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acting in £2(Z?), where V is periodic and A is a Toeplitz operator given by

[AY], = Z An—mPm.-

mezd

Here, {an}neza is finitely supported and V' will as usual denote both the potential
V : Z¢ — C and the corresponding multiplication operator [V4)], = V,t,. We say
that V is g-periodic for ¢ = (q1,...,q4) € N? if Vitqje; = Vo for all m € 7% and each
1 < j < d, where e; denotes the standard jth basis vector.

In particular, let us note that the approach discussed herein does not rely on reality
of the potential or self-adjointness of A. The case in which

{—1 n = *e; for some 1 < j <d
ap =

0 otherwise

corresponds to A = —A, the discrete Laplacian.

Our main result is irreducibility of the Bloch variety for all operators of the form (1.1)
subject to a suitable condition on A. In particular, under mild assumptions on {ay },cz4,
the result holds universally for all periodic V, including complex-valued potentials. We
will define the Bloch variety precisely later in the manuscript (see Section 1.2); for now,
the reader may think of it as a relation between the energy, A, and the quasi-momentum,
k, which is given by the zero set of a function P(z, A) that is a polynomial in A and a
Laurent polynomial in z = €27,

Let us describe some of the main objects and assumptions used in this work. Starting

with A we generate the Laurent polynomial

p(z) =pa(z) = Y anz™", (1.2)

neze

where we employ the standard multi-index notation 2™ = 27" --- 2.

Let us state our assumptions here in a moderately informal manner. For further
definitions, details, and a more precise account, we refer the reader to Section 2, where
we define the component of lowest degree and the fundamental domain W. Let h denote
the lowest degree component of p in the sense that p(z) = h(z) + higher order terms.
Given ¢ = (q1,...,qq4) € N* and n = (ny,...,nq) € Z%, the vector p, = (u’,..., ul) is
defined by

/«L% — 6271'7;7113'/113'7 1 S] g d.

Given z € €4, we define u, ® z = (ulz1,...,pd24). Our main assumptions are the
following:

(A1) The degree of h is negative.



J. Fillman et al. / Journal of Functional Analysis 283 (2022) 109670 3

(A2) The polynomials h(u, ®z), n € W, are pairwise distinct (cf. (2.2), (2.3), and (2.4)).

Theorem 1.1. Let ¢ = (q1,q2,...,94) be given and let V' be g-periodic. If pa satisfies
Assumptions (A1) and (Asz), then the Bloch variety of H = A+ V is irreducible modulo
periodicity.

Remark 1.2. Let us make a few comments about Theorem 1.1.

(1) The precise definitions of the Bloch variety and irreducibility modulo periodicity
are given in Section 1.2. To prove Theorem 1.1, we use standard Floquet theory to
obtain a Laurent polynomial P(z, A) with the property that (k,\) belongs to the
Bloch variety if and only if P(e2"* )\) = 0. We show that P is irreducible as a
function of z and A. Since the Bloch variety is defined as a set of pairs (k,\), it
is only irreducible after one quotients out the relevant Z¢ action. This is indeed
necessary as shown by the free Laplacian, see Equation (1.22) and Figure 4 in [14].
The main idea of the proof is to reduce from the operator A +V to A by focusing
on the lowest-degree component of P (after a suitable change of variables). We show
that reducibility combined with Assumptions (A;) and (Az) would imply mutually
contradictory properties of the lowest-degree component.

(2) Assumption (A;) only depends on p4, whereas Assumption (As) depends on p4 and
q (via the action of the vectors u,,). As the reader can see, our proof does not require
V to be real-valued.

(3) The strength of the result comes from the generality of the operators under consider-
ation. For instance, this can handle operators in higher dimensions on rather general
graphs; specifically, one can handle Z?-periodic graphs for which Z? acts transitively
on vertices (see Remark 6.1 for further details). We emphasize that our result does
not necessarily imply irreducibility of the Fermi varieties associated with A + V.

Theorem 1.1 is the main motivation for this work. It will follow from a more general
result formulated in Theorem 2.6 below.

The above assumptions are satisfied and straightforward to verify in many cases of
interest. To illustrate scope of applications, we enumerate some corollaries.

We first note that Theorem 1.1 provides a direct proof of the irreducibility of the
Bloch variety for all discrete Schrodinger operators on Z<.

Corollary 1.3. If A = —A denotes the Laplacian on (*(Z%), then for any periodic V, the
Bloch variety of A+ V is irreducible modulo periodicity.

The corollary above was already known via results about the Fermi variety — see
the discussion in Section 1.2 for additional details and references. Thus, we supply an
alternative argument, working directly on the Bloch variety.
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More significantly, Theorem 1.1 also enables one to prove irreducibility of the Bloch
variety for other lattice geometries in arbitrary dimension. To remain concrete, we present
a couple of two dimensional examples but the reader may readily recognize from the
proofs that generalizations are possible (compare Remark 6.1).

Corollary 1.4. If A denotes the Laplacian on the extended Harper lattice, q1 and qo are
coprime, and V is q-periodic, then the Bloch variety of A+ V is irreducible modulo
periodicity.

Corollary 1.5. If A denotes the Laplacian on the triangular lattice, then for any periodic
V', the Bloch variety of A+ V is irreducible modulo periodicity.

Note that irreducibility of the Bloch variety is potentially sensitive to modifications
in the hopping terms (i.e., the matrix elements of A). To the best of our knowledge, even
the results of Corollaries 1.4 and 1.5 are new. For further details, including definitions of
the triangular and extended Harper lattices, see Section 6. To emphasize the distinction
between the above models, we present the corresponding polynomials below, recalling
that Equation (1.2) provides the dictionary between A and Pj,.

(i) For the discrete Laplacian on Z¢,

1 1 1
p—A(Z):_(Zl+_+z2+_+"‘+2d+_>
21 22 Zd

(ii) For the extended Harper lattice

1 1 21 22 1
perM(2) = — |21+ —+ 2+ —+ —+ -+t —
31 22 @ 2 2122

(iii) For the triangular lattice,

1 1 21 22
pcri(Z)_—(21+—+Z2+—+—+—)~

21 22 22 21
In particular, in dimension d = 2, pgam(2) adds to p_a(z) next nearest neighbor terms
and is symmetric with respect to the map z; — z;l for j = 1,2. The polynomial pi(z)
does not possess this symmetry, nonetheless the corresponding variety still falls into the
scope of Theorem 1.1. The triangular lattice is depicted in Fig. 1. Applying a simple
shear transformation reduces the triangular lattice to the square lattice with additional
edges, as shown in Fig. 2, and hence places the Laplacian on the triangular lattice into
the context of the paper after a suitable change of coordinates.
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Fig. 1. A portion of the triangular lattice. Fig. 2. The triangular lattice after shearing.
1.2. Definitions and context
Let us now give relevant definitions and context. Given ¢; € N, i = 1,2,...,d, let

=Ty :=qZ®¢@Z® - - ®qqZ. We say that a function V : 7Z¢ — C is g-periodic
(P-periodic, or just periodic) if V;,4, = V,, for all n € Z* and all vy € T.

Definition 1.6. Let C* = C\ {0}. For z = (21,...,24) € (C*)? and ¢ = (q1, ..., q4) € N,
the space % (z,q) consists of those ¢ : Z? — C for which

Untjoq = 2%, Y, j € Z¢, (1.3)
where we write 7 ©q = (j1q1,. . ., jaqa) and use the multi-index notation 27 = z{l e zéd.

Naturally, .7(z, q) is a Hilbert space of finite dimension Q := ¢; - - - qq.
If V : Z¢ — C is g-periodic, the corresponding Bloch variety is given by

B = B(H) = {(k,\) € C™! : Hiy) = M\ enjoys a nonzero solution in 2 (e*™* ¢)},
(1.4)
where we write 7% = (e27ik1 | e27ika) ¢ (C*)4. We employ here a standard abuse of
notation in which H represents both the self-adjoint operator in £2(Z<) and the difference
operator acting in, say, £>°(Z%).

Definition 1.7. We will say the Bloch variety B(H) is irreducible modulo periodicity if
for every two irreducible components ; and Qs of B(H), there exists m € Z% such that

Ql = (m,()) + QQ.

Definition 1.8. Given A € C, the Fermi surface (variety) F)\(H) is defined as the level set
of the Bloch variety:

Fy(H)={keC: (k,\) € B(H)}.
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We should mention that reducible Fermi and Bloch varieties are known to occur for
periodic graph operators, e.g., [8,24]. One challenging problem in the study of periodic
operators is to prove the (ir)reducibility of the Bloch and Fermi varieties [3-5,8-10,13,17,
22,24]. For instance, irreducibility of the Bloch variety implies that in case B(H)NU # ()
for some open set U C €1, the knowledge of B(H) N U allows one to recover B(H).
Besides its own importance in algebraic geometry, the (ir)reducibility of these varieties is
crucial in the study of spectral properties of periodic elliptic operators. In particular, this
has implications for the structure of spectral band edges [7,20], the isospectrality [18,19]
and the existence of embedded eigenvalues for operators perturbed by a local defect [1,6,
12,15,16,21,23]. Based on existing evidence, Kuchment conjectures that the Bloch variety
of any periodic second-order elliptic operator is irreducible [14, Conjecture 5.17].

There have been many works that address irreducibility of the Bloch and Fermi va-
rieties (see, e.g., [2-5,10,13,20]). In two dimensions, Battig [2] showed that the Bloch
variety B(—A + V) is irreducible (modulo periodicity). In [10], Gieseker, Knoérrer and
Trubowitz proved that Fy(—A + V) /Z? is irreducible except for finitely many values of
A. When d = 3, irreducibility of Fy(—A+V)/Z< for any A € C was proved by Bittig [4].
In a recent paper of the second author [20] it is showed that when d > 3 F)\(—A+V)/Z?
is irreducible for any A € C and when d = 2 Fy\(—A + V)/Z? is irreducible for all
A € C\ [V], where [V] is the average of V over one periodicity cell. It follows from these
works that when d > 2 the Bloch variety B(—A+ V) is irreducible (modulo periodicity).
For continuous periodic Schrédinger operators, when d = 2 Knorrer and Trubowitz [13]
proved that the Bloch variety is irreducible (modulo periodicity) and for d = 3, Bittig,
Knorrer and Trubowitz proved that the Fermi variety at any level is irreducible (mod-
ulo periodicity) for separable periodic potentials [5]. In [17], irreducibility of the Fermi
variety for all but finitely many energies is proved for a suitable class of planar periodic
graphs.

In [2-5,10,13], algebraic geometry techniques are employed to construct the toroidal
and directional compactifications of Fermi and Bloch varieties and understand asymp-
totics of their defining (Laurent) polynomials. The perspective employed by us in the
current manuscript is inspired by [20]. In general terms, the goal is to explicitly calculate
asymptotics of the (Laurent) polynomials at z € {z: z; =0o0r z; = 00,5 =1,2,--- , k}
and show that these asymptotics contain enough information about the original variety.
Concretely, the proof is based on changing variables, studying of the lowest degree com-
ponents of a family of (Laurent) polynomials in several variables and degree arguments.
With regards to the Bloch variety, we expand the approach of [20] in different directions.
As a consequence, for the main result of Theorem 2.6 below, the underlying lattice may
be of very general nature and contain somewhat arbitrary finite-range connections (see
(A7) and (As) below for a more precise statement of the assumptions). In particular, we
obtain irreducibility for the Bloch variety corresponding to periodic Schrédinger opera-
tors on the triangular lattice and the extended Harper lattice; see Section 6 for a precise
description of these examples. While our approach is inspired by [20], we do not follow
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the same path. By working directly with the lowest degree components, we can eschew
a discussion of asymptotic statements about the varieties themselves.

The structure of the paper is as follows. We precisely formulate Theorem 2.6, our
main result, in Section 2. Section 3 contains preparatory technical results that are then
employed in Section 4 to prove Theorem 2.6. We elucidate the connection between this
result and periodic operators in Section 5, which also contains some relevant background
on periodic long-range Schréodinger operators. We conclude in Section 6 with the proof
of Theorem 1.1 and some relevant examples and applications.

Acknowledgments. We are grateful to the anonymous reviewer for carefully reading the
manuscript and for helpful suggestions that improved the paper.

2. Main result

To state the main result, we begin by recalling some crucial terminology.

Definition 2.1. Suppose f is a Laurent monomial in m variables, that is, f(z) = cz® =
ezt zg? - z0m with o € Z for ¢ = 1,...,m and ¢ # 0. The degree of f is defined
as deg(f) = a1 + as + - -+ + a4, Abusing notation slightly, we also denote deg(a) =
a1 + ag + - - + ayy, for the multi-index o = (aq, ..., ) € Z™.

Definition 2.2. Given a Laurent polynomial

pz) =3 caz®,

let L_ = min{deg(a) : ¢, # 0}. Then, the lowest degree component of p is defined to be
the Laurent polynomial

dega=L_

One of the crucial properties of this notion is the following: denoting the lowest-degree
component of p by p, one has (fg) = f - g, which enables one to relate factorizations
of a polynomial to factorizations of its lowest-degree component. Obviously, some care
is needed to deduce nontrivial consequences from this observation in the context of our

main result.

Let us write C|z1, ..., zm] =: Clz] for the set of polynomials in 21, ..., z,,. Similarly,
we write C[z1,27 %, ..., 2m,2.1] = C[z,2z7'] for the set of Laurent polynomials® in
ZlyeeeyZm-

. . . . . . . —1 . —
3 This involves a minor, albeit common abuse of notation, since one has the relation zjz; =1lin Clz, z 1].
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Definition 2.3. Recall that a polynomial P € C|[z] is called reducible if there exist non-
constant polynomials f,g € Clz] such that P = fg and irreducible otherwise. Similarly,
we say that a Laurent polynomial P € C[z,27!] is irreducible if it can not be factor-
ized non-trivially, that is, there are no non-monomial Laurent polynomials f, g such that
P=fg.

Notice that nonconstant monomials are units in the algebra of Laurent polynomials,
which accounts for a small subtlety. That is, one must be somewhat careful here with
zeros at z = 0 and 2z = 0o. The polynomial 22 is reducible in C[z] but is a unit in C[z, z71].
In practice, this should cause no confusion, and we will write that P is irreducible in
C[2] (respectively in C[z,271]) if we wish to emphasize the sense in which irreducibility
is meant in a specific context.

Remark 2.4. If P is an irreducible Laurent polynomial in m variables, then the corre-
sponding variety {z € (C*)™ : P(z) = 0} is irreducible as an analytic set.” Thus, the
overall strategy of our work is to show that a suitable Laurent polynomial that describes
the Bloch variety is irreducible. Concretely, we may consider the set B(H) which consists
of those (z,\) € (C*)? x C such that Hy = M) enjoys a nontrivial solution ¢ € (2, q).
By Floquet theory, one may determine a suitable Laurent polynomial P(z, A) such that
B(H) is precisely the zero set of P (see Section 5). Thus, since (k, \) € B(H) if and only
if (e2™k \) € B(H), to show that B(H) is irreducible modulo periodicity, it suffices to
show that the corresponding Laurent polynomial is irreducible.

Let us begin by collecting some notation that we will use throughout the paper. Given
q=(qi,...,q4) € N we define the lattice I' by

d
I'=PqzZ={necz qn;V1<j<d} (2.1)

j=1

and the fundamental cell, W, by

d
Wz{n:(nl,ng,...,nd)EZd:OSnjqu—l,j:1,2,...,d}:ZdﬂH[0,qj).
j=1

(2.2)
Given n € W and j € {1,...,d}, let

.

pl =¥ (2.3)

and denote by p,, the vector (ul, ..., ud). We also let

4 The converse is clearly false, which may be considered by considering the variety associated with f(z)z,
where f(z) is irreducible. This issue can be elegantly resolved using the language of schemes [11].
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tn © (21,22, ..,24) = (M}Lzh Uz, ..., ,uflzd) . (2.4)
Let p be a Laurent polynomial and define
Pn(2) =p(n ©2), neW, ze (CH)% (2.5)

We shall work with Laurent polynomials in m = d + 1 variables z1, ..., 24, A. Abusing
notation somewhat, we write C[z, \] (respectively C[z, A, 2=, A71]) for the set of polyno-
mials (respectively the set of Laurent polynomials) in z and A. The Laurent polynomials
of interest in the present work are those of the form

Pz N) = [ @alz) =N+ > Cx ] alz) =), (2.6)

neWw Xes neX

where the summation runs over X in an arbitrary collection S of proper subsets of W
and Cx € C. In fact, P(z, A) is a Laurent polynomial in the variable z and a polynomial
in A. Collecting terms, we see that

Q-1
P(z,A) = (=1)9N% + > br(2)MF, (2.7)
k=0

where by, € Clz,27 Y and Q = q1 - - - -

Note that we do not exclude the case ) € S, our convention being that [],, co(pn(2) —
A) = 1. These are exactly the types of polynomials that one produces by expanding the
determinant of the Floquet operator associated with a suitable periodic operator, hence
their interest in the current work.

For each X, the constant C'x is assumed to be independent of A and z. Assume further
that 73(,2, A) is invariant under action of each p,, i.e.,

P(z,A) = Pun © z,A) for all n € W. (2.8)

Remark 2.5. The assumptions (2.6) and (2.8) include the central example where

P(z,A) =det (D + B — \)
and the matrices D = D(z) and B are defined by

D(n,n’) = Pn(2)0n,n (2.9)

o o
B(n,n’):V(nl Mo "d>, nn' €W (2.10)
q1 qd

Here V denotes the discrete Fourier transform of V, defined as in (5.1). For further

discussion, see Section 5, especially Proposition 5.3
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Let us note the key properties are that D is a diagonal matrix and the entries of B
are independent of z. Consequently, neither self-adjointness of A or real-valuedness of V'
is a crucial ingredient.

Since P(z, ) is invariant under the action of each i, it is elementary to check (cf.
Lemma 3.1) that there exists P(z, A) such that

Pz, A) = P(z1, 28, ..., 289 \). (2.11)

Our goal is to show that P(z,\) is irreducible as a Laurent polynomial under the
assumptions below.

(A1) deg(h) < 0, where h denotes the lowest degree component of p, (see Definition 2.2).
(A2) Letting hy,(z) = h(un © z), the polynomials {h,,(z)}new are pairwise distinct.

The reader may readily check that py,i.,(2) = pn(tm © z) (with addition of indices
computed mod T'). Thus, to check Assumption (As) in practice, it suffices to show that
ho # hy, for every n € W\ {0}.

Theorem 2.6. Let p € C[z,271], ¢ € N, S a collection of proper subsets of W, and
complex numbers {Cx }xes be given. Assume that P is a polynomial of the form (2.6)
obeying (2.8), and let P be the polynomial given by (2.11). Under Assumptions (A1) and
(A2), we conclude that P is irreducible as a Laurent polynomial.

As mentioned in Remark 2.5, the connection to Schrédinger operators and Theo-
rem 1.1 will be established in Section 5.

Remark 2.7. Let us collect some notation from the previous paragraphs that will be
repeatedly used throughout the proofs.

(1) Cl[z] (resp. C[z,271]) denotes the set of polynomials (resp. Laurent polynomials)
inzy,...,2q.

(2) pe (D[z z71].

(3) h(z) is the lowest degree component of p(z).

) T=qZ& - ®qZ W=7 H;l:l[O, qj), S C 2\ {W} is arbitrary.

(5) wl = 627”":/% neZl j=1,---.d

(6) Forne W, u, = (,un,...,un).

(7) pn(2) = p(pn © 2).

(8) P(z,A) is given by

Pz N) = [ @alz) =N+ > Cx ] wal2) =),

neW Xes neX

9) Q=q - -q
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(10) 2% = 2t -+ 297 for z € (C*)?, o € Z°.
(11) P(z, ) is defined by

P(z,A) = P21, 28, ..., z34 ).
(12) a ® b= (a1by,...,aqbq) for ordered d-tuples a = (a1,...,aq) and b = (by, ..., by).

3. Technical lemmas

Lemma 3.1. Suppose g is a Laurent polynomial in z and \. With notation as in Re-
mark 2.7, one has that §(z,A\) = g(un © z,X) for every n € W if and only if there is a
Laurent polynomial g(w, \) such that

g(z,N) =gz, ..., 22 0N). (3.1)

Proof. If g(w, \) satisfying (3.1) exists, then it readily follows from the definition of
o ® z that

Iltn © 2,7) = g ((np20) ™, (HR2a) ™ A) = g (27, 280 0) = (2, ).

To see that the converse implication holds, write

gz, A) = Z E&mzz)\m and let g(w, \) = Z c&mwex\m
LEZL, MEZ LEZL MEZ

be another Laurent polynomial. Note that

gz, ..., 20 N) = E Comz @I\,
LEZ  mEZT

Thus (3.1) holds if and only if for all m € Z

- crm {=qOrel,
Ceom = .
0 otherwise,

and hence g¢ satisfying (3.1) exists if and only if ¢, = 0 for all £ ¢ T and m € Z.

Thus, if (3.1) does not hold, we must have ¢ ,,, # 0 for some ¢ ¢ T, say ¢; [ ¢; for some
i€ {1,---,d}. Choose n =e; € W, and note that for this choice of n one has

g(zv >‘) - g(”n ©z, )\) $é 07

concluding the proof. O
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Definition 3.2. For each j € {1,2,---,d}, define v; > 0 as follows. We let —/ be the
lowest exponent of z; in h(z) in case this exponent is negative and 7} = 0 otherwise.

Lemma 3.3. Let p be a Laurent polynomial in z1,...,2zq and let h be the lowest degree
component of p. Then, the polynomials

rn(z,A) = leﬁ . -zgéh(un ©z)— zi’i e z;’é

are irreducible in Clz, X] for eachn € W. Moreover, under Assumption (As), we conclude
that for anyn #n’ € W, r,, and . are relatively prime.

Proof. Assume for the sake of contradiction that r,(z, X) is reducible. Since the degree
of X in r,(z, A) is one, we must have that

Tn(za )‘) = f(Za )\)g(z) (3'2)

for non-constant polynomials f(z, A) and g(z). Since A does not divide r,,(z, A) in C|z],
we see that there exist non-zero polynomials f1(z) and f(z) such that

F(X) = Ma(2) = fa(2).

From (3.2) and the definition of r,,(z, \) we obtain fa(2)g(z) = 2]* - - z,*. In particular,
g(z) = 2" -+ 2y where my, ..., my are integers with 0 < m; <} for j € {1,...,d}.
Since g is nonconstant, m; > 0 for at least one [. In particular,

v > my > 0.

Consequently, (3.2) implies that the polynomial z;d p zzéh(un ® z) is divisible by z; for
somel € {1,2,...,d}. However, the lowest degree of z; in h(p, ®2) is, by definition, equal
to —y;. Thus z?i e z;éh(un ©®z) is not divisible by z;, contradicting (3.2). Consequently,
ry, is irreducible.

To prove the second statement of the lemma, assume r, and r, share a nontriv-
ial common factor. By irreducibility, they must be constant multiples of one another.
However, from the definition, this is only possible if r,, = r,,,, which contradicts Assump-
tion (Ag). O

Let us introduce the auxiliary polynomial

a(zA) = ] ra(zN) (3.3)

neWw
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with r, (zj) as in Lemma 3.3 for n € W. By a direct calculation, Zi(z,X) is invariant
under the replacement® z + i, ® z, so, as a consequence of Lemma 3.1, there exists
a(z,A) such that

a(z,\) = a(z, . .. , 23, N). (3.4)

Lemma 3.4. Under Assumption (As), the polynomial a(z, X) given by (3.4) is irreducible
in Clz, A].

Remark 3.5. It is important that we pass to the lift a here, since a is clearly reducible.

Proof of Lemma 3.4. Suppose for the sake of establishing a contradiction that a(z, \) is
reducible, and write

a(z,\) = fi(z N1 (z,\) (3.5)

for non-constant polynomials f; and g;. Let ﬁ(z,X) = fi(z{", ... ,zgd,X) and §1(27X) =
g1(z{", ..., 25, A). Combining (3.4) and (3.5) yields

5(Z7X) = J?l(zax)gl(zax)

Moreover, by definition f1(z,\) and §i(z, A) are both invariant under the action of each
tn. Recall from Lemma 3.3 that each r,(z, )\) is irreducible. Therefore, each 7,(z, )\)
is a factor of either f1 or gi. By invariance of fl(z )\) (respectively g1 (z, )\)) under the
action of each p,, and since, by Lemma 3.3, 7, and 7, are relatively prime for n # n’,
we conclude the following: if f1(z,\) (respectively §1(z, A)) has a factor of 7, (2, A) then
it must have a factor of

1 (%) =a(zN).

new

However, this, together with (3.5), implies that either ﬁ(z,X) or §1(Z,X) must be con-
stant, which is a contradiction. Thus, we conclude that a(z,\) is irreducible. O

Lemma 3.6. Let P(z,\) be given by (2.11) and let f be any irreducible factor of P. Then
f must depend on \.

Proof. If f is an irreducible factor of P, then f must depend on A since otherwise there
would be a suitable choice of z = (21, ..., z4), namely any solution of f(z) = 0, for which
P(z,\) =0 for any A. This, in turn, contradicts the fact that the term of highest degree
of Xin P(z,A) is (—=1)9A9Q (see (2.7) and (2.11)). O

5 Later on, we will call this the action of u, on a polynomial.
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4. Proof of Theorem 2.6

Before proceeding with the proof of the main result, Theorem 2.6, let us introduce
some notation.

Definition 4.1. For each j € {1,2,...,d} denote by —v; the lowest exponent of z; in p(z)
in case this exponent is negative and v; = 0 otherwise. Clearly, v; > v} with v} given in
Definition 3.2.

Proof of Theorem 2.6. Let A = A~L. Then P(z,\) = P(z,A~!) is a Laurent polynomial
in the variables (Z,X) Let v;, j = 1,...,d be as in Definition 4.1. In case v; > 0 for
some j € {1,...,d}, the lowest power of z; in Pz, A1) is —7;Q/q;.

Moreover, the lowest power of A in P(z, A1) is A=9 (cf. (2.7)), so

- a1 Xd Q ~
R(z,\) = ()\zfl ---z;d> Pz, A7) (4.1)

defines a polynomial R € C|z, X]
Claim 4.2. For each 1 < j <d, z; does not divide R(z,\).

Proof of Claim. Indeed, if v; > 0, this is clear from the definitions, since —v; is the
smallest power of z; in p and hence —v;Q)/g; is the smallest power of z; in P. Otherwise,
v; = 0, and the claim can be seen from (2.7). <&

Since A also does not divide R(z, X), Claim 4.2 implies that reducibility of the Laurent
polynomial P(z, X‘l) is equivalent to reducibility of the polynomial R(z, X)

Now, assume for the sake of contradiction that P(z,X‘l) is reducible. There exist
m > 1 and non-constant polynomials fl(z,X), l=1,2,...,m,in @[Z,X] such that

sl 7a\ @ ~ ME -
(Xzfl ---z§d> Pz, A1) = H fi(z, A). (4.2)
=1

Let us recall the auxiliary polynomial @ given by

a(z,\) = (Xz?i ~--zg‘;>Q H (R ® 2) — A71).
new

Let fi(z,A) = fi(z,..., 2% X). Then, by (2.11) and (4.2), we have that

(sz ...Z%)Qﬁ(z,xfl) - ﬁfj(z,i). (4.3)
=1
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By definition of P in (2.6) one sees that replacing by by 7 for v = —deg(h) > 0 allows
us to conclude that the lowest degree component of (X”z”l e z”f‘) ﬁ(z, X*V) is given

by @1 (z, A7), where

i (30 = (V- 2) T (hpa2) 377 = (70237002 30). (44)

neWw

We denote by fll(z, X“’) the lowest degree components of ﬁ(Z, X“’), l=1,2,...,m. From
(4.3) it must be that

H FHz N =Gy (2, A7) (4.5)
=1

and hence
[/ D =azn. (4.6)

=1

Given Il € {1,...,m}, fl (z, )\) is a polynomial in z{",z3°,...,23". Thus, there exists
[ (2, \) such that

FHzA) = fH =D, 200N). (4.7)

By (4.4), (4.6) and (4.7), we reach, recalling the definition of a(z,X) in (3.4),

/ N\ @
’Yl "q Y2 =72 Yd— g ~
Hfl 2 ) ( 2y iz, M ) a(z, \). (4.8)

By Lemma 3.4, a(z, X) is irreducible, so there exists j € {1,2,...,m} such that fjl(z7X)
has a factor a(z, \). We conclude that the highest power of X in fj(z X) (hence in f;(z, X))
is at least Q. Since m > 1 and, by Lemma 3.6 and Claim 4.2, fl(z )\) [=1,2,...,m,
must depend on X we reach a contradiction since the highest power of X on the left-hand
side of (4.3) is equal to Q. O

5. Floquet theory for long-range operators

Let us summarize some of the important points about Floquet theory for operators
with long-range interactions. This is well-known, especially in the continuum case; see the
survey [14] and references therein. We are unaware of a precise reference in the discrete
setting for long-range operators, so we included the details for the reader’s convenience.

Let us assume that A : £2(Z%) — ¢*(Z?) is bounded. Writing A,, ,, = (0, Ady,) for
the matrix elements, we further assume that A is translation-invariant in the sense that
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Antemte = Apm Vn,m, 0 € 74,
and that A satisfies the decay estimate
|An,m| < Ce—l/\n—m\

for constants C, v > 0. By translation-invariance, A is fully encoded by {a, := An0}nezd
via

[A], = Z An—m®m.-

mezd

We denote the Fourier transform on ¢2(Z<) by . : u + @, where

ﬂ(m) _ Z e—27ri<n,fc>un,

nezd

for u € ¢}(Z?) and then extended to £2 by Plancherel.

By the assumptions on A, the symbol @ is analytic, real-analytic whenever a,, = a_,,
and a trigonometric polynomial whenever a is finitely supported. For example, when
A = —A denotes the Laplacian on Z¢,

d
a(x) = -2 Z cos(2mx;).

Recall that V : Z? — C is g-periodic and ' = {g ® m : m € Z%} denotes the period
lattice. We define the dual lattice I'™* = {(m1/q1,...,m4/qa) : m; € Z} and

1 1 1 1
W*:F*m[o,l)d{o,,...,ql }x«~><{0,,...,qd }
q1 q1 qd qd

The discrete Fourier transform of a g-periodic function g : Z? — C is defined by

~ 1 —27i(n,L) *
ge= —F= e Gn, LW 5.1
T 2 (5.1

new

Of course, this also makes sense for £ € I'* and satisfies gy, = g¢ for any £ € W* and
any n € Z%. One can check the inversion formula

1 27 (l,n)~ d
— Z e“ TGy = g, Y € Z°, (5.2)
o=

which holds for any g-periodic g.
Let T = RY/Z% denote the torus.
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Proposition 5.1. For any f € L?(T9),

and
% 7 €Tr) = —1 7 €Xr —
VI N = 75 3 Vefle =0

Proof. These follow from direct calculations using the definitions of and assumptions on
A and V and the inversion formula (5.2). O

Let us now define T¢ = R%/T*,

@
dx dx
Hy= | CV —— =L* (T, C";
! / | T ( T
T

and Z, : (?(Z%) — A by u — 0 where

-~ —2ri(nGq, d
uj(x) = Z € m<n®q/$>“j+n®qa zeT, jeW
nezd

As usual, this is initially defined for (say) £ vectors, but has a unique extension to a
unitary operator on ¢? via Plancherel.

Proposition 5.2. The operator %, is unitary. If V is g-periodic, then

dx

S
7,17; = [ Hw) i
Td *

where H(z) denotes the restriction of H to W with boundary conditions

Un pmog = €™HMOD2) 0 om e 79, (5.3)

Proof. Unitarity of .7, follows from Parseval’s formula. The form of 7 ,H.Z; follows

from a direct calculation. 0O

Given z € R?, let .#7 be the Floquet-Bloch transform defined on C" as follows: for
any vector on W, {u(n)}new, we set

1 —2mi 3 (liJr:L’)n
[FPu) = — Z e =0 T yy,, Le WL
\/@nGW
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Therefore,

. 1 2mi 0 (2 mj)ly
[(F) U = — g e = T e W
Ve
neWw

Let z; = ™%, j =1,2,--- ,d and define the Laurent series p(z) by

p(emimn Fmira oMY — Gpy an, ..., 2g). (5.4)

Using multi-index notation, we may rewrite this as

p(z) =a(x) = Z e~ 2minalg, = Z Anzy My ez M = Z anz"".  (5.5)

nezd nezd nezd

Proposition 5.3. Assume V is g-periodic. Then fI(x) given by (5.3) is unitarily equivalent
to D* + By, where z; = e D? is a diagonal matriz with entries

D*(n,n") = p(pn © 2)0pn, (5.6)

Un 18 the vector from (2.3), and B = By has entries related to the discrete Fourier
transform of V' wvia

~ (ny —nh ng—n'
B(mn'):V( L d).
q1 qd

Remark 5.4. In particular, D* depends on A and is independent of V', while By depends
only on V with no dependence on A.

Proof of Proposition 5.3. By a direct calculation, we see that .#7 is unitary, so it suffices
to prove that D* + By = (Z%)H (z)(.#*)*. Let Ho(x) be H(x) with the potential V set

to zero. We are going to show (F*)Hy(z)(.F*)* = D? and (F*)V(F*)* = B separately.
To prove that (%#%)Hy(x)(F*)* = D?, it suffices to show that for any u = {u, }new,

(F7) D*u = Ho(x)(F*) u.

It is worth mentioning that (Z)*u satisfies (5.3) so that Ho(z)(.Z%)*u is well defined.
With the given definitions, for any m € W,

(Ho(2)(F") W = Y am—t[(F7) ul,

leZa
1 2 0 (Z4p))l;
=g 2 emet 2 T T
lezd new

1 2w Y0 (2L ) (my—1 )
= — al Z e 1= 5 B e . u’ﬂ
s

lezd new
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1 2mi Y4 (S gz ymy~ [ M1 ng
= — e =y TGl — 4y, ..., — F g | Unp.
>

neW a1 dd
(5.7)
Putting together (2.4) and (5.7),
a(ﬂ +x1,.‘.,@+md) = plitn © 2) = D*(n, ). (5.8)
51 4d
Similarly,
1 i 34 Yt my
(F) Do) = — D 8T, D (0, ). (59)
Q neW

By (5.7), (5.9) and (5.8), we finish the proof of (Z*)Hy(z)(.#%)* = D=.
The proof of (F*)V(F*)* = B is similar. O

6. Proof of Theorem 1.1 and examples

Proof of Theorem 1.1. The Bloch variety precisely consists of those (k, \) such that there
is a nontrivial solution of Hu = Au satisfying the boundary conditions as in (1.4). Thus,
with D and B as in Proposition 5.3, the Bloch variety is the zero set of the Laurent
polynomial P(z, A) defined by (2.11) where

P(z,\) =det(D* + B — AI).

After using the standard permutation expansion for this determinant, we see that P is
of the form (2.6) (with p given via (5.5)). By a brief calculation, one can check that
P satisfies (2.8). Namely, if S,, denotes the shift e, — e, with addition computed
modulo T', one can check that

P(pmz, A) = det(DH*m* + B — )
= det(S},D*S,, + B — \).

Since S}, BS,, = B, (2.8) follows. Thus, the result follows from Theorem 2.6. O

Let us conclude by discussing a few examples of how to obtain the generator p(z)
for which Theorem 2.6 is applicable. In particular, the examples below show that the
framework of the present paper allows one to consider different discrete geometries. We
start with the most basic example of the Laplacian on Z?, where

[Aw]n - - Z V-

[m—n|1=1



20 J. Fillman et al. / Journal of Functional Analysis 283 (2022) 109670

In this case, it readily follows from (5.5) that

1 1 1
pz)=—|zn+—+n+—++za+— ). (6.1)
z1 z9 Zd
Proof of Corollary 1.3. From (6.1), we see that the minimal degree component of p is
precisely
1 1 1
= (Lol d)
z1 zZ9 Zd

Here assumptions (A4;) and (Asg) are fulfilled with deg(h) = —1. O

We then proceed to the description of a couple of two dimensional examples. The
triangular lattice is given by specifying the vertex set

1[1
V = {nby + nby : n,m € Z}, bl[é],b22{\/§]

with edges given by u ~ v <= ||lu — v|]2 = 1. Applying the shear transformation
by + by, by ++ [0,1]T, one can view this graph as having vertices in Z? and

u~v <= u—v € {+ey,tey, £(e1 —e2)}.

In particular, the nearest-neighbor Laplacian on the triangular lattice is equivalent to
the operator Ay, : £2(Z?) — (%(Z?) such that

[Atri’lmnl,ng = 7wn1—1,n2 - ¢n1+1,n2 - qzbnl,ng—l - wnl,n2+1 - ¢n1—1,n2+1 - q/}nl+1,n2—l-

Making use of (5.5) one finds that

1 1 z z
ptri(z)=—<z1+—+zQ+—+—1+—2). (6.2)
Z1 22 2 21

Proof of Corollary 1.5. From (6.2), we see that

from which it is trivial to check Assumptions (A;) and (A2). O

Finally, in the Extended Harper Model

[AEHMIIMnl,nQ = - wnlfl,ng - ,lzjnlJrl,’ng - wnl,ngfl - w’ﬂl,nngl

— Yni—1no+1 — Vnitlna—1 — Yni—1,na—1 — Vni+1,na+1-
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Equation (5.5) now implies that

1 1 1
pERM(2) = zl+f+22+f+;+f+zlzz+7
2 2122

The lowest degree component is i The proof of Corollary 1.4 follows in just the same
way as before; notice that we need the periods to be coprime to ensure that Assump-
tion (Asz) is met.

Remark 6.1. To conclude, let us say a few words about when our results can be applied
in the general setting of periodic operators on periodic graphs. That is, given a periodic
graph and a periodic operator thereupon, when can one apply a suitable change of
coordinates as in the case of the triangular lattice to reduce an operator on Z%? In short,
this can be done to periodic operators on any Z%periodic graph with transitive vertex
action. Let us describe this in a little more detail.

Suppose G is a locally finite graph with vertices V on which Z? acts freely by graph
automorphisms. Denote the action of n € Z? on the vertex u € V by n + u. This gives
a unitary representation of Z< viz. [T™¢](u) = ¥ (n + u), ¥ € £2(V). One may consider
operators of the form H = A + V acting in the natural Hilbert space ¢?(V), where

(1) A commutes with the Z?-action (that is, AT™ = T" A for all n € Z%)

(2) V is diagonal, that is, [V4](u) = V(u)¢(u) for a suitable function V : V — C.

(3) V is invariant under the action of a full-rank subgroup of Z?, that is, there is a
subgroup F < Z% of rank d such that VT™ = T™V for all m € F.

In item (3), notice that one can always take F' to be of the form ¢1Z @ --- @ q4%Z
for some ¢ € N?, in which case we say V is g-periodic as before. If in addition, Z¢
acts transitively on V), then choosing arbitrarily some ug € V, one has a one-to-one
correspondence Z? — V via n — n 4 ug. Of course, this induces a unitary operator
Q : 2(Z?) — ¢*(V) in an obvious manner. In this case, it is clear that Q*HQ is a
periodic operator of the form studied in the present paper.
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