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1. Introduction

1.1. Setting and main theorem

We will study periodic finite-range Schrödinger operators of the form

H = A + V, (1.1)
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acting in �2(Zd), where V is periodic and A is a Toeplitz operator given by

[Aψ]n =
�

m∈Zd

an−mψm.

Here, {an}n∈Zd is finitely supported and V will as usual denote both the potential 
V : Zd → C and the corresponding multiplication operator [V ψ]n = Vnψn. We say 
that V is q-periodic for q = (q1, . . . , qd) ∈ Nd if Vn+qjej = Vn for all n ∈ Zd and each 
1 ≤ j ≤ d, where ej denotes the standard jth basis vector.

In particular, let us note that the approach discussed herein does not rely on reality 
of the potential or self-adjointness of A. The case in which

an =
�
−1 n = ±ej for some 1 ≤ j ≤ d

0 otherwise

corresponds to A = −Δ, the discrete Laplacian.
Our main result is irreducibility of the Bloch variety for all operators of the form (1.1)

subject to a suitable condition on A. In particular, under mild assumptions on {an}n∈Zd , 
the result holds universally for all periodic V , including complex-valued potentials. We 
will define the Bloch variety precisely later in the manuscript (see Section 1.2); for now, 
the reader may think of it as a relation between the energy, λ, and the quasi-momentum, 
k, which is given by the zero set of a function P(z, λ) that is a polynomial in λ and a 
Laurent polynomial in z = e2πik.

Let us describe some of the main objects and assumptions used in this work. Starting 
with A we generate the Laurent polynomial

p(z) = pA(z) =
�
n∈Zd

anz
−n, (1.2)

where we employ the standard multi-index notation zn = zn1
1 · · · znd

d .
Let us state our assumptions here in a moderately informal manner. For further 

definitions, details, and a more precise account, we refer the reader to Section 2, where 
we define the component of lowest degree and the fundamental domain W . Let h denote 
the lowest degree component of p in the sense that p(z) = h(z) + higher order terms. 
Given q = (q1, . . . , qd) ∈ Nd and n = (n1, . . . , nd) ∈ Zd, the vector μn = (μ1

n, . . . , μ
d
n) is 

defined by

μj
n = e2πinj/qj , 1 ≤ j ≤ d.

Given z ∈ Cd, we define μn � z = (μ1
nz1, . . . , μd

nzd). Our main assumptions are the 
following:

(A1) The degree of h is negative.
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(A2) The polynomials h(μn�z), n ∈ W , are pairwise distinct (cf. (2.2), (2.3), and (2.4)).

Theorem 1.1. Let q = (q1, q2, . . . , qd) be given and let V be q-periodic. If pA satisfies 
Assumptions (A1) and (A2), then the Bloch variety of H = A + V is irreducible modulo 
periodicity.

Remark 1.2. Let us make a few comments about Theorem 1.1.

(1) The precise definitions of the Bloch variety and irreducibility modulo periodicity 
are given in Section 1.2. To prove Theorem 1.1, we use standard Floquet theory to 
obtain a Laurent polynomial P(z, λ) with the property that (k, λ) belongs to the 
Bloch variety if and only if P(e2πik, λ) = 0. We show that P is irreducible as a 
function of z and λ. Since the Bloch variety is defined as a set of pairs (k, λ), it 
is only irreducible after one quotients out the relevant Zd action. This is indeed 
necessary as shown by the free Laplacian, see Equation (1.22) and Figure 4 in [14]. 
The main idea of the proof is to reduce from the operator A + V to A by focusing 
on the lowest-degree component of P (after a suitable change of variables). We show 
that reducibility combined with Assumptions (A1) and (A2) would imply mutually 
contradictory properties of the lowest-degree component.

(2) Assumption (A1) only depends on pA, whereas Assumption (A2) depends on pA and 
q (via the action of the vectors μn). As the reader can see, our proof does not require 
V to be real-valued.

(3) The strength of the result comes from the generality of the operators under consider-
ation. For instance, this can handle operators in higher dimensions on rather general 
graphs; specifically, one can handle Zd-periodic graphs for which Zd acts transitively 
on vertices (see Remark 6.1 for further details). We emphasize that our result does 
not necessarily imply irreducibility of the Fermi varieties associated with A + V .

Theorem 1.1 is the main motivation for this work. It will follow from a more general 
result formulated in Theorem 2.6 below.

The above assumptions are satisfied and straightforward to verify in many cases of 
interest. To illustrate scope of applications, we enumerate some corollaries.

We first note that Theorem 1.1 provides a direct proof of the irreducibility of the 
Bloch variety for all discrete Schrödinger operators on Zd.

Corollary 1.3. If A = −Δ denotes the Laplacian on �2(Zd), then for any periodic V , the 
Bloch variety of A + V is irreducible modulo periodicity.

The corollary above was already known via results about the Fermi variety – see 
the discussion in Section 1.2 for additional details and references. Thus, we supply an 
alternative argument, working directly on the Bloch variety.
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More significantly, Theorem 1.1 also enables one to prove irreducibility of the Bloch 
variety for other lattice geometries in arbitrary dimension. To remain concrete, we present 
a couple of two dimensional examples but the reader may readily recognize from the 
proofs that generalizations are possible (compare Remark 6.1).

Corollary 1.4. If A denotes the Laplacian on the extended Harper lattice, q1 and q2 are 
coprime, and V is q-periodic, then the Bloch variety of A + V is irreducible modulo 
periodicity.

Corollary 1.5. If A denotes the Laplacian on the triangular lattice, then for any periodic 
V , the Bloch variety of A + V is irreducible modulo periodicity.

Note that irreducibility of the Bloch variety is potentially sensitive to modifications 
in the hopping terms (i.e., the matrix elements of A). To the best of our knowledge, even 
the results of Corollaries 1.4 and 1.5 are new. For further details, including definitions of 
the triangular and extended Harper lattices, see Section 6. To emphasize the distinction 
between the above models, we present the corresponding polynomials below, recalling 
that Equation (1.2) provides the dictionary between A and PA.

(i) For the discrete Laplacian on Zd,

p−Δ(z) = −
�
z1 + 1

z1
+ z2 + 1

z2
+ · · · + zd + 1

zd

�

(ii) For the extended Harper lattice

pEHM(z) = −
�
z1 + 1

z1
+ z2 + 1

z2
+ z1

z2
+ z2

z1
+ z1z2 + 1

z1z2

�

(iii) For the triangular lattice,

ptri(z) = −
�
z1 + 1

z1
+ z2 + 1

z2
+ z1

z2
+ z2

z1

�
.

In particular, in dimension d = 2, pEHM(z) adds to p−Δ(z) next nearest neighbor terms 
and is symmetric with respect to the map zj �→ z−1

j for j = 1, 2. The polynomial ptri(z)
does not possess this symmetry, nonetheless the corresponding variety still falls into the 
scope of Theorem 1.1. The triangular lattice is depicted in Fig. 1. Applying a simple 
shear transformation reduces the triangular lattice to the square lattice with additional 
edges, as shown in Fig. 2, and hence places the Laplacian on the triangular lattice into 
the context of the paper after a suitable change of coordinates.
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b2

b1

Fig. 1. A portion of the triangular lattice. Fig. 2. The triangular lattice after shearing.

1.2. Definitions and context

Let us now give relevant definitions and context. Given qi ∈ N, i = 1, 2, . . . , d, let 
Γ = Γq := q1Z ⊕ q2Z ⊕ · · · ⊕ qdZ. We say that a function V : Zd → C is q-periodic 
(Γ-periodic, or just periodic) if Vn+γ = Vn for all n ∈ Zd and all γ ∈ Γ.

Definition 1.6. Let C� = C \{0}. For z = (z1, . . . , zd) ∈ (C�)d and q = (q1, . . . , qd) ∈ Nd, 
the space H (z, q) consists of those ψ : Zd → C for which

ψn+j�q = zjψn,∀n, j ∈ Zd, (1.3)

where we write j� q = (j1q1, . . . , jdqd) and use the multi-index notation zj = zj11 · · · zjdd . 
Naturally, H (z, q) is a Hilbert space of finite dimension Q := q1 · · · qd.

If V : Zd → C is q-periodic, the corresponding Bloch variety is given by

B = B(H) = {(k, λ) ∈ Cd+1 : Hψ = λψ enjoys a nonzero solution in H (e2πik, q)},
(1.4)

where we write e2πik = (e2πik1 , . . . , e2πikd) ∈ (C�)d. We employ here a standard abuse of 
notation in which H represents both the self-adjoint operator in �2(Zd) and the difference 
operator acting in, say, �∞(Zd).

Definition 1.7. We will say the Bloch variety B(H) is irreducible modulo periodicity if 
for every two irreducible components Ω1 and Ω2 of B(H), there exists m ∈ Zd such that 
Ω1 = (m, 0) + Ω2.

Definition 1.8. Given λ ∈ C, the Fermi surface (variety) Fλ(H) is defined as the level set 
of the Bloch variety:

Fλ(H) = {k ∈ Cd : (k, λ) ∈ B(H)}.
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We should mention that reducible Fermi and Bloch varieties are known to occur for 
periodic graph operators, e.g., [8,24]. One challenging problem in the study of periodic 
operators is to prove the (ir)reducibility of the Bloch and Fermi varieties [3–5,8–10,13,17,
22,24]. For instance, irreducibility of the Bloch variety implies that in case B(H) ∩U 
= ∅
for some open set U ⊂ Cd+1, the knowledge of B(H) ∩ U allows one to recover B(H). 
Besides its own importance in algebraic geometry, the (ir)reducibility of these varieties is 
crucial in the study of spectral properties of periodic elliptic operators. In particular, this 
has implications for the structure of spectral band edges [7,20], the isospectrality [18,19]
and the existence of embedded eigenvalues for operators perturbed by a local defect [1,6,
12,15,16,21,23]. Based on existing evidence, Kuchment conjectures that the Bloch variety 
of any periodic second-order elliptic operator is irreducible [14, Conjecture 5.17].

There have been many works that address irreducibility of the Bloch and Fermi va-
rieties (see, e.g., [2–5,10,13,20]). In two dimensions, Bättig [2] showed that the Bloch 
variety B(−Δ + V ) is irreducible (modulo periodicity). In [10], Gieseker, Knörrer and 
Trubowitz proved that Fλ(−Δ + V )/Z2 is irreducible except for finitely many values of 
λ. When d = 3, irreducibility of Fλ(−Δ +V )/Zd for any λ ∈ C was proved by Bättig [4]. 
In a recent paper of the second author [20] it is showed that when d ≥ 3 Fλ(−Δ +V )/Zd

is irreducible for any λ ∈ C and when d = 2 Fλ(−Δ + V )/Z2 is irreducible for all 
λ ∈ C \ [V ], where [V ] is the average of V over one periodicity cell. It follows from these 
works that when d ≥ 2 the Bloch variety B(−Δ +V ) is irreducible (modulo periodicity). 
For continuous periodic Schrödinger operators, when d = 2 Knörrer and Trubowitz [13]
proved that the Bloch variety is irreducible (modulo periodicity) and for d = 3, Bättig, 
Knörrer and Trubowitz proved that the Fermi variety at any level is irreducible (mod-
ulo periodicity) for separable periodic potentials [5]. In [17], irreducibility of the Fermi 
variety for all but finitely many energies is proved for a suitable class of planar periodic 
graphs.

In [2–5,10,13], algebraic geometry techniques are employed to construct the toroidal 
and directional compactifications of Fermi and Bloch varieties and understand asymp-
totics of their defining (Laurent) polynomials. The perspective employed by us in the 
current manuscript is inspired by [20]. In general terms, the goal is to explicitly calculate 
asymptotics of the (Laurent) polynomials at z ∈ {z : zj = 0 or zj = ∞, j = 1, 2, · · · , k}
and show that these asymptotics contain enough information about the original variety. 
Concretely, the proof is based on changing variables, studying of the lowest degree com-
ponents of a family of (Laurent) polynomials in several variables and degree arguments. 
With regards to the Bloch variety, we expand the approach of [20] in different directions. 
As a consequence, for the main result of Theorem 2.6 below, the underlying lattice may 
be of very general nature and contain somewhat arbitrary finite-range connections (see 
(A1) and (A2) below for a more precise statement of the assumptions). In particular, we 
obtain irreducibility for the Bloch variety corresponding to periodic Schrödinger opera-
tors on the triangular lattice and the extended Harper lattice; see Section 6 for a precise 
description of these examples. While our approach is inspired by [20], we do not follow 
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the same path. By working directly with the lowest degree components, we can eschew 
a discussion of asymptotic statements about the varieties themselves.

The structure of the paper is as follows. We precisely formulate Theorem 2.6, our 
main result, in Section 2. Section 3 contains preparatory technical results that are then 
employed in Section 4 to prove Theorem 2.6. We elucidate the connection between this 
result and periodic operators in Section 5, which also contains some relevant background 
on periodic long-range Schrödinger operators. We conclude in Section 6 with the proof 
of Theorem 1.1 and some relevant examples and applications.

Acknowledgments. We are grateful to the anonymous reviewer for carefully reading the 
manuscript and for helpful suggestions that improved the paper.

2. Main result

To state the main result, we begin by recalling some crucial terminology.

Definition 2.1. Suppose f is a Laurent monomial in m variables, that is, f(z) = czα =
czα1

1 zα2
2 · · · zαm

m with αi ∈ Z for i = 1, . . . , m and c 
= 0. The degree of f is defined 
as deg(f) = α1 + α2 + · · · + αm. Abusing notation slightly, we also denote deg(α) =
α1 + α2 + · · · + αm for the multi-index α = (α1, . . . , αm) ∈ Zm.

Definition 2.2. Given a Laurent polynomial

p(z) =
�

cαz
α,

let L− = min{deg(α) : cα 
= 0}. Then, the lowest degree component of p is defined to be 
the Laurent polynomial

h(z) =
�

degα=L−

cαz
α.

One of the crucial properties of this notion is the following: denoting the lowest-degree 
component of p by p, one has (fg) = f · g, which enables one to relate factorizations 
of a polynomial to factorizations of its lowest-degree component. Obviously, some care 
is needed to deduce nontrivial consequences from this observation in the context of our 
main result.

Let us write C[z1, . . . , zm] =: C[z] for the set of polynomials in z1, . . . , zm. Similarly, 
we write C[z1, z

−1
1 , . . . , zm, z−1

m ] =: C[z, z−1] for the set of Laurent polynomials3 in 
z1, . . . , zm.

3 This involves a minor, albeit common abuse of notation, since one has the relation zjz−1
j = 1 in C[z, z−1].
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Definition 2.3. Recall that a polynomial P ∈ C[z] is called reducible if there exist non-
constant polynomials f, g ∈ C[z] such that P = fg and irreducible otherwise. Similarly, 
we say that a Laurent polynomial P ∈ C[z, z−1] is irreducible if it can not be factor-
ized non-trivially, that is, there are no non-monomial Laurent polynomials f, g such that 
P = fg.

Notice that nonconstant monomials are units in the algebra of Laurent polynomials, 
which accounts for a small subtlety. That is, one must be somewhat careful here with 
zeros at z = 0 and z = ∞. The polynomial z2 is reducible in C[z] but is a unit in C[z, z−1]. 
In practice, this should cause no confusion, and we will write that P is irreducible in 
C[z] (respectively in C[z, z−1]) if we wish to emphasize the sense in which irreducibility 
is meant in a specific context.

Remark 2.4. If P is an irreducible Laurent polynomial in m variables, then the corre-
sponding variety {z ∈ (C�)m : P(z) = 0} is irreducible as an analytic set.4 Thus, the 
overall strategy of our work is to show that a suitable Laurent polynomial that describes 
the Bloch variety is irreducible. Concretely, we may consider the set B(H) which consists 
of those (z, λ) ∈ (C�)d×C such that Hψ = λψ enjoys a nontrivial solution ψ ∈ H (z, q). 
By Floquet theory, one may determine a suitable Laurent polynomial P(z, λ) such that 
B(H) is precisely the zero set of P (see Section 5). Thus, since (k, λ) ∈ B(H) if and only 
if (e2πik, λ) ∈ B(H), to show that B(H) is irreducible modulo periodicity, it suffices to 
show that the corresponding Laurent polynomial is irreducible.

Let us begin by collecting some notation that we will use throughout the paper. Given 
q = (q1, . . . , qd) ∈ Nd, we define the lattice Γ by

Γ =
d�

j=1
qjZ = {n ∈ Zd : qj |nj ∀ 1 ≤ j ≤ d} (2.1)

and the fundamental cell, W , by

W = {n = (n1, n2, . . . , nd) ∈ Zd : 0 ≤ nj ≤ qj − 1, j = 1, 2, . . . , d} = Zd ∩
d�

j=1
[0, qj).

(2.2)
Given n ∈ W and j ∈ {1, . . . , d}, let

μj
n = e

2πinj
qj , (2.3)

and denote by μn the vector (μ1
n, . . . , μ

d
n). We also let

4 The converse is clearly false, which may be considered by considering the variety associated with f(z)2, 
where f(z) is irreducible. This issue can be elegantly resolved using the language of schemes [11].
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μn � (z1, z2, . . . , zd) =
�
μ1
nz1, μ

2
nz2, . . . , μ

d
nzd

	
. (2.4)

Let p be a Laurent polynomial and define

pn(z) = p(μn � z), n ∈ W, z ∈ (C�)d. (2.5)

We shall work with Laurent polynomials in m = d + 1 variables z1, ..., zd, λ. Abusing 
notation somewhat, we write C[z, λ] (respectively C[z, λ, z−1, λ−1]) for the set of polyno-
mials (respectively the set of Laurent polynomials) in z and λ. The Laurent polynomials 
of interest in the present work are those of the form


P(z, λ) =
�
n∈W

(pn(z) − λ) +
�
X∈S

CX

�
n∈X

(pn(z) − λ), (2.6)

where the summation runs over X in an arbitrary collection S of proper subsets of W
and CX ∈ C. In fact, 
P(z, λ) is a Laurent polynomial in the variable z and a polynomial 
in λ. Collecting terms, we see that


P(z, λ) = (−1)QλQ +
Q−1�
k=0

bk(z)λk, (2.7)

where bk ∈ C[z, z−1] and Q = q1 · · · qd.
Note that we do not exclude the case ∅ ∈ S, our convention being that 

�
n∈∅(pn(z) −

λ) = 1. These are exactly the types of polynomials that one produces by expanding the 
determinant of the Floquet operator associated with a suitable periodic operator, hence 
their interest in the current work.

For each X, the constant CX is assumed to be independent of λ and z. Assume further 
that 
P(z, λ) is invariant under action of each μn, i.e.,


P(z, λ) = 
P(μn � z, λ) for all n ∈ W. (2.8)

Remark 2.5. The assumptions (2.6) and (2.8) include the central example where


P(z, λ) = det (D + B − λI)

and the matrices D = D(z) and B are defined by

D(n, n′) = pn(z)δn,n′ (2.9)

B(n, n′) = �V �
n1 − n′

1
q1

, . . . ,
nd − n′

d

qd

�
, n, n′ ∈ W. (2.10)

Here �V denotes the discrete Fourier transform of V , defined as in (5.1). For further 
discussion, see Section 5, especially Proposition 5.3.
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Let us note the key properties are that D is a diagonal matrix and the entries of B
are independent of z. Consequently, neither self-adjointness of A or real-valuedness of V
is a crucial ingredient.

Since 
P(z, λ) is invariant under the action of each μn, it is elementary to check (cf. 
Lemma 3.1) that there exists P(z, λ) such that


P(z, λ) = P(zq11 , zq22 , . . . , zqdd , λ). (2.11)

Our goal is to show that P(z, λ) is irreducible as a Laurent polynomial under the 
assumptions below.

(A1) deg(h) < 0, where h denotes the lowest degree component of p, (see Definition 2.2).
(A2) Letting hn(z) = h(μn � z), the polynomials {hn(z)}n∈W are pairwise distinct.

The reader may readily check that pn+m(z) = pn(μm � z) (with addition of indices 
computed mod Γ). Thus, to check Assumption (A2) in practice, it suffices to show that 
h0 
= hn for every n ∈ W \ {0}.

Theorem 2.6. Let p ∈ C[z, z−1], q ∈ Nd, S a collection of proper subsets of W , and 
complex numbers {CX}X∈S be given. Assume that 
P is a polynomial of the form (2.6)
obeying (2.8), and let P be the polynomial given by (2.11). Under Assumptions (A1) and
(A2), we conclude that P is irreducible as a Laurent polynomial.

As mentioned in Remark 2.5, the connection to Schrödinger operators and Theo-
rem 1.1 will be established in Section 5.

Remark 2.7. Let us collect some notation from the previous paragraphs that will be 
repeatedly used throughout the proofs.

(1) C[z] (resp. C[z, z−1]) denotes the set of polynomials (resp. Laurent polynomials) 
in z1, . . . , zd.

(2) p ∈ C[z, z−1].
(3) h(z) is the lowest degree component of p(z).
(4) Γ = q1Z ⊕ · · · ⊕ qdZ

d, W = Zd ∩
�d

j=1[0, qj), S ⊂ 2W \ {W} is arbitrary.
(5) μj

n = e2πinj/qj , n ∈ Zd, j = 1, · · · , d.
(6) For n ∈ W , μn = (μ1

n, . . . , μ
d
n).

(7) pn(z) = p(μn � z).
(8) 
P(z, λ) is given by


P(z, λ) =
�
n∈W

(pn(z) − λ) +
�
X∈S

CX

�
n∈X

(pn(z) − λ),

(9) Q = q1 · · · qd
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(10) zα = zα1
1 · · · zαd

d for z ∈ (C�)d, α ∈ Zd.
(11) P(z, λ) is defined by


P(z, λ) = P(zq11 , zq22 , . . . , zqdd , λ).

(12) a � b = (a1b1, . . . , adbd) for ordered d-tuples a = (a1, . . . , ad) and b = (b1, . . . , bd).

3. Technical lemmas

Lemma 3.1. Suppose 
g is a Laurent polynomial in z and λ. With notation as in Re-
mark 2.7, one has that 
g(z, λ) ≡ 
g(μn � z, λ) for every n ∈ W if and only if there is a 
Laurent polynomial g(w, λ) such that


g(z, λ) ≡ g(zq11 , . . . , zqdd , λ). (3.1)

Proof. If g(w, λ) satisfying (3.1) exists, then it readily follows from the definition of 
μn � z that


g(μn � z, λ) = g
�
(μ1

nz1)q1 , . . . , (μd
nzd)qd , λ

	
= g (zq11 , . . . , zqdd , λ) = 
g(z, λ).

To see that the converse implication holds, write


g(z, λ) =
�

�∈Zd,m∈Z

c�,mz�λm and let g(w, λ) =

�
�∈Zd,m∈Z

c�,mw�λm

be another Laurent polynomial. Note that

g(zq11 , . . . , zqdd , λ) =
�

�∈Zd,m∈Z
c�,mz��qλm.

Thus (3.1) holds if and only if for all m ∈ Z


c�,m =
�
cr,m � = q � r ∈ Γ,
0 otherwise,

and hence g satisfying (3.1) exists if and only if 
c�,m = 0 for all � /∈ Γ and m ∈ Z. 
Thus, if (3.1) does not hold, we must have 
c�,m 
= 0 for some � /∈ Γ, say qi 
 | �i for some 
i ∈ {1, · · · , d}. Choose n = ei ∈ W , and note that for this choice of n one has


g(z, λ) − 
g(μn � z, λ) 
≡ 0,

concluding the proof. �
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Definition 3.2. For each j ∈ {1, 2, · · · , d}, define γ′
j ≥ 0 as follows. We let −γ′

j be the 
lowest exponent of zj in h(z) in case this exponent is negative and γ′

j = 0 otherwise.

Lemma 3.3. Let p be a Laurent polynomial in z1, . . . , zd and let h be the lowest degree 
component of p. Then, the polynomials

rn(z, 
λ) = 
λzγ′
1

1 · · · zγ
′
d

d h(μn � z) − z
γ′
1

1 · · · zγ
′
d

d

are irreducible in C[z, 
λ] for each n ∈ W . Moreover, under Assumption (A2), we conclude 
that for any n 
= n′ ∈ W , rn and rn′ are relatively prime.

Proof. Assume for the sake of contradiction that rn(z, 
λ) is reducible. Since the degree 
of 
λ in rn(z, 
λ) is one, we must have that

rn(z, 
λ) = f(z, 
λ)g(z) (3.2)

for non-constant polynomials f(z, 
λ) and g(z). Since 
λ does not divide rn(z, 
λ) in C[z], 
we see that there exist non-zero polynomials f1(z) and f2(z) such that

f(z, 
λ) = 
λf1(z) − f2(z).

From (3.2) and the definition of rn(z, 
λ) we obtain f2(z)g(z) = z
γ′
1

1 · · · zγ
′
d

d . In particular, 
g(z) = zm1

1 · · · zmd

d where m1, . . . , md are integers with 0 ≤ mj ≤ γ′
j for j ∈ {1, . . . , d}. 

Since g is nonconstant, ml > 0 for at least one l. In particular,

γ′
l ≥ ml > 0.

Consequently, (3.2) implies that the polynomial zγ
′
1

1 · · · zγ
′
d

d h(μn � z) is divisible by zl for 
some l ∈ {1, 2, . . . , d}. However, the lowest degree of zl in h(μn�z) is, by definition, equal 
to −γ′

l . Thus zγ
′
1

1 · · · zγ
′
d

d h(μn�z) is not divisible by zl, contradicting (3.2). Consequently, 
rn is irreducible.

To prove the second statement of the lemma, assume rn and rn′ share a nontriv-
ial common factor. By irreducibility, they must be constant multiples of one another. 
However, from the definition, this is only possible if rn = rn′ , which contradicts Assump-
tion (A2). �

Let us introduce the auxiliary polynomial


a(z, 
λ) =
�
n∈W

rn(z, 
λ) (3.3)
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with rn(z, 
λ) as in Lemma 3.3 for n ∈ W . By a direct calculation, 
a(z, 
λ) is invariant 
under the replacement5 z �→ μn � z, so, as a consequence of Lemma 3.1, there exists 
a(z, 
λ) such that


a(z, 
λ) = a(zq11 , . . . , zqdd , 
λ). (3.4)

Lemma 3.4. Under Assumption (A2), the polynomial a(z, 
λ) given by (3.4) is irreducible 
in C[z, 
λ].

Remark 3.5. It is important that we pass to the lift a here, since 
a is clearly reducible.

Proof of Lemma 3.4. Suppose for the sake of establishing a contradiction that a(z, 
λ) is 
reducible, and write

a(z, 
λ) = f1(z, 
λ)g1(z, 
λ) (3.5)

for non-constant polynomials f1 and g1. Let 
f1(z, 
λ) = f1(zq11 , . . . , zqdd , 
λ) and 
g1(z, 
λ) =
g1(zq11 , . . . , zqdd , 
λ). Combining (3.4) and (3.5) yields


a(z, 
λ) = 
f1(z, 
λ)
g1(z, 
λ).

Moreover, by definition 
f1(z, 
λ) and 
g1(z, 
λ) are both invariant under the action of each 
μn. Recall from Lemma 3.3 that each rn(z, 
λ) is irreducible. Therefore, each rn(z, 
λ)
is a factor of either 
f1 or 
g1. By invariance of 
f1(z, 
λ) (respectively 
g1(z, 
λ)) under the 
action of each μn and since, by Lemma 3.3, rn and rn′ are relatively prime for n 
= n′, 
we conclude the following: if 
f1(z, 
λ) (respectively 
g1(z, 
λ)) has a factor of rn(z, 
λ) then 
it must have a factor of �

n∈W

rn(z, 
λ) = 
a(z, 
λ).

However, this, together with (3.5), implies that either 
f1(z, 
λ) or 
g1(z, 
λ) must be con-
stant, which is a contradiction. Thus, we conclude that a(z, 
λ) is irreducible. �
Lemma 3.6. Let P(z, λ) be given by (2.11) and let f be any irreducible factor of P. Then 
f must depend on λ.

Proof. If f is an irreducible factor of P, then f must depend on λ since otherwise there 
would be a suitable choice of z = (z1, . . . , zd), namely any solution of f(z) = 0, for which 
P(z, λ) = 0 for any λ. This, in turn, contradicts the fact that the term of highest degree 
of λ in P(z, λ) is (−1)QλQ (see (2.7) and (2.11)). �
5 Later on, we will call this the action of μn on a polynomial.
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4. Proof of Theorem 2.6

Before proceeding with the proof of the main result, Theorem 2.6, let us introduce 
some notation.

Definition 4.1. For each j ∈ {1, 2, . . . , d} denote by −γj the lowest exponent of zj in p(z)
in case this exponent is negative and γj = 0 otherwise. Clearly, γj ≥ γ′

j with γ′
j given in 

Definition 3.2.

Proof of Theorem 2.6. Let 
λ = λ−1. Then P(z, λ) = P(z, 
λ−1) is a Laurent polynomial 
in the variables (z, 
λ). Let γj , j = 1, . . . , d be as in Definition 4.1. In case γj > 0 for 
some j ∈ {1, . . . , d}, the lowest power of zj in P(z, 
λ−1) is −γjQ/qj .

Moreover, the lowest power of 
λ in P(z, 
λ−1) is 
λ−Q (cf. (2.7)), so

R(z, 
λ) =
�
λz γ1

q1
1 · · · z

γd
qd

d

�Q

P(z, 
λ−1) (4.1)

defines a polynomial R ∈ C[z, 
λ].

Claim 4.2. For each 1 ≤ j ≤ d, zj does not divide R(z, 
λ).

Proof of Claim. Indeed, if γj > 0, this is clear from the definitions, since −γj is the 
smallest power of zj in p and hence −γjQ/qj is the smallest power of zj in P. Otherwise, 
γj = 0, and the claim can be seen from (2.7). ♦

Since 
λ also does not divide R(z, 
λ), Claim 4.2 implies that reducibility of the Laurent 
polynomial P(z, 
λ−1) is equivalent to reducibility of the polynomial R(z, 
λ).

Now, assume for the sake of contradiction that P(z, 
λ−1) is reducible. There exist 
m > 1 and non-constant polynomials fl(z, 
λ), l = 1, 2, . . . , m, in C[z, 
λ] such that

�
λz γ1
q1
1 · · · z

γd
qd

d

�Q

P(z, 
λ−1) =
m�
l=1

fl(z, 
λ). (4.2)

Let us recall the auxiliary polynomial 
a given by


a(z, 
λ) :=


λzγ′

1
1 · · · zγ

′
d

d

�Q �
n∈W

(h(μn � z) − 
λ−1).

Let 
fl(z, 
λ) = fl(zq11 , . . . , zqdd , 
λ). Then, by (2.11) and (4.2), we have that



λzγ1 · · · zγd

�Q 
P(z, 
λ−1) =
m�
l=1


fl(z, 
λ). (4.3)
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By definition of 
P in (2.6) one sees that replacing 
λ by 
λγ for γ = −deg(h) > 0 allows 

us to conclude that the lowest degree component of 


λγzγ1 · · · zγd

�Q 
P(z, 
λ−γ) is given 

by 
a1(z, 
λγ), where


a1(z, 
λγ) =


λγzγ1

1 · · · zγd

d

�Q �
n∈W

(h(μn�z)−
λ−γ) = (zγ1−γ′
1

1 · · · zγd−γ′
d

d )Q
a(z, 
λγ). (4.4)

We denote by 
f1
l (z, 
λγ) the lowest degree components of 
fl(z, 
λγ), l = 1, 2, . . . , m. From 

(4.3) it must be that

m�
l=1


f1
l (z, 
λγ) = 
a1(z, 
λγ) (4.5)

and hence

m�
l=1


f1
l (z, 
λ) = 
a1(z, 
λ). (4.6)

Given l ∈ {1, . . . , m}, 
f1
l (z, 
λ) is a polynomial in zq11 , zq22 , . . . , zqdd . Thus, there exists 

f1
l (z, 
λ) such that


f1
l (z, 
λ) = f1

l (zq11 , . . . , zqdd , 
λ). (4.7)

By (4.4), (4.6) and (4.7), we reach, recalling the definition of a(z, 
λ) in (3.4),

m�
l=1

f1
l (z, 
λ) =

�
z

γ1−γ′
1

q1
1 z

γ2−γ′
2

q2
2 · · · z

γd−γ′
d

qd

d

�Q

a(z, 
λ). (4.8)

By Lemma 3.4, a(z, 
λ) is irreducible, so there exists j ∈ {1, 2, . . . , m} such that f1
j (z, 
λ)

has a factor a(z, 
λ). We conclude that the highest power of 
λ in 
fj(z, 
λ) (hence in fj(z, 
λ)) 
is at least Q. Since m > 1 and, by Lemma 3.6 and Claim 4.2, 
fl(z, 
λ), l = 1, 2, . . . , m, 
must depend on 
λ we reach a contradiction since the highest power of 
λ on the left-hand 
side of (4.3) is equal to Q. �
5. Floquet theory for long-range operators

Let us summarize some of the important points about Floquet theory for operators 
with long-range interactions. This is well-known, especially in the continuum case; see the 
survey [14] and references therein. We are unaware of a precise reference in the discrete 
setting for long-range operators, so we included the details for the reader’s convenience.

Let us assume that A : �2(Zd) → �2(Zd) is bounded. Writing An,m = 〈δn, Aδm〉 for 
the matrix elements, we further assume that A is translation-invariant in the sense that
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An+�,m+� = An,m ∀n,m, � ∈ Zd,

and that A satisfies the decay estimate

|An,m| ≤ Ce−ν|n−m|

for constants C, ν > 0. By translation-invariance, A is fully encoded by {an := An,0}n∈Zd

via

[Aψ]n =
�

m∈Zd

an−mψm.

We denote the Fourier transform on �2(Zd) by F : u �→ �u, where

�u(x) =
�
n∈Zd

e−2πi〈n,x〉un,

for u ∈ �1(Zd) and then extended to �2 by Plancherel.
By the assumptions on A, the symbol �a is analytic, real-analytic whenever an = a−n, 

and a trigonometric polynomial whenever a is finitely supported. For example, when 
A = −Δ denotes the Laplacian on Zd,

�a(x) = −2
d�

j=1
cos(2πxj).

Recall that V : Zd → C is q-periodic and Γ = {q �m : m ∈ Zd} denotes the period 
lattice. We define the dual lattice Γ∗ = {(m1/q1, . . . , md/qd) : mj ∈ Z} and

W ∗ := Γ∗ ∩ [0, 1)d =
�

0, 1
q1

, . . . ,
q1 − 1
q1

�
× · · · ×

�
0, 1

qd
, . . . ,

qd − 1
qd

�
.

The discrete Fourier transform of a q-periodic function g : Zd → C is defined by

�g� = 1√
Q

�
n∈W

e−2πi〈n,�〉gn, � ∈ W ∗. (5.1)

Of course, this also makes sense for � ∈ Γ∗ and satisfies �g�+n = �g� for any � ∈ W ∗ and 
any n ∈ Zd. One can check the inversion formula

1√
Q

�
�∈W∗

e2πi〈�,n〉�g� = gn, ∀n ∈ Zd, (5.2)

which holds for any q-periodic g.
Let Td = Rd/Zd denote the torus.
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Proposition 5.1. For any f ∈ L2(Td),

[FAF ∗f ](x) = �a(x)f(x)

and

[FV F ∗f ](x) = 1√
Q

�
�∈W∗

�V�f(x− �).

Proof. These follow from direct calculations using the definitions of and assumptions on 
A and V and the inversion formula (5.2). �

Let us now define Td
∗ = Rd/Γ∗,

Hq =
⊕�

Td
∗

CW dx

|Td
∗|

= L2
�
Td

∗,C
W ; dx

|Td
∗|

�

and Fq : �2(Zd) → Hq by u �→ �u where

�uj(x) =
�
n∈Zd

e−2πi〈n�q,x〉uj+n�q, x ∈ Td
∗, j ∈ W.

As usual, this is initially defined for (say) �1 vectors, but has a unique extension to a 
unitary operator on �2 via Plancherel.

Proposition 5.2. The operator Fq is unitary. If V is q-periodic, then

FqHF ∗
q =

⊕�
Td

∗


H(x) dx

|Td
∗|
,

where 
H(x) denotes the restriction of H to W with boundary conditions

un+m�q = e2πi〈m�q,x〉un, n,m ∈ Zd. (5.3)

Proof. Unitarity of Fq follows from Parseval’s formula. The form of FqHF ∗
q follows 

from a direct calculation. �
Given x ∈ Rd, let Fx be the Floquet-Bloch transform defined on CW as follows: for 

any vector on W , {u(n)}n∈W , we set

[F xu]l = 1√
Q

�
n∈W

e
−2πi

�d
j=1(

lj
qj

+xj)nj
un, l ∈ W.
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Therefore,

[(F x)∗u]l = 1√
Q

�
n∈W

e
2πi

�d
j=1(

nj
qj

+xj)lj
un, l ∈ W.

Let zj = e2πixj , j = 1, 2, · · · , d and define the Laurent series p(z) by

p(e2πix1 , e2πix2 , . . . , e2πixd) = �a(x1, x2, . . . , xd). (5.4)

Using multi-index notation, we may rewrite this as

p(z) = �a(x) =
�
n∈Zd

e−2πi〈n,x〉an =
�
n∈Zd

anz
−n1
1 z−n2

2 · · · z−nd

d =
�
n∈Zd

anz
−n. (5.5)

Proposition 5.3. Assume V is q-periodic. Then 
H(x) given by (5.3) is unitarily equivalent 
to Dz + BV , where zj = e2πixj , Dz is a diagonal matrix with entries

Dz(n, n′) = p(μn � z)δn,n′ , (5.6)

μn is the vector from (2.3), and B = BV has entries related to the discrete Fourier 
transform of V via

B(n, n′) = �V �
n1 − n′

1
q1

, . . . ,
nd − n′

d

qd

�
.

Remark 5.4. In particular, Dz depends on A and is independent of V , while BV depends 
only on V with no dependence on A.

Proof of Proposition 5.3. By a direct calculation, we see that Fx is unitary, so it suffices 
to prove that Dz +BV = (F x) 
H(x)(Fx)∗. Let 
H0(x) be 
H(x) with the potential V set 
to zero. We are going to show (Fx) 
H0(x)(F x)∗ = Dz and (F x)V (F x)∗ = B separately. 
To prove that (Fx) 
H0(x)(F x)∗ = Dz, it suffices to show that for any u = {un}n∈W ,

(F x)∗Dzu = 
H0(x)(F x)∗u.

It is worth mentioning that (Fx)∗u satisfies (5.3) so that 
H0(x)(F x)∗u is well defined. 
With the given definitions, for any m ∈ W ,

( 
H0(x)(F x)∗u)m =
�
l∈Zd

am−l[(F x)∗u]l

= 1√
Q

�
l∈Zd

am−l

�
n∈W

e
2πi

�d
j=1(

nj
qj

+xj)lj
un

= 1√
Q

�
l∈Zd

al
�
n∈W

e
2πi

�d
j=1(

nj
qj

+xj)(mj−lj)
un



J. Fillman et al. / Journal of Functional Analysis 283 (2022) 109670 19

= 1√
Q

�
n∈W

e
2πi

�d
j=1(

nj
qj

+xj)mj�a�n1

q1
+ x1, . . . ,

nd

qd
+ xd

�
un.

(5.7)

Putting together (2.4) and (5.7),

�a�n1

q1
+ x1, . . . ,

nd

qd
+ xd

�
= p(μn � z) = Dz(n, n). (5.8)

Similarly,

((F x)∗Dzu)m = 1√
Q

�
n∈W

e
2πi

�d
j=1(

nj
qj

+xj)mj
unD

z(n, n). (5.9)

By (5.7), (5.9) and (5.8), we finish the proof of (Fx) 
H0(x)(F x)∗ = Dz.
The proof of (Fx)V (F x)∗ = B is similar. �

6. Proof of Theorem 1.1 and examples

Proof of Theorem 1.1. The Bloch variety precisely consists of those (k, λ) such that there 
is a nontrivial solution of Hu = λu satisfying the boundary conditions as in (1.4). Thus, 
with D and B as in Proposition 5.3, the Bloch variety is the zero set of the Laurent 
polynomial P(z, λ) defined by (2.11) where


P(z, λ) = det(Dz + B − λI).

After using the standard permutation expansion for this determinant, we see that 
P is 
of the form (2.6) (with p given via (5.5)). By a brief calculation, one can check that 
P satisfies (2.8). Namely, if Sm denotes the shift en �→ en+m with addition computed 
modulo Γ, one can check that


P(μmz, λ) = det(Dμmz + B − λ)

= det(S∗
mDzSm + B − λ).

Since S∗
mBSm = B, (2.8) follows. Thus, the result follows from Theorem 2.6. �

Let us conclude by discussing a few examples of how to obtain the generator p(z)
for which Theorem 2.6 is applicable. In particular, the examples below show that the 
framework of the present paper allows one to consider different discrete geometries. We 
start with the most basic example of the Laplacian on Zd, where

[Aψ]n = −
�

‖m−n‖1=1

ψm.
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In this case, it readily follows from (5.5) that

p(z) = −
�
z1 + 1

z1
+ z2 + 1

z2
+ · · · + zd + 1

zd

�
. (6.1)

Proof of Corollary 1.3. From (6.1), we see that the minimal degree component of p is 
precisely

h(z) = −
�

1
z1

+ 1
z2

+ · · · + 1
zd

�
.

Here assumptions (A1) and (A2) are fulfilled with deg(h) = −1. �
We then proceed to the description of a couple of two dimensional examples. The 

triangular lattice is given by specifying the vertex set

V = {nb1 + nb2 : n,m ∈ Z}, b1 =
�
1
0

�
, b2 = 1

2

�
1√
3

�
with edges given by u ∼ v ⇐⇒ ‖u − v‖2 = 1. Applying the shear transformation 
b1 �→ b1, b2 �→ [0, 1]�, one can view this graph as having vertices in Z2 and

u ∼ v ⇐⇒ u− v ∈ {±e1,±e2,±(e1 − e2)}.

In particular, the nearest-neighbor Laplacian on the triangular lattice is equivalent to 
the operator Atri : �2(Z2) → �2(Z2) such that

[Atriψ]n1,n2 = −ψn1−1,n2 − ψn1+1,n2 − ψn1,n2−1 − ψn1,n2+1 − ψn1−1,n2+1 − ψn1+1,n2−1.

Making use of (5.5) one finds that

ptri(z) = −
�
z1 + 1

z1
+ z2 + 1

z2
+ z1

z2
+ z2

z1

�
. (6.2)

Proof of Corollary 1.5. From (6.2), we see that

htri(z) = − 1
z1

− 1
z2

,

from which it is trivial to check Assumptions (A1) and (A2). �
Finally, in the Extended Harper Model

[AEHMψ]n1,n2 = − ψn1−1,n2 − ψn1+1,n2 − ψn1,n2−1 − ψn1,n2+1

− ψn1−1,n2+1 − ψn1+1,n2−1 − ψn1−1,n2−1 − ψn1+1,n2+1.
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Equation (5.5) now implies that

pEHM(z) = −
�
z1 + 1

z1
+ z2 + 1

z2
+ z1

z2
+ z2

z1
+ z1z2 + 1

z1z2

�
The lowest degree component is 1

z1z2
. The proof of Corollary 1.4 follows in just the same 

way as before; notice that we need the periods to be coprime to ensure that Assump-
tion (A2) is met.

Remark 6.1. To conclude, let us say a few words about when our results can be applied 
in the general setting of periodic operators on periodic graphs. That is, given a periodic 
graph and a periodic operator thereupon, when can one apply a suitable change of 
coordinates as in the case of the triangular lattice to reduce an operator on Zd? In short, 
this can be done to periodic operators on any Zd-periodic graph with transitive vertex 
action. Let us describe this in a little more detail.

Suppose G is a locally finite graph with vertices V on which Zd acts freely by graph 
automorphisms. Denote the action of n ∈ Zd on the vertex u ∈ V by n + u. This gives 
a unitary representation of Zd viz. [Tnψ](u) = ψ(n + u), ψ ∈ �2(V). One may consider 
operators of the form H = A + V acting in the natural Hilbert space �2(V), where

(1) A commutes with the Zd-action (that is, ATn = TnA for all n ∈ Zd)
(2) V is diagonal, that is, [V ψ](u) = V (u)ψ(u) for a suitable function V : V → C.
(3) V is invariant under the action of a full-rank subgroup of Zd, that is, there is a 

subgroup F ≤ Zd of rank d such that V Tm = TmV for all m ∈ F .

In item (3), notice that one can always take F to be of the form q1Z ⊕ · · · ⊕ qdZ

for some q ∈ Nd, in which case we say V is q-periodic as before. If in addition, Zd

acts transitively on V, then choosing arbitrarily some u0 ∈ V, one has a one-to-one 
correspondence Zd → V via n �→ n + u0. Of course, this induces a unitary operator 
Q : �2(Zd) → �2(V) in an obvious manner. In this case, it is clear that Q∗HQ is a 
periodic operator of the form studied in the present paper.
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