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Abstract—Deep Learning (DL) models have achieved or even
surpassed human-level accuracy in several areas, including com-
puter vision and pattern recognition. The state-of-art perfor-
mance of DL models has raised the interest in using them in
real-world applications, such as disease diagnosis and clinical
decision support systems. However, the challenge remains the
lack of trustworthiness and reliability of these DL models. The
detection of incorrect decisions or flagging suspicious input
samples is essential for the reliability of machine learning models.
Uncertainty estimation in the output decision is a key component
in establishing the trustworthiness and reliability of these models.
In this work, we use Bayesian techniques to estimate the
uncertainty in the model’s output and use this uncertainty to
detect distributional shifts linked to both input perturbations and
labels shifts. We use the learned uncertainty information (i.e., the
variance of the predictive distribution) in two different ways to
detect anomalous input samples: 1) a static threshold based on
average uncertainty of a model evaluated on the clean test data,
and 2) a statistical threshold based on the significant increase in
the average uncertainty of the model evaluated on corrupted
(anomalous) samples. Our extensive experiments demonstrate
that both approaches can detect anomalous samples. We observe
that the proposed thresholding techniques can distinguish mis-
classified examples in the presence of noise, adversarial attacks,
anomalies or distributional shifts. For example, when considering
corrupted versions of MNIST and CIFAR-10 datasets, the rate
of detecting misclassified samples is almost twice as compared to
Monte-Carlo-based approaches.

Index Terms—Bayesian Deep Learning, Uncertainty Estima-
tion, Anomaly Detection and Distributional Shift.

I. INTRODUCTION

Despite the recent flourishing integration of Deep Learn-

ing (DL) models in many research areas, the successful

deployment of these models remains limited in safety-critical

real-world applications, e.g., autonomous driving or medical

diagnoses [1]. The hindrance is linked to the lack of trust-

worthiness and reliability of the models’ predictions. The

absence of intrinsic quantitative methods to evaluate the model

performance after deployment, i.e., self-assessment or self-

evaluation, makes them unreliable and unsafe for use in critical

application areas [2].

It is well known that DL models can deliver remarkable

results when dealing with “familiar” inputs that are “close” to

the training data points (in-distribution inputs) [3]. However,

1 Giuseppina Carannante and Dimah Dera contributed equally to this
work as first authors.

DL models tend to associate high soft-max output values

(which are erroneously considered as model confidence), to

incorrect predictions or unrecognizable inputs [4], [5]. A

trustworthy system should be able to identify unknown input

samples and alert human users for safe handling.

All machine learning models are built on the mathemati-

cal assumption that the data samples are independently and

identically distributed (i.i.d.), i.e., the data samples are drawn

from the same distribution during training, testing and after

deployment. Unfortunately, this assumption rarely holds in

real-world scenarios where testing data samples are noisy. In

many domains, the distribution shift arises from the multi-

modal nature of the data distribution [6], which makes the

accurate prediction of all instances challenging. For example,

solid tumors detected from magnetic resonance imaging (MRI)

data are known to be heterogeneous and differ in their visual

characteristics in every patient. Similarly, an autonomous

vehicle may encounter an unusual object that is not similar

to any object available in the training samples.

In the context of Artificial Intelligence (AI) safety, being

able to deal with “diverse” data represents an important

step toward promoting reliability [7]. Identifying incorrect

predictions due to a perturbation in the input space, i.e.,

covariate shifts, or detecting unknown labels, i.e., semantic

shifts, is of utmost importance [7]. The model should be able

to evaluate its own predictions or be self-aware under the

various distributional shifts rather than failing blindly without

any warning.

Several methods have been proposed in the literature that

focus on the problems of detecting misclassification and/or

out-of-distribution (OOD) examples, identifying distributional

shifts, and the generalizability and robustness of DL models

[6], [8]–[19]. Depending on the research domain, application

area, and the motivations, similarities and differences exist

among various approaches proposed in the literature.

In this work, we consider the problem of anomaly detection

in computer vision, including both input perturbations (covari-

ate shifts) and label shifts (known as OOD or semantic shifts).

We propose two automated anomaly detection approaches

by capitalizing on the recent work in Bayesian neural net-

works (BNN) [16]–[20]. We leverage uncertainty information

available in Bayesian convolutional neural networks (CNNs)

to detect anomalies and OOD examples. In recent work on
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Bayesian CNNs, we have shown that the model’s output un-

certainty, attained by the variance of the predictive distribution,

monotonically increases when inputs are corrupted with noise

or adversarial attacks [16]–[18]. In this paper, we present two

automated anomaly detection techniques based on the learned

uncertainty in Bayesian CNNs: 1) a static threshold based

on the average uncertainty of the model evaluated on clean

(familiar) test data, and 2) a statistical threshold based on the

statistically-significant increase in the average uncertainty of

the model evaluated on corrupted (unfamiliar) test datasets.

The specific contributions are summarized as follows,

• In light of the recent research in Bayesian uncertainty

estimation, we propose two anomaly detection and self-

assessment approaches that exploit the predictive variance

learned by the Bayesian CNNs. Unlike prior work, we

propose extensive simulations on both covariate and

semantic shifts. We compare our proposed methods

with Monte Carlo (MC)-based uncertainty estimation

approaches [21], [22].

• Our first anomaly detection method is based on a static

threshold defined over the predictive variance. For the

second method, we conduct an exhaustive statistical

analysis of the average output uncertainty under noisy

conditions and select a statistical threshold based on the

significant increase in the output uncertainty. We provide

a detailed comparison of both approaches.

• Under covariate shifts, there is always an irreducible part

of data to be misclassified by the model. We demonstrate

the benefit of the two proposed approaches by identifying

misclassified samples under covariate distributional shifts.

II. RELATED WORK

Detecting distributional shifts has attracted great attention in

the literature, given its important relationship with AI safety

and model reliability. Several authors have investigated the

problems related to noisy datasets, adversarial attacks, and

various OOD-related detection tasks, e.g., novelty detection

and open set recognition [6]. On the one hand, some of the

work that falls under “anomaly or OOD detection” focuses on

the label or semantic shifts, i.e., the case when test examples

are drawn from new classes that were not seen during the

training [8]. On the other hand, some works discuss adversarial

perturbations or noise as covariate shifts [13]. Our proposed

work addresses the general problem of anomaly detection in

computer vision that covers both covariate and semantic shifts.

In the context of model trustworthiness, it is important to

detect all possible sources of misclassifications and errors.

A similar goal is shared among several DL areas: identify-

ing the deviations, anomalies, outliers, novelties, i.e., OOD

samples, and making more aware predictions. Early work on

anomaly detection used heuristic thresholds directly set on

the maximum softmax value [8]. The intuition is that the

pre-trained networks tend to produce lower softmax values

for misclassified and unusual inputs. Some work increased

the softmax gap between in-distribution and OOD by using

a temperature scaling or adding adversarial perturbations or

geometric transformations to the training inputs [9], [23],

[24]. Other approaches obtained confidence scores by intro-

ducing an additional network output with one or more fully-

connected layers or using Mahalanobis distance [10], [25].

Another line of work focused on generating a gap between

in-distribution and anomalous data using auto-encoders and

generative models [11], [26]–[29]. These approaches try to

learn the distribution of “unusual” data by generating such

inputs and exposing the models to these unusual inputs during

training.

Bayesian approaches are well-suited for detecting distri-

butional shifts and misclassified inputs since a confidence

score is delivered in the form of uncertainty or equivalently

the variability (variance or the second central moment) of

the posterior distribution. Lakshminarayanan et al. proposed

an ensemble model to increase robustness and studied the

output uncertainty for the OOD data [14]. Malinin and Gales

proposed an alternative training procedure to expose the model

to the distribution of unusual inputs using Prior Networks

[30], [31]. Wang and Aitchison [32] trained a BNN and

used the outlier exposure technique proposed earlier by [24].

Leveraging uncertainty estimates to detect misclassification

and OOD samples have been studied in [12]. Some authors

investigated the relationship between uncertainty estimates

and misclassification [33], while others focused solely on

the response to distributional shifts [15]. To the best of our

knowledge, none of the recent work explicitly targeted the de-

tection of system failures in the face of both misclassification

and distributional shifts (both covariate and semantic) using

Bayesian approaches.

We develop an anomaly detection framework based on

learning uncertainty in the model prediction in Bayesian

CNNs. We propose two strategies for setting up thresholds on

the learned uncertainty (variance of the predictive distribution)

that successfully detect misclassifications and OOD samples

under covariate and semantic shifts.

III. LEARNING UNCERTAINTY IN BAYESIAN NEURAL

NETWORKS

In BNNs, the network parameters (weights and biases),

W, are interpreted as random variables with a prior distri-

bution W ∼ p(W). Once we observe the training dataset

D = {X(i),y(i)}ni=1, we use Bayes’ rule to infer the pos-

terior distribution p(W|D). By inferring the posterior, we can

compute the predictive distribution, i.e., the distribution of any

unseen data point X̃ with the corresponding output ỹ,

p(ỹ|X̃,D) =

∫
p(ỹ|X̃,W) p(W|D) dW. (1)

The predictive distribution contains all information about the

prediction. The mean represents the network prediction, while

the variance is the uncertainty or confidence of the model

attached to the same prediction. The exact Bayesian inference

on neural networks is mathematically intractable due to the

nonlinear functional form of neural networks and the high

dimensionality of the parameter space [21], [34]. Variational
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inference is a popular approach that approximates the poste-

rior distribution with a parametrized variational distribution,

qθ(W), by minimizing the Kullback-Leibler (KL) divergence

between the variational and true posterior distributions. The

optimization objective function is known as the evidence lower

bound that is given as follows,

L(θ) = − Eqθ(W)[log(p(D|W)] + KL(qθ(W)
∣∣∣∣p(W)). (2)

Recently, Dera et al. proposed a variational density prop-

agation (VDP) framework that propagates the mean and

covariance matrix of the variational posterior distribution

through layers of CNNs. The VDP framework approximates

the mean and covariance after non-linear activation functions

using either the first-order Taylor series approximation (termed

as extended VDP or exVDP model) or unscented transfor-

mation (known as unVDP) [16], [18]. Later, Carannante et
al. introduced ensemble density propagation (enVDP) that

propagates random samples from the variational distribution

across layers of CNNs and estimates the mean and covariance

of the variational posterior after passing through each layer,

including non-linear activation functions [17]. The propagated

covariance at the output layer of a CNN provides a measure

of learned confidence or uncertainty attached to each output

prediction during and after training [16]–[18]. VDP CNNs

have significantly improved the robustness of these models

to noise and adversarial attacks. VDP models possess a self-

assessment ability, i.e., they associate increasing values of

predictive variance to increasing levels of noise or adversarial

attacks [16]–[18]. The predictive variance is computed from

the covariance matrix of the predictive distribution by con-

sidering the diagonal element corresponding to the predicted

class. In this work, we establish that the Bayesian VDP

models, i.e., exVDP, unVDP and enVDP, can detect anomalies

using two proposed methods based on the learned uncertainty

(variance of the predictive distribution) in Bayesian CNNs.

A. Bayesian Learned Uncertainty

Figure 1 illustrates three different flavors of the VDP

framework. VDP propagates the mean and covariance of

the variational distribution through a non-linear activation

function, ψ, in a CNN. The mean and covariance of the input

feature map z, i.e., μz and Σz, are propagated through ψ to

find the output feature map g. All three types of VDP, i.e.,

exVDP, unVDP and enVDP, are built using a mathematical

formulation of probability density function tracking, as used in

extended, unscented, and ensemble Kalman filters, respectively

[35], [36]. The exVDP model approximates the mean and

covariance using the first-order Taylor series as follows,

μg ≈ ψ(μz), Σg ≈ JψΣzJ
T
ψ , (3)

where Jψ is the Jacobian matrix of ψ with respect to z
evaluated at μz [35].

The unVDP uses unscented transformation (UT) to propa-

gate the mean and covariance after the non-linear function ψ
by carefully choosing a set of samples called sigma points.

The total number of sigma points is 2d, where d indicates

the dimension of the random vector z. The sigma points are

generated as follows [35],

zi = μz + z̃i, i = 1, · · · , 2d
z̃i =

(√
d Σz

)T
i

and z̃i+d = −(√
d Σz

)T
i
, i = 1, · · · , d,

where,
(√

d Σz

)
i

is the ith row of the matrix square root. The

non-linear activation function ψ transforms every single sigma
point, i.e., gi = ψ[zi], where i = 1, · · · , 2d. Let N = 2d, the

approximate mean and covariance of g are computed as,

μg =
1

N

N∑
i=1

gi and Σg =
1

N

N∑
i=1

(gi−μg)(gi−μg)
T . (4)

The enVDP model performs stochastic sampling of N
random samples, zi, i = 1, · · · , N . We pass each ensemble

member zi through the activation function ψ and obtain

gi = ψ[zi]. The approximate sample mean and covariance

are computed using eq. 4.

Unlike other approaches, the three VDP frameworks do not

rely on MC sampling to approximate the ELBO cost function

(eq. 2). Additionally, the computational complexity of these

approaches is comparable to the deterministic setting [18].

B. Uncertainty Estimation Using Monte Carlo Methods

In the literature, there are other Bayesian approaches that

use variational inference for estimating uncertainty in neu-

ral networks. Bayes-by Backprop (BBB) introduces a fully

factorized Gaussian distribution over the parameters of fully-

connected neural networks [21]. On the other hand, Monte

Carlo Dropout (MC-Drop) by Gal and Ghahramani interprets

dropout as a Bernoulli variational distribution over convo-

lutional kernels [22]. The shared idea between these two

approaches is the requirement of MC sampling during the test-

ing/inference phase to estimate uncertainty. During training,

one sample is drawn randomly from the variational posterior

= ( )

and

unVDP
Propagate Sigma points= ( )

exVDP
Linearized the activation 

function
( ) Approximate moments 

of the variational 
Distribution

and 

unVDP

enVDP

exVDP

mean

covariance

enVDP
Propagate N random samples

Approximate moments 
of the variational 

Distribution
and 

Approximate moments
of the variational 

Distribution
and 

Fig. 1. A schematic illustration of the VDP framework by propagating
the mean and covariance of the variational distribution through a non-linear
activation function ψ using: 1) the first-order Taylor series (exVDP) [16],
2) the unscented transformation (unVDP) [18], or 3) the ensemble sampling
propagation (enVDP) [17].

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on April 05,2023 at 14:35:14 UTC from IEEE Xplore.  Restrictions apply. 



and is passed forward through the network layers. Essentially,

the uncertainty in the prediction is not learned during the

training but rather estimated using MC sampling. This is in

contrast to the VDP models, where we learn uncertainty during

the training.

C. Anomaly Detection Using Uncertainty

In Bayesian VDP models, the variance of the predictive dis-

tribution is the diagonal element of the propagated covariance

matrix corresponding to the predicted class. These variance

values increase when we add random noise or adversarial

attacks to the test samples [16]–[18]. By considering this

behavior of increasing uncertainty values under noisy condi-

tions, we develop two threshold-based techniques to detect

anomalous and OOD samples.

1) Detection Using a Static Threshold: We analyze the

predictive variance during testing by computing the average

predictive variance or uncertainty of correctly classified as well

as misclassified clean test samples (familiar or in-distributional

inputs). We notice that the average variance of the correctly

classified samples is always considerably lower than that of

the misclassified ones. Based on this analysis, we select the

average predictive variance of correctly classified test samples

as a “Static” threshold for detecting anomalies. Thus, any new

input samples at the test time that produce variance values

above the static threshold will be considered anomalous.

2) Detection Using a Statistical Threshold: We conduct

a statistical analysis of the average predictive variance for

both correctly and misclassified test samples during testing

under Gaussian noise and adversarial attacks. The noise is

measured by the signal-to-noise ratio (SNR) [37]. We perform

pair-wise comparisons between the average predictive variance

of test samples at each noise level and the variance at zero

noise (clean test data) using the Wilcoxon signed-rank test.

The variance value that is significantly higher (with a 99%
confidence level) than the variance at zero noise is selected as

the “Statistical” threshold for detecting anomalies.

IV. METHODS AND EXPERIMENTS

We evaluate both anomaly detection approaches in three

uncertainty propagation models, i.e., exVDP, unVDP and

enVDP [16]–[18]. We compare these models with BBB and

MC-Drop [21], [22]. We consider two benchmark datasets,

MNIST and CIFAR-10 [38], [39]. We train all five models

on the MNIST dataset and exVDP, unVDP, enVDP and MC-

Drop models on the CIFAR-10 dataset. We use the same

network architecture and hyper-parameters. BBB model is a

fully-connected network that performs poorly on the CIFAR-

10 dataset and is tested only on MNIST. For the MNIST

dataset, we use a CNN with one convolution (32 kernels) layer

and one fully-connected layer. The rectified linear unit is used

as an activation function. We train models for 20 epochs, with

a batch size of 50 and Adam optimizer. For the CIFAR-10

dataset, we use CNNs with 11 layers, 10 convolutional, 1 fully-

connected, and 5 max-poling. The numbers of convolutional

kernels are set to 32, 32, 32, 32, 64, 64, 64, 128, 128 and 128,

respectively. We use 500 epochs, 50 batch-size, an exponential

linear unit (ELU) activation and Adam optimizer. We use 20

MC samples to compute the uncertainty in the BBB and MC-

Drop models.

We assess the performance of the proposed anomaly detec-

tion approaches, i.e., the static and statistical thresholds, under

the covariate shift (by adding Gaussian noise and adversarial

perturbations to the image input space during testing) and

semantic shift (detecting an unknown label) with the Fashion

MNIST [40] and SVHN [41] datasets. Besides testing under

noise and adversarial attacks, we analyze the model behavior

using two datasets consisting of corrupted MNIST (MNIST-C)

[42] and corrupted CIFAR-10 (CIFAR-10-C) [43] samples to

demonstrate the performance under covariate shift.

A. Covariate Shifts

1) Gaussian Noise and Adversarial attacks: We establish

the detection proficiency of the proposed anomaly detection

methods under covariate shifts by adding different levels of

Gaussian noise and adversarial attacks to the test datasets. We

measure the noise level using SNR, where increasing the noise

level results in a decreasing SNR. We used the fast gradient

sign method (FGSM) to generate the attacks [44].

2) Corrupted images: We evaluate both proposed anomaly

detection techniques on OOD samples of MNIST-C [42] and

CIFAR-10-C datasets [43]. These datasets have 15 different

types of data corruption. In MNIST-C, these corruptions are:

1) Glass Blur, 2) Motion Blur, 3) Zigzag, 4) Dotted Line,

5) Scale, 6) Spatter, 7) Brightness, 8) Shear, 9) Shot, 10)

Stripe, 11) Translate, 12) Fog, 13) Rotate, 14) Canny Edge,

15) Impulse noise. In CIFAR-10-C, the corruptions are: 1)

Brightness, 2) Contrast, 3) Defocus blur, 4) Elastic transform,

5) Fog, 6) Frost, 7) Gaussian blur, 8) Gaussian noise, 9) Glass

blur, 10) Impulse noise, 11) JPEG compression, 12) Motion

blur, 13) Pixelate, 14) Saturate, 15) Shot noise.

In this experiment, we are interested in detecting misclassi-

fied samples under covariate shifts. So, in the first simulation,

we consider all test samples for each corruption type from

both MNIST-C and CIFAR-10-C. Then, we randomly select

1000 samples from the test data under each type of corruption,

shuffle them, and test the models on this new pooled corrupted

test set. We define average true-misclassified rate (TMR) as the

number of detected misclassified samples out of the total num-

ber of misclassified samples. Higher values of TMR refer to

better detection efficiency. In contrast, the false-misclassified

rate (FMR) is the number of correctly classified samples

detected by the static or statistical threshold as misclassified

out of the total number of correctly classified samples. Lower

FMR values represent better performance.

B. Semantic shift

The proposed anomaly detection approaches are evaluated

under semantic shifts for detecting unknown labels. For the

first experiment, the in-distribution data is MNIST, and we

consider Fashion MNIST [40] as OOD. We shuffle the two test

datasets and evaluate each model (initially trained on MNIST)
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Fig. 2. Average predictive variance versus signal-to-noise ratio (SNR) for: 1) total number of test samples (red curves), 2) correctly classified samples (blue
curves), and 3) misclassified samples (green curves). The variance-vs-SNR curves are plotted for exVDP, unVDP, enVDP and BBB models using the MNIST
dataset corrupted with Gaussian noise as well as targeted and non-targeted adversarial attacks.

TABLE I
THE STATIC AND STATISTICAL THRESHOLDS ON MNIST AND CIFAR-10,

AND THE AVERAGE VARIANCE ON FASHION MNIST AND SVHN.

MNIST F-MNIST CIFAR-10 SVHN

Bayesian Static Statistical Average Static Statistical Average

Models Thre. Thre. Variance Thre. Thre. Variance

exVDP 5.52 10.21 163.57 .036 .043 .269

unVDP 2.03 3.63 80.93 .036 .043 .196

enVDP 2.68 4.12 75.47 .004 .0059 .012

MC-Drop 6.6×10−5 1.7×10−4 .0019 .009 .01 .018

BBB 9.8×10−6 1.7×10−5 5.9×10−5 – – –

on them. Similarly, in the second experiment, we consider the

CIFAR-10 dataset as in-distribution and the SVHN test dataset

[41] as OOD.

V. RESULTS AND DISCUSSION

A. Evaluation Under Covariate Shifts

1) Gaussian noise and Adversarial attacks: We compute

the average predictive variance of all test samples, correctly

classified samples and misclassified samples, and plot them

against SNR for Gaussian perturbation as well as targeted

and non-targeted adversarial attacks. Figures 2 and 3 show

the variance-vs-SNR curves (interpreted from right to left)

of exVDP, unVDP, enVDP, BBB, and MC-Drop for: 1) total

number of test samples (red curves), 2) correctly classified

samples (blue curves), and 3) misclassified samples (green

curves) for MNIST and CIFAR-10, respectively. The red

arrows refer to the noise levels where the variance becomes

significantly higher (statistical threshold). We observe from

the figures that the variance of misclassified samples (green

curves) is considerably higher than that of the correctly

classified or total number of test samples. The gap between the

green curve (variance of misclassified samples) and the other

two curves (correctly classified and the total number of test

examples) is large for exVDP, unVDP and enVDP, making it

feasible to detect misclassified samples under noise or attacks.

Furthermore, the variance of correctly classified samples is

always the smallest. The variance value corresponding to the

statistical threshold (red arrows in Figs. 2 and 3) is also much

lower than the variance of misclassified samples. Thus, both

the static and statistical thresholds detect misclassified samples

under these covariate shifts.

On the contrary, the gap between misclassification and cor-

rect classification variance is negligible for both BBB and MC-

Drop models, as evident from Figs. 2(d) and 3(d). We believe

that this observation may be linked to the propagation of

uncertainty (covariance matrix of the variational distribution)

in exVDP, unVDP and enVDP models. Variance propagation

helps both the learning process and the proposed detection

approaches. This results in self-aware models that are capable

of detecting anomalies and perturbed samples.

2) Corrupted MNIST and CIFAR-10: In the first exper-

iment, we plot the predictive variance for all test samples

under the 15 corruption types described above for MNIST and

CIFAR-10. We demonstrate in Fig. 4 that the average variance
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Fig. 3. Average predictive variance versus signal-to-noise ratio (SNR) for: 1) total number of test samples (red curves), 2) correctly classified samples (blue
curves), and 3) misclassified samples (green curves). The variance-vs-SNR curves are plotted for exVDP, unVDP, enVDP and MC-Drop models using the
CIFAR-10 dataset corrupted with Gaussian noise as well as targeted and non-targeted adversarial attacks.

of misclassified samples is much higher than that of correctly

classified samples for exVDP, unVDP and enVDP models. The

average variance of misclassified samples is always higher than

the static and statistical thresholds. The exact values of the

static and statistical thresholds for both MNIST and CIFAR-

10 datasets are given in Table I.

From Fig. 4 and Table I, we note that the two proposed

anomaly detection techniques are able to detect the misclas-

sified samples by exVDP, unVDP, enVDP, BBB and MC-

Drop. It is evident from Figs.4(d) and 4(h) that the average

variance values of correctly classified samples for BBB and

MC-drop models are high. This can be considered a false

alarm from the BBB and MC-Drop models. We consider that

the variance produced by BBB and MC-Drop (which was not

learned during training) cannot differentiate between correctly

classified and misclassified samples. This behavior results in

poor generalization to OOD inputs and covariate shifts.

Table II shows the TMR and FMR for all models tested on

the pooled corrupted datasets generated from MNIST-C and

CIFAR-10-C as described in Section (IV-A2). We report the

TMR and FMR values for both the static and the statistical

threshold. We notice that exVDP, unVDP, and enVDP present

high TMR (above 80%) and low FMR (below 26%) for

MNIST and below 33% for CIFAR-10) as opposed to BBB

and MC-Drop models.

B. Evaluation Under Semantic Shift

We count how many test examples from MNIST as well

as Fashion MNIST whose predicted uncertainty (or predictive

variance) is above the static and statistical thresholds. Simi-

larly, we count the number of samples from CIFAR-10 and

TABLE II
AVERAGE TRUE-MISCLASSIFIED RATE (TMR) AND FALSE-MISCLASSIFIED

RATE (FMR) ON CORRUPTED MNIST AND CIFAR-10. THE TMR REFERS

TO THE RATE OF DETECTING MISCLASSIFIED SAMPLES, AND THE FMR
REFERS TO THE RATE OF DETECTING CORRECTLY CLASSIFIED SAMPLES.

Bayesian MNIST CIFAR-10

Models TMR FMR TMR FMR

exVDP 82% 25% 90% 31%

unVDP 84% 23% 90% 32%

enVDP 84% 23% 84% 32%

MC-Drop 40% 34% 51% 46%

BBB 35% 26% – –

SVHN datasets that have their variance above the thresholds.

The numbers of samples from Fashion MNIST (Fig. 5(a))

or SVHN (Fig. 5(b)) whose variance values are above the

thresholds are considered the true positive (TP) counts (OOD

with shifted labels detected by the proposed thresholds). The

numbers of samples from MNIST (Fig. 5(a)) or CIFAR-10

(Fig. 5(b)) whose variance values are above the thresholds

are considered the false positive (FP) counts because they are

clean samples (in-distribution). We observe from Fig. 5 that the

TP counts are very high for both the static and the statistical

thresholds, while the FP counts are very low except for the

MC-Drop model (Fig. 5(b)). Thus, the two proposed anomaly

detection approaches with the static and statistical thresholds

are able to detect semantic shifts with a high detection rate.

We compute the average predictive variance (uncertainty) of

all test samples from Fashion MNIST and SVHN datasets and

compare the values with each model’s static and statistical

thresholds (Table I). We note that the average variance is
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Fig. 5. (a) TP: The numbers of samples of Fashion MNIST dataset detected by the static and statistical thresholds (out-of-distribution or semantic shifts).
FP: The number of samples of MNIST dataset detected by the static and statistical thresholds (in-distribution). (b) TP: The numbers of samples of SVHN
dataset detected by the static and statistical thresholds (out-of-distribution or semantic shifts). FP: The number of samples of CIFAR-10 dataset detected by
the static and statistical thresholds (in-distribution).

notably higher than the thresholds for all models, especially

for exVDP, unVDP and enVDP models. Hence, models are

clearly detecting the label distributional shift.

VI. CONCLUSION AND FUTURE WORK

This paper proposed two automated anomaly detection

approaches based on the learned uncertainty (or predictive

variance) of the variational density propagation frameworks in

CNNs. We observed from prior work the growing behavior of

uncertainty under noisy conditions. Based on this observation,

we proposed two automated thresholds: 1) a static threshold

based on the average predictive variance of correctly classified

clean test samples (in-distribution samples); 2) a statistical

threshold based on the Wilcoxon signed-rank test to detect

the significant increase in the average variance under noisy

conditions (out-of-distribution samples). We demonstrated in

our extensive simulation that the two automated detection

thresholds were able to recognize the covariate shifts, in-

cluding Gaussian noise, targeted and non-targeted adversarial

attacks, and corrupted MNIST and CIFAR-10 test samples

(with 15 different types of corruptions). The misclassified

samples by these different types of perturbations were detected

with high rates by the static and statistical thresholds. The

two thresholds also detected the semantic shifts when we

trained the models on the MNIST and CIFAR-10 datasets and

then tested them on the Fashion MNIST and SVHN datasets,

respectively. In the future, we plan to test the two proposed

thresholds with more datasets and larger network architectures.

We also plan to investigate the possibility of learning the

detection threshold during training, which may result in a

higher detection rate.
ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion awards NSF CRII-2153413, NSF ECCS-1903466 and NSF
OAC-2008690. We are also grateful to UK EPSRC support
through EP/T013265/1 project NSF-EPSRC: ShiRAS. Towards
Safe and Reliable Autonomy in Sensor Driven Systems, and
NJ Health Foundation support through Award number PC 78-21.

REFERENCES

[1] J. Ker, L. Wang, J. Rao, and T. Lim, “Deep learning applications in
medical image analysis,” IEEE Access, vol. 6, pp. 9375–9389, 2018. 1

[2] Evan Ackerman, “How drive.ai is mastering autonomous driving with
deep learning,” IEEE Spectrum Magazine, Mar. 2017. 1

[3] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals, “Understanding deep learning (still) requires rethinking
generalization,” Communications of the ACM, vol. 64, no. 3, pp. 107–
115, 2021. 1

[4] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard, “Universal adversarial perturbations,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 1765–1773. 1

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on April 05,2023 at 14:35:14 UTC from IEEE Xplore.  Restrictions apply. 



[5] Anh Nguyen, Jason Yosinski, and Jeff Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 427–436. 1

[6] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu, “Gen-
eralized out-of-distribution detection: A survey,” arXiv preprint
arXiv:2110.11334, 2021. 1, 2

[7] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John
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