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Abstract

The Edge Cloud (EC) architecture aims at providing the compute power at the edge of the network to minimize the latency
necessary for the Internet of Things (IoT). However, an EC endures a limited compute capacity in contrast with the back-
end cloud (BC). Intelligent resource management techniques become imperative in such resource constrained environment.
In this study, to achieve the efficient resource allocation objective, we propose HRL-Edge-Cloud, a novel heuristic
reinforcement learning-based multi-resource allocation (MRA) framework which significantly overcomes the bottlenecks
of wireless bandwidth and compute capacity jointly at the EC and BC. We solve the MRA problem by accelerating the
conventional Q-Learning algorithm with a heuristic method and applying a novel linear-annealing technique. Additionally,
our proposed pruning principle achieves remarkably high resource utilization efficiency while maintaining a low rejection
rate. The effectiveness of our proposed method is validated by running extensive simulations in three different scales of
environments. When compared with the baseline algorithm, the proposed HRL-Edge-Cloud achieves 240X, 95X and 2.4X
reduction in runtime, convergence time and rejection rate, respectively, and achieves 2.34X operational cost efficiency
improvement on average while satisfying the latency requirement.

Keywords Edge cloud - Heuristic reinforcement learning - Task offloading - Resource allocation - Admission control -
Smart city - IoT

1 Introduction

Over the years, the concept of smart city has gained
attention of the research communities to utilize the
technological infrastructure for societies to meet their
rapidly growing needs for a high quality of life (Robberechts
et al., 2020). Smart cities are expected to transform the way
of living by advancing the healthcare (Safitri et al., 2020);
the city management services (e.g., smart traffic, electricity
consumption and waste management) (Wang et al., 2018;
Elhassan et al., 2019); and many other industries (Agbali
et al., 2019; Baena et al., 2020). The prevalent 5G wireless
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communications and edge computing technologies aim to
accelerate the development of smart cities to brace the
hyper-local awareness and intelligence, allowing real-time,
and next-generation mobile & commercial applications to
ameliorate the streetscapes (Robberechts et al., 2020; Wang
et al., 2018; Yang et al., 2021; Chen et al., 2020). This
proposition calls for the co-development of technologies
such as low-latency & high-speed wireless communications
and edge computing. This underpins the focus of this
study on the advancement of streetscape wireless and
computational infrastructure which is intended to aid the
operations of city assets “(streets, buildings, emergency
vehicles, traffic signals, billboards/displays, surveillance
cameras, public transport, IoT devices, etc.)”.

Next generation mobile applications (e.g. Augmented
Reality (AR), Virtual Reality (VR)) and streetscape
applications (e.g. swift control-response for emergency
vehicles and situation-aware traffic/pedestrian signaling)
possess resource-hungry and real-time constraints (Liu
et al., 2020). Edge-cloud (EC) architecture is a stepping
stone to meet the above compute and real-time constraints
by reducing the network latency and providing the
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computational resources at the edge of the network (Ning
et al., 2019). Furthermore, A three-tier hierarchical EC
system integrated with the back-end cloud (BC) provides
support for a broad-range of applications with varying QoS
requirements in greater extent (Ungureanu et al., 2021).

Edge clouds possess a limited amount of computational
resources (Ungureanu et al., 2021) and back-end clouds
experience the same in the case of pay-as-you go model
(Gong et al., 2017). 5G supports dynamic Radio Access
Network (RAN) and a wider frequency spectrum landscape
(Habibi et al., 2019). However, in the presence of
excessive amount of connected devices in the Edge-cloud
environment, a large amount of concurrent traffic can be
anticipated. Thus, communication resources, which connect
the devices with EC and BC, also become a bottleneck for
the system. This multi-resource allocation and system cost
reduction challenge is manifold: First, handling the user
requests from a wide range of applications at large scale
with different QoS requirements. Second, the computational
complexity pertaining to optimal resource allocation of
the system particularly in dynamic traffic patterns requires
innovative solution techniques.

Long-established approaches, such as optimization-
based methods and game theory-based techniques (Bi et al.,
2019; Tran & Pompili, 2019; Xue & An, 2021; JoSCsilo
& Dén, 2018; Zheng et al., 2019; Dong & Wen, 2019) are
utilized to solve resource management problems. Among
Machine Learning (ML) based techniques, Deep Learning
(DL) based methods (Cheng et al., 2018; Wei et al., 2019;
Peng & Shen, 2020; Nath & Wu, 2020; Chen et al.,
2021) have also gained significant popularity to solve
the control and management problems in IoT ecosystem.
However, such approaches are not suitable to solve multi-
resource allocation problem in non-stationary and large
scale environments due to heavy computational loads (More
details can be found in Section 2).

To solve the multi-resource allocation problem in
a comprehensive way, we propose HRL-Edge-Cloud
framework, a heuristic reinforcement learning based highly
scalable and adaptable resource allocation system. In this
paper, we jointly consider the edge-cloud (EC) and back-
end cloud (BC) based environment to handle a huge number
of user-requests, minimize system cost and rejection rate
and improve the quality of experience (QoE) of the
users.

The main contribution of our work is summarized as
follows:

® We present a simple user job model which takes into
consideration both the deadline of the job and data to be
processed at the same time. Thereafter, to aptly process
these jobs, we present a multi-resource allocation model
under an integrated wireless communication, EC and

@ Springer

BC environment to handle a large-scale of user requests
under constrained resources in real-time.

e We formulate the multi-resource allocation problem
for user requests into semi-Markov decision process
(SMDP). The reward maximization objective for
resource allocation with wireless bandwidth, EC
and BC compute resources considers to optimize
three fundamental bench-marking points; 1) Minimize
system cost; 2) Minimize round-trip time of a user
request for better Quality of Experience (QoE); and 3)
Minimize rejection rate for enhanced reliability.

® A modified heuristic approach with linear-annealing
and a pruning principle (Qadeer et al., 2021) is applied
to standard reinforcement learning algorithm to quickly
determine the best action policy to procure minimum
rejection rate, reduce system cost and improve QoE of
the users.

e (Compared to the baseline method, which is a heuris-
tic method with fixed exploration rate, our pro-
posed heuristic approach with linear-annealing achieves
nearly 95X reduction in convergence time which for-
tifies the ability of adapting to quick changes in the
environment while maintaining lower rejection rate and
runtime of the algorithm. And compared to the greedy
approach which is known for remarkably high imme-
diate rewards, HRL-Edge-Cloud outperforms in system
cost and rejection rate efficiency improvement.

Our extensive simulations verify the practicality of
the system in a near real-world scenario. At the same
time, performance evaluation also shows that our approach
outperforms the existing heuristic method and two greedy
algorithms when compared at bench-marking metrics (cost,
rejection rate, QoE).

The remainder of this paper is organised as follows:
Related works are discussed in Section 2. System model
of Edge-cloud based smart streetscape system is described
in Section 3. Section 4 contains our core heuristic rein-
forcement leaning (HRL) algorithm with linear-annealing
and pruning principle details about multi-resource alloca-
tion system. Section 5 presents the performance evaluation
and discusses the stability of the system, followed by the
conclusion and future directions in Section 6.

2 Related Work

Resource optimization in the Edge-cloud (EC) is an elemen-
tary concern for assuring the efficient network utilization,
QoE and reliability (Barakabitze et al., 2020). This can
be catered using the information derived from hyper-local
movement or user density, occasional events like sports
tournaments in a stadium and video content demand in a
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particular region. Below we discuss several studies which
analyzed the resource management problem by taking into
account the constrained resources (CPU, Memory, Band-
width) along with the notion of applications and service
characteristics to magnify the system performance and cut
the operational cost for service providers. We categorize
existing literature review into two research areas, including
optimization-based and machine-learning-based methods,
respectively.

2.1 Optimization-Based Methods

The MRA (Multi-Resource Allocation) problem can be
formulated as a mixed integer linear programming (MILP)
model based on a hierarchical architecture. For example,
Bi et al. (2019) designed a data rate based heuristic (DRH)
algorithm derived from the resource allocation patterns
obtained from the MILP model to minimize the total
latency and improve the CPU utilization of EC servers.
Tran and Pompili (2019) and Xue and An (2021) decoupled
the problem of task offloading and resource allocation
into subproblems. They formulated the problem as a
mixed integer nonlinear programming (MINLP) problem,
and solved using quasi-convex and convex optimization
techniques. A novel heuristic algorithm is also proposed
in Tran and Pompili (2019) that achieves suboptimal
solution in polynomial time. Nevertheless, all of the above
consider only EC based environments and lack the three-tier
hierarchical architecture integrated with the BC. Further,
these approaches usually include heavy computations and
exhaustive search space, which is not suitable for addressing
MRA problem in large scale scenarios.

Some studies proposed game theory based methods to
solve the optimization problem of network and compu-
tational resources in EC based environments (JoSCsilo &
Dén, 2018; Zheng et al., 2019; Dong & Wen, 2019).
JosCsilo and Dan (2018) models the resource allocation
problem as Stackelberg game and an efficient equilibrium
strategy profile is computed for optimal wireless and com-
putation resource allocation to reduce the completion time
of resource intensive tasks at the expense of increase in
computational complexity. Similarly, Zheng et al. (2019)
formulated a multi-user computation problem to allocate
wireless channels to mobile users in a dynamic environment
and proposed a multi-agent stochastic learning algorithm to
achieve Nash Equilibrium among mobile users. However,
these algorithms are computationally heavy and do not scale
well in large environments. Dong and Wen (2019) leveraged
the decentralized strategy based on the evolutionary game
theory to address the task offloading and resource alloca-
tion problem coordinately at the EC and the central cloud.
Although, this strategy minimizes the cost of resource pro-
curement while meeting the delay constraints, but it is only

practical in stationary environments where user behavior
does not change in time.

Liu et al. (2016) proposed an adaptive multi-resource
allocation strategy using semi-Markov decision process
(SMDP) modeling and solved with linear programming,
which determines an optimal action policy for allocating
wireless bandwidth and compute resources in three-tier EC
and BC-based environment. Although, it achieves optimal
system benefits in a stationary world, but due to the
real-time needs and varying traffic patterns this offline
approach is not practical. Thereafter, a structured policy
table and index based search approach (Qadeer et al., 2020)
addressed the above real-time resource allocation problem.
Nonetheless, this solution still has legacy scalability issue
for a large number of IoT devices such as massive
machine type communication (mMTC) (Sharma & Wang,
2020). Li et al. (2018) proposed a new ECIoT (Edge
computing for IoT) architecture which considers scalability,
big data processing and power consumption of IoT devices.
Radio and computation resources, and power management
problem is formulated as a cross-layer dynamic stochastic
network optimization and solved by utilizing the Lyapunov
stochastic optimization approach. This technique needs the
prior statistical observation information of IoT devices
which may not be practically available in dynamic
environments.

2.2 Machine Learning-Based Methods

The proven success of Machine Learning (ML) based
techniques has spurred the adoption of ML algorithms to
solve control and management problems for IoTs in clouds
and 5G wireless networks (Lei et al., 2020; Wang et al.,
2020; Feriani & Hossain, 2021). Some recent studies are
discussed in this section.

Cheng et al. (2018) utilized the Deep Reinforcement
Learning (DRL) with experience replay (ER) and a
target network to train the Deep Q-Network in order
to solve a resource provisioning and task scheduling
problem in a cloud-based environment under the strict QoS
requirement. Wei et al. (2019) proposed a natural actor-
critic reinforcement learning framework to jointly solve the
problem of content caching, computation offloading and
radio resource management with the goal of minimizing
the end-to-end delay. Peng and Shen (2020) leveraged the
deep deterministic policy gradient (DDPG) and hierarchical
learning architectures to jointly solve the spectrum,
computation and storage allocation problem in an EC
based system. Recent studies (Nath & Wu, 2020; Chen
et al., 2021) solved the computation offloading and resource
allocation problem for multiple mobile users in EC based
systems by utilizing the DDPG-based framework and
proposing the sate-of-the-art algorithms. However, all of
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the above techniques are based on deep-learning methods
which is heavily dependent on resource intensive hardware
(e.g. GPU/FPGA) for the training of complex and large
networks (Wang et al., 2020), which may not be provisioned
in a resource constrained practical environment. The
transformation of deep-learning based complex theoretical
models into real-world systems is another big challenge (Lei
et al., 2020).

Motivated from the above discussion, we aim at
presenting a lightweight but scalable solution which can
also be easily implemented in real-world scenarios like
COSMOS testbed (Raychaudhuri et al., 2020). A recent
work (Qadeer et al., 2021) proposed heuristic reinforcement
learning-based algorithm to solve the bandwidth allocation
problem in an EC based system. The presented results
are encouraging, which stimulated to extend the current
framework (Qadeer et al., 2021) and comprehensively solve
the multi-resource allocation problem. This is the rationale
behind the introduction of HRL-Edge-Cloud. HRL-Edge-
Cloud framework takes into account the wireless and
computation resource allocation problem equitably at the
Edge-cloud (EC) and back-end cloud (BC). To the best
of our knowledge, none of the existing works applied
heuristic reinforcement learning with linear-annealing and
pruning principle to solve the multi-resource allocation
problem jointly in EC and BC with the goal of minimizing
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overall system cost for providers, meeting the strict
QoS requirements of applications and fast self-learning
capability.

3 System Model for Edge-cloud based Smart
Streetscape

This section presents the system description, users and jobs
model and bandwidth model. The computational model
is described for both EC and BC. Delay model explains
different types of delays, followed by the utility model of
the system.

3.1 System Description

We consider the Edge-cloud (EC) based streetscape system
as shown in Fig. 1. Our proposed system provides 5G based
wireless radio access (including sub-6 GHz and mmWave)
to sensors, street signals, vehicles, security cameras, mobile
devices and other Internet of Things (IoTs) via software
defined radios (SDRs) herein called virtual base stations
(BSs). In 5G architecture, one SDR/BS covers a small cell;
therefore, multiple BSs can connect to one nearby edge-
computing infrastructure via high speed and low-latency
software defined fiber links (Raychaudhuri et al., 2020).

Fig. 1 System model and Structure of Edge-cloud based Smart Streetscape System. The detail about System Model is given in Section 3
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For the beyond 5G deployments, mobile network operators
(MNO) rely on connected EC and BC for scalability
and enhanced services (Arno & Mazur, 2021). Therefore,
it is vital to consider EC along with BC in order to
propose a realistic system. In our proposed system, EC is
interconnected with the BC via high speed fiber links to
leverage abundant and always available resources at public
clouds (AWS, Google Compute Engine, Microsoft Azure)
in order to offload delay-tolerant multimedia tasks or to save
data for future uses. The connected mobile and IoT devices
offload their resource intensive tasks to nearby EC or BC
for fast processing and energy conservation, or to smartly
manage/divert the traffic of streetscape in an emergency
situation.

Context aware control of resources is main ingredient
of the smart streetscape environment such as smart control
of pedestrian signal for elderly people and traffic signal
control for emergency situations (e.g. fire on a building) or
in a logistics unloading case, traffic can automatically be
diverted to a safer and smoother street with the help of data
sent by the IoTs (Yang et al., 2021).

Multi-media (AR, VR, Video) applications are band-
width hungry and resource intensive, at the same time
require low end-to-end latency (Liu et al., 2020). In such
scenarios, proposed Edge-cloud infrastructure plays an
important role to supply uninterrupted services to both
streetscape and multi-media applications. Upon arrival of a
service request, based on it’s exigency, the system decides
whether to run it on EC or BC, and based on the availability
of resources how much bandwidth and compute resources
have to be allocated in order to execute the task within the
deadline (More details can be found in Section 4).

3.2 Users and Jobs Model

In the proposed framework, we consider all the devices
which are connected to the system as Edge-cloud users.
Each user offloads its computational task in the form
of a distinct service request. The entire workload of
the system is a set of J jobs from U users i.e.
J = {jdh,dy), pldh,dy), ..., judly,dy)}. A job
Ju(dly, d,) is a tuple of two variables where d[, means the
hard deadline in milliseconds and d,, represents the data in
bytes to be processed in job j, offloaded by user u. The
user job can demand both CPU and Memory for a successful
execution but processing vitally involves CPU; therefore,
we only consider CPU cycles as a job processing source as
proposed by Cheng et al. (2018). Suppose C represents the
number of CPU cycles required to process 1 Byte of data,
then L, is given as the total CPU cycles required to compute
data d, (L, = d, x C). A similar task computation model
(with CPU cycles) is proposed in Nath and Wu (2020) and
Chen et al. (2021) as well.

3.3 Wireless Bandwidth Model

As shown in Fig. 1, an Edge-cloud system owns W
base stations {1, 2, 3, ..., W}, each of which makes meshed
wireless connections with actuators/relays to provide
wireless access capacity, load-balancing and failover. The
total wireless bandwidth in the form of discrete units that
is available at each base station is represented as B,,. Each
base station w can support H wireless bandwidth channels
{ch?, chy,chy, ..., chy}, and each wireless bandwidth
channel ch;’ (h € [1, H]) provides a specific amount
of bandwidth units (data rate in bps) and costs c;’. The
directional antenna array in mmWave cellular networks
of the COSMOS testbed (Raychaudhuri et al., 2020) is
capable of exploiting beamforming, which compensates the
increased path-loss at mmWave frequencies and overcomes
the additional noise due to the large transmission bandwidth
(Habibi et al., 2019). As a bonus, interference isolation is
achieved in directional beamforming, which, as a result,
reduces the adjacent-cell interference. Therefore, in our
case, we deliberately ignore path-loss, channel noise and
interference factors, and manage resources at the application
layer through well-defined APIs (Ungureanu et al., 2021).

3.4 Computational Model
3.4.1 Edge Cloud

An Edge-cloud (EC) owns M servers {1, 2, 3, ..., M}. Each
server m processes an offloaded job via a set of virtual
machines (VMs). Let K = {vm!', vm3', vm%, ..., vm’¢ } be
the set of VMs that can be assigned by server m and each
VM vmj! provides a specific amount of computational units
(CPU cycles in Hz) to process a job and costs c;'. The
total compute capacity at an EC server m is given by C,,
processing units and these units are allocated to the jobs in
the form of VMs (CPU cycles). Chen et al. (2021) proposes
a similar computational model, however, they consider EC
with unlimited compute resources, which may not be valid
for practical scenarios.

3.4.2 Back-end Cloud

Previous work (Liu et al., 2016) considered back-end cloud
(BC) as a source of unlimited compute capacity and always
allocated the maximum number of VM units to the user
jobs that are offloaded to the BC for faster execution.
However, we take into account a realistic model to minimize
the overall cost of the system by adopting pay-as-you go
model. Therefore, just like an EC, we consider N BC
servers {1,2,3,..., N}, which execute a job via a set of
K = {vm},vmj, vm5, ..., vm'} VMs, and each of which
costs ;. The total of C,, computational units are available at
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a BC server n, which are further allocated as VM units. This
model can be easily extended to infinite resource model by
relaxing N and K sufficiently large.

3.5 Delay Model

We define round-trip time (RTT) as the total time that it
takes for a job to upload to the EC or BC via a wireless
channel, process the job and then send the result back. This
involves propagation, transmission (2-way) and processing
time. A similar delay model is also used in Wei et al. (2019).

3.5.1 Propagation Time

Propagation time through fiber or air media is negligible and
assumed to be constant. Therefore, we consider a constant
delay 1, (prope.) for EC and ¢, (propy.) for BC depending
on where the resources are allocated for job execution.

3.5.2 Transmission Time

This includes the time that a job takes to upload to the EC
or BC and the time to send the result back successfully. It
depends upon the amount of data and wireless channel that
is allocated. The transmission time ¢, (trans,.) of a job to
the EC can be calculated as follows:

du RM

ty(transee) = — + ——,
“ “ chy  chy

ey
where R, is the result which is generated after the job
execution and sent back. In general, the result is a control
signal and contains only a few kilobytes of data (JoSCsilo &
Dén, 2018). Nonetheless, the result for AR/VR applications
can be substantially large, therefore, we incorporate it in
our framework. According to Fig. 1, EC is connected
with BC via a high capacity fiber link and considered to
guarantee b bandwidth (Raychaudhuri et al., 2020). Thus,
the transmission time between a device and BC can be given
as:

R,

d
ty(transp.) = t,(trans..) + ;u + 5 2)

3.5.3 Processing Time

This depends upon the number of required CPU cycles L,
and the allocated VM vm}, vm;j, at EC or BC, respectively:

Ly

tu(procec) = > 3
Umk

L
tu(procpe) = ——. )
vmk
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To summarize, when a job j, is offloaded to the EC, the
total round-trip time is given as:

rttee(Ju) = ty(propec) + ty(transec) + ty(proce.), (5)

similarly, when the job is offloaded to the BC then:
rttpe(Ju) = tu(proppe) + ty(transpe) + ty(procpe). (6)

3.6 Utility Model

We evaluate the utility of the system per base station and
per server basis. The total usage of the system at any given
time ¢ is the sum of all the occupied resources by all the jobs
which are being processed. Therefore, the bandwidth utility
rate of a base station w is given as:

Shichy 1y @)

Ury(t) = 3
w

(N

where ;) is the total number of ch;’ channels which are
serving the jobs at time ¢. Similarly, the utility rate of a
server at EC and BC can be calculated as:

3 vy (1)

Urp (1) = C, , 3
and

K no,n
Ur,(t) = M’ )

Cn

respectively. The evaluation of the system at individual
base station and server level provides granularity and fine-
grained control to the underlying resources.

4 HRL-Edge-Cloud: Multi-Resource
Allocation

In this section, we present HRL-Edge-Cloud to solve
the multi-resource allocation (MRA) problem for mobile
and streetscape based applications. 5G connected edge
platforms expose rich APIs for the enterprises and third
parties to integrate their operational services or ML-
based applications (Open, 2020). As depicted in Fig. 2,
MRA-controller is deployed in the EC, which utilizes the
well-defined APIs to dynamically control the underlying
resources with the help of resource allocation policy. The
connected mobile devices and IoTs offload their resource
intensive jobs to MRA-controller. The MRA-Controller,
using the resource allocation policy (generated by HRL
agent), decides where to schedule the job (EC or BC) and
how much resources have to be allocated based on the utility
model (as proposed in Section 3.6).
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Fig.2 The structure of HRL-Edge-Cloud framework: the detail of MRA-Controller is described in Section 4

4.1 MRA-Controller

Upon the arrival of a job, MRA-controller rejects it if
no more resources are available or if the job cannot be
completed within the given deadline even by allocating
maximum possible bandwidth and VM units. Otherwise, the
MRA-controller, using the optimal policy learnt by heuristic
reinforcement learning (HRL) agent, selects an appropriate
base station and server (EC or BC) pair, and then decides the
amount of bandwidth and VM units to schedule the job that
can give maximum system benefits. When execution of the
job is completed, the result is sent back to MRA-controller
which relays the result to the mobiles/IoTs or sends the
control signal to actuators such as traffic control signal, etc.

4.2 Semi-Markov Decision Process (SMDP)
Formulation

We first formulate the multi-resource allocation (MRA)
problem of wireless bandwidth and VM allocation in
the Edge-cloud system into semi-Markov decision process
(SMDP). We define state space and action space followed
by our unique reward model. At each state, different
resource allocation actions yield different rewards. The goal
is to maximize the long-term reward (minimize system cost,
rejection rate and round-trip time) while meeting the hard
deadline of the job.

4.2.1 State Space

In the proposed Edge-cloud based system, the state of
the system at any time ¢ is the observation of utility
rates of all the base stations and servers, and the
current job j, which has to be scheduled either at EC
or BC. Therefore, each distinct state is a sequence of
observations of all the resources, s;, = {Ury,..., Ury,
Urpy ... Ury, Ury, ..., Ury, ju(dly, d,)}. In each decision
epoch, HRL agent learns optimal resource allocation
strategies based on these sequences which leads to a large
but finite SMDP chain.

4.2.2 Action Space

For base stations and servers, the MRA-controller is
responsible for selecting a base station w and server m
or n (depending on the deadline of job and available
resources). Whereas for wireless bandwidth and VM, the
controller decides how many units have to be allocated in
order to successfully execute the job within the deadline.
Therefore, in any state, the action is chosen from a set
of all possible allocations in that state. Let action set,
As, = {(chy’,vm}"), (ch}), vm}), —1, 0}, where 0 means
rejection of the job, —1 represents departure of the job after
successful execution, (ch?, vmkm) represents an action to
allocate a wireless channel with %z units of bandwidth on
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base station w and a VM with k units of CPU cycles on
server m at the EC. Similarly, (ch;’, vm}) represents VM
allocation on server n at the BC.

4.2.3 Reward

The goal of HRL-Edge-Cloud multi-resource allocation
system is to minimize the overall system cost by taking
a sequence of actions in all the states. According to the
definition of a real-valued reward function (Cheng et al.,
2018; Liu et al., 2016), in order to find an optimal multi-
resource allocation policy by taking action a; at state s;,
system advances into a new state ;1| and receives a reward
r; from the environment. In our model, the reward can be
calculated as the sum of lump income and cost of resource
procurement in the system:

re(Se, ar) = 1, (s¢, ar) — costy (sy, ar) X ret(jy), (10)

where [, (s;, a;) is the net income earned by executing the
job j, and cost, (ss, a;) is the cost of resource procurement
for rtt(j,) time (time it takes to process the job) for
selecting action a; at state s;. In the definitions of 1,,(s;, a;)
and cost, (s;, a;), we take into account the completion time
of the job and the utility of wireless and computation
resources.
I, (s¢, a;) is defined as,

(dly —rttec(ju)).8, if a; = (chy, vm]!
(dly — ritpe(ju)).6, if a; = (chy, vm}).

L)

In Eq. (11), § represents the revenue that the service
provider generates by successfully executing the user job.
It can be set on-the-fly which can differ depending on the
job completion time. Note that, if the completion time of
job (rtt(j,)) exceeds the deadline (dl,), then the income
becomes negative which impacts the overall reward. This
effect encourages the system to take the allocation decisions
that can complete the jobs before deadlines.

In contrast to the income, cost, (s;, a;) describes the cost
of resource procurement per unit time by allocating wireless
bandwidth channel and a VM at EC or BC and is given as,

L,(st,a0) = {

Ury(@).c;) +Urn(t).cf', if a; = (ch}), vmy"))

costulst, &) = { Ura(t).cl + Ura).cl, if a = (ch?, omlly), (12

where ¢;’ and {c]', c;} represent the cost of wireless
bandwidth channel and VM allocation per unit time,
respectively.

As compared to Liu et al. (2016), we calculate the reward
for each individual job, so as the cost and the income.
This approach is more meaningful in a way that the QoS
requirement in each job may vary and calculating reward for
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every individual job can better assist the Q-Learning agent
to derive an optimal resource allocation policy.

The optimization problem of wireless bandwidth and VM
allocation for the user jobs at different base stations and
servers, while considering the varying QoS requirements
and constrained resources is formulated as below:

T
maximizle,(s,,al) (13)
=1
subject to:
Ury(@) <1,VteT,Yw e W (14)
Urp(t) <1,YVteT,Vme M (15)
Ur,(t) <1,YteT,Vne N (16)
rttec(Ju) < dly, rttpe(ju) < dly,Yu € U, (17

where constraints (14, 15 and 16) describe that the utility
of any base station and EC/BC server does not exceed from
it’s total available capacity, respectively. The constraint
(17) guarantees the hard deadline requirement of the job
offloaded at EC or BC.

4.3 Heuristic Reinforcement Learning Algorithm for
MRA

Since our Edge-cloud environment is non-stationary, which
means that the traffic patterns can change over time. There
is a need to devise an algorithm that can quickly adapt
to the changes in the environment. Therefore, we modify
our training algorithm from standard Q-Learning by using
a heuristic function with linear annealing and a pruning
principle to make it scalable with speedy convergence.

4.3.1 Q-Learning

Q-Learning is an Off-Policy based machine learning
algorithm that is used to generate an arbitrary target policy
(resource allocation policy in our case) and can converge
with probability 1 to a close approximation of the action-
value function Q(s, a) (Sutton & Barto, 1998). The above
given reward model (Eq. (10)) is used by the Q-Learning
agent as utility to calculate the value function Q(s, a) by
following any policy (¢ — greedy, € — soft, softmax
etc.). The optimum action-value function Q*(s, a) is the
maximum expected achievable reward which follows the
Bellman equation (Cheng et al., 2018). In state s;, after
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taking action a; the system receives a reward ry, thus, we
update the Q value estimates as follows:

Or1(s,a)=1 —a)Qr(se, ar) +alri (s, a) +y max O (S141, ar+1)), (18)

where « is the learning rate and y is the discount factor
which is used to weight the impact of the future reward on
the current action (Sutton & Barto, 1998).

4.3.2 Heuristic Function

Q-Learning is very time consuming because it is performed
through trial-and-error interactions of the agent with the
environment. The rate of convergence can be sped up by
using a heuristic function for selecting suitable actions
to guide the exploration of the state-action space in the
direction of useful regions, thus, improving agent’s behavior
(Bianchi et al., 2008). The heuristic function H (s;, a;) is an
action policy modifier which specifies the significance of
performing an action g, at time ¢ when visiting state s;. To
accelerate the learning process, prior domain information is
extracted from the environment and a heuristic is composed
from the extracted structural information. The detail to
incorporate the heuristic function as an addition with
standard € — greedy Q-Learning action value function is
given below:

(s = | M [Qi(si,an+E(Hi (st a)), if g =€, g
e otherwise.

Arandom

In above Eq., £ and B are design parameters to control the
impact of heuristic value function on action selection policy.
q is uniform random value from O to 1, ¢ is also between
0 and 1 which is the probability of exploration (random
action) at time ¢; and we linearly anneal it which is detailed
in the next section. d;qudom 1S @ uniform random action
chosen from the possible actions in state s;. According to
Bianchi et al. (2008) and Fang et al. (2012), when & = 8 =
1, the update formula for the heuristic function is given as:

_ | maxy Qi (si.a)— Qi (s, a)+n. if ap=m(s)),
Hii (i, ar) = 0 otherwise,

(20)
where a; is an optimal action influenced by the heuristic
nf (s;), and 5 is a small positive value usually set to 1
(Bianchi et al., 2008; Fang et al., 2012). According to
Bianchi et al. (2008), a heuristic is obtained in two stages, in
the first stage, domain information is extracted and heuristic
is built only once. In the following stage, the obtained
heuristic is used in the action selection policy and is not
updated in future to overcome a bad heuristic. Whereas,
Fang et al. (2012) proposed a heuristic reinforcement
learning based on the state backtracking technique which no

longer requires stage one; nonetheless, it causes additional
delay to update the action transfer probability function at
the end of every training episode. Therefore, we adopt the
former approach in order to save the overall training time.

4.3.3 Linear Annealing

Bianchi et al. (2008) used fixed exploration rate which
is suitable only for small environments. However, for an
EC like large environment, we start exploration with the
highest probability and then linearly decay the exploration
rate. This strategy gives enough trials to explore a large
environment randomly at the beginning and then exploits
the already known good policies more often. Further,
randomness breaks the correlation of learning data and
reduces the variance in the update (Cheng et al., 2018; Chen
et al., 2021). The decay frame or in other words the linear
annealing frame Fy 4 (¢) for €; is given below:

€ — €
Fra() = Tf x 1, 1)

where T is maximum number of iterations (steps) in one
training episode, and €; and €  represent the start € and final
€, respectively. Thereafter, €, can be given as follows:

€ = max(ey, (65 — Fra(1))) (22)

The Eq. (22) describes that the exploration rate is high
at the beginning and annealed with the time, which comes
to its final state at the end of first training episode. A novel
study, human-level control through deep reinforcement
learning (Mnih et al., 2015), used a predetermined approach
of linear annealing where € is decayed in a fixed number
of iterations. However, our proposed model gives the
malleability to adjust annealing rate with respect to the size
of the environment and the number of learning iterations.

4.3.4 Pruning Principle

According to our cost function in (12), we know that
allocating bandwidth and VM units on a base station
and server with least utility will give us more reward
(assuming initial investment is fixed). Therefore, during
action selection, we apply pruning on BS/EC/BC servers so
that we allocate resources on the base station and the server
with least utility in order to get the maximum reward.

w; = argmin(Ury,(¢)),Vt € T,Yw € W, 23)
my = argmin(Ury, (t)),Vt € T,Vm € M, 24)
ny = argmin(Ur,(¢)),Vt € T,Yn € N. 25)

Intuitively, our proposed pruning principle also helps to
balance the load among all the base stations and servers;
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which means, it does not lead to overload a single base
station or server which could potentially result in higher
rejection rate for future jobs. The major contribution of
our pruning principle is the reduction of action space at
every state by a significant amount. The new action set
a; = {chp, vmy, —1,0} is only responsible for selecting
an appropriate wireless channel and VM because the base
station and server are already pruned.

The algorithm for Heuristic reinforcement learning
with linear annealing and pruning principle to obtain
optimal Multi-resource allocation policy in the Edge-cloud
environment is summarized in Algorithm 1.

Input : User jobs with varying QoS requirements

Initialize the environment;

Initialize action-value function Q arbitrarily;
Initialize Heuristic function H;

for episode = I to E do

Reset the environment to initial state;
fortr=11tTdo

Calculate €; using Eq. (22);

Prune action space using Eqgs. (23, 24, 25);
Choose action a; using Eq. (19);

10 Execute action a;, observe next state ;41
and receive reward r;;

11 Update the values of heuristic function
using Eq. (20);

12 Update the values of Q according to the
update rule in Eq. (18);

13 St = St+13

14 end

15 end

o X T AN R W N -

Output: Optimal Multi-resource Allocation policy
Q*

Algorithm 1 Heuristic Reinforcement Learning (HRL) with Linear
Annealing and Pruning Principle

5 Experimental Results

In this section, we evaluate the performance of our heuristic
reinforcement learning with linear annealing and pruning
principle based multi-resource allocation algorithm. We
develop our HRL-Edge-Cloud framework (Section 3) and
proposed HRL training algorithm (Section 4.3) in the
Python 3.8.1 to simulate a near real-world environment. We
run all the experiments on Dell Desktop Machine with 3.60
GHz Intel Core i7 processor, 8GB memory and Windows 10
Pro 64-bit OS, and discuss the advantages of our proposed
algorithm over the alternative baselines.
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5.1 Experiment Setup

The list of hyperparameters and their corresponding default
values that are used by our system for the simulation are
given in Table 1. The three baselines we use to compare with
the HRL-Edge-Cloud are described below:

e HAQL (Bianchi et al.,, 2008): Existing heuristic
accelerated Q-learning approach to accelerate the
learning mechanism in Q-learning. This approach used
fixed exploration rate of 10% to calculate the heuristic
only once. The rest of the parameters («, 8, v, n, ) and
reward function are kept same for a fair comparison.

e Greedy-1 (Liu et al., 2016): In this approach, system
tries to preserve resources by allocating one wireless
bandwidth channel and one virtual machine with the
minimum resources i.e. one bandwidth unit and one
VM unit on a base station and EC or BC server which
are chosen randomly.

e Greedy-2 (Liu et al., 2016): System tries to boost QoE
by decreasing the delay and allocates maximum number
of wireless bandwidth units on a base station and VM
units on an EC or BC server to process the job (i.e.
largest wireless channel and VM) if available. Note that,
like Greedy-1 approach, base station and server pair is
chosen randomly in Greedy-2 approach as well.

Convergence speed is compared only with the HAQL
approach because this is the closest model related to our
model. The rest of the performance indicators such as, sys-
tem cost, job rejection rate, QoE and runtime are compared
with all of the three baselines. We present three streetscape
simulation environments: small, medium, and large scale;
for performance comparisons. Small-scale environment
contains 4 wireless base stations, 10 EC and 10 BC servers.
Given the default parameters in Table 1, small-scale envi-
ronment contains 400 (4 x 100) wireless bandwidth units,
360 ((18 x 10) + (18 x 10)) VM units at the EC and BC
combined. Medium-scale environment contains 12 base
stations, 30 servers at the EC and 30 at the BC, which
constitutes 1200 wireless bandwidth units and 1080 VM
units (combined), respectively. Likewise, the large-scale
environment consists of 20 base stations, 50 EC and 50 BC
servers, which constructs 2000 wireless bandwidth units
and 1800 VM units, respectively. We conduct experiments
on small-scale, medium-scale and large-scale environments
with 10,000, 100,000 and 1,000,000 jobs, respectively. The
wireless bandwidth and VM per unit rental/usage cost is
normalized to 1 cent per second.

The default values of reinforcement learning related
hyperparameters such as learning rate « = 0.1 and discount
factor y = 0.99 are chosen from commonly used range
(Qadeer et al., 2021; Bianchi et al., 2008; Mnih et al., 2015).
The exploration rate € is decreased from 1 to 0.1 using
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Table 1 Hyperparameters and corresponding Default Values with Description

Hyperparameter Value Description
The learning rate alpha, set between 0 and 1, used in
o 0.1 .
the Q-learning update.
B 1 Design parameter to control the influence of heuristic
function.
Discount factor gamma, set between 0 and 1, used in
v 0.99 !
the Q-learning update.
s 10 Fixed revenue that is generated by service provider
after successful job execution.
€5 Start value of exploration rate (¢ — greedy).
€f 0.1 Final value of exploration rate (¢ — greedy).
1 A small positive value used in the heuristic function
K update.
£ | Design parameter to control the influence of heuristic
function.
Number of CPU cycles required to process one byte of
C 100
data.
R 10 The result in kilobytes generated after successful job
execution.
b 1 Average bandwidth in Gbps available on the fiber link
from EC to BC.
B 100 Total wireless bandwidth units available at each
wireless base station (1 unit = 10Mbps).
c 18 Number of cores (processing units; 1 unit/core = 1GHz
CPU cycles) per server both at EC and BC.
E 10 Number of episodes to train the HRL agent.
Number of different wireless bandwidth channels that
H 4 . .
can be allocated on a wireless base station.
K 4 Number of different virtual machines that can be
allocated on a server at EC or BC.
Average propagation time in milliseconds from user u
tu(propec) 5 to the EC.
Average propagation time in milliseconds from user u
fu(propyc) 50 to the BC.
T 100000 Number of learning steps or iterations per episode.

our proposed linear annealing method (Section 4.3.3). The
default values of hyperparameters related to the heuristic
function such as § = 1, n = 1 and & = 1 are also
commonly used (Bianchi et al., 2008; Fang et al., 2012). All
other parameters are experiment specific which can be set
according the environment needs.

Mobile users and other IoT devices generate tasks of
different sizes with varying QoS demands. We group these
user tasks/jobs into two groups; 1) Type-1 tasks are critical
tasks with comparably small size (bytes) and deadline. We
set the deadline of such tasks to be in the range of [200 ms,
800 ms], and the size to be in the range of [100 KB, 500
KB]; 2) Type-2 tasks are multi-media tasks with large size
and relaxed deadline as compared to the Type-1 tasks. The
deadline of such tasks is set between [1000 ms, 2000 ms],
and the size between [1 MB, 2 MB].

5.2 Convergence

We compare the convergence rate of our proposed strategy
with the existing HAQL algorithm. As shown in Fig. 3,
HRL-Edge-Cloud converged almost in one episode and
obtained the overall reward higher than the HAQL. The
recorded time that it took to reach at the convergence point
was only 37 seconds in the case of HRL-Edge-cloud and
3492 seconds in the case of HAQL on small scale envi-
ronment. The improvement of this magnitude is due to our
unique pruning principle as described in Section 4.3.4. This
shows that our proposed method outperforms the existing
approach by reducing the convergence time by nearly 95X
and achieving a better cumulative reward. In addition to
that, after one episode when the heuristic is applied, the
divergence and oscillations in the case of HRL-Edge-Cloud
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Fig.3 Convergence speed and cumulative reward comparison between HRL-Edge-Cloud and HAQL

are significantly reduced as compared to HAQL which
demonstrates the higher efficiency of the learning procedure
of our proposed strategy as detailed in Section 4.3.3.

5.3 Performance Analysis

We analyze the performance of our proposed strategy by
comparing the operational cost of the system, job rejection
rate, Quality of Experience (QoE) of the user (explained
later in this section) and the runtime with three baselines
(HAQL, Greedy-1 and Greedy-2) for three different scales
of environments. Figure 4(a) shows the operational cost
in different scenarios. The cost is calculated after dividing
the cumulative cost of jobs by total number of accepted
jobs in the respective scale. It is evident from the results
that HRL-Edge-Cloud achieves up to 2.34X, 5X and 20X
cost efficiency improvement on average as compared to
the HAQL, Greedy-1 and Greedy-2 baselines, respectively.
Greedy-2 is the most costly strategy due to the fact that
it always allocates maximum possible bandwidth and VM
units if available. Greedy-1 allocates minimum resources
which yields longer delay, in turn, higher cost according
to Eq. (10). The rejection rate is calculated by dividing
the number of rejected jobs by the total jobs in the
respective scale. Our proposed strategy consistently gives
rejection rate a multiple of 10~ even in the large scale
environment. Compared to HAQL, Greedy-1 and Greedy-2
our strategy reduces the rejection rate by 2.4X, 109X and
60X, respectively, as shown in Fig. 4(b).
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In our environment, QoE is inversely proportional to the
round-trip time (RTT) of the job. This means, smaller RTT
of a job will induce better QoE for the users. With that
remark, Fig. 4(c) depicts 120% and 389% gain on average in
QoE of HRL-Edge-Cloud compared to HAQL and Greedy-
1, respectively. To be noticed, Greedy-2 outperforms all
other strategies in view of QoE. This is because Greedy-2
always allocates maximum possible wireless bandwidth and
VM units to all the jobs if available, which gives rise to the
QoE gain. Notice that the best QoE of Greedy-2 comes at
the expense of high operational cost and rejection rate as
shown in Figs. 4(a) and 4(b) respectively.

As shown in Fig. 4(d), Greedy-1 and Greedy-2 outper-
form in runtime because both provide with fixed allocation
and do not require any decision making time. Compared to
HAQL, HRL-Edge-cloud achieves 240X reduction in run-
time on average all due to the proposed pruning principle.

5.4 Stability and Adaptiveness of Our Proposed
Strategy

The stability of our proposed strategy is evaluated by
conducting experiments to show the balanced distribution
of the load to all EC/BC servers and wireless base
stations. In Fig. 5(a-c), the vertical axis describes the
utility rate, which is given by Egs. (7, 8 and 9), for all
base stations and servers in small-scale environments under
different numbers of jobs. We show that the proposed
pruning principle helps to evenly distribute the load among



Information Systems Frontiers

= HRL-Edge-Cloud = HAQL mm Greedy-1 m Greedy-2
Q w
8 - 107! ®
r_c : o
[
.S 10 + 8
) ] O
©
5 L 10—2 g-’_),
8— [d
(a) (b)

105
o 0.81 10
O
3
5 0.6 A | 103 0
S )
W 0.4 E
1) . S
> - 10
= | o
= 0.2
>
o

0.0 -
Small Medium Large Small Medium Large
(c) (d)

Fig. 4 Performance comparisons of proposed strategy with HAQL,
Greedy-1 and Greedy-2 baselines. All four evaluations are con-
ducted on small, medium and large scale environments. In view

all servers and base stations and tries to keep a fair
balance.

First, we notice that the overall utility rate of BC servers
is lower than the EC servers. This phenomenon shows
that, if resources are available, our strategy prefers to
offload more jobs to the EC servers to induce less delay
and contribute to better QoE as discussed above. Second,
the graph curves in Fig. 5(a-c) illustrate the stability of
both strategies. The utility of resources in the case of
HRL-Edge-Cloud is much smoother, whereas the utility
rate in the case of HAQL is fluctuating in all three
graphs. This balanced distribution of the resources shows
the stability of our strategy within the dynamics of a
practical environment. Furthermore, as shown in Fig. 4(b),
the balanced distribution of load aids in lowering the overall
rejection rate.

of (a) Operational cost, (b) Rejection rate, (c) Quality of Expe-
rience and (d) Runtime; vertical axes except (c) are in log
scale

To evaluate the adaptability of our strategy in a dynamic
environment, we traced 100 jobs to observe how VM,
wireless channels, and cloud are dynamically allocated for
Type-1 and Type-2 jobs (separately). Firstly, it can be seen
from the Fig. 6 (a and b) that Type-1 jobs are allocated
1 VM and 1 bandwidth unit in most cases. However,
during the experiments, it was observed that some of
the Type-1 tasks, which have critical deadlines (around
200 ms) and relatively larger amounts of data (around
400 KB) among other Type-1 tasks, are allocated higher
VM and bandwidth units to complete the job within the
deadline.

Secondly, Type-2 tasks are allocated higher VM and
bandwidth units for faster execution in most cases.
However, for some of the Type-2 tasks, which have relaxed
deadlines (around 1700 ms) and a smaller amount of
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Fig.5 Stability comparison of HRL-Edge-Cloud with HAQL for (a) Edge-Cloud servers utility, (b) Back-end Cloud Servers utility and (c) Base

Stations utility in small scale environment

data (around 1 MB) than other Type-2 tasks, our strategy
allocates fewer resources.

Lastly, it is shown in Fig. 6 (c) that Type-1 jobs are mostly
offloaded to the EC to meet the deadline of the critical tasks.
However, Type-1 jobs are also offloaded to the BC when
the deadline is not critical and the amount of data to be
processed is relatively smaller. Contrarily, the Type-2 tasks,
which have relaxed deadlines, are mostly offloaded to the
BC to conserve resources at the EC to execute future critical
tasks and provide better QoS to the real-time applications.

To summarize, our proposed strategy adaptively deter-
mines the dynamic selection of VMs, wireless bandwidth
channels, and cloud for joint and stable optimization of
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resources in the EC and BC even in a non-stationary envi-
ronment.

6 Conclusion

This paper optimizes the problem of compute and wireless
resource allocation for the IoT and mobile users in a
smart streetscape based edge-cloud system jointly with
the back-end cloud. To address this problem, we present
a novel multi-resource allocation (MRA) framework by
introducing HRL-Edge-Cloud, a heuristic reinforcement
learning-based algorithm with linear annealing and a
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pruning principle. In the proposed MRA framework, we
consider the deadline and amount of data of individual
jobs to replicate a near real-world environment. The
proposed strategy is faster in convergence speed, highly
scalable, stable and adaptive to the dynamics of a practical
environment. To show the effectiveness of our strategy we
develop the proposed framework in Python and conduct
extensive experimentation at different scales. As compared
to an existing algorithm, our proposed technique achieves
2.34X, 95X and 240X reduction in operational cost,
convergence time and runtime on average, respectively,
while maintaining the lower rejection rate and ensuring the
Quality of Experience (QoE) for the users and applications.

The proposed framework addresses the multi-resource
allocation problem in a single streetscape-based edge-cloud
environment. A smart city consists of many streetscapes.
Therefore, a captivating future direction is to enhance
our framework across multiple streetscapes and investigate
on multi-agent reinforcement learning-based algorithms to
solve the resource allocation problem in a distributed and
larger city-scale environment.
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