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Abstract—Deep Learning (DL) models have achieved or even
surpassed human-level accuracy in several areas, including com-
puter vision and pattern recognition. The state-of-art perfor-
mance of DL models has raised the interest in using them in
real-world applications, such as disease diagnosis and clinical
decision support systems. However, the challenge remains the
lack of trustworthiness and reliability of these DL models. The
detection of incorrect decisions or flagging suspicious input
samples is essential for the reliability of machine learning models.
Uncertainty estimation in the output decision is a key component
in establishing the trustworthiness and reliability of these models.
In this work, we use Bayesian techniques to estimate the
uncertainty in the model’s output and use this uncertainty to
detect distributional shifts linked to both input perturbations and
labels shifts. We use the learned uncertainty information (i.e., the
variance of the predictive distribution) in two different ways to
detect anomalous input samples: 1) a static threshold based on
average uncertainty of a model evaluated on the clean test data,
and 2) a statistical threshold based on the significant increase in
the average uncertainty of the model evaluated on corrupted
(anomalous) samples. Our extensive experiments demonstrate
that both approaches can detect anomalous samples. We observe
that the proposed thresholding techniques can distinguish mis-
classified examples in the presence of noise, adversarial attacks,
anomalies or distributional shifts. For example, when considering
corrupted versions of MNIST and CIFAR-10 datasets, the rate
of detecting misclassified samples is almost twice as compared to
Monte-Carlo-based approaches.

Index Terms—Bayesian Deep Learning, Uncertainty Estima-
tion, Anomaly Detection and Distributional Shift.

I. INTRODUCTION

Despite the recent flourishing integration of Deep Learn-
ing (DL) models in many research areas, the successful
deployment of these models remains limited in safety-critical
real-world applications, e.g., autonomous driving or medical
diagnoses [1]. The hindrance is linked to the lack of trust-
worthiness and reliability of the models’ predictions. The
absence of intrinsic quantitative methods to evaluate the model
performance after deployment, i.e., self-assessment or self-
evaluation, makes them unreliable and unsafe for use in critical
application areas [2].

It is well known that DL models can deliver remarkable
results when dealing with “familiar” inputs that are “close” to
the training data points (in-distribution inputs) [3]. However,
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DL models tend to associate high soft-max output values
(which are erroneously considered as model confidence), to
incorrect predictions or unrecognizable inputs [4], [5]. A
trustworthy system should be able to identify unknown input
samples and alert human users for safe handling.

All machine learning models are built on the mathemati-
cal assumption that the data samples are independently and
identically distributed (i.i.d.), i.e., the data samples are drawn
from the same distribution during training, testing and after
deployment. Unfortunately, this assumption rarely holds in
real-world scenarios where testing data samples are noisy. In
many domains, the distribution shift arises from the multi-
modal nature of the data distribution [6], which makes the
accurate prediction of all instances challenging. For example,
solid tumors detected from magnetic resonance imaging (MRI)
data are known to be heterogeneous and differ in their visual
characteristics in every patient. Similarly, an autonomous
vehicle may encounter an unusual object that is not similar
to any object available in the training samples.

In the context of Artificial Intelligence (Al) safety, being
able to deal with “diverse” data represents an important
step toward promoting reliability [7]. Identifying incorrect
predictions due to a perturbation in the input space, i.e.,
covariate shifts, or detecting unknown labels, i.e., semantic
shifts, is of utmost importance [7]. The model should be able
to evaluate its own predictions or be self-aware under the
various distributional shifts rather than failing blindly without
any warning.

Several methods have been proposed in the literature that
focus on the problems of detecting misclassification and/or
out-of-distribution (OOD) examples, identifying distributional
shifts, and the generalizability and robustness of DL models
[6], [8]-[19]. Depending on the research domain, application
area, and the motivations, similarities and differences exist
among various approaches proposed in the literature.

In this work, we consider the problem of anomaly detection
in computer vision, including both input perturbations (covari-
ate shifts) and label shifts (known as OOD or semantic shifts).
We propose two automated anomaly detection approaches
by capitalizing on the recent work in Bayesian neural net-
works (BNN) [16]-[20]. We leverage uncertainty information
available in Bayesian convolutional neural networks (CNNs)
to detect anomalies and OOD examples. In recent work on
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Bayesian CNNs, we have shown that the model’s output un-
certainty, attained by the variance of the predictive distribution,
monotonically increases when inputs are corrupted with noise
or adversarial attacks [16]-[18]. In this paper, we present two
automated anomaly detection techniques based on the learned
uncertainty in Bayesian CNNs: 1) a static threshold based
on the average uncertainty of the model evaluated on clean
(familiar) test data, and 2) a statistical threshold based on the
statistically-significant increase in the average uncertainty of
the model evaluated on corrupted (unfamiliar) test datasets.
The specific contributions are summarized as follows,

o In light of the recent research in Bayesian uncertainty
estimation, we propose two anomaly detection and self-
assessment approaches that exploit the predictive variance
learned by the Bayesian CNNs. Unlike prior work, we
propose extensive simulations on both covariate and
semantic shifts. We compare our proposed methods
with Monte Carlo (MC)-based uncertainty estimation
approaches [21], [22].

o Our first anomaly detection method is based on a static
threshold defined over the predictive variance. For the
second method, we conduct an exhaustive statistical
analysis of the average output uncertainty under noisy
conditions and select a statistical threshold based on the
significant increase in the output uncertainty. We provide
a detailed comparison of both approaches.

o Under covariate shifts, there is always an irreducible part
of data to be misclassified by the model. We demonstrate
the benefit of the two proposed approaches by identifying
misclassified samples under covariate distributional shifts.

II. RELATED WORK

Detecting distributional shifts has attracted great attention in
the literature, given its important relationship with Al safety
and model reliability. Several authors have investigated the
problems related to noisy datasets, adversarial attacks, and
various OOD-related detection tasks, e.g., novelty detection
and open set recognition [6]. On the one hand, some of the
work that falls under “anomaly or OOD detection” focuses on
the label or semantic shifts, i.e., the case when test examples
are drawn from new classes that were not seen during the
training [8]. On the other hand, some works discuss adversarial
perturbations or noise as covariate shifts [13]. Our proposed
work addresses the general problem of anomaly detection in
computer vision that covers both covariate and semantic shifts.

In the context of model trustworthiness, it is important to
detect all possible sources of misclassifications and errors.
A similar goal is shared among several DL areas: identify-
ing the deviations, anomalies, outliers, novelties, i.e., OOD
samples, and making more aware predictions. Early work on
anomaly detection used heuristic thresholds directly set on
the maximum softmax value [8]. The intuition is that the
pre-trained networks tend to produce lower softmax values
for misclassified and unusual inputs. Some work increased
the softmax gap between in-distribution and OOD by using
a temperature scaling or adding adversarial perturbations or

geometric transformations to the training inputs [9], [23],
[24]. Other approaches obtained confidence scores by intro-
ducing an additional network output with one or more fully-
connected layers or using Mahalanobis distance [10], [25].
Another line of work focused on generating a gap between
in-distribution and anomalous data using auto-encoders and
generative models [11], [26]-[29]. These approaches try to
learn the distribution of “unusual” data by generating such
inputs and exposing the models to these unusual inputs during
training.

Bayesian approaches are well-suited for detecting distri-
butional shifts and misclassified inputs since a confidence
score is delivered in the form of uncertainty or equivalently
the variability (variance or the second central moment) of
the posterior distribution. Lakshminarayanan et al. proposed
an ensemble model to increase robustness and studied the
output uncertainty for the OOD data [14]. Malinin and Gales
proposed an alternative training procedure to expose the model
to the distribution of unusual inputs using Prior Networks
[30], [31]. Wang and Aitchison [32] trained a BNN and
used the outlier exposure technique proposed earlier by [24].
Leveraging uncertainty estimates to detect misclassification
and OOD samples have been studied in [12]. Some authors
investigated the relationship between uncertainty estimates
and misclassification [33], while others focused solely on
the response to distributional shifts [15]. To the best of our
knowledge, none of the recent work explicitly targeted the de-
tection of system failures in the face of both misclassification
and distributional shifts (both covariate and semantic) using
Bayesian approaches.

We develop an anomaly detection framework based on
learning uncertainty in the model prediction in Bayesian
CNNs. We propose two strategies for setting up thresholds on
the learned uncertainty (variance of the predictive distribution)
that successfully detect misclassifications and OOD samples
under covariate and semantic shifts.

III. LEARNING UNCERTAINTY IN BAYESIAN NEURAL
NETWORKS

In BNNs, the network parameters (weights and biases),
‘W, are interpreted as random variables with a prior distri-
bution W ~ p(W). Once we observe the training dataset
D = {X® y@}1n_  we use Bayes’ rule to infer the pos-
terior distribution p(W|D). By inferring the posterior, we can
compute the predictive distribution, i.e., the distribution of any
unseen data point X with the corresponding output y,

(71X, D) = / PFIX.W) pWD) dW. (1)

The predictive distribution contains all information about the
prediction. The mean represents the network prediction, while
the variance is the uncertainty or confidence of the model
attached to the same prediction. The exact Bayesian inference
on neural networks is mathematically intractable due to the
nonlinear functional form of neural networks and the high
dimensionality of the parameter space [21], [34]. Variational
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inference is a popular approach that approximates the poste-
rior distribution with a parametrized variational distribution,
qo (W), by minimizing the Kullback-Leibler (KL) divergence
between the variational and true posterior distributions. The
optimization objective function is known as the evidence lower
bound that is given as follows,

£(6) = — Eqy(w) [log(p(DIW)] + KL(g0 (W) [p(W)). (2)

Recently, Dera et al. proposed a variational density prop-
agation (VDP) framework that propagates the mean and
covariance matrix of the variational posterior distribution
through layers of CNNs. The VDP framework approximates
the mean and covariance after non-linear activation functions
using either the first-order Taylor series approximation (termed
as extended VDP or exVDP model) or unscented transfor-
mation (known as unVDP) [16], [18]. Later, Carannante et
al. introduced ensemble density propagation (enVDP) that
propagates random samples from the variational distribution
across layers of CNNs and estimates the mean and covariance
of the variational posterior after passing through each layer,
including non-linear activation functions [17]. The propagated
covariance at the output layer of a CNN provides a measure
of learned confidence or uncertainty attached to each output
prediction during and after training [16]-[18]. VDP CNNs
have significantly improved the robustness of these models
to noise and adversarial attacks. VDP models possess a self-
assessment ability, i.e., they associate increasing values of
predictive variance to increasing levels of noise or adversarial
attacks [16]-[18]. The predictive variance is computed from
the covariance matrix of the predictive distribution by con-
sidering the diagonal element corresponding to the predicted
class. In this work, we establish that the Bayesian VDP
models, i.e., exVDP, unVDP and enVDP, can detect anomalies
using two proposed methods based on the learned uncertainty
(variance of the predictive distribution) in Bayesian CNNs.

A. Bayesian Learned Uncertainty

Figure 1 illustrates three different flavors of the VDP
framework. VDP propagates the mean and covariance of
the variational distribution through a non-linear activation
function, ), in a CNN. The mean and covariance of the input
feature map z, i.e., u, and ¥,, are propagated through ¢ to
find the output feature map g. All three types of VDP, i.e.,
exVDP, unVDP and enVDP, are built using a mathematical
formulation of probability density function tracking, as used in
extended, unscented, and ensemble Kalman filters, respectively
[35], [36]. The exVDP model approximates the mean and
covariance using the first-order Taylor series as follows,

P = V(Hy),  Bg = Tp2,I7 3)

where J, is the Jacobian matrix of 1) with respect to z
evaluated at p, [35].

The unVDP uses unscented transformation (UT) to propa-
gate the mean and covariance after the non-linear function v
by carefully choosing a set of samples called sigma points.
The total number of sigma points is 2d, where d indicates

the dimension of the random vector z. The sigma points are
generated as follows [35],

Zi:ll/z"_ziv Z:17a2d
2= (V%) adzig=—-(VdE,),, i=1---.d

where, (\/d Ez)i is the ™ row of the matrix square root. The
non-linear activation function v transforms every single sigma
point, i.e., g = [z;], where i = 1,--- ,2d. Let N = 2d, the
approximate mean and covariance of g are computed as,

N N
pg = %Zgi and X = %Z(gi—ug)(gi—ug)? )
i=1 i=1

The enVDP model performs stochastic sampling of N
random samples, z;, © = 1,--- ,N. We pass each ensemble
member z; through the activation function v and obtain
g; = 1[z;]. The approximate sample mean and covariance
are computed using eq. 4.

Unlike other approaches, the three VDP frameworks do not
rely on MC sampling to approximate the ELBO cost function
(eq. 2). Additionally, the computational complexity of these
approaches is comparable to the deterministic setting [18].

B. Uncertainty Estimation Using Monte Carlo Methods

In the literature, there are other Bayesian approaches that
use variational inference for estimating uncertainty in neu-
ral networks. Bayes-by Backprop (BBB) introduces a fully
factorized Gaussian distribution over the parameters of fully-
connected neural networks [21]. On the other hand, Monte
Carlo Dropout (MC-Drop) by Gal and Ghahramani interprets
dropout as a Bernoulli variational distribution over convo-
lutional kernels [22]. The shared idea between these two
approaches is the requirement of MC sampling during the test-
ing/inference phase to estimate uncertainty. During training,
one sample is drawn randomly from the variational posterior

. exVDP
. Linearized the activation
function g
Hg = P(|,) m—p pproxil
g~ JyZ, ]5)‘ - il of the variational
W Distribution
Hg and X,
enVDP
pagate N rand
g
- —> i = Y(z) — Approsi
i of the variational
M and X, Distribution
Hg and X,
, unvDP J\
% Propagate Sigma points 8
3 ppr
| —p g = Y(2;) of the variational
e i Distribution
=% ugand X,

Fig. 1. A schematic illustration of the VDP framework by propagating
the mean and covariance of the variational distribution through a non-linear
activation function v using: 1) the first-order Taylor series (exVDP) [16],
2) the unscented transformation (unVDP) [18], or 3) the ensemble sampling
propagation (enVDP) [17].
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and is passed forward through the network layers. Essentially,
the uncertainty in the prediction is not learned during the
training but rather estimated using MC sampling. This is in
contrast to the VDP models, where we learn uncertainty during
the training.

C. Anomaly Detection Using Uncertainty

In Bayesian VDP models, the variance of the predictive dis-
tribution is the diagonal element of the propagated covariance
matrix corresponding to the predicted class. These variance
values increase when we add random noise or adversarial
attacks to the test samples [16]-[18]. By considering this
behavior of increasing uncertainty values under noisy condi-
tions, we develop two threshold-based techniques to detect
anomalous and OOD samples.

1) Detection Using a Static Threshold: We analyze the
predictive variance during testing by computing the average
predictive variance or uncertainty of correctly classified as well
as misclassified clean test samples (familiar or in-distributional
inputs). We notice that the average variance of the correctly
classified samples is always considerably lower than that of
the misclassified ones. Based on this analysis, we select the
average predictive variance of correctly classified test samples
as a “Static” threshold for detecting anomalies. Thus, any new
input samples at the test time that produce variance values
above the static threshold will be considered anomalous.

2) Detection Using a Statistical Threshold: We conduct
a statistical analysis of the average predictive variance for
both correctly and misclassified test samples during testing
under Gaussian noise and adversarial attacks. The noise is
measured by the signal-to-noise ratio (SNR) [37]. We perform
pair-wise comparisons between the average predictive variance
of test samples at each noise level and the variance at zero
noise (clean test data) using the Wilcoxon signed-rank test.
The variance value that is significantly higher (with a 99%
confidence level) than the variance at zero noise is selected as
the “Statistical” threshold for detecting anomalies.

IV. METHODS AND EXPERIMENTS

We evaluate both anomaly detection approaches in three
uncertainty propagation models, i.e., exVDP, unVDP and
enVDP [16]-[18]. We compare these models with BBB and
MC-Drop [21], [22]. We consider two benchmark datasets,
MNIST and CIFAR-10 [38], [39]. We train all five models
on the MNIST dataset and exVDP, unVDP, enVDP and MC-
Drop models on the CIFAR-10 dataset. We use the same
network architecture and hyper-parameters. BBB model is a
fully-connected network that performs poorly on the CIFAR-
10 dataset and is tested only on MNIST. For the MNIST
dataset, we use a CNN with one convolution (32 kernels) layer
and one fully-connected layer. The rectified linear unit is used
as an activation function. We train models for 20 epochs, with
a batch size of 50 and Adam optimizer. For the CIFAR-10
dataset, we use CNNs with 11 layers, 10 convolutional, 1 fully-
connected, and 5 max-poling. The numbers of convolutional
kernels are set to 32,32, 32,32,64,64,64,128,128 and 128,

respectively. We use 500 epochs, 50 batch-size, an exponential
linear unit (ELU) activation and Adam optimizer. We use 20
MC samples to compute the uncertainty in the BBB and MC-
Drop models.

We assess the performance of the proposed anomaly detec-
tion approaches, i.e., the static and statistical thresholds, under
the covariate shift (by adding Gaussian noise and adversarial
perturbations to the image input space during testing) and
semantic shift (detecting an unknown label) with the Fashion
MNIST [40] and SVHN [41] datasets. Besides testing under
noise and adversarial attacks, we analyze the model behavior
using two datasets consisting of corrupted MNIST (MNIST-C)
[42] and corrupted CIFAR-10 (CIFAR-10-C) [43] samples to
demonstrate the performance under covariate shift.

A. Covariate Shifts

1) Gaussian Noise and Adversarial attacks: We establish
the detection proficiency of the proposed anomaly detection
methods under covariate shifts by adding different levels of
Gaussian noise and adversarial attacks to the test datasets. We
measure the noise level using SNR, where increasing the noise
level results in a decreasing SNR. We used the fast gradient
sign method (FGSM) to generate the attacks [44].

2) Corrupted images: We evaluate both proposed anomaly
detection techniques on OOD samples of MNIST-C [42] and
CIFAR-10-C datasets [43]. These datasets have 15 different
types of data corruption. In MNIST-C, these corruptions are:
1) Glass Blur, 2) Motion Blur, 3) Zigzag, 4) Dotted Line,
5) Scale, 6) Spatter, 7) Brightness, 8) Shear, 9) Shot, 10)
Stripe, 11) Translate, 12) Fog, 13) Rotate, 14) Canny Edge,
15) Impulse noise. In CIFAR-10-C, the corruptions are: 1)
Brightness, 2) Contrast, 3) Defocus blur, 4) Elastic transform,
5) Fog, 6) Frost, 7) Gaussian blur, 8) Gaussian noise, 9) Glass
blur, 10) Impulse noise, 11) JPEG compression, 12) Motion
blur, 13) Pixelate, 14) Saturate, 15) Shot noise.

In this experiment, we are interested in detecting misclassi-
fied samples under covariate shifts. So, in the first simulation,
we consider all test samples for each corruption type from
both MNIST-C and CIFAR-10-C. Then, we randomly select
1000 samples from the test data under each type of corruption,
shuffle them, and test the models on this new pooled corrupted
test set. We define average true-misclassified rate (TMR) as the
number of detected misclassified samples out of the total num-
ber of misclassified samples. Higher values of TMR refer to
better detection efficiency. In contrast, the false-misclassified
rate (FMR) is the number of correctly classified samples
detected by the static or statistical threshold as misclassified
out of the total number of correctly classified samples. Lower
FMR values represent better performance.

B. Semantic shift

The proposed anomaly detection approaches are evaluated
under semantic shifts for detecting unknown labels. For the
first experiment, the in-distribution data is MNIST, and we
consider Fashion MNIST [40] as OOD. We shuffle the two test
datasets and evaluate each model (initially trained on MNIST)
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Fig. 2. Average predictive variance versus signal-to-noise ratio (SNR) for: 1) total number of test samples (red curves), 2) correctly classified samples (blue
curves), and 3) misclassified samples (green curves). The variance-vs-SNR curves are plotted for exVDP, unVDP, enVDP and BBB models using the MNIST
dataset corrupted with Gaussian noise as well as targeted and non-targeted adversarial attacks.

TABLE I
THE STATIC AND STATISTICAL THRESHOLDS ON MNIST AND CIFAR-10,
AND THE AVERAGE VARIANCE ON FASHION MNIST AND SVHN.

MNIST F-MNIST CIFAR-10 SVHN
Bayesian Static Statistical | Average || Static | Statistical | Average
Models Thre. Thre. Variance || Thre. Thre. Variance
exVDP 5.52 10.21 163.57 .036 .043 269
unVDP 2.03 3.63 80.93 .036 .043 .196
enVDP 2.68 4.12 75.47 .004 .0059 012
MC-Drop | 6.6x107° [ 1.7x10~4| .0019 .009 01 018
BBB |9.8x107%|1.7x1075|5.9%x10~° -

on them. Similarly, in the second experiment, we consider the
CIFAR-10 dataset as in-distribution and the SVHN test dataset
[41] as OOD.

V. RESULTS AND DISCUSSION
A. Evaluation Under Covariate Shifts

1) Gaussian noise and Adversarial attacks: We compute
the average predictive variance of all test samples, correctly
classified samples and misclassified samples, and plot them
against SNR for Gaussian perturbation as well as targeted
and non-targeted adversarial attacks. Figures 2 and 3 show
the variance-vs-SNR curves (interpreted from right to left)
of exVDP, unVDP, enVDP, BBB, and MC-Drop for: 1) total
number of test samples (red curves), 2) correctly classified
samples (blue curves), and 3) misclassified samples (green
curves) for MNIST and CIFAR-10, respectively. The red

arrows refer to the noise levels where the variance becomes
significantly higher (statistical threshold). We observe from
the figures that the variance of misclassified samples (green
curves) is considerably higher than that of the correctly
classified or total number of test samples. The gap between the
green curve (variance of misclassified samples) and the other
two curves (correctly classified and the total number of test
examples) is large for exVDP, unVDP and enVDP, making it
feasible to detect misclassified samples under noise or attacks.
Furthermore, the variance of correctly classified samples is
always the smallest. The variance value corresponding to the
statistical threshold (red arrows in Figs. 2 and 3) is also much
lower than the variance of misclassified samples. Thus, both
the static and statistical thresholds detect misclassified samples
under these covariate shifts.

On the contrary, the gap between misclassification and cor-
rect classification variance is negligible for both BBB and MC-
Drop models, as evident from Figs. 2(d) and 3(d). We believe
that this observation may be linked to the propagation of
uncertainty (covariance matrix of the variational distribution)
in exVDP, unVDP and enVDP models. Variance propagation
helps both the learning process and the proposed detection
approaches. This results in self-aware models that are capable
of detecting anomalies and perturbed samples.

2) Corrupted MNIST and CIFAR-10: In the first exper-
iment, we plot the predictive variance for all test samples
under the 15 corruption types described above for MNIST and
CIFAR-10. We demonstrate in Fig. 4 that the average variance
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Fig. 3. Average predictive variance versus signal-to-noise ratio (SNR) for: 1) total number of test samples (red curves), 2) correctly classified samples (blue

curves), and 3) misclassified samples (green curves). The variance-vs-SNR curves are plotted for exVDP, unVDP, enVDP and MC-Drop models using the
CIFAR-10 dataset corrupted with Gaussian noise as well as targeted and non-targeted adversarial attacks.

of misclassified samples is much higher than that of correctly
classified samples for exVDP, unVDP and enVDP models. The
average variance of misclassified samples is always higher than
the static and statistical thresholds. The exact values of the
static and statistical thresholds for both MNIST and CIFAR-
10 datasets are given in Table I.

From Fig. 4 and Table I, we note that the two proposed
anomaly detection techniques are able to detect the misclas-
sified samples by exVDP, unVDP, enVDP, BBB and MC-
Drop. It is evident from Figs.4(d) and 4(h) that the average
variance values of correctly classified samples for BBB and
MC-drop models are high. This can be considered a false
alarm from the BBB and MC-Drop models. We consider that
the variance produced by BBB and MC-Drop (which was not
learned during training) cannot differentiate between correctly
classified and misclassified samples. This behavior results in
poor generalization to OOD inputs and covariate shifts.

Table II shows the TMR and FMR for all models tested on
the pooled corrupted datasets generated from MNIST-C and
CIFAR-10-C as described in Section (IV-A2). We report the
TMR and FMR values for both the static and the statistical
threshold. We notice that exVDP, unVDP, and enVDP present
high TMR (above 80%) and low FMR (below 26%) for
MNIST and below 33% for CIFAR-10) as opposed to BBB
and MC-Drop models.

B. Evaluation Under Semantic Shift

We count how many test examples from MNIST as well
as Fashion MNIST whose predicted uncertainty (or predictive
variance) is above the static and statistical thresholds. Simi-
larly, we count the number of samples from CIFAR-10 and

TABLE 11
AVERAGE TRUE-MISCLASSIFIED RATE (TMR) AND FALSE-MISCLASSIFIED
RATE (FMR) ON CORRUPTED MNIST AND CIFAR-10. THE TMR REFERS
TO THE RATE OF DETECTING MISCLASSIFIED SAMPLES, AND THE FMR
REFERS TO THE RATE OF DETECTING CORRECTLY CLASSIFIED SAMPLES.

Bayesian MNIST CIFAR-10
Models TMR FMR TMR FMR
exVDP 82% 25% 90% 31%
unVDP 84% 23% 90% 32%
enVDP 84% 23% 84% 32%

MC-Drop 40% 34% 51% 46%

BBB 35% 26% - -

SVHN datasets that have their variance above the thresholds.
The numbers of samples from Fashion MNIST (Fig. 5(a))
or SVHN (Fig. 5(b)) whose variance values are above the
thresholds are considered the true positive (TP) counts (OOD
with shifted labels detected by the proposed thresholds). The
numbers of samples from MNIST (Fig. 5(a)) or CIFAR-10
(Fig. 5(b)) whose variance values are above the thresholds
are considered the false positive (FP) counts because they are
clean samples (in-distribution). We observe from Fig. 5 that the
TP counts are very high for both the static and the statistical
thresholds, while the FP counts are very low except for the
MC-Drop model (Fig. 5(b)). Thus, the two proposed anomaly
detection approaches with the static and statistical thresholds
are able to detect semantic shifts with a high detection rate.
We compute the average predictive variance (uncertainty) of
all test samples from Fashion MNIST and SVHN datasets and
compare the values with each model’s static and statistical
thresholds (Table I). We note that the average variance is
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Fig. 4. Average predictive variance of correctly classified samples (blue bars) and misclassified samples (orange bars) for the 15 different corruptions in

MNIST-C [42] (the first row) and CIFAR-10-C [43] (the second row).
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Fig. 5. (a) TP: The numbers of samples of Fashion MNIST dataset detected by the static and statistical thresholds (out-of-distribution or semantic shifts).
FP: The number of samples of MNIST dataset detected by the static and statistical thresholds (in-distribution). (b) TP: The numbers of samples of SVHN
dataset detected by the static and statistical thresholds (out-of-distribution or semantic shifts). FP: The number of samples of CIFAR-10 dataset detected by

the static and statistical thresholds (in-distribution).

notably higher than the thresholds for all models, especially
for exVDP, unVDP and enVDP models. Hence, models are
clearly detecting the label distributional shift.

VI. CONCLUSION AND FUTURE WORK

This paper proposed two automated anomaly detection
approaches based on the learned uncertainty (or predictive
variance) of the variational density propagation frameworks in
CNNs. We observed from prior work the growing behavior of
uncertainty under noisy conditions. Based on this observation,
we proposed two automated thresholds: 1) a static threshold
based on the average predictive variance of correctly classified
clean test samples (in-distribution samples); 2) a statistical
threshold based on the Wilcoxon signed-rank test to detect
the significant increase in the average variance under noisy
conditions (out-of-distribution samples). We demonstrated in
our extensive simulation that the two automated detection
thresholds were able to recognize the covariate shifts, in-
cluding Gaussian noise, targeted and non-targeted adversarial
attacks, and corrupted MNIST and CIFAR-10 test samples
(with 15 different types of corruptions). The misclassified
samples by these different types of perturbations were detected
with high rates by the static and statistical thresholds. The
two thresholds also detected the semantic shifts when we

trained the models on the MNIST and CIFAR-10 datasets and
then tested them on the Fashion MNIST and SVHN datasets,
respectively. In the future, we plan to test the two proposed
thresholds with more datasets and larger network architectures.
We also plan to investigate the possibility of learning the
detection threshold during training, which may result in a
higher detection rate.
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