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Deep neural networks (DNNs) have started to find their role in the modern healthcare

system. DNNs are being developed for diagnosis, prognosis, treatment planning, and

outcome prediction for various diseases. With the increasing number of applications

of DNNs in modern healthcare, their trustworthiness and reliability are becoming

increasingly important. An essential aspect of trustworthiness is detecting the

performance degradation and failure of deployed DNNs in medical settings. The softmax

output values produced by DNNs are not a calibrated measure of model confidence.

Softmax probability numbers are generally higher than the actual model confidence.

The model confidence-accuracy gap further increases for wrong predictions and noisy

inputs. We employ recently proposed Bayesian deep neural networks (BDNNs) to

learn uncertainty in the model parameters. These models simultaneously output the

predictions and a measure of confidence in the predictions. By testing these models

under various noisy conditions, we show that the (learned) predictive confidence is

well calibrated. We use these reliable confidence values for monitoring performance

degradation and failure detection in DNNs. We propose two different failure detection

methods. In the first method, we define a fixed threshold value based on the behavior of

the predictive confidence with changing signal-to-noise ratio (SNR) of the test dataset.

The second method learns the threshold value with a neural network. The proposed

failure detection mechanisms seamlessly abstain from making decisions when the

confidence of the BDNN is below the defined threshold and hold the decision for manual

review. Resultantly, the accuracy of the models improves on the unseen test samples.

We tested our proposed approach on three medical imaging datasets: PathMNIST,

DermaMNIST, and OrganAMNIST, under different levels and types of noise. An increase

in the noise of the test images increases the number of abstained samples. BDNNs are

inherently robust and show more than 10% accuracy improvement with the proposed

failure detection methods. The increased number of abstained samples or an abrupt

increase in the predictive variance indicates model performance degradation or possible

failure. Our work has the potential to improve the trustworthiness of DNNs and enhance

user confidence in the model predictions.

Keywords: failure detection, robustness, trustworthiness, adversarial attacks, Bayesian deep neural networks,

self-assessment, reliability, natural noise
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1. INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML) are
among the pivotal technologies modernizing clinical practices,
medical diagnostics, and healthcare. Every day, new ML and
deep neural networks (DNNs) applications are being explored
in various clinical application areas, including medical imaging,
clinical text and language processing, and clinical decision
support systems. When considered for deployment in clinical
settings, trustworthiness, reliability, and robustness are among
the primary challenges modern ML techniques face, including
DNNs.

Modern DNNs have achieved high performance in various
areas, including computer vision, natural language processing,
and reinforcement learning. Several techniques based on DNNs,
including convolutional neural networks (CNNs), recurrent
neural networks (RNNs), Transformers, and Graph Neural
Networks (GNNs), have revolutionized various areas of human
endeavor. Modern DNNs seem to perform very well on
specific tasks; however, they are susceptible to out-of-distribution
changes in the input data and natural as well as adversarial noise.
DNNs are fragile and perform poorly when confronted with
noisy inputs. These brittle models may fail without warning after
deployment in real-world mission-critical settings.

The primary contributing reasons for the possible failure
of DNNs after deployment include; (1) aleatoric uncertainty,
resulting from intrinsic noise in the observed data, such as
noise from sensors producing noisy data, and (2) epistemic
uncertainty, representing the uncertainty in model parameters
due to a lack of available training data (1). In a clinical setting,
examples of these uncertainties include various types of day-to-
day changes in machine settings, changes in recorded data due to
hardware/software upgrades, noise related to human errors, etc.
Adversarial attacks are another possible source of model failure.
Adversarial samples consist of imperceptible perturbations in the
input data that fool the DNNs into making wrong predictions
(2). Modern DNNs should perform robustly in the face of various
types of natural noise and adversarial attacks.

DNNs should be able to assess their own performance
degradation and warn the users about their possible failure.
For DNNs employed in modern healthcare systems, the
inability to identify performance degradation may have fatal
repercussions (3–7). Performance monitoring after deployment
requires an accurate self-assessment mechanism since there is
no ground truth available to track model accuracy anymore.
Self-assessment refers to monitoring model’s confidence (or
alternately uncertainty) in its decisions by itself. Thus, leveraging
accurate uncertainty quantification may enable reliable failure
detection that will enhance trustworthiness and reliability.

Various techniques exist in the literature for measuring a
model’s confidence in its decision. For example, in the case
of a multi-class classification task, the output of the softmax
function, also referred to as softmax probability, available at the
output of DNNs is used as an uncertainty estimate. However,
softmax output values do not represent a DNN’s confidence in
its decision. These uncalibrated softmax probability numbers
generally represent overconfidence and are not appropriate

for DNN failure detection. We propose to use a Bayesian
DNN (BDNN) technique, referred to as Variational Density
Propagation (VDP) that defines the model parameters as random
variables and outputs predictive distribution instead of softmax
probability. VDP-based BDNNs propagate the mean and the
variance of the model parameters through all the layers of the
DNN and output predictive distribution. Assuming a Gaussian
distribution, the model simultaneously produces two outputs;
the decision (represented by the mean of the distribution) and
the associated uncertainty (quantified by the variance of the
distribution). In our framework, the uncertainty is learned during
training instead of estimating post-hoc after training. We also
verify the reliability of our uncertainty estimates by performing
extensive experiments and observing the trends of the predictive
variance under different levels of Gaussian noise and various
types of adversarial attacks.

We propose two failure detection methods based on the
observed patterns from experiments on the predictive variance.
Both methods are based on defining a threshold on the predictive
variance available at the output of the BDNN. During inference
(after deployment), if the predictive variance of the input sample
is below the threshold, the output is passed on for downstream
processing. Otherwise, if the predictive variance is above the
threshold, the BDNN abstains and outputs “no decision.”

The first proposed method is based on manually selecting the
threshold and is referred to as the fixed threshold. The manual
selection of the threshold variance value is based on the behavior
of the predictive variance and model performance under various
noise levels. In the second method, we learn a threshold using a
neural network. The neural network is trained using clean and
noisy images to learn the threshold variance value. The confident
predictions are retained based on each image’s learned threshold,
and the learned model abstains from under-confident decisions,
i.e., when the predictive variance is above the threshold.

We tested our proposed method on three different medical
imaging datasets, (1) PathMNIST, (2) DermaMNIST, and (3)
OrganAMNIST. We evaluated the performance of the former
method using three different fixed threshold values. We trained
two different models with different hyperparameters for each
dataset for the learned threshold. In our experiments, after
applying the threshold, we note considerable improvement in the
accuracy, especially at high noise levels. However, the number of
abstained cases (“no decision”) also increased. The average post-
threshold accuracy improvement is 24.2, 16.0, and 16.4% when
tested under Gaussian noise for PathMNIST, DermaMNIST, and
OrganAMNIST datasets, respectively. The average number of
abstained decisions is 53.0, 51.7, and 51.2% for PathMNIST,
DermaMNIST, and OrganAMNIST datasets under Gaussian
noise. Similar results are observed for the adversarial attacks.

In our experiments, we observe a trade-off between improved
accuracy after applying the threshold and the number of
abstained decisions. As a general trend, we observe that as
accuracy improvement increases, the number of abstained
samples also increases. The choice of the type of threshold
(learned vs. fixed) and subsequent parameter selection is
dependent upon the dataset and application. The proposed
failure detection methods considerably enhance model
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performance, provide robust means of model failure detection,
and help users establish trust in the AI/ML models.

The paper is structured as follows. The Section 2 provides
details of the framework that forms the basis of our proposed
work, along with datasets and details about the experiments.
Next, in Section 3, we present our results for three medical
imaging datasets. In Section 4, we provide a detailed overview
of existing methodologies in the literature and an analysis of our
experimental observations. We conclude by summarizing our
work and outlining directions for future work in Section 5.

2. MATERIALS AND METHODS

This section starts with the description of the mathematical
fundamentals of the Bayesian methodology used in our work
to estimate uncertainty. Next, we provide details of our two
methods proposed for failure detection in deep neural networks.
The last part of the section comprehensively presents the setup
for our experiments, including model architectures, medical
datasets, compute resources, frameworks, noise types and levels
employed in model testing/inference.

2.1. Mathematical Preliminaries
2.1.1. Bayesian Deep Learning
We consider model parameters (weights and biases) as random
variables and define a probability distribution function over
these parameters known as the prior distribution function. After
observing the data, Bayes’ rule is used to find the posterior
probability distribution function. GivenN samples of the training

data, D = {X(i), y(i)}
N
i=1, and the prior distribution defined over

the model parameters θ ∼ p(θ), we can apply Bayes’ theorem.
However, the posterior probability distribution function p(θ |D) is
generally intractable due to a large number of model parameters
and the functional form of the neural network, which does
not lend itself to exact integration (8). Variational inference
approximates the true posterior p(θ |D) with a parameterized
variational distribution qφ(θ) that is easy to estimate. The
optimal parameters φ∗ of the variational probability distribution
function are estimated by minimizing the Kullback-Leibler (KL)
divergence between the approximate and the true posterior
distribution functions. The resulting relationship, referred to as
the evidence lower bound (ELBO), can be maximized to find the
optimal parameters φ∗ of the posterior distribution function (9).
We can also construct a loss function from ELBO that can be
minimized by the gradient descent algorithm.

L = −Eqφ (θ)[log p(D|θ)]+ KL
(

qφ(θ)||p(θ)
)

. (1)

2.1.2. Variational Density Propagation (VDP)
The variational density propagation framework, proposed
by Dera et al. (10), propagates the first two moments of
the variational distribution qφ(θ) through the layers of the
model, including all linear and nonlinear transformations.
Consequently, all the operations performed onmodel parameters
and data are considered operations on random variables, which
include (1) multiplication of random variables with a constant,

(2) multiplication of two random variables, and (3) non-
linear transformations operating on random variables. We start
by defining model parameters as Gaussian random variables.
However, the outputs of various (non-)linear operations
performed at different layers of the neural network may
not follow the Gaussian distribution (11). In such cases, we
assume that the first two moments can still estimate and
represent the underlying probability distribution function (10).
VDP model output consists of the mean and the variance of
the predictive distribution p(ỹ |X, θ), without performing any
sampling operation as required in other methods (8, 12). The
mean of the predictive distribution function is the model’s
decision, and the variance-covariance matrix represents the
associated uncertainty with the decision.

Model Description
We consider our neural network to have C convolutional layers,
L fully-connected layers, activation functions, max-pooling
layers, batch-normalization layers, skip connections, and softmax
function. The network’s parameters are represented by θ =

{{W(kc)}
Kc

kc=1
, {W(l)}L

l=1
}, where {W(kc)}

Kc

kc=1
is the set ofKc kernels

in the cth convolutional layer, and {W(l)}L
l=1

} is the set of weights
in L fully connected layers. The kernels are defined under the
tensor normal distributions of order 3, W ∼ T N n1 ,n2 ,n3 (M,V),
where M is the mean tensor, and V is the covariance tensor.
Assuming the neural network input and the model parameters
are uncorrelated with each other, the mean and covariance after
each operation performed in the layers of the neural network
can be described by relationships in the following paragraphs
(10, 13–15).
Convolutional Operation—First Layer: Considering the input
X as a constant we have,

z(k1) = X ∗W
(k1) = X̃ × vec

(

W
(k1)

)

, (2)

where X̃ is formed by arranging vectorized sub-matrices of X
(having the same dimensions as the kernel) into rows, W(k1) is
the kth kernel of the first convolution layer (c = 1), and ∗ denotes
the convolution operation. The output of the convolutional layer
is given by,

z(ks) ∼ N

(

µz(k1) = X̃m(k1),6z(k1) = X̃6(k1)X̃T
)

, (3)

wherem(k1) = vec(M(k1)) and 6(k1) = vec(V(k1)).
Non-linear Activation Function: The mean and covariance after
a non-linear activation function, f , are derived using the first-
order Taylor series approximation (11). Let a(kc) = f(z(kc)), then
the mean and covariance of a(kc) are derived as,

µa(kc) ≈ f(µz(kc) ), and 6a(kc) ≈ 6z(kc) ⊙
(

∇f(µz(kc) ) ∇f(µz(kc) )
T
)

,

(4)

where ∇ is the first order derivative with respect to z(kc) and⊙ is
the Hadamard product.
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Max-PoolingOperation: The mean and covariance at the output
of the max-pooling operation are given by,

µp(kc) = pool
(

µa(kc)
)

, and 6p(kc) = co-pool
(

6a(kc)
)

, (5)

where pool represents the max-pooling operation, and co-pool
represents down-sampling the covariance matrix to keep the
rows and columns corresponding to the pooled elements of
the mean.
Flattening Operation: The output P of the max-pooling layer
is vectorized to form b = [p(1)T , . . . , p(Kc)T]. The mean and
covariance at the output of the flattening operation are given by,

µb =







µp(1)

...
µp(Kc)






,6b =







6p(1) · · · 0

...
. . .

...
0 · · · 6p(Kc)






. (6)

Fully-Connected Layer: Let wi ∼ N (mi,6i) be the ith weight
vector of the fully-connected layer and i = 1, . . . , S (S are the
number of classes or equivalently the number of output nodes).
Let d be the output of the fully connected-layer, then di = bwi is
the product of two random vectors.

µdi = mT
i µb,

6d =

{

tr (6i6b) +mT
i 6bmj + µT

b6iµb, i = j

mT
i 6bmj, i 6= j,

(7)

where, i, j = 1, . . . , S.
Softmax Function: Let g be the softmax function, then ỹ = g(d).
Using the first order Taylor series approximation, the mean and
the covariance of ỹ are derived as,

µỹ ≈ g(µd), and 6ỹ ≈ Jg6dJ
T
g . (8)

where, J is the Jacobian of the softmax function with respect to d.
Convolution Operation—Intermediate Layers: In this layer,
the previous layer’s input is considered as a Gaussian random
variable. Like the first convolution layer, sub-matrices of the
input are formed to have the same dimensions as the kernels.
Multiplication of the vectorized sub-matrices and the vectorized
kernels are a product of two uncorrelated random vectors.
Therefore, the resulting mean and covariance are given by
Equations (7).
Batch Normalization Layer:

µBN
yi

=
γ

√

σ 2
B
+ ǫ

⊙ (µxi − lµB)+ β , (9)

6BN
yi

= Diag





γ
√

σ 2
B
+ ǫ



 6xiDiag





γ
√

σ 2
B
+ ǫ



 , (10)

where, xi are the input vectors, B is a mini-batch of the input
vectors, µB and σ 2

B
are the sample mean and variance over

the mini-batch, γ and β are hyper-parameters for scaling and

shifting the input, ǫ is a constant for numerical stability, and
Diag(x) is a diagonal matrix with diagonal entries of the vector x.
Residual Connection: Residual or skip connections perform
identity mapping to skip a few layers in a model (16). The skip
connection relationship can be derived as,

xt+1 = xt + F(xt) and µxt+1
≈ µxt + F(µxt );6xt+1 ≈ J 6xt J

T ,

(11)

where, xt and xt+1 are the input and output vectors of the tth
block in the model, F is the non-linear residual function, and
J is Jacobian of xt+1 with respect to xt .
The Loss Function: We assume that the covariancematrix for the
initial variational distribution is diagonal, N independently and
identically distributed data points are given, andM Monte Carlo
samples can approximate the expectation by a summation. The
loss function given in Equation (1), can be implemented using
the following two relations.

Expected Log-likelihood:

Eqφ (�){log p(ỹ|X, θ)} ≈ −
NH

2
log(2π)

−
1

M

M
∑

m=1

[

N

2
log(|6ỹ|)

+
1

2

N
∑

i=1

(y(i)−µ
(m)
ỹ

)T(6
(m)
ỹ

)−1(y(i)−µ
(m)
ỹ

)

]

. (12)

Regularization:

KL
[

qφ(θ)‖p(θ)
]

=

C
∑

c=1

Kc
∑

kc=1

KL
[

qφ(W
(kc))‖p(W (kc))

]

+

L
∑

l=1

KL
[

qφ(W
(l))‖p(W (l))

]

. (13)

2.2. Failure Detection Methods
In our settings, a model is said to fail when its performance drops
below a certain predefined level. However, after deployment,
we do not have access to the ground truth labels and cannot
assess the model’s performance. We propose using VDP-based
Bayesian deep neural networks (BDNNs) that output a measure
of confidence and the decision. We can use this confidence
or uncertainty information to assess the model’s performance
and ascertain its failure. We propose two methods for defining
the threshold on the uncertainty (variance of the predictive
distribution). At test time or during deployment, if the predictive
variance is more than the threshold, the model will abstain and
output “no decision.”

2.2.1. Fixed Threshold
We establish the reliability of the uncertainty (or the predictive
variance) estimated by the BDNN. We observe the behavior
of the predictive variance and corresponding accuracy under
different types and levels of natural and adversarial noise. The
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FIGURE 1 | A schematic layout of the fixed threshold method is presented. The user defines the threshold based on predictive variance trend with varying noise levels

(SNR) of the test dataset. If the predictive variance is above the defined threshold value, the model abstains or outputs “no decision” at the inference time.

FIGURE 2 | A schematic layout of the threshold learning method is presented. The threshold variance is learned using a neural network. At the inference time, the

model abstains or outputs “no decision” if the predictive variance is above the learned threshold value. The threshold is learned using both the clean and the noisy

training dataset.

pattern of three different predictive variance values is tracked,
corresponding to the correct decisions, incorrect decisions,
and combined (correct + incorrect). We manually select a
fixed threshold value based on the observed patterns of these
three types of predictive variances and the model’s accuracy.
A schematic layout of the proposed approach is presented in
Figure 1. We experimented with three different threshold values
for comparison and quantified the effect of different threshold
values on the model’s post-threshold accuracy and the number
of abstained samples. The first threshold value is selected based
on the median predictive variance corresponding to the correct
decisions at the minimum tested noise level. This threshold value
corresponds to the highest accuracy. The next two threshold
values are selected using the combined and correct variance
trends. Four different bins of test samples are used to test the
selected threshold levels. These bins include clean test images
and images with low, medium, and high Gaussian noise. The

post-threshold accuracy and percentage of abstained samples are
recorded for each threshold value and for the four bins (no, low,
medium, high noise) of test images.

2.2.2. Learning Threshold Using Neural Networks
The second method attempts to learn the threshold value for
the predictive variance using a neural network. A schematic
layout of the proposed approach is presented in Figure 2.
We aim to learn a threshold value that is numerically close
to the predictive variance of the clean images produced by
the BDNN model. The input to the threshold learning model
consists of clean and noisy training dataset samples. The noisy
training samples are created using different levels of additive
Gaussian noise. The target output for the neural network consists
of predictive variance values as estimated by the BDNN for
corresponding clean training samples. We formulate this as a
regression problem and use the mean-square error or mean
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FIGURE 3 | (A) Architecture of the trained BDNN models for uncertainty quantification. Deterministic models share the same architecture. (B,C) Models for learning

the threshold variance. (B) Learned threshold model for PathMNIST dataset. (C) Learned threshold model for DermaMNIST and OrganAMNIST datasets.

absolute error loss function. We report the two different sets
of results based on two different hyperparameter settings. We
use different model architectures depending on the dataset.
Generally, a combination of convolutional and fully-connected
layers or only fully-connected layers are used. We use four
different test bins; clean testing images and testing images with
additive Gaussian noise of low, medium, and high level. Then
we tested the learned threshold model against adversarial attacks,
despite the threshold learning model being never exposed to
adversarial attacks. We created separate test data bins for each
type and level of adversarial attack. We recorded the post-
threshold accuracy and number of abstained test samples (in
percentage) for each test bin.

2.3. Experimental Setup
We trained two flavors of Resnet18 models, (1) deterministic
and (2) VDP-based BDNNs. The former models output
softmax probability values, which serve as the decision (the
largest value) and are also considered model confidence, albeit

uncalibrated. VDP-based BDNNs produce two separate outputs
simultaneously, the decision and the uncertainty associated with
the decision. Figure 3A presents the architecture of Resnet18
models used in our study. Deterministic and BDNN models
share the same architecture. We train both sets of deterministic
and BDNN Resnet18 models using original clean training
datasets. The training, validation, testing, and hyperparameter
optimization are done using web-based visualization tool,
Weights and Biases (17). All experiments are performed at test
time on the trained models using the test datasets. We report
the mean of uncalibrated softmax probability in deterministic
models. The reported output variance of BDNN models is using
the median values for the tested samples.

Two different architectures have been used to learn the
threshold variance for the output variances that the BDNN
models generate for each decision, as presented in Figures 3B,C.
The model illustrated in Figure 3B is used to learn the threshold
variance for the PathMNIST dataset, whereas the model
in Figure 3C is used for DermaMNIST and OrganAMNIST
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TABLE 1 | Compute resources, frameworks, and packages.

Environment/conditions Package name Version

Compute resources NVIDIA TITAN RTX GPU, –

48 GB GPU Memory

Operating systems Ubuntu 20.04.3

Windows 10

Programming languages Python 3.8.10

Deep learning framework Pytorch 1.8.1

Pytorch-lightning 1.2.5

Torchvision 0.9.1

Adversarial library Torchattacks 3.2.2

Miscellaneous Scikit-image 0.18.1

Scikit-learn 0.24.2

Pandas 1.2.4

Numpy 1.20.2

TABLE 2 | Gaussian noise levels and corresponding SNR values used in our

experiments.

Noise level SNR (dB)

PathMNIST DermaMNIST OrganAMNIST

Minimum tested 56.40 56.12 54.69

Low 26.89 26.60 20.74

Medium 22.52 19.31 13.27

High 16.71 14.79 6.27

Maximum tested 13.42 10.75 2.59

datasets. Details on the compute resources, frameworks, and
software packages used in our experiments are given in Table 1.
Code base for this work is available at: https://github.com/
Beemd/Failure-Detection_MedMNIST.

2.3.1. Analysis Using Gaussian Noise
We used different levels of Gaussian noise to corrupt the test
dataset. We quantify the noise level added in each test data
sample using the signal-to-noise ratio or SNR. At high noise
levels, the SNR is low and vice versa. SNR is calculated using:

SNR (dB) = 10 log10
Xsignal

Xnoise
,

where Xsignal is the clean test data sample and Xnoise is the
noise. Table 2 presents the Gaussian noise levels and their
corresponding SNR values for the three datasets used in our
experiments. We define four test bins [“no noise,” “low noise,”
“medium noise,” “high noise”]. Each bin uses all samples from
the test datasets.

2.3.2. Analysis Using Adversarial Attacks
Adversarial attacks introduce imperceptible perturbations in
the input using optimization techniques, rendering the attacks
unnoticed by human operators (2). These malicious inputs are

frequently used to test the robustness of deep neural networks
(18). We used three different types of adversarial attacks, the Fast
Gradient Sign Method (FGSM) (19), Projected Gradient Descent
(PGD) (20), and Carlini and Wagner (CW) (21). Further, we
used four different levels of FGSM attacks. For FGSM attacks,
the ǫ values were set to [0.001, 0.005, 0.01, 0.1], [0.0005, 0.002,
0.004, 0.008], and [0.005, 0.02, 0.04, 1.2] for PathMNIST,
DermaMNIST, and OrganAMNIST, respectively. In PGD, we
set ǫ = [0.005, 0.004, 0.02] for PathMNIST, DermaMNIST,
OrganAMNIST, respectively. We set α = 2/255 and used 50
steps for the optimization. The confidence values were set to c =
[0.05, 0.01, 0.95] for CW attacks on PathMNIST, DermaMNIST,
and OrganAMNIST, respectively. We used κ = 0, steps = 100,
and lr = 0.01. We defined a test bin for each type and level of
attack with 400 samples selected randomly from the test datasets.

2.3.3. Datasets
We used a subset of a large, curated biomedical images
dataset, referred to as MedMNIST (22). We used PathMNIST,
DermaMNIST, and OrganAMNIST for classification tasks in our
experiments. A summary of the datasets is given in Table 3.
PathMNIST dataset is built on colorectal cancer (CRC) histology
slides used in a study on survival prediction (23). The study
provides a dataset based on 86 hematoxylin-eosin (HE)-stained
slides of human cancer tissue from the National Center for
Tumor diseases (NCT) (24) biobank and the University Medical
Center Mannheim (UMM) pathology archive to form 100, 000
(NCT-CRC-HE-100K) non-overlapping image patches with nine
classes: adipose tissue, background, debris, lymphocytes, mucus,
smooth muscle, normal colon mucosa, cancer-associated stroma,
and CRC epithelium. The images in NCT-CRC-HE-100 K are
split into training and validation sets with a ratio of 9 : 1.
The test dataset of 7, 180 image patches is built using 25 HE
slides of human CRC tissue from the “Darmkrebs: Chancen der
Verhütung durch Screening” (DACHS) study (25) in the NCT
biobank. The source images of 3 × 224 × 224 are resized to
3× 28× 28.

DermaMNIST dataset is built on HAM10000 (26, 27), a large
collection of dermatoscopic images of pigmented melanocytic
and common non-melanocytic skin lesions. Non-pigmented
lesions are not part of this dataset. HAM10000 comprises 10, 015
images collected from multiple sources. These images were
filtered, pathologic diagnoses was unified, standardized, and a
final manual quality review was run to form seven generic classes:
akiec [Actinic Keratoses (Solar Keratoses) and Intraepithelial
Carcinoma (Bowen’s disease)], bcc (Basal cell carcinoma), bkl
(Benign keratosis), df (Dermatofibroma), nv (Melanocytic nevi),
mel (Melanoma), and vasc (Vascular skin lesions). The images are
split into training, validation and test sets with a ratio of 7 : 1 : 2.
The source images of 3× 600× 450 are resized to 3× 28× 28.

OrganAMNIST dataset is built on contrast-enhanced
abdominal computed tomography (CT) images from Liver
Tumor Segmentation Benchmark (LiTS) (28). LiTS consists of
201 scans collected from different clinical sites around the world.
Organ labels are obtained using bounding-box annotations
of 11 body organs from another study (29): heart, left lung,
right lung, liver, spleen, pancreas, left kidney, right kidney,
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TABLE 3 | Summary of the datasets.

No. of

classes

Image

size

Image

channels

Dataset

format

No. of samples

Training set Validation set Test set

PathMNIST 9 28 × 28 3 Numpy

Serialization

Files (npz)

89,996 10,004 7,180

DermaMNIST 7 3 7,007 1,003 2,005

OrganAMNIST 11 1 34,581 6,491 17,778

FIGURE 4 | Sample images of input data from PathMNIST, DermaMNIST, OrganAMNIST datasets used in our experiments.

FIGURE 5 | Uncalibrated mean softmax probability and corresponding test accuracy of deterministic models under varying signal-to-noise ratio (SNR). The plots are

conveniently interpreted if read from right to left on the horizontal axis. The mean softmax probability is higher than the model accuracy at the minimum tested noise

level (right side of the horizontal axis). As the noise level increases, the accuracy-probability gap continues to widen. This behavior shows the overconfidence of

deterministic models, especially at higher noise levels. (A), PathMNIST; (B), DermaMNIST; and (C), OrganAMNIST.

bladder, left femoral head, and right femoral head. The study
used segmentation masks provided by LiTS to compute the
bounding-box for the liver. The bounding-box for the other
organs is annotated and verified by radiologists. The source
training set of 131 CT scans is split into training and validation
sets with 115 and 16 CT scans, respectively. The source test
set of 70 CT scans is used as the test set. Voxel intensities of
the 3D scans are transformed from Hounsfield-Unit (HU) into
gray-scale. OrganAMNIST dataset is the 2D images cropped
from the center slices of the 3D bounding-boxes in axial view
(plane). The source images are resized to 1×28×28. The sample
images of each dataset are shown in Figure 4.

3. RESULTS

In this section, we present the results of our experiments
that include deterministic and Bayesian Resnet18 models
trained and evaluated using PathMNIST, DermaMNIST, and
OrganAMNIST datasets.

3.1. The Accuracy-Probability Gap
Figure 5 presents the test accuracy and corresponding
uncalibrated softmax probability values of the deterministic
models under varying natural noise levels. Figures 5A–C present
results for PathMNIST, DermaMNIST, and OrganAMNIST
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FIGURE 6 | The median predictive variance (left vertical axis) and BDNNs’ test accuracy values (right vertical axis) are plotted against varying levels of Gaussian noise

added to the test datasets. In addition to the test accuracy in each sub-figure, three predictive variance curves, refer to the correct, incorrect, and combined (correct +

incorrect) predictions. Inset in sub-figures shows the zoomed-in correct predictive variance trend. Sample test images from different noise levels are also presented.

(A), PathMNIST; (B), DermaMNIST, and (C) OrganAMNIST.

datasets, respectively. It is convenient to interpret sub-figures
from right to left on the horizontal axis, that is, going from
low noise (or high SNR) to high noise (or low SNR). The
accuracy-probability gap for all three datasets at the minimum
tested noise level is 13.39, 17.24, and 6.24%. The gap increases to
79.97, 87.64, and 78.48% at the maximum tested noise level for
respective datasets. The accuracy-probability gap is a qualitative
measure of the lack of confidence calibration in deterministic
deep neural networks.

3.2. Predictive Variance Under Noise
Figure 6 presents median predictive variance and test accuracy
plots with varying levels of additive Gaussian noise for BDNNs.
The noise levels are quantified using SNR. Figures 6A–C present
results for PathMNIST, DermaMNIST, and OrganAMNIST
datasets, respectively. In addition to test accuracy in each sub-
figure, three separate curves for the predictive variance are
presented. The variance curves illustrate median predictive
variance values for the (1) correct decisions, (2) incorrect
decisions, and (3) combined (correct + incorrect). Predictive
variance refers to the left vertical axis in all sub-figures. Each sub-
figure has the BDNN’s test accuracy (right vertical axis) evaluated
at various noise levels.

It is evident from Figure 6 that the BDNN predictive variance
values increase with increasing noise for all datasets. The range of
predictive variance for the PathMNIST dataset is ∼104, 102, and
2.7 for combined, correct, and incorrect decisions, respectively.
These values are 10, 102, 3.9 for DermaMNIST dataset, and 107,
106, 10 for OrganAMNIST dataset.

Table 4 shows the performance comparison of BDNN and
deterministic models under three different types of adversarial
attacks, PGD, FGSM, and CW, for all three datasets. Table 4
also presents predictive variance values of correct, incorrect,
and combined (correct + incorrect) decisions. In general, the
predictive variance increases with the addition of noise, which
serves as a surrogate for the out-of-distribution testing in our
settings. Such an increase in the variance is the basis of our
proposed failure detection mechanisms.

3.3. Detection of Failure in BDNNs
We propose two mechanisms of failure detection in BDNNs
using the predictive variance information: (1) a fixed threshold
on the variance and (2) a neural network based learnable
threshold. Tables 5–7 present failure detection results for
PathMNIST, DermaMNIST, and OrganAMNIST datasets,
respectively. Trained BDNNs were tested under three different
levels of Gaussian noise for failure detection using both methods,
fixed and learnable. The presented results include the threshold
values (for the fixed threshold method), accuracy before applying
the threshold on the variance (whether fixed or learned),
percentage of abstained test samples (because their associated
predictive variance was over the threshold), and the updated
accuracy excluding the abstained samples.

Tables 8–10 present failure detection results under three
different adversarial attacks for PathMNIST, DermaMNIST, and
OrganAMNIST datasets, respectively. Each table shows results
for PGD, CW, and four different levels of the FGSM attacks. The
tables provide test accuracy before the failure detection, the level
and types (fixed vs. learned) of the threshold for failure detection,
the percentage of abstained test samples with variance beyond the
threshold, and post-threshold test accuracy.

4. DISCUSSION

Trustworthiness is the primary challenge for DNNs in healthcare
applications. The availability of uncertainty information or a
measure of confidence in the output decision of DNNs may help
users (like medical practitioners) establish confidence in these
models. We build on our prior work in density propagation
BDNNs (4, 10, 13, 14, 30). These BDNNs output predictive
variance along with the decision or prediction, which serves as a
calibrated measure of confidence or equivalently uncertainty. We
proposed and evaluated two different failure detection methods.
The first one is based on the fixed threshold applied to the
predictive variance. In the second case, a neural network is
used to learn the threshold value. In both cases, the BDNN
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TABLE 4 | Performance comparison of BDNN and deterministic models under adversarial attacks.

Dataset Attack Attack Test accuracy (%) Median predictive variance

type level Deterministic BDNN Combined Correct Incorrect

PathMNIST PGD 0.005 30.00 45.25 0.129091 0.121537 0.13909

FGSM 0.001 75.75 81.00 7.82E-03 1.24E-03 1.58E+00

0.005 35.00 48.75 1.62E-01 4.68E-02 2.93E-01

0.01 16.25 21.00 2.82E-02 5.00E-04 6.27E-02

0.1 9.25 13.75 5.15E-02 1.74E-03 2.42E-01

CW c = 0.05 0.25 43.75 1.139096 1.77E-07 6.736739

DermaMNIST PGD 0.004 35.25 63.50 5.54E-01 3.39E-01 1.10E+00

FGSM 0.0005 63.75 73.00 3.87E-01 6.02E-02 2.74E+00

0.002 47.25 69.00 4.34E-01 9.33E-02 1.92E+00

0.004 32.25 64.50 5.04E-01 2.24E-01 1.33E+00

0.008 16.50 55.25 7.88E-01 6.15E-01 9.00E-01

CW c = 0.01 0.25 64.25 3.36E-01 7.87E-03 4.95E+00

OrganAMNIST PGD 0.02 43.00 63.00 5.84E-05 1.86E-06 3.28E-03

FGSM 0.005 83.00 83.25 1.14E-07 2.08E-09 1.23E+00

0.02 58.50 66.00 4.52E-05 1.06E-07 3.35E-02

0.04 36.50 47.00 2.11E-05 3.38E-08 1.17E-03

1.20 15.25 9.75 8.49E-03 6.23E-08 1.57E-02

CW c = 0.95 1.00 69.25 3.76E-09 2.42E-11 21.39

TABLE 5 | Detection of failure in BDNNs—PathMNIST dataset tested under various levels of Gaussian noise.

Noise
Accuracy prior

to threshold (%)
Threshold

Threshold

value

Abstained test

samples (%)

Accuracy post

threshold (%)

None 84.25 Fixed 0.0008 50.26 96.78

0.002 47.09 96.63

0.03 36.38 95.69

Learned ver-1 20.29 91.75

ver-2 23.43 91.05

Low 79.79 Fixed 0.0008 62.02 97.47

0.002 58.80 97.13

0.03 48.13 95.92

Learned ver-1 32.05 91.54

ver-2 22.92 91.11

Medium 65.39 Fixed 0.0008 74.18 97.36

0.002 71.95 96.57

0.03 63.61 93.88

Learned ver-1 50.89 86.70

ver-2 47.86 84.35

High 35.04 Fixed 0.0008 86.42 93.23

0.002 84.35 92.08

0.03 77.62 84.26

Learned ver-1 75.63 81.26

ver-2 67.72 68.72

The terms ver-1 and ver-2 correspond to different hyperparameter settings.
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TABLE 6 | Detection of failure in BDNNs—DermaMNIST dataset tested under various levels of Gaussian noise.

Noise
Accuracy prior

to threshold (%)
Threshold

Threshold

value

Abstained test

samples (%)

Accuracy post

threshold (%)

None 73.27 Fixed 0.08 60.90 93.88

0.20 55.66 92.35

1.00 35.61 87.37

Learned ver-1 32.82 85.23

ver-2 43.54 89.40

Low 72.37 Fixed 0.08 60.65 92.97

0.20 57.06 90.59

1.00 37.26 86.41

Learned ver-1 33.92 84.75

ver-2 44.99 88.67

Medium 68.33 Fixed 0.08 64.79 90.23

0.20 62.20 89.22

1.00 46.14 83.98

Learned ver-1 39.55 82.43

ver-2 51.37 85.95

High 63.39 Fixed 0.08 79.00 77.67

0.20 73.32 78.50

1.00 58.85 78.06

Learned ver-1 52.97 75.08

ver-2 66.53 79.43

The terms ver-1 and ver-2 correspond to different hyperparameter settings.

TABLE 7 | Detection of failure in BDNNs—OrganAMNIST dataset tested under various levels of Gaussian noise.

Noise
Accuracy prior

to threshold (%)
Threshold

Threshold

value

Abstained test

samples (%)

Accuracy post

threshold (%)

None 90.22 Fixed 2.00E-08 45.96 99.72

1.00E-05 31.96 99.17

2.00E-03 22.04 98.07

Learned ver-1 33.23 99.21

ver-2 44.39 99.66

Low 89.13 Fixed 2.00E-08 48.91 99.59

1.00E-05 34.47 98.82

2.00E-03 24.06 97.68

Learned ver-1 35.77 98.98

ver-2 47.13 99.51

Medium 78.05 Fixed 2.00E-08 62.75 96.62

1.00E-05 47.32 93.99

2.00E-03 34.58 91.01

Learned ver-1 48.37 94.30

ver-2 60.96 96.63

High 42.47 Fixed 2.00E-08 89.82 79.67

1.00E-05 75.78 69.34

2.00E-03 58.56 60.54

Learned ver-1 77.07 71.03

ver-2 88.62 79.69

The terms ver-1 and ver-2 correspond to different hyperparameter settings.
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TABLE 8 | Detection of failure in BDNNs—PathMNIST dataset tested under various types of adversarial attacks.

Attack Attack level
Accuracy prior

to threshold (%)
Threshold type Threshold

Abstained test

samples (%)

Accuracy post

threshold (%)

FGSM 0.001 81.00 Fixed 0.0008 49.25 96.55

0.002 48.00 96.15

0.03 38.25 93.52

Learned ver-1 24.00 88.82

ver-2 27.25 88.66

0.005 48.75 Fixed 0.0008 69.00 66.94

0.002 67.25 64.89

0.03 57.75 59.17

Learned ver-1 40.25 50.63

ver-2 43.00 49.56

0.01 21.00 Fixed 0.0008 56.75 31.21

0.002 55.25 30.17

0.03 45.00 25.91

Learned ver-1 28.75 22.81

ver-2 34.75 18.77

0.1 13.75 Fixed 0.0008 56.75 22.54

0.002 56.00 22.73

0.03 49.00 24.51

Learned ver-1 43.75 18.67

ver-2 38.25 21.05

CW c = 0.05 43.75 Fixed 0.0008 62.25 98.68

0.002 57.75 98.22

0.03 56.00 97.16

Learned ver-1 50.50 88.38

ver-2 50.25 86.93

PGD 0.005 45.25 Fixed 0.0008 75.50 67.35

0.002 72.50 63.64

0.03 59.25 50.31

Learned ver-1 38.50 43.90

ver-2 42.00 42.67

The terms ver-1 and ver-2 correspond to different hyperparameter settings.

model is considered to fail when the predictive variance is
above the threshold, whether fixed or learned. In such cases,
the model abstains from making any decision, and the produced
output is “no decision.” By abstaining from uncertain decisions,
the proposed threshold methods substantially improve the
performance of BDNNs (based on the accuracy of confident
decisions), especially when the model faces corrupt or out-
of-distribution inputs. We use Gaussian noise and adversarial
attacks to corrupt the input images at test time.

4.1. Existing Approaches to Failure
Detection and Uncertainty Estimation
Different techniques have been proposed in the literature to
estimate uncertainty in model predictions and detect when the
model is failing. We broadly segment these techniques into
non-Bayesian and Bayesian categories.

4.1.1. Non-Bayesian Methods
Many different approaches have been proposed in the literature.
Generally, the output of the softmax function, where available,
is used as the model confidence (31). However, the softmax
output is not a calibrated measure of model confidence
(15). The raw softmax probabilities overestimate model
confidence for the correct as well as incorrect predictions
(15). We categorize the existing non-Bayesian methods
into three main areas; (1) calibration techniques, (2) ad-hoc
methods, and (3) ensemble techniques, as explained in the
following paragraphs.

The calibration techniques help models adjust the softmax
output values such that these values represent the model
confidence. Among calibration techniques, temperature scaling
uses a scalar parameter to re-scale logit scores (15). Temperature
scaling with small perturbation in input data improves the
detection of out-of-distribution samples (32). Label smoothing is
another calibration technique that diffuses the one-hot encoded
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TABLE 9 | Detection of failure in BDNNs—DermaMNIST dataset tested under various types of adversarial attacks.

Attack Attack level
Accuracy prior

to threshold (%)
Threshold type Threshold

Abstained test

samples (%)

Accuracy post

threshold (%)

FGSM

0.0005 73.00 Fixed 0.08 60.00 93.75

0.2 57.00 91.28

1 37.00 86.51

Learned ver-1 28.50 82.52

ver-2 50.25 87.44

0.002 69.00 Fixed 0.08 61.00 86.54

0.2 57.00 84.88

1 39.75 80.50

Learned ver-1 29.75 74.02

ver-2 53.25 81.82

0.004 64.50 Fixed 0.01 64.25 81.12

0.2 58.50 77.11

1 42.00 71.98

Learned ver-1 35.00 67.69

ver-2 57.50 73.53

0.008 55.25 Fixed 0.08 69.25 58.54

0.2 62.50 58.67

1 46.00 57.41

Learned ver-1 42.50 52.17

ver-2 65.25 57.55

CW c = 0.01 64.25 Fixed 0.08 59.25 95.09

0.2 56.75 93.64

1 37.50 87.60

Learned ver-1 30.50 82.01

ver-2 49.00 88.73

PGD 0.004 63.50 Fixed 0.08 63.00 77.70

0.2 58.25 74.85

1 41.75 70.39

Learned ver-1 34.75 64.37

ver-2 57.25 70.18

The terms ver-1 and ver-2 correspond to different hyperparameter settings.

labels using a small probability value for incorrect classes. There
are various methods for label smoothing, including a data
augmentation strategy called mixup (33, 34). Mixup employs
vicinal risk minimization, which uses additional data samples
and labels from the original dataset. Moon et al. (35) proposed
training DNNs with a different loss function, named correctness
ranking loss. The correctness ranking loss regularizes the class
probabilities such that these values are ordinal rankings based on
the true model confidence (35). The Deep Gamblers technique is
based on the portfolio theory and uses a loss function designed
for selective classification problems using the doubling rate of
gambling (36). It transforms the m-class classification problem
into m+1 classes, with the additional class representing whether
themodel abstains frommaking a decision due to low confidence.
Calibration techniques are computationally efficient. However,
the model outputs decisions and represents the associated
confidence in those decisions using the same softmax output
values. Calibration techniques are generally not accurate and

(except for correctness ranking loss) do not differentiate between
the confidence values of correct and incorrect decisions.

Ad-hoc methods generally extend the model architecture to
predict uncertainty and detect out-of-distribution inputs (37, 38).
DeVries and Taylor (37) applied sigmoid function to the logits
from the main classification model to estimate confidence as
c ∈ [0, 1] for out-of-distribution detection. Corbiere et al. (38)
proposed true class probability based on feature maps extracted
from the main model during training. SelectiveNet uses a
modified architecture with three heads (prediction, selection, and
auxiliary) and a special loss function to optimize classification
and rejection simultaneously (39). Although the uncertainty
learned by extended model architecture produces acceptable
results, these techniques are not suitable for failure detection.
These techniques require modification in the model architecture,
which may alter model performance. Ad-hoc techniques also
do not capture the uncertainty introduced by the additional
components added to the model architecture.
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TABLE 10 | Detection of failure in BDNNs—OrganAMNIST dataset tested under various types of adversarial attacks.

Attack Attack level
Accuracy prior

to threshold (%)
Threshold type Threshold

Abstained test

samples (%)

Accuracy post

threshold (%)

FGSM 0.005 83.25 Fixed 2.00E-08 46.25 99.53

1.00E-05 36.75 97.63

2.00E-03 31.75 94.87

Learned ver-1 43.50 99.12

ver-2 52.75 100.00

0.02 66.00 Fixed 2.00E-08 60.00 88.13

1.00E-05 47.25 81.52

2.00E-03 42.00 79.74

Learned ver-1 55.00 84.44

ver-2 65.00 92.14

0.04 47.00 Fixed 2.00E-08 57.50 62.35

1.00E-05 46.50 57.94

2.00E-03 41.75 54.94

Learned ver-1 53.50 62.37

ver-2 65.25 68.35

1.2 9.75 Fixed 2.00E-08 73.00 19.44

1.00E-05 62.50 14.67

2.00E-03 57.00 13.95

Learned ver-1 69.00 16.94

ver-2 79.75 23.46

CW c = 0.95 69.25 Fixed 2.00E-08 39.00 99.59

1.00E-05 33.25 99.63

2.00E-03 30.75 98.92

Learned ver-1 36.50 99.61

ver-2 45.25 100.00

PGD 0.02 63.00 Fixed 2.00E-08 61.50 79.87

1.00E-05 48.25 73.91

2.00E-03 43.50 72.57

Learned ver-1 57.75 79.29

ver-2 70.75 86.32

The terms ver-1 and ver-2 correspond to different hyperparameter settings.

Ensemble techniques combine the output of multiple models
to improve predictive performance. The probability distribution
of the point predictions of individual models can be used
for uncertainty estimation (40–43). This technique has been
extended for out-of-distribution detection (44, 45). Ensemble
techniques produce reliable confidence estimates; however, these
techniques are computationally expensive. Trust score is another
non-Bayesian technique for estimating model confidence (46).
Trust score is estimated by the degree of agreement between
the model and a modified nearest-neighbor classifier. High trust
scores correlate to higher precision in the correct classification
of samples and can be used to measure certainty (46). Trust
score is appropriate for small datasets only as finding the nearest
neighbors in large datasets is computationally challenging.

4.1.2. Bayesian Methods
Bayesian methods use Bayes’ theorem to calculate the posterior
distribution function, which can be used to find the predictive
distribution for new samples (47). Some Bayesian methods
use variational inference to estimate the posterior distribution,

while others use various sampling techniques (47). In variational
inference, we propose an easy-to-estimate parameterized
posterior distribution and later estimate its parameters using
gradient descent during model training (10, 47). Recently, a
Bayesian fully-connected deep neural network with the name
of Bayes by Backprop was proposed by Blundell et al. (8). Bayes
by Backprop defines a fully-factorized Gaussian distribution
over the model weights and uses variational inference to find its
first two moments (8). At the test time, Monte Carlo samples
from the learned posterior distribution provide an estimate of
the uncertainty in the output decisions. Later on, Shridhar et al.
(48) extended Bayes by Backprop from fully-connected neural
networks to CNNs. In general, Bayes by Backprop technique
is computationally expensive because the number of unknown
parameters to be estimated is doubled.

Monte-Carlo dropout, proposed by Gal and Ghahramani,
is a Bayesian approximation technique (12). The method uses
dropout operation at the inference time for the estimation
of uncertainty in DNNs (12). Monte-Carlo dropout is
computationally efficient as compared to Bayes by Backprop.
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However, both Bayes by Backprop and Monte-Carlo dropout
use sampling for the estimation of uncertainty in the output
decision. Both techniques do not propagate uncertainty (the
second moment or the variance of the variational distribution)
through the network layers, that is, the model does not learn the
uncertainty during training.

Dirichlet prior network (DPN) is based on the Bayesian
framework but uses a Dirichlet distribution as a prior over the
predictive categorical distribution (49, 50). DPN is shown to be
similar to DNNs for classification using softmax output, but the
difference is in the loss function. DPN performs well for out-of-
distribution detection. However, for misclassification detection,
DPN relies onmaximum softmax probability, which is calibrated.

Our proposed failure detection mechanism is based on our
recently introduced Bayesian technique that uses variational
inference (10, 13, 14, 30). This technique, referred to as
Variational Density Propagation (VDP), propagates the first
two moments of the variational distribution through all
mathematical operations, linear and non-linear, in the model
layers. VDP-based models produce two outputs, that is,
the first two moments of the variational distribution. The
output mean is the model’s decision, and the variance
is the uncertainty in the decision. VDP introduces only
a few additional parameters and is computationally not
expensive (10, 13, 14).

4.2. The Accuracy-Probability Gap
Figures 5A–C present test accuracy and softmax probability
values at different noise levels for the deterministic models
trained for PathMNIST, DermaMNIST, and OrganAMNIST,
respectively. Ideally, for a calibrated model, the accuracy-
probability gap should be zero. In such cases, the softmax
probability values represent the output decision and the model
confidence. In Figure 5, we observe that the accuracy-probability
gap always exists for all tested datasets and increases with the
noise level. This gap highlights that the uncalibrated softmax
probability output values are an overconfident representation
of the model confidence (15). The raw or uncalibrated softmax
output probability values are not a reliable representation of
model uncertainty and should not be used to detect out-of-
distribution samples or model failure.

4.3. Predictive Variance Under Noise
The test accuracy and corresponding predictive variance values
for BDNNs for a range of noise levels are presented in Figure 6.
We observe that the test accuracy drops with the increasing
noise level, whereas the median predictive variance values
increase. Such behavior establishes the coherence between the
model’s accuracy and confidence in its decisions. The predictive
variance of BDNNs captures the uncertainty introduced by
different noise levels. The increase in predictive variance for
correct decisions shows that the model’s confidence in its correct
decisions decreases as the noise increases. We also observe that
the predictive variance of the incorrect decisions is higher than
the variance value corresponding to the correct decisions at
any given SNR. The consistent gap between the correct and
incorrect predictive variance values indicates that the model is
relatively unsure about its wrong decisions compared to the

correct decisions made at the same SNR level. The observed
gap between the predictive variance values for the correct and
incorrect decisions and the increase in the predictive variance
with increasing noise establishes the predictive variance as a
reliable metric for failure detection.

The clean (noise-free) test accuracy values for the
deterministic and BDNN models are [82.95, 84.25%],
respectively, for PathMNIST, [73.67, 73.27%] for DermaMNIST,
and [90.12, 90.22%] for OrganAMNIST datasets. In Figures 5,
6, moving from the minimum to the maximum tested noise
levels, we observe that the drop in accuracy of BDNNs is less
than the deterministic models. The least drop in accuracy is
for DermaMNIST BDNN, which decreased from 73.27 →

61.89% whereas its deterministic counterpart dropped from
73.67→ 11.07% in accuracy. PathMNIST BDNN accuracy drops
from 84.25 → 27.16% compared with 82.95 → 10.85% for the
deterministic model. The accuracy drop for OrganAMNIST
BDNN is from 90.22 → 22.87% which is almost similar to its
deterministic counterpart, 90.12 → 20.05%. This performance
comparison between BDNNs and deterministic models shows
that generally, BDNNs are more robust, as already established
in our previous work (10, 13, 14, 30). In other experiments
we observe a similar accuracy trend between BDNN and
deterministic models for the speckle additive noise.

Table 4 presents the performance comparison of BDNN and
deterministic models under three different adversarial attacks.
We note that the variance values corresponding to incorrect
decisions are higher than those corresponding to the correct
decisions for all types of attacks. This behavior of predictive
variance shows that the BDNNmodel is relatively more confident
about its correct decisions than its incorrect decisions under
adversarial attacks. The variance values for combined, correct,
and incorrect decisions under all types and levels of attack
are higher than the variance values for the clean test dataset.
The larger variance values for adversarially attacked samples
demonstrate that BDNN is relatively more uncertain when under
attacks. These observed patterns form the basis for the failure
detection methods proposed in our current work. Table 4 also
shows that under increasing levels of FGSM attack, the variance
values do not show a consistent increasing or decreasing pattern.
This inconsistent behavior is unlike the trend observed for the
Gaussian noise. We attribute the behavior of variance under
different levels of FGSM attacks to the nature of the optimization
problem that the FGSM attacks use to fool the model. Generally,
all adversarial attacks use various optimization techniques to find
the minimum distortion in the input that will fool the model
into changing its decision while remaining imperceptible to the
human user. The adversarial attacks find the optimized distortion
at each attack level, resulting in inconsistent predictive variance
values. Each type of attack uses a different technique; hence the
predictive variance values and the difference between the correct
and incorrect predictive variance values for each attack varies. In
our experiments, we also observed that for stronger PGD attacks
(e.g., ǫ = 0.008) for the PathMNIST dataset, the deterministic
model fails with the accuracy dropping to 0.25%. In contrast,
the accuracy of BDNN for the same level of adversarial attack is
42.75%. However, the predictive variance for incorrect decisions
for BDNN is lower than the correct decisions, i.e., 0.44 vs. 0.65.
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In Table 4, we also note that the performance of BDNN is
better than its deterministic counterpart under all types and levels
of adversarial attacks. This performance trend shows that BDNN
models are robust to adversarial attacks as already demonstrated
in our previous work (10, 13, 14, 30).

4.4. Detection of Failure in BDNNs
The failure of a machine learning model can be defined using its
accuracy. However, after the deployment of a model, there are
no ground truth labels and the accuracy cannot be calculated.
Different flavors of BDNNs (e.g., VDP) can be used which output
decision as well as some measure of uncertainty in the decision,
that is, the variance of the predictive distribution. Using this
variance information, we have developed two methods for the
failure detection that estimate a failure threshold, named fixed
and learnable. After deployment, if the predictive variance for
an input is above the defined threshold value, the model is
considered to have failed in providing a reliable and trustworthy
decision and the model output is set to “no decision.”

The fixed threshold method uses manually selected predictive
variance values. The threshold values are selected by analyzing
the variance curves in conjunction with the model accuracy
at different noise levels (refer to Figure 6). On the other
hand, the learnable threshold method uses a neural network
to learn the threshold corresponding to each input sample.
The fixed and learned variance values serve as a threshold
for segregating decisions made by the model. These predictive
variance thresholds block uncertain decisions, improving the
remaining decisions’ accuracy. The change in the predictive
variance values for the correct and incorrect decisions and
the behavior of predictive variance under various noise levels
establishes the efficacy of the proposed failure detection methods.
Both failure detection mechanisms perform better when the
overlap between the distributions of correct and incorrect
predictive variance is minimum.

4.5. Failure Detection Under Gaussian
Noise
4.5.1. Fixed Threshold
We note in Tables 5–7 that as the fixed threshold value is
increased, the number of abstained samples (“no decision” cases)
and the accuracy of confident decisions decreases at the same
noise level. When the threshold level is constant and the noise
level increases, the number of incorrect decisions increases. Out
of these incorrect decisions, the ones whose variance values
are above the threshold fall in the “no decision” domain. That
means the model abstains and does not produce any output.
Consequently, with the increasing noise, the number of abstained
samples and improvement in accuracy increases.

The average accuracy improvement for the PathMNIST
dataset, after applying the fixed thresholds, are
[12.1, 17.1, 30.6, 54.8%] for the cases of [“no noise,” “low noise,”
“medium noise,” “high noise”], respectively. The corresponding
average abstained samples are [44.6, 56.3, 69.9, 82.8%]. For
the DermaMNIST dataset (Table 6), the average accuracy
improvement values are [17.9, 17.4, 19.5, 14.7%] and average
abstained samples are [50.7, 51.7, 57.7, 70.4%]. For the

OrganAMNIST dataset (Table 7), we note that the average
accuracy improvement is [8.8, 9.6, 15.8, 27.4%] and the average
abstained samples are [33.3, 35.8, 48.2, 74.7%] for all four noise
levels, respectively.

4.5.2. Learned Threshold
In Tables 5–7, we observe a relationship between the number
of abstained samples and the test accuracy (post-threshold).
At two different BDNN training hyperparameter settings, the
percentage of abstained samples and the post-threshold accuracy
tend to co-vary. That is, a threshold value that provides the
largest improvement in the post-threshold test accuracy may also
result in a higher percentage of abstained samples. In Table 5,
the average accuracy improvement is [7.2, 11.5, 20.1, 40.0%]
and average abstained samples are [21.9, 27.5, 49.4, 71.7%]
for [“no noise,” “low noise,” “medium noise,” “high noise”],
respectively. In Table 6, we observe a similar pattern in
accuracy improvement for the DermaMNIST dataset. The
average accuracy improvement is [14.0, 14.3, 15.9, 13.9%] and
the number of abstained samples are [38.2, 39.5, 45.5, 59.8%].
In Table 7, for the OrganaMNIST dataset, the average accuracy
improvement is [9.2, 10.1, 17.4, 32.9%] and the number of
abstained samples are [38.8, 41.5, 54.7, 82.8%]. The learned
threshold method tends to abstain from fewer samples than
the fixed threshold method for PathMNIST and DermaMNIST
datasets. Therefore, the increase in post-threshold accuracy
is also relatively less. In OrganAMNIST, the learned method
abstains from more samples than the fixed threshold and
produces higher post-threshold accuracy.

Figure 7 shows the comparison of accuracy improvement
with noise level for fixed and learned threshold mechanisms.
We observe that with the increasing noise levels, the average
improvement in the accuracy is also increasing. However, the
number of abstained samples is going high. The trend varies
slightly based on the dataset.

4.6. Failure Detection Under Adversarial
Attacks
4.6.1. Fixed Threshold
Tables 8–10 present the performance of threshold methods
under three different adversarial attacks. We observe that for the
PathMNIST datasets (Table 8), the average increase in accuracy
using the fixed thresholds is [11.7, 54.3, 15.2%] and the number
of abstained decisions is [54, 58.7, 69.1%] for [“CW,” “PGD,”
“FGSM”] attacks, respectively. For DermaMNIST (Table 9),
the average increase in accuracy is [11.9, 27.9, 10.8%] and the
number of abstained decisions is [54.5, 51.2, 54.3%]. Table 10
shows that for the OrganAMNIST dataset, the average increase
in accuracy is [12.2, 30.1, 12.5%] and the number of abstained
decisions is [50.2, 34.3, 51.1%] for [“CW,” “PGD,” “FGSM”]
attacks, respectively.

The performance of the fixed threshold method under CW
attacks is better than FGSM and PGD attacks, thus giving
a higher increase in the post-threshold accuracy with fewer
abstained samples for all three datasets. The performance of
the fixed threshold method under PGD attacks is comparable
to that under FGSM attacks. Among three tested datasets,
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FIGURE 7 | (A,B) are for fixed threshold. (C,D) are for learned threshold. Increase in average improvement in post-threshold accuracy and average percent abstained

samples with rising Gaussian noise levels is visible. This trend varies depending on the dataset.

the fixed threshold method performs the best under CW
attack on OrganAMNIST, improving the average post-threshold
accuracy to 99.4%. We also note that the CW attack completely
fails the deterministic neural network with the test accuracy
of 0.25, 0.25, and 1.00% for PathMNIST, DermaMNIST,
and OrganAMNIST, respectively. On the other hand, the
accuracy values for the BDNNs are 43.75, 64.25, and 69.25%
for PathMNIST, DermaMNIST, and OrganAMNIST datasets,
respectively. Compared to the deterministic neural networks,
the BDNNs are inherently robust against attacks. By employing
the fixed or learned threshold methods, BDNNs can detect
the model failure and improve accuracy by abstaining from
uncertain decisions.

The fixed threshold for FGSM attack shows that, on average,
the percentage of abstained samples at the lowest level of FGSM
attack is 45.2 and 51.3% for the PathMNIST and DermaMNIST
datasets, respectively, which is less than the remaining three
levels of the attack. However, the average accuracy improvement
is relatively high, 15.4 and 17.5%, respectively. The average
accuracy improvement is relatively low at higher attack levels,
9.5 and 3.0% for PathMNIST and DermaMNIST, respectively.
However, the average abstained samples are relatively higher, 53.9
and 59.3%. Such patterns are observed when themodel’s accuracy

drops considerably due to increasing noise/attack levels, and a
strong overlap between the distribution of predictive variance
for correct and incorrect samples exists. For OrganAMNIST, the
highest average accuracy improvement under the FGSM attack is
17.1%, corresponding to the second level attack. The abstained
samples are comparable to the lowest and third attack levels,
49.8% on average. The number of abstained samples is relatively
high at the highest FGSM attack level, 64.2%; however, the
average accuracy improvement is relatively low, 6.3%.

4.6.2. Learned Threshold
The average accuracy improvement for the PathMNIST (Table 8)
using the learned thresholds is [3.8, 43.9,−2.0%] and the number
of abstained decisions are [35, 50.4, 40.3%] for [“CW,” “PGD,”
“FGSM”] attacks, respectively. Table 9 for DermaMNIST shows
an average increase in accuracy as [6.7, 21.1, 3.8%] and the
number of abstained decisions as [45.3, 39.8, 46.0%]. Finally,
for the OrganAMNIST (Table 10), the average increase in
accuracy is [16.9, 30.6, 19.8%] and the number of abstained
decision is [60.47, 40.9, 64.3%], for [“CW,” “PGD,” “FGSM”]
attacks, respectively.

We note that the learned threshold method performed better
under CW attacks than FGSM and PGD attacks. Consequently,
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this results in a higher increase in post-threshold accuracy with
fewer abstained samples for all three datasets. Among all three
datasets, the learned threshold method performed the best on
the OrganAMNIST dataset under CW, and the lowest level of
FGSM attack considering the accuracy improvement and percent
abstained samples. The post-threshold accuracy is 99.8 and
99.6% for the CW and FGSM attacks, respectively. The learned
threshold performs well for OrganAMNIST under all levels of
FGSM attack (with a minimum accuracy improvement of 10% at
the highest attack level with 74% abstained samples) compared to
PathMNIST and DermaMNIST. For DermaMNIST, the method
performs well under the lowest level of FGSM attack, improving
average accuracy by 12% with the abstained samples of 39.4%.
The learned threshold does not perform well on the PathMNIST
dataset under PGD attack, reducing the post-threshold accuracy
by 2.0%.

The performance of both failure detection methods, which,
in turn, estimate a threshold value on the predictive variance,
depends on the difference in the median variance values of
correct and incorrect decisions. The performance of the proposed
methods also depends on the overlap between the distributions of
predictive variance values corresponding to correct and incorrect
decisions. The performance of both methods will improve as
the difference between the median predictive variance values of
correct and incorrect decisions increases and the overlap between
the two distributions reduces. These conditions vary based on
the dataset used and the type of noise. The accuracy improved,
and the number of abstained samples has a trade off based on
the dataset. The user can choose a high accuracy improvement
depending on the application and compromise on the high
number of abstained samples and vice versa. The selection of
the appropriate threshold method, learned or fixed, also depends
on the application and the dataset. The proposed methods offer
two main advantages, (1) generally, the post-threshold accuracy
improves even at high noise levels or under adversarial attacks,
and (2) the increase in the number of abstained samples and the
increase in predictive variance indicates model failure.

5. CONCLUSION AND FUTURE WORK

Self-assessment and failure detection requires accurate
uncertainty estimation. However, the softmax output values
produced by DNNs are overconfident and unsuitable for
failure detection. We have used the recently proposed BDNN
models that employ Bayesian methodology and simultaneously
output the decision and uncertainty. This reliable uncertainty
estimate forms the foundation of our proposed methods for
detecting performance degradation and failure in DNNs. We
have proposed two failure detection methods, fixed and learned
threshold. The fixed threshold is defined by looking at the
behavior of the predictive variance under changing noise levels
(SNR). The second method uses a neural network to learn the
threshold. Both methods filter out under-confident decisions
(as “no decision”) having variance above the threshold level.
This filtering out mechanism results in an increase in the
accuracy of the remaining confident decisions. We test these
failure detection methods on three medical imaging datasets,
PathMNIST, DermaMNIST, and OrganMNIST. The results show

a trade-off between the average improvement in post-threshold
accuracy and the percentage of abstained samples. As the
threshold rises, the number of abstained samples decreases,
and the improvement in accuracy also decreases (keeping
the noise level constant). As the noise level rises, the model
becomes uncertain and its variance values rise. Additionally,
the model accuracy drops under increasing noise levels, and
the model is uncertain about its incorrect decisions. Rising
noise level thus causes the number of abstained samples to
increase (at the same threshold level), and the improvement in
accuracy (post-threshold) also increases. The proposed method
reflects performance degradation and model failure when the
number of abstained samples increases and there is a rise in
predictive variance.

There are some limitations of our study, which open
avenues for future work. The first avenue is extending the
proposed mechanisms to other datasets and model architectures.
BDNNs, which are the base of our proposed failure detection
methods, have been applied to other model architectures and
can be extended to any architecture, including, Transformer,
RNN and its variants (LSTMs/GRUs), and variants of CNN-
based architectures. Since this mechanism is independent of
the dataset, it can be extended to any medical dataset of
interest. Furthermore, the proposed mechanism’s performance
depends on the accuracy and reliability of the uncertainty
estimation. These failure detection mechanisms can be applied to
other well-calibrated uncertainty techniques that quantify model
confidence. In addition, for the proposed learned threshold
mechanism, the model architecture and the loss function can
be designed to enhance the performance for detecting failure
with lower abstained samples giving a greater improvement
in accuracy. We believe that our work will assist the broader
acceptability of DNN’s deployment for healthcare applications as
a trustworthy and reliable solution.
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