corollary 1.1,
p. 8]) and Weyl’s method [Montgomery 1994, Theorem 2, p. 41].

The Erd6s—Turdn inequality and Weyl’s method also imply:

Lemma 8.5. Assume o € DC(k, ). Let Y, = Pp(T"(y1,...,Y¥p)), where Py is the b-th coordinate
projection. Then, for any € > 0,

Dy ((Yui_)) < C(b. k.7, e) N~V @ )te,

8B. Semialgebraic sets. A set S CR" is called a semialgebraic set if it is a finite union of sets defined by a
finite number of polynomial equalities and inequalities. More precisely, let { P1, ..., Ps} C R[x1,..., Xz]
be a family of real polynomials whose degrees are bounded by d. A (closed) semialgebraic set S is given
by the expression

S=J [ {x eR": Py(x)s;¢0}. (140)
J ee,c,-
where £; C{1,...,s}and ¢;; € {>, <,=}. Then we say that S has degree at most sd. In fact, the degree

of S, which is denoted by deg(S), means the smallest sd over all representations as in (140).
The following lemma is a special case appearing [Basu 1999]. It is restated in [Bourgain 2005a].

Lemma 8.6 [Bourgain 2005a, Theorem 9.3; Basu 1999, Theorem 1]. Let S C [0, 1] be a semialgebraic
set of degree B. Then the number of connected components of S does not exceed (1 + B )C(”).
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The following lemma has been stated in [Bourgain 2005a], where the author mentioned that it follows
from the Yomdin—Gromov triangulation theorem [Gromov 1987; Yomdin 1987], However, as far as we
know, Lemma 8.7 has only been proved recently. We refer readers to [Binyamini and Novikov 2019] for
the history and complete proof of the Yomdin—Gromov triangulation theorem.

Lemma 8.7 [Bourgain 2005a, Corollary 9.6]. Let S C [0, 1] be a semialgebraic set of degree B. Let
€ > 0 be a small number and Leb(S) < €™. Then S can be covered by a family of €-balls with total number
less than (1 4+ B)€™ jen—1,

Theorem 8.8. Assume that the discrepancy of the sequence {x J} ', satisfies
Dy({%j}_) S N~S
for some ¢ > 0. Let S C [0, 1]" be a semialgebraic set with degree less than B. Suppose
Leb(S) < N<.
Then
. _s
ASHFH YLD =1+ BN,

Proof. Let e = NS/ By Lemma 8.7, S can be covered by at most (1 + B)€ /e"~! e-balls. Pick one
e-ball, say J. By the fact Dy ({X; }j-vzl) < N~¢, one has

A(J:AZ1N ) SCNe"+ N'7¢ <CN'"5,
where C depends on the dimension 7. Since there are at most (1 + B)€ /"1 balls, we have
AS: {31 1)<(1—|—B)C NS = (14 BN S N1=S = (14 B)CNIF 0

Remark 8.9. ¢ Theorem 8.8 says that there is a factor-n loss (referred to as dimension loss) when
passing the discrepancy from intervals to semialgebraic sets. The dimension loss is not surprising. For
example, there is also a dimension loss passing the discrepancy to the isotropic discrepancy [Kuipers and
Niederreiter 1974, Theorem 1.6].

e The proof of Theorem 8.8 is taken from [Bourgain 2005a], where no explicit bounds are given.
For a set S C [0, 1)2, denote by /(S) the length of the longest line segment contained in S.

Lemma 8.10 [Bourgain and Kachkovskiy 2019, Theorem 5.1]. Assume oy € DC(k, t) and ap € DC(k, 7).
Let S C [0, 1)? be a semialgebraic set with degree less than B and

I(S) E% |r]£1| Ikl

Then

#k = (k1. k2) € 721 k| < N, (k11 ko) € S mod 72} < (1 4+ BYCDC e, ) N3~ 3. (141)
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9. Proof of all the results in Section 3

Applying Theorem 2.10 with 0 = 1 — &, Theorem 3.5 follows from Theorem 3.4, Theorem 3.12 follows
from Theorem 3.11, Theorem 3.16 follows from Theorem 3.15, Theorem 3.21 follows from Theorem 3.19,
Theorem 3.25 follows from Theorem 3.24 and Theorem 3.28 follows from Theorem 3.27.

Applying strong Diophantine frequencies to Theorems 3.21 and 3.28, we obtain Corollaries 3.22
and 3.29.

With large-deviation Theorems 3.11 and 3.15 at hand, the proof of Theorems 3.14 and 3.17 is rather
standard. We refer the readers to [Bourgain 2005a, Chapter XV; 2007, Section 3; Bourgain et al. 2002,
Section 6] for details. We note that the only difference is that the degree of semialgebraic sets is at most
elog N)© in our cases, not N€.

By the discussion above, in order to prove all the results in Section 3, it suffices to prove Theorems 3.4,
3.6, 3.11, 3.13, 3.15, 3.19, 3.24, 3.27 and Corollary 3.23.

In this section, C(c) is always a large (small) constant. It may change even in the same formula.

Lemma 9.1 [Bourgain 2005a, Proposition 7.19]. Let H(x) be given by (32) and the Lyapunov exponent
is given by (35). Suppose L(E) > 0. Then there exist 0 < o < 1 and { > 0 such that, for large N, there
exists Xy C T such that Leb(Xy) < e~ N¢ and, for x ¢ Xy, one of the intervals

A=[1,N], [1,N —1], [2,N], [2,N —1]

will satisfy
—L(E)|n1— o
|Ga(n1,n2)| <e (E)ln1—n2|+N°

Proof of Theorem 3.4. By Lemma 9.1, there exist 0 < o1 < 1 and ¢; > 0 such that, for any large Ny, there
exists Xy, C T? such that .
Leb(Xy,) <e M’

and, for x ¢ Xy, , one of the intervals
A(Ny) =1, Nq], [1, N1 —1], [2, Nq], [2, N1 —1] (142)
will satisfy
|G awy (n1.12)] < e~ LBl 87", (143)

By approximating the analytic function with trigonometric polynomials given by (28) and using Taylor
expansions, we can further assume that X, is a semialgebraic set with degree less than (e NS Thig
argument is quite standard. We refer to [Bourgain 2005a] for details. By Lemma 8.1 and Theorem 8.8,

A(X Ny {na)}fyil) < N31—1/b,c+g

for any
e(logNl)C <N; feNlc.

Let N, = N31/C. Applying (143) to N3, one has

|G Ay (1. 12)| < e LENmi=na+N5 (144)
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except for a set of x with measure less than e N 2! Now Theorem 3.4 follows from Theorem 2.7. We
should mention that the elementary region is [Ny, N1] in Theorem 2.7, which is slightly different from
(142). However, the same statement is true. O

Proof of Theorem 3.24. The proof of Theorem 3.24 is similar to that of Theorem 3.4. The difference
is that instead of Lemma 9.1, we need to use the corresponding statements in [Tao 2019a, p. 3575] for
initial scales. We also need to use Lemma 8.5 instead of Lemma 8.3. O

Proof of Theorem 3.15. Let No = eV i. Assume the Green’s function in Theorem 3.15 satisfies Property P
with parameters (i, ¢, c2) at sizes N1 and N,. Let N3 = N2C . We can assume that Xy, is a semialgebraic
set with degree less than e(°sV D, By Lemma 8.6, X, is consisted of at most (02N intervals with
measure less than e ™ ] . Let I be one of the intervals. Since w satisfies the Diophantine condition, for
any x € T, there is at most one n € 7% with |n| < N3 such that x + nw mod Z € I. Therefore,

AXN, ino}2 ) < e0oeNDC < Ne, (145)

By Theorem 2.7, we have the Green’s function satisfies Property P with parameters (0,0 —&,c2 — N5 l’)
at size N3. Standard Neumann series expansion ensures that, for any large Ny, there exists Ao such that,
for any A > A, the Green’s functions have Property P with parameters (o, o —e¢, ic1) at all sizes smaller
than Ny [Jitomirskaya et al. 2020b, Theorem 4.3]. Now Theorem 3.15 follows by standard induction.
See [Jitomirskaya et al. 2020b, pp. 15-16] for details. O

Proof of Theorem 3.11. Fix Ni. Let N, = eNi and N3 = NZC. Assume the Green’s function in
Theorem 3.11 satisfies Property P with parameters (u, ¢, c2) at sizes N1 and N,. We can again assume
that X, is a semialgebraic set with degree less than e(log N1, By Lemma 8.1 and Theorem 8.8,

AXwy: {nwlV3 ) < NJT1PRe (146)

By Theorem 2.7, we have the Green’s function satisfies Property P with parameters

o—1 1 9
("’W+W_S"'2_N3 )

at size N3. As the arguments at the end of proof of Theorem 3.15, large A will ensure the initial scales
and hence Theorem 3.11 follows by induction. O

Proof of Theorems 3.6 and 3.13. The proofs of Theorems 3.6 and 3.13 closely follow that of Theorems
3.5 and 3.12. The difference is that we need to use Lemma 8.2 instead of Lemma 8.1. O

Proof of Theorem 3.19. Replacing Lemma 8.1 with Lemma 8.3, Theorem 3.19 follows Theorem 3.11. O

Proof of Corollary 3.23. By formula (3.53) in [Bourgain et al. 2001], one has, for almost every o,

1
—1+e

AX o} ) < Ny (147)

Let§ = % —e&. Applying 6 =1, 0 =1 —¢ and b; = 2 in Theorem 2.7 and then Theorem 2.10, we obtain
Corollary 3.23. Indeed, {5 comes from (%)2 /b. O
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Proof of Theorem 3.27. The proof of Theorem 3.27 is similar to that of Theorems 3.15 and 3.11. We only
point out the modifications.

e The induction goes in the following way. The semialgebraic set X intersecting with any line segments
. . _N¢ . .

contained in [0, 1)® has Lebesgue measure at most e~"V". The assumption that v is not constant on any

line segments ensures the initial scales.

e Replace (145) or (146) with (141).

¢ Since the induction is based on semialgebraic sets only on line segments, Cartan’s estimate will not
lead to dimension loss. In other words, when (16) is used to do the induction, b; = 1. O

Remark 9.2. (1) The calculation of the bound in Theorem 3.27 goes in the following way. By (141), the
sublinear bound is

3K—%=1—8, where8:14—3—3/c.

Therefore, the bound in (16) becomes (b; = 1)

o—1 §2
T(S—i_E =(c—-1)8§+8%= (0—1)(%—3/{) + (173—3K)2.
1 1
(2) The induction of Theorem 3.27 follows the corresponding parts in [Bourgain and Kachkovskiy 2019].
Our quantitative approaches developed in the paper allow us to obtain the explicit bound.

Appendix: Cartan’s estimates for non-self-adjoint matrices

In the following, we will prove the several-variable matrix-valued Cartan estimate (Lemma 5.1). The
proof is similar to that in [Bourgain 2002; 2005a; 2007; Jitomirskaya et al. 2020b; Bourgain et al. 2002].
The improvement is that we do not assume the matrix is self-adjoint.

T T
7= (11 12 ’
T3 Ty
where T is an invertible n x n matrix, T, is an n x k matrix, T3 is a k x n matrix, and Ty is a k x k matrix.
Let

Lemma A.1. Let T be the matrix

S =Ty—T5T; ' T,
Then T is invertible if and only if S is invertible, and
ISTH = IT7H = CA+ T2 DA+ 1 T3DA + [T DA+ ST, (148)
where C is an absolute constant.

Proof. 1t is easy to check that

(i TR\ _( I O\ (I T2\(TW O
7= (7 2) = (e D69 0) s
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It implies T is invertible if and only if S is invertible. By (149), one has
(T oY (1Y (1 o)
—\o 1 0 S 5Tt 1
(T O\ (I —TS7! I 0
_( 0 1) (0 st ~TT7 1 (150)

= (: S*—l)' (151)

Now the second inequality of (148) follows from (150) and the first one follows from (151). O
Denote by D(z, r) the standard disk on C of center z and radius r > 0.

Lemma A.2 [Goldstein and Schlag 2008, Lemma 2.15]. Let f(z1,...,z5) be an analytic function
defined in a polydisk P = []1<;<; D(z,-,o, %) and ¢ = log|f| Let sup,ep ¢(z) < M,m < ¢(20),

z0 = (21,0, ..., 27,0)- Given sufficiently large F, there exists a set B C P such that
¢(z)>M—-C(J)F(M —m) foranyz € 1_[ D(zi,o, %) \ B, (152)
1<i<J
and

Fl/J

mes(BNRY) < C(J)e™ (153)

Proof of Lemma 5.1. The proof is similar to that of Lemma 3.4 in [Bourgain 2005a]. In the following
proof, C = C(J) and ¢ = c¢(J). Let

w=10"2J7"16,(1+ By)" (14 By~ L.
Fix
J
X0 € [—%5, %5]

and consider 7'(z) with [z —xo| = sup; <; <y [zi —Xo,i| < w. Thanks to Cauchy’s estimate and (105), one
obtains, for |z — xo| < W,
4B
||82iT(z)||§8—1, i=12,...,J,
1
which implies

JB1u

IT() = Txo)ll < 281 <0511 4 Byt

From assumption (ii) of Lemma 5.1, we can find V' = V(xg) so that |V | = M < M and (106) is satisfied.
Define V¢ = [1, N]\ V. Thus using the standard Neumann series argument and (106), one has

I(RyeT(z)Rye) ™| <2B, for |z —xo| < . (154)
We define for |z — x¢| < u the analytic function

S(z) = RyT(z)Ry —RyT(z)Rye(RycT(z)Rye) 'RycT(z)Ry. (155)
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Then, by (154) and (155), we have
IS(2)Il < 3B B.

Recalling Lemma A.1, if S(z) is invertible, so is 7'(z) and by (148),
ST @I = CIT™ @) < CBEBZ(1+ IS @)D
For x € R’, one has ~
IS IM = |det S(x)].

Let A = min{|)~k| de o(S(x))}. We have

det S(0)| = AM > 1571 ()M
By Cramer’s rule, one has every entry of S™1(x) is bounded by

IS G M

|det S(x)|
and hence (by (156))

M (3B2B,)M

-1
571 = s

Let
¢(z) =log|det S(xo + nz)|, |z| < 1.

Then, by (158) and (156),
sup ¢(z) < CM log(B; + B).

lz]<1
By (107) and the definition of j, there is some x; with |x¢o — x| < % W such that
1T~ (x)l < Bs.

Hence by (157), |S~!(x1)|| < CBs, and from (159),

¢(a) > —-CM log B3,
where a = (x1 —x0)/ 1L, S0 |a| < %. Let

P = l_[ D(a;, %)

1<i<J

Therefore, one has
sup ¢(z) < C M log(B1 + B>), ¢(a) > —C M log Bs.

zZ€EP

(156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)

Applying Lemma A.2 and recalling (152), (153), for any F" >> 1, there is some set BC [];<; < D(ai, %)

with

¢(z) = —CFMlog(B1 + By + B3) forze || D(ai.§)\B.

1<i<J

(164)
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and

mes(BNRY) < Ce F"7, (165)
For 0 <e <1, let
—cloge

F=— .
MlOg(Bl —|—Bz+Bg)

Then by (164) and (165),

mes{x eR’: |x —x1] < %u and |det(S(x))| < e} =u’ mes{x eRr’: |x —a| < % and ¢(x) < loge}

<cule F (166)
Since |x¢ — x1| < %u, we have
—C( loge_1 )1/‘/
mes{x eR’ :|x—xo| < %u and |det(S(x))| < 6} <Cup’le "\MiwB+Ba+By) 167)
Recalling (157), (160) and (108), one has, for |x — xo| < %/x and |det S(x)| > e,
IT~ ()]l < CB?B3¢ ' i (3B} B)M <72, (168)
Covering [—%8, %8]1 by cubes of side %M’ and combining (167) and (168), one has
J _c( _ loge! )1/1
mes{x € [-18, 18] IT7 ()| = €72} < €87 e " \MiwE1+B24B3)
logé_l 177
< 87 ¢ (vt w73 O
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