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A B S T R A C T   

Optical transmission systems provide high capacity, low latency and jitter, and high reliability for city-scale 
networks. Recirculating loop experiments have facilitated the study of signal propagation in long-haul optical 
transmission systems. However, they are unsuited for developing control and management software for city-scale 
optical networks with dozens or hundreds of reconfigurable optical add drop multiplexer (ROADM) units, diverse 
interconnection topologies, and dynamic traffic patterns. Large-scale testbeds can help, but may be inflexible and 
time- or cost-prohibitive. Reconfigurable testbeds such as COSMOS enable piece-wise emulation of a city-scale 
network by applying space and wavelength switching, dual-use software-defined networking (SDN) control-
lers, and comb sources, while digital twin models enable software emulation. Results from the development of a 
digital twin for COSMOS are presented for optical amplifiers and stimulated Raman scattering (SRS) including 
both analytical and machine learning (ML) models.   

1. Introduction 

Optical systems are commonly designed to maximise transmission 
reach and capacity, as demonstrated in record-setting experiments for 
submarine and long-haul networks [1,2]. As the scale and cost of early 
experiments increased, laboratory experiments quickly adopted exper-
imental emulation methods, such as the widely used recirculating loop 
method [3]. Today, high capacity optical transmission systems are 
deployed in metro networks and are of interest in high capacity radio 
front/backhaul edge networks. High capacity remains important in 
these short reach systems, alongside new demands such as low latency 
and adaptation to traffic variations. High capacity systems thus extend 
from the network edge to the core with diverse performance and control 
requirements, yet an alternative experimental platform to the recircu-
lating loop has not emerged. 

The introduction of open and disaggregated optical transmission 
systems creates further experimental needs. Most of the research chal-
lenges associated with such systems involve their control and manage-
ment. In proprietary systems, control complexity is addressed through 
proprietary engineering methods that are not exposed to network op-
erators [4,5]. While some components of optical system control, such as 
the path computation element (PCE) [6], have been well studied, the 
actual control plane operations, such as lightpath provisioning and 
amplifier tuning, have received much less attention and documentation. 
Control can be complex due to factors such as non-linear impairments, 

component anomalies, and optical power dynamics from wavelength 
and polarisation-dependent effects in amplifiers and fibre spans. 
Although short distances reduce non-linear effects, metro systems might 
have a large number of switching node hops, and there is interest in 
increasing channel power to support higher spectral efficiency modu-
lation formats. However, if the power is increased too high, then non- 
linear impairments can be significant even in short distance systems. 
The open line system approach, in which only the transceivers are dis-
aggregated, and the engineering of the line systems is kept proprietary, 
is an example of a short-term solution to the lack of related research in 
this area [7,8]. Data-driven and machine learning (ML) methods have 
attracted attention as potential means to handle the added control 
complexity of more fully disaggregated systems [9,10,11,12]. Address-
ing the larger challenge of fully disaggregated systems requires experi-
mental platforms for studying the interactions between new control and 
management systems and the physical transmission effects. 

Optical networking experiments have typically consisted of three to 
six nodes connected over short distances (e.g., a single transmission 
span). These networking experiments are effective at studying network 
operation and management, but do not accumulate physical impair-
ments, and therefore are ineffective at studying the interaction between 
the control system and the transmission physics. Noise or other im-
pairments can be artificially introduced, but this does not capture the 
associated dynamics. As optical networks today can scale to hundreds or 
thousands of nodes and support signal transmission over dozens of nodes 
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[13], new network control systems need to be evaluated under condi-
tions where the associated transmission impairments are active. Recir-
culating loops have been an effective tool for studying such impairments 
in large scale systems, but generally are not compatible with optical 
networking experiments. Therefore, new methods are required for 
experimentation to study the physical effects at scale and how they 
interact with the novel software controls, ML algorithms, or control 
hardware innovations. 

The trend towards using data-driven controls for improved man-
agement and greater automation also brings new requirements to 
experimental methods. Digital twin methods [14,15], for example, 
enable training and evaluation of ML algorithms on a virtual model of 
the system prior to implementation in the operational system itself. Such 
methods require detailed datasets of the system characteristics and 
performance over a wide range of operating conditions. Obtaining data 
from commercial systems is difficult both due to business practices and 
operating requirements, such as customer privacy regulations. On the 
other hand, testbeds can play an essential role in collecting datasets for 
experimentation, particularly if they include a field-deployed fibre plant 
and programmable optical hardware. 

Recently, city-scale testbeds are being deployed with emphasis on 
experimentation with different networking technologies. For instance, 
Bristol is Open [16] in the United Kingdom was developed with a focus 
on 5th-generation wireless and optical networking experimentation, and 
the Japan-wide Orchestrated Smart/Sensor Environment (JOSE) testbed 
[17] in Japan has a focus on Internet-of-Things (IoT) services. These 
testbeds enable the investigation of the interoperability of different 
applications and devices in practical, deployed network scenarios. They 
can also be used to collect datasets to facilitate the development of ML 
algorithms and data-driven methods as described above. A key question 
is whether such testbeds can be used to address the needs of control and 
management experiments for optical networks at scale. 

The rest of this paper is organised as follows: Section 2 reviews 
recirculating loop methods and their development in the context of 
developing optical networking experiments that are sensitive to physical 
impairments. Section 3 highlights how large-scale networking testbeds 
can be leveraged as emulation platforms that provide accurate impair-
ment modelling and scale to enable the investigation of transmission and 
control complexity of optical communication systems. Section 4 dis-
cusses the challenges and trade-offs of optical physical layer control, and 
the need for a practical research and development platform for software- 
defined networking (SDN) and ML-based systems that can address 
control and management complexities at scale. Section 5 proposes a path 
forward to address these research challenges. The methods to emulate 
large-scale systems are discussed with a focus on the use of digital twin 
techniques. Section 6 presents an example of component-level erbium- 
doped fibre amplifier (EDFA) and stimulated Raman scattering (SRS) 
digital twin models of the city-scale NSF PAWR COSMOS optical- 
wireless testbed [18,19,20] which were implemented using both 
analytical and ML-based techniques. The performance of both tech-
niques is evaluated and compared with the COSMOS experimental re-
sults. Lastly, Section 7 concludes the paper. Note that portions of this 
paper provide an extended version of a paper presented at the European 
Conference on Optical Communications (ECOC) 2021 [21]. 

2. Recirculating loop transmission experiments 

Traditionally, experimental investigation of point-to-point optical 
systems has been conducted in laboratories using a recirculating loop. 
This comprises a link with amplified spans re-used in the loop to obtain 
long and ultra-long-haul distances (600 to 10,000 + km). A laboratory 
would need a prohibitively large amount of fibre and amplifiers to 
conduct such experiments. Hence, the use of a loop experiment was 
introduced as a method to conveniently study long-distance trans-
mission physics without the cost and complexity of a full system [3]. 

A recirculating loop is an emulation tool that recirculates optical 

signals through a set of optically amplified fibre spans. The transmitter 
output signal is coupled into the loop for signal circulation through a 
switching mechanism that is activated for the duration required for the 
signal to fill the loop. The signal is then allowed to circulate through the 
loop multiple times. An optical tap is used to sample the signal with each 
successive circulation, and the resultant performance is measured. Thus, 
long-haul transmission distances can be emulated by recirculating a 
sample of optical data in a loop with just a few spans. Signal propagation 
over arbitrarily long distances can be emulated by keeping the signal 
circulating within the loop. While the optical signal experiences trans-
mission over the equivalent distances, there are still differences between 
the emulated transmission and transmission within a full system. 

Recirculating signals over the same fibre and components produce 
propagation effects that scale differently from a full-scale system. 
Random walk variations in polarisation effects and wavelength- 
dependent gain or loss (WDG or WDL) of a fibre span and components 
such as amplifiers, turn square root scaling into linear scaling with 
distance for related signal impairments. This error is mitigated by using 
a polarisation scrambler within the loop for the case of polarisation ef-
fects. Using a larger number of spans and amplifiers within the loop can 
further reduce the impact of such effects but at the cost of more hard-
ware. However, one important limitation of recirculating loops is that all 
signals propagate together along the same effective route from end to 
end. Hence, the impact of dense wavelength- division-multiplexing 
(DWDM) transmission in mesh networks with diverse wavelength 
routing is not emulated [22]. 

ROADMs were introduced to provide optical path reconfigurability 
[25], but this leads to a signal path diversity that is not present in 
recirculating loop experiments. In addition, filtering effects due to the 
wavelength selective nature of the ROADMs can cause passband nar-
rowing effects with distance. Although placing a ROADM within the 
loop helps to emulate these filtering effects [25], the random passband 
and signal wavelength variations of a full-scale system are again missed 
in a loop. On-off keying (OOK) modulation-based systems have the 
additional complication of requiring a dispersion map to manage the 
accumulated dispersion and the local residual dispersion in a trans-
parent mesh network can vary [26]. Recirculating loops are constrained 
by the accumulated dispersion in the loop and do not allow for varia-
tions. The use of coherent transceivers significantly simplified system 
design by providing dispersion compensation within the transceiver and 
largely eliminated the need for dispersion maps. However, the active 
compensation controls within a coherent receiver are not compatible 
with recirculated loop data, and therefore are not used with loops. 
Instead, custom coherent receivers are used typically with offline signal 
processing [27,28]. 

ROADM-based networks that support mesh topologies introduce 
other complexities that are not well emulated through recirculating 
loops. The optical signals that propagate through the nodes in a ROADM 
network are not regenerated, and therefore accumulate impairments 
along the route. Due to the large multiplicity of possible configurations, 
the signal quality or quality of transmission (QoT) must be estimated at 
the time of provisioning to ensure that the engineering margins are not 
violated. A recirculating loop with an in-loop ROADM can emulate a 
path through a mesh network and test worst-case limits, but generally 
cannot replicate the range of signal and system configurations that 
might be found along an arbitrary transmission path. Often specific 
experiments are constructed to emulate and test specific types of im-
pairments that may be problematic such as filter narrowing or neigh-
bouring channel non-linear interference that might occur for different 
signal types [25]. Furthermore, the adding and dropping of a channel or 
group of channels may impact other channels in the transmission link 
since they share the same fibre. These effects, such as power excursions 
and crosstalk, have been the subject of numerous research studies 
[29,30,31,32,33,34]. In fact, the interaction of power fluctuations be-
tween the co-propagating channels can lead to feedback within a mesh 
network that can destabilise the system, thus requiring network-wide 
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control [35] that cannot be emulated in a loop. 
A number of recirculating loop methods were developed in an 

attempt to emulate mesh network effects. The experimental setup in 
Fig. 1a was used to investigate a dynamically reconfigurable span length 
circulating loop. The loop consists of four spans of lengths 77.5 km, 82.5 
km, 90.2 km, and 67.2 km, respectively, with a split on the output of 
each span. Five additional fibre spools of lengths (L1–L5) 5 km, 10 km, 5 
km, 2.3 km, and 5.3 km, respectively, can be introduced to the loop 
through switches that are triggered synchronously with the loop. In this 
way, the length of each span for each round trip can be varied to realise a 
wide range of different conditions. Constant power operation of the 
amplifiers compensated for the loss variations. This was effective in 
studying path-dependent dispersion variations [26]. 

In order to study the impact of channels propagating different dis-
tances along a path, the setup in Fig. 1b uses a ROADM in a recirculating 
loop experiment with eight different channel groups. Different channels 
could be assigned to different groups to travel various distances within 
the loop using eight independently triggered 1 × 2 loop switches. The 
channel groups travel through the same fibre, with each group travelling 
either once or up to eight times around the loop. QoT was used as a 
metric to perform wavelength assignment. It was used to choose the 
group of channels that should propagate through different distances in 
the loop. The best performing wavelengths were selected starting at the 
longest distance from the eight groups based on the QoT prediction 

(based on the required OSNR for a bit error rate of 10−3). The results 
obtained are shown in Fig. 2. It can be seen that the lowest and highest 
margins were recorded for the groups of channels that propagate 
through eight hops and one hop, respectively. This approach could be 
used to study impairment-aware wavelength assignment. However, the 
complexity of the arrangement made it difficult to operate. 

These mesh experiments show that further utility might be achieved 
with recirculating loops by emulating more complex mesh network ef-
fects. However, full-scale system experiments are still needed with the 
ability to incorporate the control system dynamics, both for the systems 
and in the transceivers. In fact, today, recirculating loops are primarily 
used for research hero experiments that push the limits of distance and 
capacity. Commercial development labs instead rely on a combination of 
full system experiments and simulation to develop and test optical 
transmission performance [8]. Research methods that can better 
emulate this production development environment are needed to 
progress research on such systems, including their control complexity. 

3. Large-scale networking testbeds 

Large-scale testbeds have the potential to address the transmission 
and control complexity needed in optical networking experiments. Some 
national-scale testbeds have been developed for networking research. In 
general, they require significant capital and time for planning, devel-
opment, and deployment before becoming accessible for research. 
Remote programmability is particularly important at this scale, which 
can be problematic for optical systems. GENI [36] is an example of a U.S. 
national-scale testbed. Due to the complexity of operating such a 
network, commercial optical systems were used, which excluded most 
optical systems research. Extensions at specific nodes on GENI enabled 
local optical system experiments that could then communicate across 
the larger national network [37]. Integrating multiple optical network 
testbeds with a common control plane allows for larger-scale control 
experiments, although the physical layer effects are still missing. This 
federation of testbeds has been widely used to investigate control system 
complexity and scaling [37]. FABRIC [38] is a more recent U.S. national- 
scale testbed that again allows for a federation of optical testbeds at 
different end nodes (e.g., university campus labs and networks), but also 
potentially allows for experimentation on the commercial optical sys-
tems due to greater functionality in current commercial systems that 
might be exposed to the users. 

With the emergence of smart city technologies, city-scale testbeds 
have attracted much attention in recent years. Similar to GENI, most 
city-scale testbeds do not have optical networking capabilities and often 
have heavy applications focus. The SmartSantander testbed [39], 
deployed in Santander, Spain, is one of the first city-scale testbeds in 
Europe that comprises over 10,000 IoT devices which consist of both 
fixed and mobile sensor nodes, gateway devices and near-field 

Fig. 1. (a) Experimental setup for a loop with different span lengths for each round trip [23]. (b) Recirculating loop that acts as 8 loops in one to allow 8 different 
groups of channels to propagate different numbers of round trips and study mesh network wavelength assignment [24]. 

Fig. 2. Experimental results of wavelength assignment using QoT estimation 
for loop experiment in Fig. 1b. Each group of channels propagates one or up to 
8 round trips (i.e., emulated mesh network hops) in the loop [24]. 
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communication (NFC) tags. SmartSantander has supported the research 
community in providing real-world datasets from its various sensors. 
Likewise, the CityLab testbed [40] located in Antwerp, Belgium, is a 
similar testbed that researchers are using for data collection to model 
real world traffic patterns. Its capabilities, such as the IEEE 802.15.4, 
IEEE 802.11, and sub-GHz wireless protocols, support multi-technology 
experimentation. 

Smart city testbeds that use commercial networks allow for experi-
ments using commercially available technologies. However, future 
technologies will run on networks with higher performance than current 
commercial networks. Therefore, using a research network with capa-
bilities beyond those that are commercially available will enable 
experimentation on such future applications and technologies. This 
concept translates through all layers of the network, and thus, ulti-
mately, a research optical network is needed to support the full range of 
future smart city technologies. Bristol is Open [16] in Bristol, UK, is a 
smart city testbed that pioneered the use of research network compo-
nents, allowing for research on both applications and the underlying 
networks. This enabled researchers to consider the concept of a smart 
city operating system [41]. It also used academic lab testbed facilities as 
a hub connected to the larger smart city network and enabled more 
advanced research. The COSMOS testbed in New York City, U.S., uses 
this approach to combine a city-scale advanced wireless network with a 
fully disaggregated and programmable optical network with hub labs at 
Columbia University, Rutgers University, and City College of New York. 
COSMOS extends across the Harlem area and Manhattan with a multi- 
layered computing architecture that comprises a general-purpose 
cloud, radio cloud and radio/optical physical layer. Its architecture in-
cludes millimetre-wave (mmWave) and sub-6 GHz software-defined 
radios (SDRs), a disaggregated ROADM optical network with user- 
programmable SDN control, and a core and edge cloud. The optical 
network currently includes 8 Lumentum ROADM whitebox units, which 
will expand to more than 36 units when the testbed is fully deployed. 
The availability of such whitebox and SDN programmable devices has 
opened the door to building research testbeds at these large scales. 

Open and programmable optical components such as whitebox 
ROADM units and Ethernet switches supporting coherent transceivers 
further enable these city-scale research optical networking testbeds. 
SDN and SDR capabilities enable full programmability so that these 
components can be repurposed for a wide range of optical and wireless 
experiments. With sufficient scale, such programmable testbeds can be 
used to study the control dynamics of optically amplified systems, 
overcoming the limitations of the recirculating loop experiments. While 
these tools put the large scale networks within reach, populating such 
networks with a full set of transceivers is not practical. Configuring these 

network elements to form different network topologies also presents a 
challenge. Similar to the recirculating loops, emulation methods might 
be used to address these issues. 

4. Optical physical layer control challenges 

Optical transmission systems carry digital signals, but their operation 
is complex and analogue in nature. The optical signal-to-noise ratio 
(OSNR), often in its generalised form that includes both accumulated 
optical amplifier noise and the impact of non-linear fibre propagation, 
must be managed throughout the system. Operation is complicated by 
the fact that the optical signals interact with each other through 
wavelength-dependent phenomena in both the amplifiers and trans-
mission fibre. High-speed data pattern dependent effects are generally 
managed through compensation controls within the transceivers. 
However, due to time-dependent temperature and stress on the physical 
system components, signal interactions persist over time scales that 
range from microseconds to diurnal and seasonal periods [42]. 
Advanced physical layer operations such as optical switching, signal 
modulation adaptation, and wavelength provisioning and routing are 
complicated by this highly non-linear, multitemporal physical system. In 
fact, these complications have limited the use of optical switching in 
commercial systems to passive optical networks (PONs), which are short 
reach (single hop) access networks without active optical amplification. 
A ROADM unit includes optical switches, but these are used for flexible 
provisioning and operated over time scales of minutes to hours. Com-
mercial systems using real-time optical switching have been successfully 
developed, but the scale and topologies had to be constrained to less 
than roughly 16 nodes in a ring topology [43]. Despite numerous 
research studies of real-time switching, including optical packet 
switching [44,45], the development of commercial systems continues to 
be challenging among other things due to the operational cost and 
complexities at scale [46]. 

4.1. Balancing cost, complexity and performance 

The development of advanced functionality in optical networks re-
quires balancing cost and complexity to achieve the desired perfor-
mance. Performance includes both the traditional measures of 
transmission performance, such as the pre-forward error correction (pre- 
FEC) operation, as well as other measures such as system stability and 
resilience. Given that the challenges in optical physical layer control 
arise due to analogue signal transmission effects, performance metrics 
can generally be met simply by limiting the so-called transparent scale of 
the system – the number of transparent node hops or transmission dis-
tance. A fully opaque system using optical regeneration at every node 
does not suffer any of the control challenges discussed here. Indeed this 
opaque solution has been introduced on multiple occasions over the 
history of optical system development [47,48]. The primary motivation 
for large-scale, transparent optical networks is to avoid the high cost of 
such optical regeneration. Transceivers are by far the highest cost 
component, even in ROADM systems designed to minimise the use of 
transceivers except at network ingress and egress points. Thus, most 
research challenges associated with advanced functionality in optical 
networks fundamentally come down to the trade-off of maintaining the 
transparent, low-cost aspects of the network while managing the control 
complexity and system performance at scale. 

Fig. 3 illustrates the optical network control trade-off between cost 
and performance, considering the two dimensions of software and 
hardware controls. Software controls involve the use of intelligent al-
gorithms such as machine learning or the introduction of operational 
constraints (e.g., slower switching transition times). Each of these incurs 
a cost in terms of development or higher system cost due to the added 
constraints. Similarly, hardware controls can be used, such as adding a 
dynamic gain equalising filter in each amplifier or increasing the 
amount of signal regeneration. The additional hardware directly drives 

Fig. 3. Balance of software and hardware controls for the control and man-
agement optical communication systems. Practical systems require an open 
region between the cost and stability/performance thresholds: stable, high 
performing, and cost-effective. 
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up the network cost. Here a cost threshold is shown, above which the 
system becomes prohibitively expensive for the given application. 
Therefore, hardware and software controls need to be reduced in some 
combination to fall below this curve. Removing too many such controls, 
however, will eventually lead to performance degradations or issues, e. 
g., real-time switching might become unstable [49]. Thus a performance 
or stability threshold will also exist below which the system performs 
poorly or unreliably. The challenge then for optical network control 
research is to find solutions for which the performance curve falls below 
the cost threshold, allowing for high performing, cost-effective network. 
Since the performance or stability of the optical network is related to its 
transmission behaviour, experiments must be able to test such control 
systems at scale. 

4.2. Applying SDN and ML-based control 

The adoption of SDN has accelerated disaggregation by decoupling 
the data plane from the control plane, and it enables unified control and 
management [50]. At-scale experimental testbeds enable the study and 
development of effective SDN and ML-based control systems for these 
complex and disaggregated optical networks. 

Transport application programming interface (T-API) [51] provides 
a standard northbound interface between the user (i.e., network oper-
ator/orchestration platform) and transport SDN controllers. This en-
ables interoperability between SDN controllers from multiple sources. 
For example, the TeraFlow [52] project is developing methods to use 
machine learning with SDN control to integrate optical layer function-
ality with 5G and cloud operations, and supports the use of digital twin 
technologies for optical network performance prediction [53]. An 
operator might wish to combine it with the SYMPHONY [54] controller 
to provide compatibility with legacy networks. These SDN controllers 
and interfaces create an environment in which the provisioning and 
adaptation of optical signals can be controlled from customer or network 
operator user applications or automated cloud applications. 

While monolithic SDN controllers can provide consistency, broad 
functionality, and one-stop shopping, they may limit flexibility and 
scalability. Frameworks such as application-based network operations 
(ABNO) [55] are being developed to offer a modular architecture. 
Microservices based controllers such as uABNO [56] and microONOS 
(μ-ONOS) [57] have also been proposed to allow for greater flexibility, 
fast deployment, and auto-scaling for optical networks than standard 
monolithic SDN controllers. 

Running over commercial optical systems, on-demand provisioning 
operations can be carried out stably over the time scales of minutes. ML 
models can make dynamic configuration adjustments based on the field 
conditions to perform optical layer controls. Provisioning a new optical 
signal along a network path involves generating a QoT estimate in order 
to determine if the signal can reach the endpoint error-free and with a 

sufficient performance margin. The use of a QoT estimate, in fact, is an 
example of a digital twin method and recently, there has been an interest 
to incorporate machine learning in this digital twin framework. The 
motivation for using ML is to tighten QoT margins, particularly for 
disaggregated systems, and enable greater autonomic controls. Many 
recent studies of such methods have used synthetic data to train the 
models [58]. This can lead to inaccuracies that may differ significantly 
from the deployed systems, further emphasising the need for large scale 
networking testbeds. 

5. A new generation of system experiments 

Historically, testbeds have provided essential platforms for investi-
gating optical systems technologies. With greater emphasis on system 
control, new testbed methods are needed at adequate scales that map to 
commercially deployed transmission systems. Emulation techniques are 
crucial in order to reduce the cost and complexity of such systems so that 
they can be readily used in research experiments. Recent techniques that 
have emerged in this context are discussed in the subsequent sections. 

5.1. City-scale testbeds 

City-scale testbeds provide an excellent platform in which to realise 
at-scale optical systems for control experiments. While in principle a 
large-scale testbed can be built up within a single laboratory environ-
ment, as is done with recirculating loop testbeds, the amount of equip-
ment and the complexity of the system will typically exceed the 
resources of a single lab. Nevertheless, industrial labs can and have 
developed such at-scale systems [59], although such labs may have a 
product focus that involves the use of commercial systems without the 
full range of flexibility desired in research labs. City- scale testbeds, 
however, often bring together a consortium of partners and resources 
that can enable the necessary larger scale. Furthermore, they are often 
designed to be multi-user testbeds, enabling a much larger group of 
researchers to make use of the infrastructure. Sharing large-scale 
research infrastructure will be essential for stimulating research 
within the larger community. 

The scale and complexity of city-scale testbeds creates support, us-
ability, and maintenance challenges. For a multi-user testbed to be 
viable, dedicated staff is needed to maintain the equipment and work 
with users to overcome unique challenges that arise in many experi-
ments when novel technologies are being investigated. Depending on 
the experiments, users may require large amounts of time and assistance 
in order to learn how to operate the testbed. Sandbox systems within the 
testbed can be used to prototype and debug experiments before testing 
in the full system. Significant effort is required to develop convenient 
user interfaces and sandboxes, and these tools will require continual 
upgrades to keep pace with technology. 

Fig. 4. (a) Linear uni-directional system topology realised using the Calient S320 space switch in COSMOS. (b) An illustration of how different paths can be emulated 
through a network. 
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5.2. Space switching 

Outside fibre plant is expensive and difficult to manage. It often in-
volves fixed topologies that can confine the range of configurations 
needed for experimental research. An important tool to overcome this 
limitation is the use of space or fibre switching on both the line-side and 
client-side of the networking equipment. A space switch is essentially a 
large programmable fibre patch panel. By connecting the fibre plant to 
such a switch, the interconnections between this fibre plant can be 
flexibly reconfigured for a wide range of experiments similar to the 
configuration shown in Fig. 4a while different paths through a network 
can be emulated as illustrated in Fig. 4b. Attaching spooled fibre of 
different lengths provides another degree of freedom for increasing the 
span lengths or introducing further topology variations. In this way, 
systematic studies of span length and distance dependence can be car-
ried out, similar to transmission over multiple round trips in a loop. The 
optical hardware, such as whitebox ROADM units, optical transceivers, 
splitters and variable optical attenuators (VOAs), and other components, 
can also be attached to the space switch to allow for many different node 
architectures and component configurations. The same can be done for 
test equipment such as optical spectrum analysers and optical modula-
tion analysers. Hardware (re)configuration through remotely controlled 
switches recovers some of the flexibility of the recirculating loops, while 
enabling control system experiments at scale. 

Some challenges arise from using an optical spaceswitch to create a 
programmable testbed environment. For example, the switch has loss 
and transmission characteristics that can interfere with the transmission 
performance. Generally, these switches can have losses in the 1–3 dB 
range. In connecting a line amplifier to a transmission span, the 
amplifier output power needs to be increased by this amount to achieve 
the desired launch power. Line amplifiers often do not have an extra 1–3 
dB of headroom to compensate for this loss. In addition, MEMS space 
switches can have input power limits. These issues are less of a concern 
for short-reach edge networks, as non-linear effects are less important 
and link budgets often have headroom. 

5.3. Comb sources/shaped ASE channel loading 

As mentioned previously, optical transceivers are typically the most 
expensive part of an optical system. Populating even dozens of nodes 

with the full system capacity to enable the full range of experiments can 
be prohibitively expensive. Spectrally shaped amplified spontaneous 
emission (ASE) noise can be used to create optical signal combs to 
emulate transmission signals. This method significantly reduces hard-
ware and complexity. The ASE noise can serve as a substitute for the 
interfering data channels, as shown in [60,61]. An ASE noise source can 
be used for channel emulation by applying the source directly to a 
flexible grid wavelength selective switch (WSS) to limit the total band-
width of the ASE source and flatten the spectral profile. 

Numerous copies of this ASE comb can be made using optical split-
ters and amplifiers and sent to any add-drop port within the network. 
These emulated signals can then be routed through the network and 
managed with similar optical power and spectral density as the corre-
sponding signal channels. This method can be used to emulate an 
arbitrary number of interfering optical signals. In addition, when per-
formance measurements are taken on a particular signal, the ASE signal 
can be blocked at its ingress WSS and replaced with the output from the 
transceiver of interest, along with any number of nearest neighbours, 
depending on the needs of the experiment. 

The interference effects of such ASE noise-based comb sources will 
differ from the effects of actual modulated signals, and several studies 
have examined these differences [61]. However, further investigation is 
needed. Effects such as optical power dynamics that are only sensitive to 
the mean optical power as a function of wavelength will be well 
emulated through the use of such comb sources. Furthermore, the exact 
spectral shape of the comb lines will likely differ from a modulated 
signal, particularly as the signal propagates over distance and experi-
ences different forms of distortion and spectral broadening. Modelling 
spectral shape will be essential for studying wavelength filtering effects 
and related crosstalk [62]. 

5.4. Dual-use SDN controllers 

The introduction of SDN controllers in optical communications has 
enabled external programmatic control of optical systems, often using 
open whitebox hardware [63]. While such controls are of research in-
terest, they can also be exploited as a tool for testbed reconfiguration. 
This yields the flexibility that is essential for testbed experimentation. 
For example, in COSMOS, a Ryu-based SDN controller was developed to 
serve as the experimenter interface for setting up the optical system for 

Fig. 5. The COSMOS optical testbed consisting of a Calient S320 space switch, whitebox ROADM units, edge servers and multiple nodes. A detailed description of the 
testbed is provided in [66]. 

E. Akinrintoyo et al.                                                                                                                                                                                                                            



Optical Fiber Technology 76 (2023) 103243

7

different experiments [64]. This controller provides dual-use as a plat-
form for SDN control research. Modular SDN software facilitates 
replacing or customising control algorithms for experimentation, and 
serves as a template that investigators can use to develop their own 
experiments with the testbed. 

5.5. Digital twins 

A digital twin is a software emulation of a specific physical system 
that enables control algorithms to be tested before deployment. A digital 
twin is constructed using data calibrated simulation models [65]. While 
digital twin models have been widely utilised in various fields such as 
aerospace engineering, smart manufacturing, and production 

engineering [15], they have not been widely adopted for optical trans-
mission systems. Programmable testbeds can serve as platforms for data 
collection to build digital twins, and such a digital twin used with a 
testbed can be a tool for expanding the research capabilities of the 
testbed. For city-scale testbeds, the digital twin can allow researchers to 

(a) (b)

Fig. 6. (a) The data collection setup for a booster EDFA in the COSMOS testbed consists of a comb source, a Calient S320 space switch, two OCMs and a DUT 
ROADM. (b) 50 runs of the gain profile measurements using the booster EDFA within a Lumentum ROADM unit (rdm1-co1) deployed in the COSMOS testbed, under 
the fully loaded WDM spectrum with 95×50 GHz channels in the C-band. 

(a) (b)

Fig. 7. (a) Gain ripple of the booster EDFA under single channel and WDM channel loading configurations 90 channels in the C-band. (b) Measured gain ripple 
compared with the predicted gain ripple using the developed CM model with 32 randomly selected channels. 

Fig. 8. A feed-forward DNN, consisting of an input layer, an output layer, and 
four hidden layers, predicts the EDFA wavelength-dependent gain, given a 
target gain, the input power and on/off status of each channel. 

Fig. 9. ML-based prediction of the wavelength-dependent gain: The measured 
and predicted wavelength-dependent EDFA gain using the DNN model. 

Fig. 10. An experimental setup consisting of two ROADMs with three 50 km 
spans and two in-line amplifiers. Monitoring is performed at the input of the 
second ROADM (M3). 
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perform rapid prototyping and testing of their technologies before 
dealing with the complexity of the full system at scale. Similarly to dual- 
use SDN control, digital twins can provide dual use: as a research tool to 
study network control, and as the subject of research on digital twin 
control methods. 

Optical transmission systems can make use of digital twin models for 
the purpose of QoT estimation for routing and wavelength assignment 

(RWA). QoT predictions in commercial systems typically use an offline 
tool developed through extensive system simulations [67] and devel-
opment laboratory experiments [68]. These tools in fact can be 
considered a form of digital twin, although they are generally used as 
configuration tools. Metrics such as generalised optical signal-to-noise 
(GOSNR) ratio or Q factor and required OSNR (ROSNR) are evaluated 
through QoT estimation, and transmission margins applied based on 
these estimates. The transition to a full digital twin approach would 
involve real-time modelling and greater use of data collection to update 
the digital twin over time. Developing real-time QoT estimation for 
online optical system control has led to widespread research on ML- 
based QoT estimation. More advanced digital twin methods shift the 
focus from parameter-based to data-based modelling and can extend this 
approach to a wider range of system functions beyond RWA. 

Key challenges in the use of digital twins for large scale testbeds 
include the collection and curation of data and the construction of 
simulation or emulation tools for running the digital twin network. One 
approach used for the COSMOS testbed (depicted in Fig. 5) makes use of 
the Mininet-Optical emulation platform. An essential feature of Mininet- 
Optical is that it is designed such that an SDN controller developed to 
run in Mininet-Optical should also be able to run on the hardware that is 
being emulated. As a result, a digital twin of COSMOS in Mininet-Optical 
can be used to develop network controllers that can then be run on the 
hardware deployed in COSMOS. The first demonstration of this capa-
bility was made recently, though further development is needed to 
include a wider range of functions [64]. Note that a controller for the 
COSMOS testbed will be different from a controller for an operational 
system because COSMOS itself is a hardware emulation of a full network 
of optical transmission systems. COSMOS control includes controls for 
the testbed’s space switch, comb source, ROADM units, as well as the 
various pieces of test and measurement equipment. In this way, the 
testbed digital twin will differ from a digital twin under investigation for 
system control – the former providing a vehicle for the study of the 

(a) (b)

Fig. 11. Power excursions investigation with both the DNN-based (a) and CM (b) EDFA models, where the DNN-based EDFA model is able to better mitigate the 
effects of power excursions within the 50 GHz channel. The fully loaded spectrum of each model is depicted in red while the power levels of the ten surviving 
channels are the blue stems. 

(a) (b)

Fig. 12. Computation time for the DNN (a) and CM (b) EDFA models increases approximately linearly with the number of spans, but is much higher for the DNN 
model. The first span includes two EDFAs (a booster and preamp) with no in-line amplifier. One in-line amplifier is added for each subsequent span. 

Fig. 13. An experimental setup consisting of two ROADMs with one 50 km 
span and no in-line amplifier. Monitoring is performed at the input of the 
second ROADM (M1). 

Table 1 
Spectral tilt comparisons between the measured tilt values from a COSMOS 
experiment and the predictions of the rectangular and general models for a 50 
km fibre span with varying input power levels.  

Input Power (dBm) Tilt (dB) 

Measured RM GM 

0 1 1 1.2 
−3 0.43 0.34 0.5 
−6 0.11 0.01 0.17 
−9 0.01 −0.15 0.07  
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latter. 
In addition to running the control software in the digital twin envi-

ronment, it is important that the software emulation can reproduce the 
physical effects of the hardware. This requires collecting data from the 
hardware and building appropriate models in the emulator. The 
remainder of this paper presents the development of such models within 
Mininet-Optical to create a digital twin of the physical COSMOS testbed. 

6. COSMOS digital twin 

A data collection process was conducted in COSMOS to build 
network element models, which were then deployed in Mininet-Optical 
[69]. Mininet-Optical is a software emulator for optical networks such as 
the COSMOS testbed, and it incorporates a steady-state transmission 
physics simulator. To build a digital twin of a physical testbed such as 
COSMOS, two general categories of data and models need to be 
considered: (i) end-to-end datasets, and (ii) component datasets. End-to- 
end datasets are generally collected in the process of experimentation, 
and include all the data associated with a given experiment or end-to- 
end system configuration. Component datasets, in contrast, are data 
collected specifically on individual components, such as amplifiers, fibre 
spans, and transceivers, to characterise their behaviour. These compo-
nent datasets are particularly valuable for constructing digital twins as 
they enable virtual components to be created and then composed to 
form different experiments, as one would in a physical testbed. The end- 
to-end datasets can then provide an important source of validation of the 
digital twin models’ accuracy at reproducing the physical testbed’s 
behaviour. This work examines the development of amplifier and fibre 
span models for COSMOS in Mininet-Optical. 

The testbed includes amplifiers, fibre spools, and space switches for 
which digital twin models can be constructed using analytical and ML 
models as considered in this work. Basic power measurements were 
performed for the switches and static losses throughout the system using 
the power monitors available in the network elements. The fibre spans 

are characterised using the GNPy model, fibre loss and SRS effects. The 
behaviour of an EDFA is highly configuration dependent and there is no 
optimal analytical model to describe the power dynamics. Recently, 
there have been numerous ML models developed to describe the power 
dynamics in the amplifiers. The main data collection for the digital twin 
considered in this work is related to characterising the amplifier gain 
ripple which is then input into the analytical models that account for the 
other network elements. The gain ripple is the difference between the 
mean gain and the actual gain in each channel. 

6.1. Data collection 

COSMOS’ optical network includes Lumentum whitebox ROADM 
units, each of which has separate add WSS (MUX), drop WSS (DEMUX), 
as well as receive and transmit EDFAs, referred to as the preamp and 
booster EDFAs, respectively. A characterisation of the EDFAs in the 
ROADMs deployed in the COSMOS testbed was performed by measuring 
their gain profiles. 

The approach taken here is to use the in-network tools (e.g., the 
optical channel monitors and optical power monitors built into the 
network elements) to make the measurements rather than relying on 
separate test equipment. The experimental data collection setup for the 
booster EDFA is depicted in Fig. 6a, which consists of a comb source that 
generates 95 channels with a 50 GHz spacing and a total channel power 
of + 5.8 dBm. The output of the comb source is fed into an add port of 
the device under test (DUT) ROADM. The booster EDFA of the ROADM 
was set to a target gain of 18 dB in constant gain mode with no gain tilt. 
The MUX WSS switches the on/off status of each channel and can also 
set an attenuation on each channel at 0.1 dB resolution. Channel power 
monitoring was performed using the built-in optical channel monitors 
(OCM) of the Lumentum ROADMs. This is a practical approach for field 
data collection since the setup described is used to emulate a deployed 
network. 

The used booster EDFA is rdm1-co1 in the COSMOS testbed, as 
shown in Fig. 6b. The experimental process involved varying the 
channel configurations, including the on/off status and power level of 
each channel. The measured parameters include the input and output 
power spectra of the DUT booster EDFA. The gain profiles of the DUT 
EDFA were measured under six different conditions. These include sin-
gle, double, odd, even, random, and WDM channel loadings. The single 
and double channel loadings involved turning on one and two channels 
each time, respectively. Odd-numbered and even-numbered channels 
were turned on for the odd and even channel loading cases. The channels 
to be loaded were randomly selected across the spectrum for the random 
loading measurements. For the fully loaded WDM gain profile, all the 95 
channels were switched on. 

6.2. EDFA modelling 

Amplifier modelling is often done using numerical models [70], and 

(a) (b)

Fig. 14. Experimentally measured SRS tilt across a 50 km SMF-28 fibre for a 0 dBm per-channel launch power across 90 channels (a) and 26 randomly selected 
channels (b). Three lines are shown on the measured data plots to compare the predictions of the rectangular and general models with the line of best fit. 

Table 2 
Spectral tilt comparisons for random loading channel configurations between 
the measured tilt values from a COSMOS experiment and the predictions of both 
the general and rectangular models for a 50 km fibre span. Various combinations 
were used for each number of channels listed for the mean tilt values reported.  

No. of Channels Mean Tilt (dB) 

Measured GM RM 

26 0.29 0.10 0.05 
35 0.41 0.24 0.17 
41 0.46 0.33 0.25 
48 0.56 0.45 0.36 
56 0.63 0.61 0.50 
63 0.72 0.69 0.57 
74 0.85 0.82 0.69 
84 0.94 1.02 0.87  
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simulation tools are commercially available. Recent analytical models 
were developed for online prediction of the amplifier gain dynamics 
under different channel loading conditions. These analytical models can 
serve as a valuable tool for evaluating the effectiveness of machine 
learning models. This work explores the use of both analytical and ML 
models for the characterisation of an optical amplifier. Both EDFA 
models were implemented in Mininet-Optical as user-selectable digital 
twins of the actual EDFAs deployed in the COSMOS testbed. 

6.2.1. Analytical models 
The Centre of Mass (CM) model [33] was implemented based on the 

collected booster EDFA gain profile data, described above, to predict the 
wavelength-dependent gain using the single and fully loaded gain 
spectrum. Fig. 7a shows the single and fully loaded gain spectra of the 
booster EDFA comprising a total number of 90 channels in the C-band. 
Ninety channels were considered for this modelling since the emulation 
platform (Mininet-Optical) was designed for 90 channels. More recently, 
Lumentum made 95-channel ROADMs available; hence, there is a dif-
ference that needs to be accounted for which will be updated in future 
Mininet-Optical releases. The CM model was used to predict the 
wavelength-dependent gain of different channel loading combinations 
and it achieved a mean absolute error (MAE) of 0.2 dB for 16 randomly 
selected channels across the spectrum. Likewise, the model achieved an 
MAE of 0.15 dB for a randomly selected 32-channel combination which 
is shown in Fig. 7b. These results are representative of the other cases 
which were considered. 

While analytical models can serve as baseline models for prediction 
to compare with other advanced methods or as computationally efficient 
models, they can exhibit large errors for certain channel loading con-
figurations [71]. Alternative techniques such as those based on ML 
models have been shown to provide a superior performance [71]. 

6.2.2. Machine learning (ML) models 
ML enables computers to learn how to perform a specific task [72]. 

Supervised and unsupervised learning are the two categories of ML. 
Supervised learning involves using labelled data to learn the relation-
ship between a given input and target output variable. This can then be 
used to predict the output based on other input data. Conversely, un-
supervised learning uses unlabelled data to discover hidden information 
in a dataset. In this work, supervised learning is studied as a method to 
build a digital twin model for the amplifiers in a digital twin system 
using Mininet-Optical. Datasets from the measurements on an EDFA in 
the COSMOS testbed are used to build an ML-based EDFA model using 
deep neural networks (DNNs). 

Previous work has investigated the use of ML methods in optical 
communications. For instance, the efficacy of utilising ML to make 
predictions for the wavelength-dependent gain of optical amplifiers was 
examined in [72,73,74]. The work in [71] compared the CM model with 
some ML models and found the latter to be superior at predicting the 
wavelength-dependent gain. Such trained models can be deployed as 
amplifier models in a simulator or emulator platform such as Mininet- 
Optical. Sufficient data is vital to train, validate and test DNN models; 
hence, 1652 gain spectra profiles comprising both fixed (80 %) and 
random (20 %) channel loading configurations were used to model the 
booster EDFA (as described in Section 6.1). This differs from the pre-
vious work that have modelled EDFAs since the known corner cases 
which can significantly impact an amplifier’s behaviour are considered 
here. The dataset was split into three sets: the training, validation, and 
testing sets with a split ratio of 80 %–10 %–10 %. The validation set was 
used to optimise the hyperparameters of the DNN model. 

The DNN architecture used to model the EDFA is shown in Fig. 8. It 
consists of a normalisation layer, input layer, four hidden layers, and an 

output layer, all of which are fully connected. The hidden layers 
comprise 256, 128, 128 and 128 neurons. The use of four hidden layers 
yielded an optimal performance with little training time. There are 189 
and 94 neurons in the input and output layers, respectively. The inputs 
to the DNN include the target gain of the amplifier, input power of each 
channel and their corresponding status (on or off). The output layer 
predicts the wavelength-dependent gain of all 94 channels, one per 
output neuron. The DNN model was trained using the ReLU activation 
function with a learning rate of 0.01, and using 350 epochs with the 
Adam optimiser. In addition, the model’s training was done using a 
customised MAE loss function that accounts for the fact that some of the 
channels in the random loading dataset are switched off. 

Fig. 9 depicts the measured and predicted EDFA gain values to show 
the performance of the trained ML model at predicting the EDFA’s 
wavelength-dependent gain. In particular, 97 % of the predictions were 
within 0.2 dB accuracy, with the model achieving a mean absolute error 
of 0.01 dB. This is significantly lower and more accurate than the CM 
model’s results for the cases considered, such as the 32-channel random 
configuration presented in the previous subsection. 

The DNN has a performance which is quite similar to that which was 
used in [71] although the work employed the use of 90 neural networks, 
one for each channel. In addition, a significantly larger dataset was used 
for the model’s training and validation. The model achieved an MAE of 
0.06 dB for an input power dynamic range of ± 3 dB. Similarly, the CM 
model’s performance is slightly higher in comparison to those reported 
in [71]. 

6.2.3. Analytical vs ML-based EDFA models 
The CM and DNN EDFA models were implemented in Mininet-Op-

tical’s physics simulator to evaluate their accuracy in modelling power 
excursions. It is essential to consider cases when there are a few channels 
in an optically amplified system, as they can lead to more severe ex-
cursions [72]. The setup consists of a linear topology with two ROADM 
units, three 50 km fibre spans and two in-line amplifiers as depicted in 
Fig. 10. An equal spacing of 50 GHz was used for the 90 channels 
launched into the system with a per-channel launching power of 0 dBm. 
Then, 80 channels were removed at the first ROADM unit while the 
remaining 10 channels propagated through the system, emulating the 
steady state response following an upstream fibre cut, before any system 
adjustments are made to compensate for the resulting power excursion 
on the 10 channels. By using uniform loading of the 10 channels, the 
final gain ripple and power offset of the 10 channels should follow the 
original spectrum of the 90channel configuration. 

The results are presented in Fig. 11, where the red curves represent 
the 90-channel spectrum for each EDFA model, and the blue stems 
represent the power levels of the 10 channels at the input of the second 
ROADM unit following the excursion event. The results show a signifi-
cant difference in the prediction of the gain spectrum shape. It can be 
observed that the DNN-based EDFA model achieved a closer perfor-
mance to what is expected in its prediction of the gain spectrum shape 
for each of the 10 channels in comparison to the CM model. Although the 
CM model exhibits lower accuracy in predicting cases such as shown 
here, its static prediction of the wavelength-dependent gain requires less 
computational time than the dynamic prediction based on the DNN 
model. 

The two models were evaluated on a 3.3 GHz Intel(R) Xeon(R) E- 
2136 CPU and Nvidia Quadro P1000 GPU. A computational time of 
approximately 51.4 s was recorded for the DNN model with a 1-span 
topology similar to Fig. 10 which includes booster and preamp EDFAs 
but no in-line amplifier. The computational time increased to 101.2 s for 
the 3-span topology (Fig. 10) and 278.3 s for a 10-span topology which 
indicates a computational time of approximately 25 s for each amplifier 
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in the setup. However, this differs significantly for the CM model, which 
executed in 2 s for the 3-span topology. Additional amplifiers did not 
cause a major increase in the computation, with a 10-span topology 
requiring 2.7 s. The computational time comparison between the two 
models is depicted in Fig. 12. The computational time is significant for 
the DNN model due to its inference time which is approximately 0.3 s; 
hence, this accumulates with the number of propagating signals in the 
transmission system. 

6.3. Stimulated Raman scattering (SRS) 

SRS is a non-linear effect that creates an optical power dependent tilt 
in the signal power spectrum after transmission through a fibre span 
[75]. In addition to the wavelength-dependent fibre loss, longer wave-
length signals experience gain through Raman pumping by the shorter 
wavelength signals, which are correspondingly depleted. This leads to a 
reduction in the OSNR of the shorter wavelength signals, which is 
sometimes compensated using a pre-emphasis tilt of the optical signal 
powers at the input to the fibre span. Analytical models such as the 
triangular approximation model [75] have been proposed to calculate 
the SRS effect in optically amplified systems. The model assumes a linear 
relationship between the Raman gain and frequency resulting in the 
triangular approximation for the Raman gain, which was further 
extended for different fibre types [76]. The triangular gain model (TGM) 
assumes a rectangular input power spectrum for the uniform loading 
case. Hence, this form of the model is referred to as the rectangular 
model (RM) for this work. The TGM model is computationally simple if 
the signals are assumed to have a similar launch power and it is 
rewritten as: 
(

PN

P1

)

dB
= 2.17gcLeff Ptot(N − 1)ΔV (1) 

In the expression, gc represents g′
/Aeff where g′ is the experimentally 

measured Raman gain coefficient per frequency unit, Leff represents the 
fibre’s effective length, Ptot is the total channel launch power, N repre-
sents the current channel’s index relative to the first active channel, and 
ΔV is the spacing between the channels. This model also assumes that 
the channels are uniformly distributed across the spectrum, and there-
fore some error will arise for non-uniform loading. However, the Raman 
tilt only becomes significant when the spectrum is heavily loaded, 
therefore the amount of non-uniformity that can lead to errors is small 
unless there are very large differences in channel power, which is not 
considered here. 

Non-uniform loading was investigated using the model’s general 
form equation proposed in [[75], Eq. (7)] which can be used for any 
given input spectrum. Thus, it is rewritten as: 

S(z, λ) = S(0, λ)P0exp{−αz}
P1exp{A′ (λ1 − λ) } + ⋯ + PNexp{A′ (λN − λ)} (2) 

In Eq. (2), S(0, λ) is the input power distribution with a total input 
power (P1, …, PN) with a total input power (P0) and wavelengths (λ1, ⋯,
λN) while α is the linear wavelength-dependent loss of a fibre with 
length z. A′ is βP0Leff , where β is the fibre’s Raman gain coefficient. Eq. 
(2) is referred to as the general model (GM) in this work. 

6.3.1. Experimental setup 
Experiments were conducted in Mininet-Optical and the COSMOS 

programmable testbed to investigate the power dependence of the SRS 
effect by varying the input power levels of 90 channels. The initial 
launch power of 0 dBm was decreased by a step size of 3 dB to −15 dBm 
for each channel. The experimental setup consists of two ROADM units 

separated by a 50 km single-mode fibre span with no in-line amplifier as 
illustrated in Fig. 13. 90 C-band channels with a spacing of 50 GHz were 
launched to the input of the first ROADM. The ROADM has a flat output 
spectrum. The power level of each channel was then monitored at the 
input of the second ROADM to examine the Raman-induced power tilt 
on the 90channels after the span. The end-to-end tilt is ascertained by 
applying a linear fit to the spectrum. 

6.3.2. Experimental results 
The tilt values’ predictions of the rectangular model strongly corre-

late with the experimental measurements as reported in Table 1. It 
achieved high accuracy, as indicated by an MAE of 0.06 dB for the first 
three input power levels. The SRS effect is negligible at low power levels. 
Hence, the tilt observed in the spectrum is due to the wavelength- 
dependent loss of the fibre, which is small. The 0 dBm per channel 
launch power experimental measurement is shown in Fig. 14a with the 
predictions of both the rectangular and general models to compare with 
the line of best fit. The experiment was also conducted with a 25 km 
fibre span, and a similar accuracy level was achieved by the rectangular 
model. 

Various non-uniform channel configurations were examined as pre-
sented in Table 2 with the rectangular and general models defined 
above. The largest tilt estimation error is 0.24 dB and 0.19 dB at 26 
channels for the RM and GM models, respectively; corresponding to a 
small number of channels spread across the band (Fig. 14b). Although 
this error is large from a relative point of view, it is not significant 
because the absolute tilt is small for these cases and is likely impacted by 
the 0.1 dB measurement resolution. The general form of the model 
achieved a better prediction for the random loading configurations with 
an MAE of 0.09 dB for all the cases reported in comparison to the 
rectangular model’s prediction with an MAE of 0.14 dB. The Raman tilt 
was more significant as the number of launched signals increased, 
reaching a value of 0.94 dB for the measured and a prediction of 1.02 dB 
for the 84 randomly loaded channels using the general model. This is in 
accordance with the observations reported in [76]. 

7. Conclusion 

Optical transmission systems have evolved over the past decades to 
provide unprecedented capacity levels, fuelled in part by recirculating 
loop emulation methods that enable the study of transmission impair-
ments. The transition to software-defined and disaggregated systems is 
motivating research on network control and flexibility. Various experi-
mentation techniques have been investigated to study the interaction of 
such control systems and transmission impairments, but have not ach-
ieved the utility of recirculating loops. Recently, city-scale testbeds have 
emerged which offer the necessary scale. The addition of topology 
reconfiguration through space switching, comb source channel loading, 
dual use SDN control, and digital twins is presented as a promising 
network emulation platform that can allow for research on the inter-
action of transmission impairments with network controls. The con-
struction of such a reconfigurable topology testbed is described using the 
COSMOS city-scale testbed with particular attention to the digital twin 
development. This work presents analytic and DNN digital twin models 
for an EDFA in the COSMOS testbed, and the results show a trade-off 
between accuracy and computation time. Characterisation of analyt-
ical models for the wavelength-dependent losses in the transmission 
fibre including SRS effects is also presented. These are key blocks to a 
full reconfigurable topology testbed to enable a new generation of op-
tical network control experiments that include transmission impair-
ments at scale. 
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