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Optical transmission systems provide high capacity, low latency and jitter, and high reliability for city-scale
networks. Recirculating loop experiments have facilitated the study of signal propagation in long-haul optical
transmission systems. However, they are unsuited for developing control and management software for city-scale
optical networks with dozens or hundreds of reconfigurable optical add drop multiplexer (ROADM) units, diverse
interconnection topologies, and dynamic traffic patterns. Large-scale testbeds can help, but may be inflexible and
time- or cost-prohibitive. Reconfigurable testbeds such as COSMOS enable piece-wise emulation of a city-scale

network by applying space and wavelength switching, dual-use software-defined networking (SDN) control-
lers, and comb sources, while digital twin models enable software emulation. Results from the development of a
digital twin for COSMOS are presented for optical amplifiers and stimulated Raman scattering (SRS) including
both analytical and machine learning (ML) models.

1. Introduction

Optical systems are commonly designed to maximise transmission
reach and capacity, as demonstrated in record-setting experiments for
submarine and long-haul networks [1,2]. As the scale and cost of early
experiments increased, laboratory experiments quickly adopted exper-
imental emulation methods, such as the widely used recirculating loop
method [3]. Today, high capacity optical transmission systems are
deployed in metro networks and are of interest in high capacity radio
front/backhaul edge networks. High capacity remains important in
these short reach systems, alongside new demands such as low latency
and adaptation to traffic variations. High capacity systems thus extend
from the network edge to the core with diverse performance and control
requirements, yet an alternative experimental platform to the recircu-
lating loop has not emerged.

The introduction of open and disaggregated optical transmission
systems creates further experimental needs. Most of the research chal-
lenges associated with such systems involve their control and manage-
ment. In proprietary systems, control complexity is addressed through
proprietary engineering methods that are not exposed to network op-
erators [4,5]. While some components of optical system control, such as
the path computation element (PCE) [6], have been well studied, the
actual control plane operations, such as lightpath provisioning and
amplifier tuning, have received much less attention and documentation.
Control can be complex due to factors such as non-linear impairments,
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component anomalies, and optical power dynamics from wavelength
and polarisation-dependent effects in amplifiers and fibre spans.
Although short distances reduce non-linear effects, metro systems might
have a large number of switching node hops, and there is interest in
increasing channel power to support higher spectral efficiency modu-
lation formats. However, if the power is increased too high, then non-
linear impairments can be significant even in short distance systems.
The open line system approach, in which only the transceivers are dis-
aggregated, and the engineering of the line systems is kept proprietary,
is an example of a short-term solution to the lack of related research in
this area [7,8]. Data-driven and machine learning (ML) methods have
attracted attention as potential means to handle the added control
complexity of more fully disaggregated systems [9,10,11,12]. Address-
ing the larger challenge of fully disaggregated systems requires experi-
mental platforms for studying the interactions between new control and
management systems and the physical transmission effects.

Optical networking experiments have typically consisted of three to
six nodes connected over short distances (e.g., a single transmission
span). These networking experiments are effective at studying network
operation and management, but do not accumulate physical impair-
ments, and therefore are ineffective at studying the interaction between
the control system and the transmission physics. Noise or other im-
pairments can be artificially introduced, but this does not capture the
associated dynamics. As optical networks today can scale to hundreds or
thousands of nodes and support signal transmission over dozens of nodes
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[13], new network control systems need to be evaluated under condi-
tions where the associated transmission impairments are active. Recir-
culating loops have been an effective tool for studying such impairments
in large scale systems, but generally are not compatible with optical
networking experiments. Therefore, new methods are required for
experimentation to study the physical effects at scale and how they
interact with the novel software controls, ML algorithms, or control
hardware innovations.

The trend towards using data-driven controls for improved man-
agement and greater automation also brings new requirements to
experimental methods. Digital twin methods [14,15], for example,
enable training and evaluation of ML algorithms on a virtual model of
the system prior to implementation in the operational system itself. Such
methods require detailed datasets of the system characteristics and
performance over a wide range of operating conditions. Obtaining data
from commercial systems is difficult both due to business practices and
operating requirements, such as customer privacy regulations. On the
other hand, testbeds can play an essential role in collecting datasets for
experimentation, particularly if they include a field-deployed fibre plant
and programmable optical hardware.

Recently, city-scale testbeds are being deployed with emphasis on
experimentation with different networking technologies. For instance,
Bristol is Open [16] in the United Kingdom was developed with a focus
on 5th-generation wireless and optical networking experimentation, and
the Japan-wide Orchestrated Smart/Sensor Environment (JOSE) testbed
[17] in Japan has a focus on Internet-of-Things (IoT) services. These
testbeds enable the investigation of the interoperability of different
applications and devices in practical, deployed network scenarios. They
can also be used to collect datasets to facilitate the development of ML
algorithms and data-driven methods as described above. A key question
is whether such testbeds can be used to address the needs of control and
management experiments for optical networks at scale.

The rest of this paper is organised as follows: Section 2 reviews
recirculating loop methods and their development in the context of
developing optical networking experiments that are sensitive to physical
impairments. Section 3 highlights how large-scale networking testbeds
can be leveraged as emulation platforms that provide accurate impair-
ment modelling and scale to enable the investigation of transmission and
control complexity of optical communication systems. Section 4 dis-
cusses the challenges and trade-offs of optical physical layer control, and
the need for a practical research and development platform for software-
defined networking (SDN) and ML-based systems that can address
control and management complexities at scale. Section 5 proposes a path
forward to address these research challenges. The methods to emulate
large-scale systems are discussed with a focus on the use of digital twin
techniques. Section 6 presents an example of component-level erbium-
doped fibre amplifier (EDFA) and stimulated Raman scattering (SRS)
digital twin models of the city-scale NSF PAWR COSMOS optical-
wireless testbed [18,19,20] which were implemented using both
analytical and ML-based techniques. The performance of both tech-
niques is evaluated and compared with the COSMOS experimental re-
sults. Lastly, Section 7 concludes the paper. Note that portions of this
paper provide an extended version of a paper presented at the European
Conference on Optical Communications (ECOC) 2021 [21].

2. Recirculating loop transmission experiments

Traditionally, experimental investigation of point-to-point optical
systems has been conducted in laboratories using a recirculating loop.
This comprises a link with amplified spans re-used in the loop to obtain
long and ultra-long-haul distances (600 to 10,000 + km). A laboratory
would need a prohibitively large amount of fibre and amplifiers to
conduct such experiments. Hence, the use of a loop experiment was
introduced as a method to conveniently study long-distance trans-
mission physics without the cost and complexity of a full system [3].

A recirculating loop is an emulation tool that recirculates optical
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signals through a set of optically amplified fibre spans. The transmitter
output signal is coupled into the loop for signal circulation through a
switching mechanism that is activated for the duration required for the
signal to fill the loop. The signal is then allowed to circulate through the
loop multiple times. An optical tap is used to sample the signal with each
successive circulation, and the resultant performance is measured. Thus,
long-haul transmission distances can be emulated by recirculating a
sample of optical data in a loop with just a few spans. Signal propagation
over arbitrarily long distances can be emulated by keeping the signal
circulating within the loop. While the optical signal experiences trans-
mission over the equivalent distances, there are still differences between
the emulated transmission and transmission within a full system.

Recirculating signals over the same fibre and components produce
propagation effects that scale differently from a full-scale system.
Random walk variations in polarisation effects and wavelength-
dependent gain or loss (WDG or WDL) of a fibre span and components
such as amplifiers, turn square root scaling into linear scaling with
distance for related signal impairments. This error is mitigated by using
a polarisation scrambler within the loop for the case of polarisation ef-
fects. Using a larger number of spans and amplifiers within the loop can
further reduce the impact of such effects but at the cost of more hard-
ware. However, one important limitation of recirculating loops is that all
signals propagate together along the same effective route from end to
end. Hence, the impact of dense wavelength- division-multiplexing
(DWDM) transmission in mesh networks with diverse wavelength
routing is not emulated [22].

ROADMs were introduced to provide optical path reconfigurability
[25], but this leads to a signal path diversity that is not present in
recirculating loop experiments. In addition, filtering effects due to the
wavelength selective nature of the ROADMs can cause passband nar-
rowing effects with distance. Although placing a ROADM within the
loop helps to emulate these filtering effects [25], the random passband
and signal wavelength variations of a full-scale system are again missed
in a loop. On-off keying (OOK) modulation-based systems have the
additional complication of requiring a dispersion map to manage the
accumulated dispersion and the local residual dispersion in a trans-
parent mesh network can vary [26]. Recirculating loops are constrained
by the accumulated dispersion in the loop and do not allow for varia-
tions. The use of coherent transceivers significantly simplified system
design by providing dispersion compensation within the transceiver and
largely eliminated the need for dispersion maps. However, the active
compensation controls within a coherent receiver are not compatible
with recirculated loop data, and therefore are not used with loops.
Instead, custom coherent receivers are used typically with offline signal
processing [27,28].

ROADM-based networks that support mesh topologies introduce
other complexities that are not well emulated through recirculating
loops. The optical signals that propagate through the nodes in a ROADM
network are not regenerated, and therefore accumulate impairments
along the route. Due to the large multiplicity of possible configurations,
the signal quality or quality of transmission (QoT) must be estimated at
the time of provisioning to ensure that the engineering margins are not
violated. A recirculating loop with an in-loop ROADM can emulate a
path through a mesh network and test worst-case limits, but generally
cannot replicate the range of signal and system configurations that
might be found along an arbitrary transmission path. Often specific
experiments are constructed to emulate and test specific types of im-
pairments that may be problematic such as filter narrowing or neigh-
bouring channel non-linear interference that might occur for different
signal types [25]. Furthermore, the adding and dropping of a channel or
group of channels may impact other channels in the transmission link
since they share the same fibre. These effects, such as power excursions
and crosstalk, have been the subject of numerous research studies
[29,30,31,32,33,34]. In fact, the interaction of power fluctuations be-
tween the co-propagating channels can lead to feedback within a mesh
network that can destabilise the system, thus requiring network-wide
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Fig. 1. (a) Experimental setup for a loop with different span lengths for each round trip [23]. (b) Recirculating loop that acts as 8 loops in one to allow 8 different
groups of channels to propagate different numbers of round trips and study mesh network wavelength assignment [24].
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Fig. 2. Experimental results of wavelength assignment using QoT estimation
for loop experiment in Fig. 1b. Each group of channels propagates one or up to
8 round trips (i.e., emulated mesh network hops) in the loop [24].

control [35] that cannot be emulated in a loop.

A number of recirculating loop methods were developed in an
attempt to emulate mesh network effects. The experimental setup in
Fig. 1a was used to investigate a dynamically reconfigurable span length
circulating loop. The loop consists of four spans of lengths 77.5 km, 82.5
km, 90.2 km, and 67.2 km, respectively, with a split on the output of
each span. Five additional fibre spools of lengths (L1-L5) 5 km, 10 km, 5
km, 2.3 km, and 5.3 km, respectively, can be introduced to the loop
through switches that are triggered synchronously with the loop. In this
way, the length of each span for each round trip can be varied to realise a
wide range of different conditions. Constant power operation of the
amplifiers compensated for the loss variations. This was effective in
studying path-dependent dispersion variations [26].

In order to study the impact of channels propagating different dis-
tances along a path, the setup in Fig. 1b uses a ROADM in a recirculating
loop experiment with eight different channel groups. Different channels
could be assigned to different groups to travel various distances within
the loop using eight independently triggered 1 x 2 loop switches. The
channel groups travel through the same fibre, with each group travelling
either once or up to eight times around the loop. QoT was used as a
metric to perform wavelength assignment. It was used to choose the
group of channels that should propagate through different distances in
the loop. The best performing wavelengths were selected starting at the
longest distance from the eight groups based on the QoT prediction

(based on the required OSNR for a bit error rate of 10~3). The results
obtained are shown in Fig. 2. It can be seen that the lowest and highest
margins were recorded for the groups of channels that propagate
through eight hops and one hop, respectively. This approach could be
used to study impairment-aware wavelength assignment. However, the
complexity of the arrangement made it difficult to operate.

These mesh experiments show that further utility might be achieved
with recirculating loops by emulating more complex mesh network ef-
fects. However, full-scale system experiments are still needed with the
ability to incorporate the control system dynamics, both for the systems
and in the transceivers. In fact, today, recirculating loops are primarily
used for research hero experiments that push the limits of distance and
capacity. Commercial development labs instead rely on a combination of
full system experiments and simulation to develop and test optical
transmission performance [8]. Research methods that can better
emulate this production development environment are needed to
progress research on such systems, including their control complexity.

3. Large-scale networking testbeds

Large-scale testbeds have the potential to address the transmission
and control complexity needed in optical networking experiments. Some
national-scale testbeds have been developed for networking research. In
general, they require significant capital and time for planning, devel-
opment, and deployment before becoming accessible for research.
Remote programmability is particularly important at this scale, which
can be problematic for optical systems. GENI [36] is an example of a U.S.
national-scale testbed. Due to the complexity of operating such a
network, commercial optical systems were used, which excluded most
optical systems research. Extensions at specific nodes on GENI enabled
local optical system experiments that could then communicate across
the larger national network [37]. Integrating multiple optical network
testbeds with a common control plane allows for larger-scale control
experiments, although the physical layer effects are still missing. This
federation of testbeds has been widely used to investigate control system
complexity and scaling [37]. FABRIC [38] is a more recent U.S. national-
scale testbed that again allows for a federation of optical testbeds at
different end nodes (e.g., university campus labs and networks), but also
potentially allows for experimentation on the commercial optical sys-
tems due to greater functionality in current commercial systems that
might be exposed to the users.

With the emergence of smart city technologies, city-scale testbeds
have attracted much attention in recent years. Similar to GENI, most
city-scale testbeds do not have optical networking capabilities and often
have heavy applications focus. The SmartSantander testbed [39],
deployed in Santander, Spain, is one of the first city-scale testbeds in
Europe that comprises over 10,000 [oT devices which consist of both
fixed and mobile sensor nodes, gateway devices and near-field
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communication (NFC) tags. SmartSantander has supported the research
community in providing real-world datasets from its various sensors.
Likewise, the CityLab testbed [40] located in Antwerp, Belgium, is a
similar testbed that researchers are using for data collection to model
real world traffic patterns. Its capabilities, such as the IEEE 802.15.4,
IEEE 802.11, and sub-GHz wireless protocols, support multi-technology
experimentation.

Smart city testbeds that use commercial networks allow for experi-
ments using commercially available technologies. However, future
technologies will run on networks with higher performance than current
commercial networks. Therefore, using a research network with capa-
bilities beyond those that are commercially available will enable
experimentation on such future applications and technologies. This
concept translates through all layers of the network, and thus, ulti-
mately, a research optical network is needed to support the full range of
future smart city technologies. Bristol is Open [16] in Bristol, UK, is a
smart city testbed that pioneered the use of research network compo-
nents, allowing for research on both applications and the underlying
networks. This enabled researchers to consider the concept of a smart
city operating system [41]. It also used academic lab testbed facilities as
a hub connected to the larger smart city network and enabled more
advanced research. The COSMOS testbed in New York City, U.S., uses
this approach to combine a city-scale advanced wireless network with a
fully disaggregated and programmable optical network with hub labs at
Columbia University, Rutgers University, and City College of New York.
COSMOS extends across the Harlem area and Manhattan with a multi-
layered computing architecture that comprises a general-purpose
cloud, radio cloud and radio/optical physical layer. Its architecture in-
cludes millimetre-wave (mmWave) and sub-6 GHz software-defined
radios (SDRs), a disaggregated ROADM optical network with user-
programmable SDN control, and a core and edge cloud. The optical
network currently includes 8 Lumentum ROADM whitebox units, which
will expand to more than 36 units when the testbed is fully deployed.
The availability of such whitebox and SDN programmable devices has
opened the door to building research testbeds at these large scales.

Open and programmable optical components such as whitebox
ROADM units and Ethernet switches supporting coherent transceivers
further enable these city-scale research optical networking testbeds.
SDN and SDR capabilities enable full programmability so that these
components can be repurposed for a wide range of optical and wireless
experiments. With sufficient scale, such programmable testbeds can be
used to study the control dynamics of optically amplified systems,
overcoming the limitations of the recirculating loop experiments. While
these tools put the large scale networks within reach, populating such
networks with a full set of transceivers is not practical. Configuring these
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network elements to form different network topologies also presents a
challenge. Similar to the recirculating loops, emulation methods might
be used to address these issues.

4. Optical physical layer control challenges

Optical transmission systems carry digital signals, but their operation
is complex and analogue in nature. The optical signal-to-noise ratio
(OSNR), often in its generalised form that includes both accumulated
optical amplifier noise and the impact of non-linear fibre propagation,
must be managed throughout the system. Operation is complicated by
the fact that the optical signals interact with each other through
wavelength-dependent phenomena in both the amplifiers and trans-
mission fibre. High-speed data pattern dependent effects are generally
managed through compensation controls within the transceivers.
However, due to time-dependent temperature and stress on the physical
system components, signal interactions persist over time scales that
range from microseconds to diurnal and seasonal periods [42].
Advanced physical layer operations such as optical switching, signal
modulation adaptation, and wavelength provisioning and routing are
complicated by this highly non-linear, multitemporal physical system. In
fact, these complications have limited the use of optical switching in
commercial systems to passive optical networks (PONs), which are short
reach (single hop) access networks without active optical amplification.
A ROADM unit includes optical switches, but these are used for flexible
provisioning and operated over time scales of minutes to hours. Com-
mercial systems using real-time optical switching have been successfully
developed, but the scale and topologies had to be constrained to less
than roughly 16 nodes in a ring topology [43]. Despite numerous
research studies of real-time switching, including optical packet
switching [44,45], the development of commercial systems continues to
be challenging among other things due to the operational cost and
complexities at scale [46].

4.1. Balancing cost, complexity and performance

The development of advanced functionality in optical networks re-
quires balancing cost and complexity to achieve the desired perfor-
mance. Performance includes both the traditional measures of
transmission performance, such as the pre-forward error correction (pre-
FEC) operation, as well as other measures such as system stability and
resilience. Given that the challenges in optical physical layer control
arise due to analogue signal transmission effects, performance metrics
can generally be met simply by limiting the so-called transparent scale of
the system — the number of transparent node hops or transmission dis-
tance. A fully opaque system using optical regeneration at every node
does not suffer any of the control challenges discussed here. Indeed this
opaque solution has been introduced on multiple occasions over the
history of optical system development [47,48]. The primary motivation
for large-scale, transparent optical networks is to avoid the high cost of
such optical regeneration. Transceivers are by far the highest cost
component, even in ROADM systems designed to minimise the use of
transceivers except at network ingress and egress points. Thus, most
research challenges associated with advanced functionality in optical
networks fundamentally come down to the trade-off of maintaining the
transparent, low-cost aspects of the network while managing the control
complexity and system performance at scale.

Fig. 3 illustrates the optical network control trade-off between cost
and performance, considering the two dimensions of software and
hardware controls. Software controls involve the use of intelligent al-
gorithms such as machine learning or the introduction of operational
constraints (e.g., slower switching transition times). Each of these incurs
a cost in terms of development or higher system cost due to the added
constraints. Similarly, hardware controls can be used, such as adding a
dynamic gain equalising filter in each amplifier or increasing the
amount of signal regeneration. The additional hardware directly drives
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Fig. 4. (a) Linear uni-directional system topology realised using the Calient S320 space switch in COSMOS. (b) An illustration of how different paths can be emulated

through a network.

up the network cost. Here a cost threshold is shown, above which the
system becomes prohibitively expensive for the given application.
Therefore, hardware and software controls need to be reduced in some
combination to fall below this curve. Removing too many such controls,
however, will eventually lead to performance degradations or issues, e.
g., real-time switching might become unstable [49]. Thus a performance
or stability threshold will also exist below which the system performs
poorly or unreliably. The challenge then for optical network control
research is to find solutions for which the performance curve falls below
the cost threshold, allowing for high performing, cost-effective network.
Since the performance or stability of the optical network is related to its
transmission behaviour, experiments must be able to test such control
systems at scale.

4.2. Applying SDN and ML-based control

The adoption of SDN has accelerated disaggregation by decoupling
the data plane from the control plane, and it enables unified control and
management [50]. At-scale experimental testbeds enable the study and
development of effective SDN and ML-based control systems for these
complex and disaggregated optical networks.

Transport application programming interface (T-API) [51] provides
a standard northbound interface between the user (i.e., network oper-
ator/orchestration platform) and transport SDN controllers. This en-
ables interoperability between SDN controllers from multiple sources.
For example, the TeraFlow [52] project is developing methods to use
machine learning with SDN control to integrate optical layer function-
ality with 5G and cloud operations, and supports the use of digital twin
technologies for optical network performance prediction [53]. An
operator might wish to combine it with the SYMPHONY [54] controller
to provide compatibility with legacy networks. These SDN controllers
and interfaces create an environment in which the provisioning and
adaptation of optical signals can be controlled from customer or network
operator user applications or automated cloud applications.

While monolithic SDN controllers can provide consistency, broad
functionality, and one-stop shopping, they may limit flexibility and
scalability. Frameworks such as application-based network operations
(ABNO) [55] are being developed to offer a modular architecture.
Microservices based controllers such as uABNO [56] and microONOS
(u-ONOS) [57] have also been proposed to allow for greater flexibility,
fast deployment, and auto-scaling for optical networks than standard
monolithic SDN controllers.

Running over commercial optical systems, on-demand provisioning
operations can be carried out stably over the time scales of minutes. ML
models can make dynamic configuration adjustments based on the field
conditions to perform optical layer controls. Provisioning a new optical
signal along a network path involves generating a QoT estimate in order
to determine if the signal can reach the endpoint error-free and with a

sufficient performance margin. The use of a QoT estimate, in fact, is an
example of a digital twin method and recently, there has been an interest
to incorporate machine learning in this digital twin framework. The
motivation for using ML is to tighten QoT margins, particularly for
disaggregated systems, and enable greater autonomic controls. Many
recent studies of such methods have used synthetic data to train the
models [58]. This can lead to inaccuracies that may differ significantly
from the deployed systems, further emphasising the need for large scale
networking testbeds.

5. A new generation of system experiments

Historically, testbeds have provided essential platforms for investi-
gating optical systems technologies. With greater emphasis on system
control, new testbed methods are needed at adequate scales that map to
commercially deployed transmission systems. Emulation techniques are
crucial in order to reduce the cost and complexity of such systems so that
they can be readily used in research experiments. Recent techniques that
have emerged in this context are discussed in the subsequent sections.

5.1. City-scale testbeds

City-scale testbeds provide an excellent platform in which to realise
at-scale optical systems for control experiments. While in principle a
large-scale testbed can be built up within a single laboratory environ-
ment, as is done with recirculating loop testbeds, the amount of equip-
ment and the complexity of the system will typically exceed the
resources of a single lab. Nevertheless, industrial labs can and have
developed such at-scale systems [59], although such labs may have a
product focus that involves the use of commercial systems without the
full range of flexibility desired in research labs. City- scale testbeds,
however, often bring together a consortium of partners and resources
that can enable the necessary larger scale. Furthermore, they are often
designed to be multi-user testbeds, enabling a much larger group of
researchers to make use of the infrastructure. Sharing large-scale
research infrastructure will be essential for stimulating research
within the larger community.

The scale and complexity of city-scale testbeds creates support, us-
ability, and maintenance challenges. For a multi-user testbed to be
viable, dedicated staff is needed to maintain the equipment and work
with users to overcome unique challenges that arise in many experi-
ments when novel technologies are being investigated. Depending on
the experiments, users may require large amounts of time and assistance
in order to learn how to operate the testbed. Sandbox systems within the
testbed can be used to prototype and debug experiments before testing
in the full system. Significant effort is required to develop convenient
user interfaces and sandboxes, and these tools will require continual
upgrades to keep pace with technology.
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testbed is provided in [66].

5.2. Space switching

Outside fibre plant is expensive and difficult to manage. It often in-
volves fixed topologies that can confine the range of configurations
needed for experimental research. An important tool to overcome this
limitation is the use of space or fibre switching on both the line-side and
client-side of the networking equipment. A space switch is essentially a
large programmable fibre patch panel. By connecting the fibre plant to
such a switch, the interconnections between this fibre plant can be
flexibly reconfigured for a wide range of experiments similar to the
configuration shown in Fig. 4a while different paths through a network
can be emulated as illustrated in Fig. 4b. Attaching spooled fibre of
different lengths provides another degree of freedom for increasing the
span lengths or introducing further topology variations. In this way,
systematic studies of span length and distance dependence can be car-
ried out, similar to transmission over multiple round trips in a loop. The
optical hardware, such as whitebox ROADM units, optical transceivers,
splitters and variable optical attenuators (VOAs), and other components,
can also be attached to the space switch to allow for many different node
architectures and component configurations. The same can be done for
test equipment such as optical spectrum analysers and optical modula-
tion analysers. Hardware (re)configuration through remotely controlled
switches recovers some of the flexibility of the recirculating loops, while
enabling control system experiments at scale.

Some challenges arise from using an optical spaceswitch to create a
programmable testbed environment. For example, the switch has loss
and transmission characteristics that can interfere with the transmission
performance. Generally, these switches can have losses in the 1-3 dB
range. In connecting a line amplifier to a transmission span, the
amplifier output power needs to be increased by this amount to achieve
the desired launch power. Line amplifiers often do not have an extra 1-3
dB of headroom to compensate for this loss. In addition, MEMS space
switches can have input power limits. These issues are less of a concern
for short-reach edge networks, as non-linear effects are less important
and link budgets often have headroom.

5.3. Comb sources/shaped ASE channel loading

As mentioned previously, optical transceivers are typically the most
expensive part of an optical system. Populating even dozens of nodes

with the full system capacity to enable the full range of experiments can
be prohibitively expensive. Spectrally shaped amplified spontaneous
emission (ASE) noise can be used to create optical signal combs to
emulate transmission signals. This method significantly reduces hard-
ware and complexity. The ASE noise can serve as a substitute for the
interfering data channels, as shown in [60,61]. An ASE noise source can
be used for channel emulation by applying the source directly to a
flexible grid wavelength selective switch (WSS) to limit the total band-
width of the ASE source and flatten the spectral profile.

Numerous copies of this ASE comb can be made using optical split-
ters and amplifiers and sent to any add-drop port within the network.
These emulated signals can then be routed through the network and
managed with similar optical power and spectral density as the corre-
sponding signal channels. This method can be used to emulate an
arbitrary number of interfering optical signals. In addition, when per-
formance measurements are taken on a particular signal, the ASE signal
can be blocked at its ingress WSS and replaced with the output from the
transceiver of interest, along with any number of nearest neighbours,
depending on the needs of the experiment.

The interference effects of such ASE noise-based comb sources will
differ from the effects of actual modulated signals, and several studies
have examined these differences [61]. However, further investigation is
needed. Effects such as optical power dynamics that are only sensitive to
the mean optical power as a function of wavelength will be well
emulated through the use of such comb sources. Furthermore, the exact
spectral shape of the comb lines will likely differ from a modulated
signal, particularly as the signal propagates over distance and experi-
ences different forms of distortion and spectral broadening. Modelling
spectral shape will be essential for studying wavelength filtering effects
and related crosstalk [62].

5.4. Dual-use SDN controllers

The introduction of SDN controllers in optical communications has
enabled external programmatic control of optical systems, often using
open whitebox hardware [63]. While such controls are of research in-
terest, they can also be exploited as a tool for testbed reconfiguration.
This yields the flexibility that is essential for testbed experimentation.
For example, in COSMOS, a Ryu-based SDN controller was developed to
serve as the experimenter interface for setting up the optical system for
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different experiments [64]. This controller provides dual-use as a plat-
form for SDN control research. Modular SDN software facilitates
replacing or customising control algorithms for experimentation, and
serves as a template that investigators can use to develop their own
experiments with the testbed.

5.5. Digital twins

A digital twin is a software emulation of a specific physical system
that enables control algorithms to be tested before deployment. A digital
twin is constructed using data calibrated simulation models [65]. While
digital twin models have been widely utilised in various fields such as
aerospace engineering, smart manufacturing, and production
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Fig. 10. An experimental setup consisting of two ROADMs with three 50 km
spans and two in-line amplifiers. Monitoring is performed at the input of the
second ROADM (M3).

engineering [15], they have not been widely adopted for optical trans-
mission systems. Programmable testbeds can serve as platforms for data
collection to build digital twins, and such a digital twin used with a
testbed can be a tool for expanding the research capabilities of the
testbed. For city-scale testbeds, the digital twin can allow researchers to
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Table 1

Spectral tilt comparisons between the measured tilt values from a COSMOS
experiment and the predictions of the rectangular and general models for a 50
km fibre span with varying input power levels.

Input Power (dBm) Tilt (dB)
Measured RM GM
0 1 1 1.2
-3 0.43 0.34 0.5
—6 0.11 0.01 0.17
-9 0.01 -0.15 0.07

perform rapid prototyping and testing of their technologies before
dealing with the complexity of the full system at scale. Similarly to dual-
use SDN control, digital twins can provide dual use: as a research tool to
study network control, and as the subject of research on digital twin
control methods.

Optical transmission systems can make use of digital twin models for
the purpose of QoT estimation for routing and wavelength assignment

(RWA). QoT predictions in commercial systems typically use an offline
tool developed through extensive system simulations [67] and devel-
opment laboratory experiments [68]. These tools in fact can be
considered a form of digital twin, although they are generally used as
configuration tools. Metrics such as generalised optical signal-to-noise
(GOSNR) ratio or Q factor and required OSNR (ROSNR) are evaluated
through QoT estimation, and transmission margins applied based on
these estimates. The transition to a full digital twin approach would
involve real-time modelling and greater use of data collection to update
the digital twin over time. Developing real-time QoT estimation for
online optical system control has led to widespread research on ML-
based QoT estimation. More advanced digital twin methods shift the
focus from parameter-based to data-based modelling and can extend this
approach to a wider range of system functions beyond RWA.

Key challenges in the use of digital twins for large scale testbeds
include the collection and curation of data and the construction of
simulation or emulation tools for running the digital twin network. One
approach used for the COSMOS testbed (depicted in Fig. 5) makes use of
the Mininet-Optical emulation platform. An essential feature of Mininet-
Optical is that it is designed such that an SDN controller developed to
run in Mininet-Optical should also be able to run on the hardware that is
being emulated. As a result, a digital twin of COSMOS in Mininet-Optical
can be used to develop network controllers that can then be run on the
hardware deployed in COSMOS. The first demonstration of this capa-
bility was made recently, though further development is needed to
include a wider range of functions [64]. Note that a controller for the
COSMOS testbed will be different from a controller for an operational
system because COSMOS itself is a hardware emulation of a full network
of optical transmission systems. COSMOS control includes controls for
the testbed’s space switch, comb source, ROADM units, as well as the
various pieces of test and measurement equipment. In this way, the
testbed digital twin will differ from a digital twin under investigation for
system control — the former providing a vehicle for the study of the
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Table 2

Spectral tilt comparisons for random loading channel configurations between
the measured tilt values from a COSMOS experiment and the predictions of both
the general and rectangular models for a 50 km fibre span. Various combinations
were used for each number of channels listed for the mean tilt values reported.

No. of Channels Mean Tilt (dB)

Measured GM RM
26 0.29 0.10 0.05
35 0.41 0.24 0.17
41 0.46 0.33 0.25
48 0.56 0.45 0.36
56 0.63 0.61 0.50
63 0.72 0.69 0.57
74 0.85 0.82 0.69
84 0.94 1.02 0.87

latter.

In addition to running the control software in the digital twin envi-
ronment, it is important that the software emulation can reproduce the
physical effects of the hardware. This requires collecting data from the
hardware and building appropriate models in the emulator. The
remainder of this paper presents the development of such models within
Mininet-Optical to create a digital twin of the physical COSMOS testbed.

6. COSMOS digital twin

A data collection process was conducted in COSMOS to build
network element models, which were then deployed in Mininet-Optical
[69]. Mininet-Optical is a software emulator for optical networks such as
the COSMOS testbed, and it incorporates a steady-state transmission
physics simulator. To build a digital twin of a physical testbed such as
COSMOS, two general categories of data and models need to be
considered: (i) end-to-end datasets, and (ii) component datasets. End-to-
end datasets are generally collected in the process of experimentation,
and include all the data associated with a given experiment or end-to-
end system configuration. Component datasets, in contrast, are data
collected specifically on individual components, such as amplifiers, fibre
spans, and transceivers, to characterise their behaviour. These compo-
nent datasets are particularly valuable for constructing digital twins as
they enable virtual components to be created and then composed to
form different experiments, as one would in a physical testbed. The end-
to-end datasets can then provide an important source of validation of the
digital twin models’ accuracy at reproducing the physical testbed’s
behaviour. This work examines the development of amplifier and fibre
span models for COSMOS in Mininet-Optical.

The testbed includes amplifiers, fibre spools, and space switches for
which digital twin models can be constructed using analytical and ML
models as considered in this work. Basic power measurements were
performed for the switches and static losses throughout the system using
the power monitors available in the network elements. The fibre spans

are characterised using the GNPy model, fibre loss and SRS effects. The
behaviour of an EDFA is highly configuration dependent and there is no
optimal analytical model to describe the power dynamics. Recently,
there have been numerous ML models developed to describe the power
dynamics in the amplifiers. The main data collection for the digital twin
considered in this work is related to characterising the amplifier gain
ripple which is then input into the analytical models that account for the
other network elements. The gain ripple is the difference between the
mean gain and the actual gain in each channel.

6.1. Data collection

COSMOS’ optical network includes Lumentum whitebox ROADM
units, each of which has separate add WSS (MUX), drop WSS (DEMUX),
as well as receive and transmit EDFAs, referred to as the preamp and
booster EDFAs, respectively. A characterisation of the EDFAs in the
ROADM:s deployed in the COSMOS testbed was performed by measuring
their gain profiles.

The approach taken here is to use the in-network tools (e.g., the
optical channel monitors and optical power monitors built into the
network elements) to make the measurements rather than relying on
separate test equipment. The experimental data collection setup for the
booster EDFA is depicted in Fig. 6a, which consists of a comb source that
generates 95 channels with a 50 GHz spacing and a total channel power
of + 5.8 dBm. The output of the comb source is fed into an add port of
the device under test (DUT) ROADM. The booster EDFA of the ROADM
was set to a target gain of 18 dB in constant gain mode with no gain tilt.
The MUX WSS switches the on/off status of each channel and can also
set an attenuation on each channel at 0.1 dB resolution. Channel power
monitoring was performed using the built-in optical channel monitors
(OCM) of the Lumentum ROADM:s. This is a practical approach for field
data collection since the setup described is used to emulate a deployed
network.

The used booster EDFA is rdml-col in the COSMOS testbed, as
shown in Fig. 6b. The experimental process involved varying the
channel configurations, including the on/off status and power level of
each channel. The measured parameters include the input and output
power spectra of the DUT booster EDFA. The gain profiles of the DUT
EDFA were measured under six different conditions. These include sin-
gle, double, odd, even, random, and WDM channel loadings. The single
and double channel loadings involved turning on one and two channels
each time, respectively. Odd-numbered and even-numbered channels
were turned on for the odd and even channel loading cases. The channels
to be loaded were randomly selected across the spectrum for the random
loading measurements. For the fully loaded WDM gain profile, all the 95
channels were switched on.

6.2. EDFA modelling

Amplifier modelling is often done using numerical models [70], and
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simulation tools are commercially available. Recent analytical models
were developed for online prediction of the amplifier gain dynamics
under different channel loading conditions. These analytical models can
serve as a valuable tool for evaluating the effectiveness of machine
learning models. This work explores the use of both analytical and ML
models for the characterisation of an optical amplifier. Both EDFA
models were implemented in Mininet-Optical as user-selectable digital
twins of the actual EDFAs deployed in the COSMOS testbed.

6.2.1. Analytical models

The Centre of Mass (CM) model [33] was implemented based on the
collected booster EDFA gain profile data, described above, to predict the
wavelength-dependent gain using the single and fully loaded gain
spectrum. Fig. 7a shows the single and fully loaded gain spectra of the
booster EDFA comprising a total number of 90 channels in the C-band.
Ninety channels were considered for this modelling since the emulation
platform (Mininet-Optical) was designed for 90 channels. More recently,
Lumentum made 95-channel ROADMs available; hence, there is a dif-
ference that needs to be accounted for which will be updated in future
Mininet-Optical releases. The CM model was used to predict the
wavelength-dependent gain of different channel loading combinations
and it achieved a mean absolute error (MAE) of 0.2 dB for 16 randomly
selected channels across the spectrum. Likewise, the model achieved an
MAE of 0.15 dB for a randomly selected 32-channel combination which
is shown in Fig. 7b. These results are representative of the other cases
which were considered.

While analytical models can serve as baseline models for prediction
to compare with other advanced methods or as computationally efficient
models, they can exhibit large errors for certain channel loading con-
figurations [71]. Alternative techniques such as those based on ML
models have been shown to provide a superior performance [71].

6.2.2. Machine learning (ML) models

ML enables computers to learn how to perform a specific task [72].
Supervised and unsupervised learning are the two categories of ML.
Supervised learning involves using labelled data to learn the relation-
ship between a given input and target output variable. This can then be
used to predict the output based on other input data. Conversely, un-
supervised learning uses unlabelled data to discover hidden information
in a dataset. In this work, supervised learning is studied as a method to
build a digital twin model for the amplifiers in a digital twin system
using Mininet-Optical. Datasets from the measurements on an EDFA in
the COSMOS testbed are used to build an ML-based EDFA model using
deep neural networks (DNNs).

Previous work has investigated the use of ML methods in optical
communications. For instance, the efficacy of utilising ML to make
predictions for the wavelength-dependent gain of optical amplifiers was
examined in [72,73,74]. The work in [71] compared the CM model with
some ML models and found the latter to be superior at predicting the
wavelength-dependent gain. Such trained models can be deployed as
amplifier models in a simulator or emulator platform such as Mininet-
Optical. Sufficient data is vital to train, validate and test DNN models;
hence, 1652 gain spectra profiles comprising both fixed (80 %) and
random (20 %) channel loading configurations were used to model the
booster EDFA (as described in Section 6.1). This differs from the pre-
vious work that have modelled EDFAs since the known corner cases
which can significantly impact an amplifier’s behaviour are considered
here. The dataset was split into three sets: the training, validation, and
testing sets with a split ratio of 80 %10 %-10 %. The validation set was
used to optimise the hyperparameters of the DNN model.

The DNN architecture used to model the EDFA is shown in Fig. 8. It
consists of a normalisation layer, input layer, four hidden layers, and an
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output layer, all of which are fully connected. The hidden layers
comprise 256, 128, 128 and 128 neurons. The use of four hidden layers
yielded an optimal performance with little training time. There are 189
and 94 neurons in the input and output layers, respectively. The inputs
to the DNN include the target gain of the amplifier, input power of each
channel and their corresponding status (on or off). The output layer
predicts the wavelength-dependent gain of all 94 channels, one per
output neuron. The DNN model was trained using the ReLU activation
function with a learning rate of 0.01, and using 350 epochs with the
Adam optimiser. In addition, the model’s training was done using a
customised MAE loss function that accounts for the fact that some of the
channels in the random loading dataset are switched off.

Fig. 9 depicts the measured and predicted EDFA gain values to show
the performance of the trained ML model at predicting the EDFA’s
wavelength-dependent gain. In particular, 97 % of the predictions were
within 0.2 dB accuracy, with the model achieving a mean absolute error
of 0.01 dB. This is significantly lower and more accurate than the CM
model’s results for the cases considered, such as the 32-channel random
configuration presented in the previous subsection.

The DNN has a performance which is quite similar to that which was
used in [71] although the work employed the use of 90 neural networks,
one for each channel. In addition, a significantly larger dataset was used
for the model’s training and validation. The model achieved an MAE of
0.06 dB for an input power dynamic range of &+ 3 dB. Similarly, the CM
model’s performance is slightly higher in comparison to those reported
in [71].

6.2.3. Analytical vs ML-based EDFA models

The CM and DNN EDFA models were implemented in Mininet-Op-
tical’s physics simulator to evaluate their accuracy in modelling power
excursions. It is essential to consider cases when there are a few channels
in an optically amplified system, as they can lead to more severe ex-
cursions [72]. The setup consists of a linear topology with two ROADM
units, three 50 km fibre spans and two in-line amplifiers as depicted in
Fig. 10. An equal spacing of 50 GHz was used for the 90 channels
launched into the system with a per-channel launching power of 0 dBm.
Then, 80 channels were removed at the first ROADM unit while the
remaining 10 channels propagated through the system, emulating the
steady state response following an upstream fibre cut, before any system
adjustments are made to compensate for the resulting power excursion
on the 10 channels. By using uniform loading of the 10 channels, the
final gain ripple and power offset of the 10 channels should follow the
original spectrum of the 90channel configuration.

The results are presented in Fig. 11, where the red curves represent
the 90-channel spectrum for each EDFA model, and the blue stems
represent the power levels of the 10 channels at the input of the second
ROADM unit following the excursion event. The results show a signifi-
cant difference in the prediction of the gain spectrum shape. It can be
observed that the DNN-based EDFA model achieved a closer perfor-
mance to what is expected in its prediction of the gain spectrum shape
for each of the 10 channels in comparison to the CM model. Although the
CM model exhibits lower accuracy in predicting cases such as shown
here, its static prediction of the wavelength-dependent gain requires less
computational time than the dynamic prediction based on the DNN
model.

The two models were evaluated on a 3.3 GHz Intel(R) Xeon(R) E-
2136 CPU and Nvidia Quadro P1000 GPU. A computational time of
approximately 51.4 s was recorded for the DNN model with a 1-span
topology similar to Fig. 10 which includes booster and preamp EDFAs
but no in-line amplifier. The computational time increased to 101.2 s for
the 3-span topology (Fig. 10) and 278.3 s for a 10-span topology which
indicates a computational time of approximately 25 s for each amplifier
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in the setup. However, this differs significantly for the CM model, which
executed in 2 s for the 3-span topology. Additional amplifiers did not
cause a major increase in the computation, with a 10-span topology
requiring 2.7 s. The computational time comparison between the two
models is depicted in Fig. 12. The computational time is significant for
the DNN model due to its inference time which is approximately 0.3 s;
hence, this accumulates with the number of propagating signals in the
transmission system.

6.3. Stimulated Raman scattering (SRS)

SRS is a non-linear effect that creates an optical power dependent tilt
in the signal power spectrum after transmission through a fibre span
[75]. In addition to the wavelength-dependent fibre loss, longer wave-
length signals experience gain through Raman pumping by the shorter
wavelength signals, which are correspondingly depleted. This leads to a
reduction in the OSNR of the shorter wavelength signals, which is
sometimes compensated using a pre-emphasis tilt of the optical signal
powers at the input to the fibre span. Analytical models such as the
triangular approximation model [75] have been proposed to calculate
the SRS effect in optically amplified systems. The model assumes a linear
relationship between the Raman gain and frequency resulting in the
triangular approximation for the Raman gain, which was further
extended for different fibre types [76]. The triangular gain model (TGM)
assumes a rectangular input power spectrum for the uniform loading
case. Hence, this form of the model is referred to as the rectangular
model (RM) for this work. The TGM model is computationally simple if
the signals are assumed to have a similar launch power and it is
rewritten as:

P
( N) = 2.17g. Ly Pt (N — 1)AV €h)
dB

Py
In the expression, g represents g /A,; where g is the experimentally
measured Raman gain coefficient per frequency unit, L.s represents the
fibre’s effective length, Py, is the total channel launch power, N repre-
sents the current channel’s index relative to the first active channel, and
AV is the spacing between the channels. This model also assumes that
the channels are uniformly distributed across the spectrum, and there-
fore some error will arise for non-uniform loading. However, the Raman
tilt only becomes significant when the spectrum is heavily loaded,
therefore the amount of non-uniformity that can lead to errors is small
unless there are very large differences in channel power, which is not
considered here.
Non-uniform loading was investigated using the model’s general
form equation proposed in [[75], Eq. (7)] which can be used for any
given input spectrum. Thus, it is rewritten as:

_ S(0,4)Poexp{—az}
" Piexp{A' (A — 2) } + - + Pyexp{A'(Ay — 2)}

S(z,4) ()]

In Eq. (2), S(0,2) is the input power distribution with a total input
power (P, ..., Py) with a total input power (P,) and wavelengths (4, -,
An) while a is the linear wavelength-dependent loss of a fibre with
length 2. A is BPL.y, where f§ is the fibre’s Raman gain coefficient. Eq.
(2) is referred to as the general model (GM) in this work.

6.3.1. Experimental setup

Experiments were conducted in Mininet-Optical and the COSMOS
programmable testbed to investigate the power dependence of the SRS
effect by varying the input power levels of 90 channels. The initial
launch power of 0 dBm was decreased by a step size of 3 dB to —15 dBm
for each channel. The experimental setup consists of two ROADM units
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separated by a 50 km single-mode fibre span with no in-line amplifier as
illustrated in Fig. 13. 90 C-band channels with a spacing of 50 GHz were
launched to the input of the first ROADM. The ROADM has a flat output
spectrum. The power level of each channel was then monitored at the
input of the second ROADM to examine the Raman-induced power tilt
on the 90channels after the span. The end-to-end tilt is ascertained by
applying a linear fit to the spectrum.

6.3.2. Experimental results

The tilt values’ predictions of the rectangular model strongly corre-
late with the experimental measurements as reported in Table 1. It
achieved high accuracy, as indicated by an MAE of 0.06 dB for the first
three input power levels. The SRS effect is negligible at low power levels.
Hence, the tilt observed in the spectrum is due to the wavelength-
dependent loss of the fibre, which is small. The 0 dBm per channel
launch power experimental measurement is shown in Fig. 14a with the
predictions of both the rectangular and general models to compare with
the line of best fit. The experiment was also conducted with a 25 km
fibre span, and a similar accuracy level was achieved by the rectangular
model.

Various non-uniform channel configurations were examined as pre-
sented in Table 2 with the rectangular and general models defined
above. The largest tilt estimation error is 0.24 dB and 0.19 dB at 26
channels for the RM and GM models, respectively; corresponding to a
small number of channels spread across the band (Fig. 14b). Although
this error is large from a relative point of view, it is not significant
because the absolute tilt is small for these cases and is likely impacted by
the 0.1 dB measurement resolution. The general form of the model
achieved a better prediction for the random loading configurations with
an MAE of 0.09 dB for all the cases reported in comparison to the
rectangular model’s prediction with an MAE of 0.14 dB. The Raman tilt
was more significant as the number of launched signals increased,
reaching a value of 0.94 dB for the measured and a prediction of 1.02 dB
for the 84 randomly loaded channels using the general model. This is in
accordance with the observations reported in [76].

7. Conclusion

Optical transmission systems have evolved over the past decades to
provide unprecedented capacity levels, fuelled in part by recirculating
loop emulation methods that enable the study of transmission impair-
ments. The transition to software-defined and disaggregated systems is
motivating research on network control and flexibility. Various experi-
mentation techniques have been investigated to study the interaction of
such control systems and transmission impairments, but have not ach-
ieved the utility of recirculating loops. Recently, city-scale testbeds have
emerged which offer the necessary scale. The addition of topology
reconfiguration through space switching, comb source channel loading,
dual use SDN control, and digital twins is presented as a promising
network emulation platform that can allow for research on the inter-
action of transmission impairments with network controls. The con-
struction of such a reconfigurable topology testbed is described using the
COSMOS city-scale testbed with particular attention to the digital twin
development. This work presents analytic and DNN digital twin models
for an EDFA in the COSMOS testbed, and the results show a trade-off
between accuracy and computation time. Characterisation of analyt-
ical models for the wavelength-dependent losses in the transmission
fibre including SRS effects is also presented. These are key blocks to a
full reconfigurable topology testbed to enable a new generation of op-
tical network control experiments that include transmission impair-
ments at scale.



E. Akinrintoyo et al.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This publication has emanated from research supported in part by
Science Foundation Ireland under Grant #13/RC/20 77_P2 and NSF
grants CNS-1827923, OAC-2029295, and CNS-2112562, a Google
Research Scholar Award, and an IBM Academic Award.

References

[1]

[2]

[3]

[4

=

[5

[}

[6

—

[7

—

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

N.S. Bergano, J. Aspell, C. Davidson, P. Trischitta, B. Nyman, F. Kerfoot, Bit error
rate measurements of 14000 km 5 Gbit/s fibre amplifier transmission system using
circulating loop, Electronics Letters 27 (21) (1991) 1889-1890.

G. Rademacher, R. S. Luis, B. J. Puttnam, R. Ryf, S. Van Der Heide, T. A. Eriksson,
N. K. Fontaine, H. Chen, R.-J. Essiambre, Y. Awaji, et al., 172 Tb/s C+ L band
transmission over 2040 km strongly coupled 3-core fiber, in: Optical Fiber
Communication Conference, Optical Society of America, 2020, pp. Th4C-5.

N.S. Bergano, C. Davidson, Circulating loop transmission experiments for the study
of long-haul transmission systems using erbium-doped fiber amplifiers, Journal of
Lightwave Technology 13 (5) (1995) 879-888.

D. Kilper, K. Bergman, V.W. Chan, I. Monga, G. Porter, K. Rauschenbach, Optical
networks come of age, Optics and Photonics News 25 (9) (2014) 50-57.

D. C. Kilper, S. Zhu, J. Yu, Physical layer control for disaggregated optical systems,
in: Asia Communications and Photonics Conference, Optical Society of America,
2018, pp. SulJ-1.

V. Lopez, B. Huiszoon, J. Fernandez-Palacios, O. Gonzélez de Dios, J. Aracil, Path
computation element in telecom networks: Recent developments and
standardization activities, in: 2010 14th Conference on Optical Network Design
and Modeling (ONDM), 2010, pp. 1-6. doi:10.1109/0NDM.2010.5431606.

E. Riccardi, P. Gunning, 0.G. de Dios, M. Quagliotti, V. Lopez, A. Lord, An operator
view on the introduction of white boxes into optical networks, Journal of
Lightwave Technology 36 (15) (2018) 3062-3072, https://doi.org/10.1109/
JLT.2018.2815266.

M. Filer, M. Cantono, A. Ferrari, G. Grammel, G. Galimberti, V. Curri, Multi-vendor
experimental validation of an open source QoT estimator for optical networks,
Journal of Lightwave Technology 36 (15) (2018) 3073-3082.

A. Sgambelluri, J.-L. Izquierdo-Zaragoza, A. Giorgetti, L. Gifre, L. Velasco,

F. Paolucci, N. Sambo, F. Fresi, P. Castoldi, A.C. Piat, R. Morro, E. Riccardi,

A. D’Errico, F. Cugini, Fully disaggregated ROADM white box with NETCONF/
YANG control, telemetry, and machine learning-based monitoring, in, Optical Fiber
Communications Conference and Exposition (OFC) 2018 (2018) 1-3.

F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, M. Tornatore,
An overview on application of machine learning techniques in optical networks,
IEEE Communications Surveys Tutorials 21 (2) (2019) 1383-1408, https://doi.
org/10.1109/COMST.2018.2880039.

E. Seve, J. Pesic, Y. Pointurier, Accurate QoT estimation by means of a reduction of
EDFA characteristics uncertainties with machine learning, in, International
Conference on Optical Network Design and Modeling (ONDM) 2020 (2020) 1-3,
https://doi.org/10.23919/0NDM48393.2020.9133020.

M. Sena, R. Emmerich, B. Shariati, J.K. Fischer, R. Freund, Link tomography for
amplifier gain profile estimation and failure detection in C+L-band open line
systems, in, Optical Fiber Communications Conference and Exhibition (OFC) 2022
(2022) 1-3.

A. Lord, The future of optical transport: Architectures and technologies from an
operator perspective, in: Optical Fiber Communication Conference, Optica
Publishing Group, 2022, pp. W4F-W11.

DTC Innovation Forum, Digital twin computing (white paper), , Accessed: 2022-
03-29 (2019). URL https://iowngf.org/white-papers/.

F. Tao, H. Zhang, A. Liu, A.Y.C. Nee, Digital twin in industry: State-of-the-art, IEEE
Transactions on Industrial Informatics 15 (4) (2019) 2405-2415, https://doi.org/
10.1109/T11.2018.2873186.

D. Simeonidou, Bristol is open, in: 5G Radio Technology Seminar. Exploring
Technical Challenges in the Emerging 5G Ecosystem, 2015, pp. 1-32. doi:10.1049/
ic.2015.0035.

12

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Optical Fiber Technology 76 (2023) 103243

Y. Teranishi, Y. Saito, S. Murono, N. Nishinaga, JOSE: An open testbed for field
trials of large-scale IoT services, Journal of the National Institute of Information
and Communications Technology 62 (2) (2016) 151-159.

J. Yu, T. Chen, C. Gutterman, S. Zhu, G. Zussman, L. Seskar, D. Kilper, COSMOS:
Optical architecture and prototyping, in,, Optical Fiber Communications
Conference and Exhibition (OFC), IEEE 2019 (2019) 1-3.

C. Gutterman, A. Minakhmetov, J. Yu, M. Sherman, T. Chen, S. Zhu, I. Seskar,

D. Raychaudhuri, D. Kilper, G. Zussman, Programmable optical x-haul network in
the COSMOS testbed, in: In: 2019 IEEE 27th International Conference on Network
Protocols (ICNP), IEEE, 2019, pp. 1-2.

D. Raychaudhuri, 1. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen, J.
Kolodziejski, M. Sherman, Z. Kostic, X. Gu, et al., Challenge: COSMOS: A city-scale
programmable testbed for experimentation with advanced wireless, in:
Proceedings of the 26th Annual International Conference on Mobile Computing
and Networking, 2020, pp. 1-13.

D. Kilper, J. Yu, S. Santaniello, Optical networking in smart city and wireless future
networks platforms, in: In: 2021 European Conference on Optical Communication
(ECOC), IEEE, 2021, pp. 1-4.

S. Chandrasekhar, D. Kilper, Using testbeds for optically-transparent mesh network
experimentation, in: LEOS 2006-19th Annual Meeting of the IEEE Lasers and
Electro-Optics Society, IEEE, 2006, pp. 771-772.

D. C. Kilper, S. Chandrasekhar, F. Smyth, L. P. Barry, Dynamic circulating-loop
methods for transmission experiments in optically transparent networks, in: 2008
10th Anniversary International Conference on Transparent Optical Networks, Vol.
1, 2008, pp. 99-102. doi:10.1109/ICTON.2008.4598380.

D. C. Kilper, D. Bayart, S. Chandrasekhar, A. Morea, S. K. Korotky, F. Leplingard,
Mesh network transport experiments using a distributed-distance circulating loop,
in: 2008 34th European Conference on Optical Communication, 2008, pp. 1-2. doi:
10.1109/ECOC 2008.4729352.

M. D. Feuer, D. C. Kilper, S. L. Woodward, ROADMs and their system applications,
in: Optical Fiber Telecommunications VB, Elsevier, 2008, pp. 293-343.

D. C. Kilper, S. Chandrasekhar, E. Burrows, L. L. Buhl, J. Centanni, Local dispersion
map deviations in metro-regional transmission investigated using a dynamically re-
configurable re-circulating loop, in: OFC/NFOEC 2007 - 2007 Conference on
Optical Fiber Communication and the National Fiber Optic Engineers Conference,
2007, pp.1-3. doi:10.1109/0FC.2007.4348705.

A. Gnauck, P. Winzer, G. Raybon, M. Schnecker, P. Pupalaikis, 10 X 224-Gb/s
WDM transmission of 56-Gbaud PDM-QPSK signals over 1890 km of fiber, IEEE
Photonics Technology Letters 22 (13) (2010) 954-956, https://doi.org/10.1109/
LPT.2010.2048100.

M. Kong, K. Wang, J. Ding, J. Zhang, W. Li, J. Shi, F. Wang, L. Zhao, C. Liu,

Y. Wang, W. Zhou, J. Yu, 640-Gbps/carrier WDM transmission over 6,400 km
based on PS-16QAM at 106 Gbaud employing advanced DSP, Journal of Lightwave
Technology 39 (1) (2021) 55-63, https://doi.org/10.1109/JLT.2020.3024771.
M.R. Phillips, D.M. Ott, Crosstalk due to optical fiber nonlinearities in WDM CATV
lightwave systems, Journal of Lightwave Technology 17 (10) (1999) 1782.

J. Junio, D.C. Kilper, V.W. Chan, Channel power excursions from single-step
channel provisioning, Journal of Optical Communications and Networking 4 (9)
(2012) A1-A7.

A.S. Ahsan, C. Browning, M.S. Wang, K. Bergman, D.C. Kilper, L.P. Barry,
Excursion-free dynamic wavelength switching in amplified optical networks,
Journal of Optical Communications and Networking 7 (9) (2015) 898-905.

Y. Huang, W. Samoud, C. L. Gutterman, C. Ware, M. Lourdiane, G. Zussman, P.
Samadi, K. Bergman, A machine learning approach for dynamic optical channel
add/drop strategies that minimize EDFA power excursions, in: ECOC 2016; 42nd
European Conference on Optical Communication, VDE, 2016, pp. 1-3.

K. Ishii, J. Kurumida, S. Namiki, Experimental investigation of gain offset behavior
of feedforward-controlled WDM AGC EDFA under various dynamic wavelength
allocations, IEEE Photonics Journal 8 (1) (2016) 1-13.

M. Freire-Hermelo, D. Sengupta, A. Lavignotte, C. Tremblay, C. Lepers,
Reinforcement learning for compensating power excursions in amplified wdm
systems, Journal of Lightwave Technology 39 (21) (2021) 6805-6813.

D. C. Kilper, C. A. White, Amplifier issues for physical layer network control, in:
Optically Amplified WDM Networks, Elsevier, 2011, pp. 221-251.

M. Berman, J.S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, R. Ricci,
L. Seskar, GENI: A federated testbed for innovative network experiments, Computer
Networks 61 (2014) 5-23.

L. Liu, W.-R. Peng, R. Casellas, T. Tsuritani, I. Morita, R. Martinez, R. Munoz, S. J.
Ben Yoo, Experimental demonstration of OpenFlow-based dynamic restoration in
elastic optical networks on GENI testbed, in: 2014 The European Conference on
Optical Communica-tion (ECOC), 2014, pp. 1-3. doi:10.1109/
ECOC.2014.6964202.

1. Baldin, A. Nikolich, J. Griffioen, I.1.S. Monga, K.-C. Wang, T. Lehman, P. Ruth,
Fabric: A national-scale programmable experimental network infrastructure, IEEE
Internet Computing 23 (6) (2019) 38-47, https://doi.org/10.1109/
MIC.2019.2958545.

P. Sotres, J.R. Santana, L. Sanchez, J. Lanza, L. Munoz, Practical
lessonsfromthedeploymentandmanagementofasmartcityInternetof-Things


http://refhub.elsevier.com/S1068-5200(23)00022-6/h0005
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0005
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0005
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0015
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0015
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0015
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0020
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0020
https://doi.org/10.1109/JLT.2018.2815266
https://doi.org/10.1109/JLT.2018.2815266
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0040
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0040
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0040
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0045
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0045
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0045
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0045
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0045
https://doi.org/10.1109/COMST.2018.2880039
https://doi.org/10.1109/COMST.2018.2880039
https://doi.org/10.23919/ONDM48393.2020.9133020
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0060
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0060
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0060
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0060
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0065
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0065
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0065
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0085
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0085
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0085
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0090
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0090
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0090
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0095
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0095
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0095
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0095
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0105
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0105
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0105
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0110
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0110
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0110
https://doi.org/10.1109/LPT.2010.2048100
https://doi.org/10.1109/LPT.2010.2048100
https://doi.org/10.1109/JLT.2020.3024771
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0145
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0145
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0150
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0150
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0150
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0155
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0155
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0155
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0165
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0165
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0165
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0170
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0170
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0170
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0180
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0180
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0180
https://doi.org/10.1109/MIC.2019.2958545
https://doi.org/10.1109/MIC.2019.2958545

E. Akinrintoyo et al.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[591

[60]

[61]

[62]

infrastructure: The SmartSantander testbed case, IEEE Access 5 (2017)
14309-14322, https://doi.org/10.1109/ACCESS.2017.2723659.

J. Struye, B. Braem, S. Latré, J. Marquez-Barja, The CityLab testbed—Large-scale
multi-technology wireless experimentation in a city environment: Neural network-
based interference prediction in a smart city, in: [IEEE INFOCOM 2018-IEEE
Conference on Computer Communications Workshops INFOCOM WKSHPS), IEEE,
2018, pp. 529-534.

A. Ersoy, Smart cities as a mechanism towards a broader understanding of
infrastructure interdependencies, Regional Studies, Regional Science 4 (1) (2017)
26-31.

G.C. Papen, R.E. Blahut, Lightwave communications, Cambridge University Press,
2019.

C. Kiss Kalld, J. Shields, C. O’Malley, R. Carley, V. Lopez, J. P. Fernandez-Palacios,
Cost-effective sub-wavelength solution for data centre location in scaled next-
generation networks, in: 2012 16th International Conference on Optical Network
Design and Modelling (ONDM), 2012, pp. 1-6. doi:10.1109/
ONDM.2012.6210262.

M.J. O’Mahony, D. Simeonidou, D.K. Hunter, A. Tzanakaki, The application of
optical packet switching in future communication networks, IEEE Communications
magazine 39 (3) (2001) 128-135.

Y. Yoshida, A. Maruta, K.-I. Kitayama, M. Nishihara, T. Tanaka, T. Takahara, J.
C. Rasmussen, N. Yoshikane, T. Tsuritani, I. Morita, et al., SDN-based network
orchestration of variable-capacity optical packet switching network over
programmable flexi-grid elastic optical path network, Journal of Lightwave
Technology 33 (3) (2015) 609-617.

J. Mata, I. de Miguel, R.J. Duran, N. Merayo, S.K. Singh, A. Jukan, M. Chamania,
Artificial intelligence (AI) methods in optical networks: A comprehensive survey,
Optical switching and networking 28 (2018) 43-57.

D.J. Lambert, C.H. Joyner, J. Rossi, F.A. Kish, R. Nagarajan, S. Grubb, M.F. Van
Leeuwen, M. Kato, J.L. Pleumeekers, A. Mathur, et al., Large-scale photonic
integrated circuits used for ultra long haul transmission, in: LEOS 2007-IEEE Lasers
and Electro-Optics Society Annual Meeting Conference Proceedings, IEEE, 2007,
pp. 778-779.

R. Nagarajan, M. Kato, S. Corzine, P. Evans, C. Joyner, R. Schneider, F. Kish,

D. Welch, Monolithic, multi-channel DWDM transmitter photonic integrated
circuits, in,, IEEE 21st International Semiconductor Laser Conference, IEEE 2008
(2008) 5-6.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos,

S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, et al., An integrated view on
monitoring and compensation for dynamic optical networks: from management to
physical layer, Photonic Network Communications 18 (2) (2009) 191-210.

Y. Li, D.C. Kilper, Optical physical layer SDN, Journal of Optical Communications
and Networking 10 (1) (2018) A110-A121.

V. Lopez, R. Vilalta, V. Uceda, A. Mayoral, R. Casellas, R. Martinez, R. Munoz, J. P.
Fernandez Palacios, Transport API: A solution for SDN in carriers networks, in:
ECOC 2016; 42nd European Conference on Optical Communication, 2016, pp. 1-3.
R. Vilalta, R. Munoz, R. Casellas, R. Martinez, V. Lopez, O.G. de Dios, A. Pastor, G.
P. Katsikas, F. Klaedtke, P. Monti, A. Mozo, T. Zinner, H. @verby, S. Gonzalez-Diaz,
H. Lgnsethagen, J.-M. Pulido, D. King, in: TeraFlow: Secured autonomic Traffic
Management for a Tera of SDN Flows, Summit (EuCNC/6G Summit), 2021,

pp. 377-382, https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482469.
R. Vilalta, R. Casellas, L. Gifre, R. Munoz, R. Martinez, A. Pastor, D. Lopez,

J. Fernandez-Palacios, Architecture to deploy and operate a digital twin optical
network, in, Optical Fiber Communications Conference and Exhibition (OFC) 2022
(2022) 1-3.

V.D. Chemalamarri, P. Nanda, K.F. Navarro, SYMPHONY - a controller architecture
for hybrid software defined networks, in, Fourth European Workshop on Software
Defined Networks 2015 (2015) 55-60, https://doi.org/10.1109/EWSDN.2015.61.
A. Aguado, V. Lopez, J. Marhuenda, 0.G. de Dios, J.P. Fernandez Palacios, Abno,,
A feasible SDN approach for multivendor IP and optical networks, Journal of
Optical Communications and Networking 7 (2) (2015) A356-A362.

R. Vilalta, J. L. de la Cruz, A. M. Lopez-de Lerma, V. Lopez, R. Martinez, R. Casellas,
R. Munoz, uABNO: A cloud-native architecture for optical SDN controllers, in:
2020 Optical Fiber Communications Conference and Exhibition (OFC), 2020, pp.
1-3.

ONOS open network operating system (ONOS), https://docs. onosproject.org,,
accessed: 2022-04-02 (2022).

J. Pesic, Missing pieces currently preventing effective application of machine
learning to QoT estimation in the field, in, Optical Fiber Communications
Conference and Exhibition (OFC) 2021 (2021) 1-3.

A. Ferrari, K. Balasubramanian, M. Filer, Y. Yin, E. Le Rouzic, J. Kundrat,

G. Grammel, G. Galimberti, V. Curri, Assessment on the in-field lightpath QoT
computation including connector loss uncertainties, Journal of Optical
Communications and Networking 13 (2) (2021) A156-A164.

D.J. Elson, L. Galdino, R. Maher, R.I. Killey, B.C. Thomsen, P. Bayvel, High spectral
density transmission emulation using amplified spontaneous emission noise, Opt.
Lett. 41 (1) (2016) 68-71, https://doi.org/10.1364/0L.41.000068.

D.J. Elson, G. Saavedra, K. Shi, D. Semrau, L. Galdino, R. Killey, B.C. Thomsen,
P. Bayvel, Investigation of bandwidth loading in optical fibre transmission using
amplified spontaneous emission noise, Optics express 25 (16) (2017)
19529-19537.

X. Liu, Challenges and opportunities in future high-capacity optical transmission
systems, in: Optically Amplified WDM Networks, Elsevier, 2011, pp. 47-82.

13

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Optical Fiber Technology 76 (2023) 103243

A.S. Thyagaturu, A. Mercian, M.P. McGarry, M. Reisslein, W. Kellerer, Software
defined optical networks (SDONs): A comprehensive survey, IEEE Communications
Surveys & Tutorials 18 (4) (2016) 2738-2786.

J. Yu, C. Gutterman, A. Minakhmetov, M. Sherman, T. Chen, S. Zhu, G. Zussman,
1. Seskar, D. Kilper, Dual use SDN controller for management and experimentation
in a field deployed testbed, in: 2020 Optical Fiber Communications Conference and
Exhibition (OFC), IEEE 2020 (2020) 1-3.

D. Wang, Z. Zhang, M. Zhang, M. Fu, J. Li, S. Cai, C. Zhang, X. Chen, The role of
digital twin in optical communication: fault management, hardware configuration,
and transmission simulation, IEEE Communications Magazine 59 (1) (2021)
133-139, https://doi.org/10.1109/MCOM.001.2000727.

T. Chen, J. Yu, A. Minakhmetov, C. Gutterman, M. Sherman, S. Zhu, S. Santaniello,
A. Biswas, 1. Seskar, G. Zussman, D. Kilper, A software-defined programmable
testbed for beyond 5g optical-wireless experimentation at city-scale, IEEE Network
36 (2) (2022) 90-99, https://doi.org/10.1109/MNET.006.2100605.

D.A. Fishman, D.L. Correa, E.H. Goode, T.L. Downs, A.Y. Ho, A. Hale, P. Hofmann,
B. Basch, S. Gringeri, The rollout of optical networking: LambdaXtreme® national
network deployment, Bell Labs Technical Journal 11 (2) (2006) 55-63, https://doi.
0rg/10.1002/bltj.20161.

B. Lavigne, F. Leplingard, L. Lorcy, E. Balmefrezol, J. C. Antona, T. Zami, D. Bayart,
Method for the determination of a quality-of-transmission estimator along the
lightpaths of partially transparent networks, in: 33rd European Conference and
Exhibition of Optical Communication, 2007, pp. 1-2. doi:10.1049/ic:20070307.
A.A. Diaz-Montiel, B. Lantz, J. Yu, D. Kilper, M. Ruffini, Real-time QoT estimation
through SDN control plane monitoring evaluated in mininet-optical, IEEE
Photonics Technology Letters 33 (18) (2021) 1050-1053.

Y. Liu, X. Liu, L. Liu, Y. Zhang, M. Cai, L. Yi, W. Hu, Q. Zhuge, Modeling EDFA gain:
Approaches and challenges, in: Photonics, Vol. 8, Multidisciplinary Digital
Publishing Institute, 2021, p. 417.

J. Yu, S. Zhu, C.L. Gutterman, G. Zussman, D.C. Kilper, Machine-learning-based
EDFA gain estimation, Journal of Optical Communications and Networking 13 (4)
(2021) B83-B91.

W. Mo, C.L. Gutterman, Y. Li, S. Zhu, G. Zussman, D.C. Kilper, Deep-neural-
network-based wavelength selection and switching in ROADM systems, Journal of
optical communications and networking 10 (10) (2018) D1-D11.

S. Zhu, C.L. Gutterman, W. Mo, Y. Li, G. Zussman, D.C. Kilper, Machine learning
based prediction of erbium-doped fiber WDM line amplifier gain spectra, in: In:
2018 European Conference on Optical Communication (ECOC), IEEE, 2018,

pp. 1-3.

S. Zhu, C. Gutterman, A.D. Montiel, J. Yu, M. Ruffini, G. Zussman, D. Kilper,
Hybrid machine learning EDFA model, in: Optical Fiber Communication
Conference, Optical Society of America, 2020, p. T4B.

M. Zirngibl, Analytical model of Raman gain effects in massive wavelength division
multiplexed transmission systems, Electronics Letters 34 (8) (1998) 789-790.

S. Bigo, S. Gauchard, A. Bertaina, J.-P. Hamaide, Experimental investigation of
stimulated Raman scattering limitation on WDM transmission over various types of
fiber infrastructures, IEEE Photonics Technology Letters 11 (6) (1999) 671-673.

Emmanuel Akinrintoyo (Student Member, IEEE) received a B.
Eng. degree in Computer and Communications engineering
from Technological University Dublin (TUD), Ireland in 2021.
He is currently pursuing a master’s degree in Electronic Infor-
mation Engineering at Trinity College Dublin (TCD), Ireland as
an E3 scholar. His research interest lies in the application of
machine learning and artificial intelligence to achieve greater
efficiency in domains such as optical networks control.

Zehao Wang (Student Member, IEEE) received the B.Eng. de-
gree in information science from Zhejiang University, China, in
2019, and the M.S. degree in electrical and computer engi-
neering from Carnegie Mellon University in 2020. He is
currently pursuing the Ph.D. degree with Department of Elec-
trical and Computer Engineering at Duke University. His
research interest is in the area of next-generation wireless and
optical networks. He was a recipient of Zhejiang State Schol-
arship and MobiCom’21 travel grant.


https://doi.org/10.1109/ACCESS.2017.2723659
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0205
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0205
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0205
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0210
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0210
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0220
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0220
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0220
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0225
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0225
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0225
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0225
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0225
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0230
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0230
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0230
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0235
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0235
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0235
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0235
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0235
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0240
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0240
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0240
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0240
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0245
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0245
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0245
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0245
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0250
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0250
https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482469
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0265
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0265
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0265
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0265
https://doi.org/10.1109/EWSDN.2015.61
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0275
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0275
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0275
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0290
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0290
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0290
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0295
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0295
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0295
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0295
https://doi.org/10.1364/OL.41.000068
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0305
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0305
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0305
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0305
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0310
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0310
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0315
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0315
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0315
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0320
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0320
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0320
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0320
https://doi.org/10.1109/MCOM.001.2000727
https://doi.org/10.1109/MNET.006.2100605
https://doi.org/10.1002/bltj.20161
https://doi.org/10.1002/bltj.20161
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0345
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0345
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0345
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0350
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0350
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0350
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0355
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0355
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0355
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0360
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0360
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0360
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0365
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0365
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0365
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0365
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0370
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0370
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0370
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0375
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0375
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0380
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0380
http://refhub.elsevier.com/S1068-5200(23)00022-6/h0380

E. Akinrintoyo et al.

Bob Lantz is technical lead for Mininet-Optical, part of the
COSM-IC project at Columbia University. In addition to starting
the Mininet network emulator project, he helped to develop the
OpenFlow protocol specification at Stanford University, as well
as SDN systems including OpenFlow, ONOS (Open Network
Operating System) and FAUCET, working for Arista Networks,
DOCOMO Communication Laboratories, Open Networking
Foundation, and Google. He received the ACM SIGCOMM
Software Systems Award and the ACM SIGCOMM Test of Time
Award, and holds a Ph.D. in Electrical Engineering from Stan-
ford University.

Tingjun Chen received the Ph.D. degree in electrical engi-
neering from Columbia University in 2020, and the B.Eng. de-
gree in electronic engineering from Tsinghua University in
2014. He is an Assistant Professor in the Department of Elec-
trical and Computer Engineering at Duke University and was a
postdoctoral associate at Yale University from 2020-2021. His
research interests are in the area of networking and commu-
nications with a specific focus on next-generation wireless
networks and Internet-of-Things systems. He received the
Google Research Scholars Award, the IBM Academic Award,
the Facebook Fellowship, the Wei Family Private Foundation
Fellowship, the Columbia Engineering Morton B. Friedman
Memorial Prize for Excellence, and the Columbia University Eli
Jury Award and Armstrong Memorial Award. He also received ACM CoNEXT’'16 Best
Paper Award and the ACM MobiHoc 19 Best Paper Award finalist, and his Ph.D. thesis
received the ACM SIGMOBILE Dissertation Award Runner-up.

Optical Fiber Technology 76 (2023) 103243

1 Dan Kilper is Professor of Future Communication Networks at
! Trinity College Dublin and Director of the CONNECT Center.
Recently he was a research professor in the College of Optical
Sciences and Electrical and Computer Engineering at the Uni-
versity of Arizona, Tucson. He holds an adjunct faculty position
at the Columbia University Data Science Institute and was a
faculty appointee at NIST in 2020. He received M.S. (1992) and
Ph.D. (1996) degrees in Physics from the University of Michi-
gan. From 2000-2013, he was a member of technical staff at
Bell Labs, and he co-founded Palo Verde Networks, a startup
developing optical technologies for Al-controlled software-
defined optical networks. He holds thirteen patents and auth-
ored six book chapters and more than one hundred and sixty
peer-reviewed publications. His research is aimed at solving fundamental and real-world
problems in communication networks, addressing interdisciplinary challenges for smart
cities, sustainability, and digital equity.




	(INVITED)Reconfigurable topology testbeds: A new approach to optical system experiments
	1 Introduction
	2 Recirculating loop transmission experiments
	3 Large-scale networking testbeds
	4 Optical physical layer control challenges
	4.1 Balancing cost, complexity and performance
	4.2 Applying SDN and ML-based control

	5 A new generation of system experiments
	5.1 City-scale testbeds
	5.2 Space switching
	5.3 Comb sources/shaped ASE channel loading
	5.4 Dual-use SDN controllers
	5.5 Digital twins

	6 COSMOS digital twin
	6.1 Data collection
	6.2 EDFA modelling
	6.2.1 Analytical models
	6.2.2 Machine learning (ML) models
	6.2.3 Analytical vs ML-based EDFA models

	6.3 Stimulated Raman scattering (SRS)
	6.3.1 Experimental setup
	6.3.2 Experimental results


	7 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


