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ABSTRACT

Next-generation mobile core networks are being designed to sup-
port a variety of latency sensitive applications based on emerging
virtual, augmented or mixed reality technologies. A cloud-native
approach for 5G core has been proposed to meet the diverse service
requirements of NextG while reducing both CAPEX and OPEX. In
this context, microservice architecture for network function virtu-
alization is generally considered to be suitable for meeting NextG
service requirements. Despite many advantages, the cloud-native
core raises new challenges in the design of NextG systems for la-
tency critical applications. An approach to achieving diverse QoS
requirements is proposed in this paper. Specifically, the design is
based on an orchestrator called the MEC-Intelligent Agent (MEC-IA)
which enables dynamic compute resource distribution and network
slice assignment in the core for improved QoS. The MEC-IA frame-
work realizes resource management by intelligently assigning UEs
to the access and mobility management function (AMF) while also
performing slice provisioning. Simulation results are presented
for the proposed MEC-IA framework showing the median control
plane delay reduced by a factor of 1.67x. Further, robustness of
the system improves significantly, reflecting a better overall user
experience since the percentage connection dropped at 3x traffic
volume reduces by 1.5% and slices assignment increases by 1.4x
across all slices, even when the traffic arrival is skewed.
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1 INTRODUCTION

The 5G and beyond standard of cellular communications requires a
minimum of 1 Gbps for mobile and stationary users. The demand for
data rates is increasing rapidly because of multimedia applications
[14] and according to Cisco, mobile data traffic in 2022 will increase
to 77.5 exabytes [9]. The increase in the demand for high data
rates and cellular traffic introduces challenges like scalability and
flexibility in the NextG (5G and beyond) network. Advancements
in virtualization and softwarization technologies have enabled a
paradigm shift in how mobile networks are designed and operated
to address the requirements of high data rates and mobile data
traffic. A cloud-native core is one such virtualized technology so-
lution leading to a significant transformation of communication
networks [10] and enables keeping pace with the NextG network re-
quirements by allowing increased service availability, cost-efficient
operation and management, and on-demand service deployment.
Further, cloud-native network core is gaining momentum in private
5G network, e.g. in the smart industrial manufacturing sector, to
improve operational costs and support diverse quality of service
(QoS) requirements of wide range of applications [21].

Figure 1 shows the high-level architecture of a cloud-native mo-
bile core with containerized network functions (NFs) hosted in
a server. Two key features of the cloud-native mobile core archi-
tecture are the high degree of functional decomposition and the
distributed deployment of virtualized NFs. The network virtual-
ization principle realizes NFs as software instances that can be
deployed on commodity servers and storage devices, also enabling
virtual network slices [16]. As per 3GPP service-based architecture
(SBA), cloud-native core supports control and user plane separation
(CUPS) [7]. These microservice oriented NFs’ designs are superior
to their monolithic counterparts [8].

During the deployment phase of cloud-native core, a cloud ser-
vice provider (CSP) typically offers a static set of available hard-
ware configuration blocks (i.e., the context of Openstack - a unique
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Figure 1: Overview of cloud-native mobile core.

combination of memory capacity and CPU) to a virtual NF, thus
enabling operators to create and deploy network components in
accordance with their needs without involving dedicated hardware
components. Whilst, this could seem to be a good solution but the
fluctuating nature of mobile traffic may result in poor performance
for latency-critical NextG networks, resulting in resources being
under-utilized or over-provisioned causing bottlenecks, especially
at the access and mobility management function (AMF). The AMF
participates in user equipment (UE) authentication, authorization,
mobility, and session management which potentially makes it the
system bottleneck. Hence, special focus should be given to the
dynamic resource provisioning of the AMF to ensure network scal-
ability. We propose to design an intelligent orchestrator to address
this limitation. The intelligent orchestrator maintains awareness of
the changing user demands and the real-time status of underlying
resources. The objective of this paper is to devise an approach that
has the intelligence to understand the network requirements based
on the varying nature of the UE control traffic with the ability to
automatically perform dynamic resource allocation at the core. The
approach considers the cloud-native core’s computation availabil-
ity and quality of experience (QoE) of end-users in the decision
to perform scalability in a cognitive manner making the system
self-organized. The remainder of this paper is organized as follows.
Sections 2 & 3 present design consideration and related work re-
spectively. Section 4 describes the MEC-IA scheme showcasing its
technical benefits. Section 5 lists the simulation setup parameters
and discusses the obtained results. Concluding remarks are given
in Section 6.

2 DESIGN CONSIDERATION

The state-of-the-art cloud-native and software defined network core
architecture maintains compliance with the 3GPP communication
reference interfaces. Notably, the access control and session man-
agement functions are separated in the core to better support fixed
access, while ensuring scalability and flexibility. The most relevant
core network functions are AMF, session management function
(SMF), User plane function (UPF), Unified data management (UDM)
and network exposure function (NEF).
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Figure 2: AMF overload scenario (within 3gpp specification)

The AMF ensures UE-based authentication, authorization, mobil-
ity management and communicates with the SMF to setup session
management. UEs, even those using multiple access technologies,
are connected to a single AMF since the latter is agnostic to the
access technology. Based on the operator or service provider policy
on packet flow, the policy and charging function (PCF) in the core
defines policies about mobility and session management, which will
be enforced by the AMF and SMF. Hence, AMF supports massive
signaling traffic from connected devices, considering use cases such
as the internet of things (IoT) and massive Machine Type Communi-
cation (mMTC), overutilizes the AMF network function and creates
a bottleneck at the point of entry in the network [11].

According to the current state-of-the-art solution, AMF can be
configured to restrict the number of received packets per second
to address the bottleneck. The packets exceeding the number of
permitted calls are rejected to prevent congestion at the AMF. To
ensure there are no snowballing effects (e.g., due to re-transmission
of rejected calls), a back-off timer is configured on AMF. When
traffic congestion at AMF occurs, it sends an overload signal to gNB
and gNB restricts signal distribution to the overloaded AMF [17].
Thus, this method is a reactive approach to preventing congestion
at AMF.

Further, in the current cloud-native core, the overloaded AMF
may fail and trigger restart event. Currently, this limitation is ad-
dressed by creating instances of AMF for restoring the service.
However, the event of AMF failure and restart causes the cleanup of
resources reserved for UEs being served by the AMF, which is very
likely to lead to the deregistration or release of PDU sessions as
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shown in Figure 2 [18]. Therefore, resulting in control plane delay
along with service downtime at the UE’s end.

Considering that separation of mobility management functions
is advantageous from the scalability point of view, where the UE
states and the session states will be hosted respectively in the UDM
and the SMF, while the AMF will only be dedicated for processing
tasks. Consequently, this separation augmented with a logically
centralized orchestrator, provides a lightweight solution to mitigate
the bottleneck created at the AMF.

In our design choice to remove bottleneck, we envision MEC-
Intelligent Agent (or MEC-IA) as a logically centralized entity
hosted in the mobile edge platform, periodically monitors AMF
utilization, and thus realizes proactive and dynamic resource pro-
visioning at the core in real-time. MEC-IA framework uses simple
management interfaces (APIs) to collect RAN information and si-
multaneously communicates with NEF to import AMFs’ compute
resource statistics, which makes the system light-weight. The funda-
mental advantages of such MEC-IA assisted proactive and dynamic
resource distributions are many-folds, such as:

e Proactive and dynamic resource distribution can avoid the
heavy load imbalance across AMFs which in turn makes the
system more robust in terms of preventing core-entry point
congestion for considerably high network load and skewed
traffic distribution.

e Resource distribution and management can be orchestrated
intelligently, precisely and rapidly to provide a well-classified
QoS for real-time communications while also performing
the slice provisioning as per UE’s service subscription.

o MEC-IA assisted proactive resource provisioning attempts
to avoiding AMF failure by continuous network monitoring
and handling background network management tasks e.g.,
analyzing the control traffic statistics for future resource
provisioning, and foreseeing AMF failure.

3 RELATED WORK

The Cloud-native core concept is built around a philosophy of con-
tainerization, and the management of those containers through
orchestration tools. Leveraging this feature, [2] proposes an algo-
rithm to equilibrate the load on the AMF instances by scaling out
or in AMF instances depending on the network load to save energy
and avoid wasting resources. In [19], cloud resource allocation is
considered alongside virtual machine (VM) placement and migra-
tion based on VMs’ CPU, memory, storage, network bandwidth
along with resource contention. Some mechanisms that automat-
ically scale up or scale down VM instances using threshold val-
ues of the indicators to trigger the operation. [3] also proposes
an auto-scaling mechanism for evolved packet core’s monolithic
mobility management entity (MME) in terms of scalability and effi-
cient load balancing features in a cloud-native environment. In [15],
the proposed approach considers the use of dynamic service level
agreements (SLA) between the service provider and virtualized NF
(such as AMF) provider. Instead of allocating a fixed amount of
resources for the whole life-cycle, the resources are varied based
on predicted user load [12]. Further, a distributed MME model is
proposed in [4] and [6]. Contrary to the approach proposed in
[20], the MME model is stateful and based on an external users’
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Figure 3: MEC-IA assisted NextG network architecture.

state storage system. Thus, the migration between MMEs is limited
only to UEs in an idle state. However, in the active state, UEs are
attached to an MME instance. Therefore, another MME instance
may receive a network event for that UE. This request has to be
forwarded to the correct MME, potentially increasing latency of
EPC procedures. The above research projects aim to re-architect
the cellular network and address the core bottleneck by initiating
AMTF migration, replication, instantiation, and scaling techniques.
Such approaches add to the core overhead and ultimately increase
the CAPEX and OPEX of the network.

On the contrary, our MEC-IA proposed approach addresses the
performance bottlenecks and latency associated with per-device
connectivity at the control plane level, in a proactive and light-
weight manner, i.e. no complex signaling and fast recovery of the
load imbalance in the core. This work does not resort to vertical
scaling (adding more processing resources like CPU, RAM, etc.),
horizontal-scaling (add more instances of AMF), or heavyweight
VM migration (incur paging latency) which would significantly
add to the operational overhead. Instead, the proposed MEC-IA
framework solves the system workload bottleneck problem by ac-
curately assigning the UE and IoT bursty control signal traffic to a
suitable AMF to provide efficient resource usage across operational
AMFs in the core. The MEC-IA assisted mechanism ensures fast
restoration of AMF failure without interruption to other services,
and interoperability across heterogeneous AMFs, enabling AMF
monitoring and control, while retaining compatibility with 3GPP
specifications.

4 PROPOSED MEC-IA ASSISTED REDUCED
CORE BOTTLENECK SCHEME

In the proposed scheme, we consider UEs’ control traffic arriving
and departing dynamically at the AMFs. The control traffic corre-
sponds to multiple UE states such as initial access request (newly
arrived UE), idle-to-connected request (the device was in sleep and
then wakes up) or handoff request (due to mobility). Additionally,
since NextG technology supports segregating traffic into three types
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Algorithm 1: Resource-Aware Best Fit AMF Selection

Input:

N: Number of AMF

R,+i1[N]: resource utilization of AMFs

R;p [ N]: resource threshold of AMFs

slice,;;1[IN1[3] : slice utilization of AMFs

slice;p, [N][3]: slice threshold of AMFs

UE_state: state of the UE

intended_slice: intended slice of the incoming UE

Output:

AMF ggsigneq: Best fit AMF for the UE

slicegssignea: Whether UE gets intended slice
1 fori < 1toN do

2 base_set_up_cost[i] « exec_time_per_bit[i] * data_size(UE_state)
3 placement_cost[i] « base_set_up_cost[i] * (1 + floor(Ry;i;[i] +1)/Rep[i])
4 if (slice,;;;[i] [intended_slice] + 1) > slice; [i] [intended_slice] then

5 placement_cost[i] « placement_cost[i] * (1+ a)
6

7 else

8 L slice_service[i] « 1

9 AMFygsigned < Minindex(placement_cost)

slice_service[i] « 0

10 slicegggigned < slice_service[AMF g ignedl
Rytit [AMFassigned] — Rysit [AMFassigned] +1
12 if sliceygsigneq = 1 then

1

oy

13 L slice, il [AMFgssigneql lintended_slice] « slice, ;i1 [ AMFysgigneql [intended _slice] + 1

of pre-defined slices: type 1 is dedicated to supporting of enhanced
mobile broadband (eMBB), type 2 is for Ultra Reliable Low Latency
Communications (URLLC) and type 3 is for massive machine-type
communications (mMTC) support, the UEs may subscribe to differ-
ent intended slices depending on the service requirements.

4.1 Proposed Framework

MEC-IA, the logically centralized entity hosted in the mobile edge
platform as shown in Figure 3, proactively and dynamically provi-
sions the incoming traffic to the appropriate AMF in order to miti-
gate the core bottleneck. The high-level objective of such dynamic
resource provisioning would be to maximize the AMF resource
utilization while maintaining fairness proportional to their com-
pute/storage capability and also ensuring desired QoS for different
UEs. Algorithm 1 illustrates our proposed greedy heuristic for the
MEC-IA assisted resource-aware best fit AMF selection scheme.

MEC-IA receives resource and slice utilization update for all the
AMF instances from the NEF, over the N33 interface (a 3GPP north-
bound API for securely exposing NFs’ information and capabilities)
and maintains a logically centralized database. Upon arrival of a
new UE request at the gNB, MEC-IA receives the corresponding UE
information (i.e., UE state, intended slice requirement etc. ) through
Radio Network Information Service (RNIS) over the RESTful RNI
APIs.

On receiving the arrival notification of a UE request, MEC-IA
computes the estimated placement cost of that UE to all the possible
AMFs (Algorithm 1: lines 1-8). Following this, the MEC-IA assigns
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the UE to the best fit AMF having the minimum placement cost
and simultaneously performs slice provisioning (Algorithm 1: lines
9-10), and finally updating the corresponding resource utilization
parameter accordingly (Algorithm 1: lines 11-13).

4.2 Designing the Cost Function

In our heuristic, we design a penalty-driven cost function to max-
imize AMF utilization while ensuring proportional fairness. In
this context, the delay is considered as the cost metric. It should
be noted that the AMFs can be heterogeneous in terms of com-
pute/storage resources and slice availability, captured by the param-
eters exec_time_per_bit, Ry, and slice;, respectively. The resultant
placement cost of a UE at a given AMF is the function of resource
and slice utilization (R,;;; and slice,;;;), as shown in eqn. 3. More
concretely, we model the placement cost as the combination of
base setup cost and the penalties associated with AMF resource
(Ryzi1) and slice (slice,;;;) utilization at that time instant. The base
setup cost of a UE to a given AMF (shown in eqn. 1) depends on the
processing speed (shown in eqn. 2 [1]) of AMF and its correspond-
ing UE control traffic volume. In our algorithm, we consider two
specific penalties for the placement cost such as a) resource-load
related penalty (Rpen) and b) slice related QoS penalty (slicepen).
We assume a linear resource-load related penalty function (Rpen)
which depends on the ratio of current resource utilization (R,,;;;)
corresponding to the resource threshold (R;},) of a given AMF (both
measured in terms of the number of currently serving UEs). As
shown in eqn. 4, while estimating the resultant resource penalty
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(Rpen) for a UE to a given AMF assignment, 1 is added to the current
AMF resource utilization to explore the possibility in case the ar-
rived UE would be assigned to that AMF. Additionally, we consider
a constant slice related QoS penalty function (slicepen) depending
on whether the UE’s slice subscription (for URLLC, eMBB, mMTC)
request at a given AMF can be accepted. If the UE is assigned the
intended slice there is no penalty i.e., slicepen = 0, else the slicepen
= a, given in eqn. 5.

1

base_set_up_cost = exec_time_per_bit * data_size

@

exec_time_per_bit = num_inst_per_bit =« CPI/clock_rate
placement_cost = base_set_up_cost+(1+Rpen)* (1+slicepen) (3)

(Rutil + 1)

e @

Rpen =1

if UE gets the intended slice

otherwise gets a QoS penalty

li 0
stice =
Pem = aeo,1],

In our simulation (Section 5), we have implemented the central-
ized version for both the database management and best-fit AMF
assignment algorithm. Note that, our proposed algorithm can also
be modified in a logically centralized and physically distributed
setting where the MEC-IA entity would be hosted by more than
one server in the mobile edge cluster and those edge servers would
maintain a distributed database. Implementing the distributed coun-
terparts of the database and algorithm are part of our future work.

5 RESULTS AND DISCUSSION

In this section, we introduce our simulation framework in detail
and discuss the results.

5.1 Simulation Setup

We have developed a flow-level simulator in MATLAB where we
simulate three control-plane scenarios. On one hand, scenarios 1 &
2 correspond to resource distribution under the assumption of an
unbounded system i.e., no UE gets dropped. We capture the latency
impact of exponential back-off (discussed in Section 2) by incurring
a higher resource-load related penalty in the placement cost. On
the other hand, scenario 3 corresponds to a bounded system (i.e.,
UEs can get dropped) to ensure QoS guarantee to the incoming UE
through a slicing mechanism.

(1) Resource unaware AMF Assignment: This is the baseline
scenario, where the UE is statically assigned to the default
AMEF selected by the gNB.

(2) MEC-IA assisted Best-fit AMF Assignment: This scenario
corresponds to the resource aware best fit AMF selection and
the control plane delay is evaluated by the placement_cost.
Note that, currently MEC-IA invokes the assignment algo-
rithm once for each UE upon its arrival. Once the UE is
assigned to the best-fit AMF, the assignment is not changed
during its lifetime. However, the MEC-IA can invoke the
best-fit AMF selection algorithm at a given interval to dy-
namically reassign the UEs to the least utilized AMF, which
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Table 1: Simulation setup parameters

Parameter Values
N 5
Traffic skewness AMF 2.3 - 30%
AMF 4 - 20%
AMF 1,5 - 10%

Slice threshold ~ URLLC: eMBB: mMTC = 0.3:0.5:0.2

would ensure better AMF utilization and better QoS while
incurring negligible service downtime.

(3) Intended Slice Assignment at the AMF: This scenario
represents a bounded system (explained later in this section)
where the following two approaches fit in this scenario, i.e.,
a) either the incoming UE is assigned a slice, b) or the UE’s
connection is dropped.

5.2 Simulation Parameters

The numerical values for the simulation are listed in Table 1. In our
simulation model, we consider five AMF instances in the network
core, where the AMFs are heterogeneous in terms of computation
capability (i.e., exec_time_per_bit and R;). If the number of UEs
assigned to an AMF exceeds its R;j, that latest assigned UE gets
the resource-related penalty (Rpen), as discussed in eqn. 3. The
incoming traffic volume is spatially skewed over time among the
AMF instances [5, 13]. AMF 2 & 3 each receive 30% of the total
system traffic, followed by AMF 4 receiving 20% and AMF 1 & 5
receiving 10% each. The slice threshold at each AMF is set as URLLC
: eMBB : mMTC = 0.3 : 0.5 : 0.2. This implies that the AMF can
serve 30% of the total control plane traffic for the URLLC slice, 50%
for the eMBB slice and 20% for the mMTC slice. Any further slice
request by a UE beyond this slice threshold capacity will either
incur a QoS-penalty (slicepen in eqn. 3) or be dropped by the AMF,
respectively for unbounded and bounded scenarios.

5.3 System Performance of Baseline and
MEC-IA Resource Distribution Methods

Figure 4(a) shows the resource utilization of the AMFs for the re-
source unaware AMF assignment scenario (baseline). The resource
utilization disparity in the system is well evident from the graph. It
should be noted that since both AMF 1 and AMF 5 receive a lower
volume of control traffic due to the traffic skewness added in the
simulation model, the resource utilization of AMFs 1 & 5 are four
folds less than that of AMF 2 given that the later receives three
times more control traffic. AMF 2 performs worse than AMF 3 even
though both receive the same volume of control traffic due to the
fact that the AMFs have heterogeneous compute availability and
the exec_time_per_bit is less in AMF 3 in comparison to AMF 2.
In Figure 4(b), due to intelligent UE traffic assignment performed
by the MEC-IA, the AMFs are neither under-utilized nor over-
utilized. The over-utilized AMFs lag in servicing the control plane
traffic request, thus becoming a source of the bottleneck at the point
of entry in the core network. The system performs well at both the
service provider’s and the UE’s end since the MEC-IA framework
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Figure 4: (a) Resource unaware UE to AMF assignment: utilization of AMF instances, (b) MEC-IA assisted resource aware UE to
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drop for MEC-IA assisted resource aware UE to best-fit AMF assignment and baseline, (e) Percentage of connection getting
intended slice with MEC-IA assignment and baseline, (f) Max resource utilization scenario for MEC-IA: Relative change of

control plane delay during peak resource utilization.

achieves fairness in terms of resource distribution in the core as
well as reducing the control plane delay as seen in Figure 4(c).

The CDF plot of the control plane delay is shown in Figure 4(c)
and it is evident that the control plane delay for MEC-IA assisted
AMF selection scheme is significantly low in comparison to the
baseline case of resource unaware AMF assignment. The MEC-TIA
evaluates the placement cost of a UE’s traffic with respect to all the
AMF instances in the core, followed by selecting the best-fit AMF.
The placement cost includes a penalty in terms of the delay based
on resource and slice availability. In a scenario where more than
one AMF is selected as best-fit AMF (the AMFs were evaluated to
have min [placement_cost]) for a given UE’s control traffic, in that
case, the AMF with least resource utilization is preferred over the
AMF with slice availability. We can observe from Figure 4(c) that
with the MEC-IA approach, median control plane delay improves
1.67x the baseline control plane delay.

5.4 Intended Slice Assignment or UE
Connection Drop

The simulation model discussed so far was unbounded, i.e. when
the AMF’s resources have been exhausted, the incoming UE’s con-
trol traffic is serviced at the cost of adding penalty (in terms of delay
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(ms)) to the placement_cost, but no UE connections were dropped.
However, now we will analyze a bounded system where the AMF
will deny UE connectivity if resources are exhausted. Figure 4(d) &
4(e) depicts the percentage of UE connection drops and UE connec-
tions that are assigned to the intended slices (i.e., the slice the UE
has subscribed) respectively for both baseline and MEC-IA assisted
best fit AMF selection.

In Figure 4(d), the control traffic is increased with respect to
the cumulative resource threshold (R;p), 0.5 to 3. For the MEC-IA
approach, there is no connection drop observed until 1.4X the traf-
fic volume in the core. This means that the MEC-IA core network
system shows robustness by serving all the incoming UE traffic,
even though the incoming traffic load is 1.4X more in compari-
son to the available resources in the core. On the contrary, for the
baseline case, a drop in UE connections begins when the available
resources is 0.6X more than the incoming UE traffic. Hence, in-
telligent resource provisioning can potentially save 40% resource
cost.

On analysing the Figure 4(e) it can be inferred that the percentage
of end devices being assigned to the intended slice it had subscribed,
at peak traffic volume (normalized w.r.t. cumulative Ry, is 3X) is
50%, which is 1.5X more than the intended slice assignment for
the baseline scenario. Additionally, it is observed that even when
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the incoming traffic volume is less than 50% of the total resource,
the resource unaware scheme is unable to assign the intended slice
for some UEs. Therefore, slice drop (no slice assignment) events
occur even before the traffic volume reaches 0.5%. While in the case
of MEC-IA, premium service is availed by all the UEs that have
subscribed for slice assignment, until 0.8X traffic volume, followed
by a gradual drop in slice assignment. At 1.5X traffic volume, the
MEC-IA framework provides better QoS guarantees to the UE, since
the slice assignment is 1.8x more than that in the baseline.

Note that, we analyze both Figures 4(d) and 4(e) for even higher
control traffic volumes. We observe that MEC-IA assisted resource
provisioning approaches the baseline both in terms of percentage
slice assignment and UE drop when the control traffic volume is
around 12X w.r.t. cumulative resource threshold (R;;). However
currently, our simulation model does not consider any downtime
during the best-fit relay computation and also does not simulate
the data plane performance. As a future step, we plan to extend
our simulation to implement the end-to-end system considering all
such realistic scenarios.

5.5 Control Plane Delay Performance During
Peak Resource Utilization

The objective of Figure 4(f) is to show the relative change in control
plane delay during the phase of maximum resource utilization at
each AMF. The peak resource utilization of AMFs, for the MEC-IA
scheme, is normalized w.r.t. baseline, along with the normalized
average and 95 percentile control plane delay during that peak uti-
lization instant. In MEC-IA assisted resource-aware scheme, AMFs
peak utilization decreases due to resource aware provisioning, cor-
respondingly the control plane delay improves significantly. For
example, AMF 2 has 0.18X peak utilization w.r.t. baseline which
leads to 3.27x and 6X average and 95 percentile control plane delay
improvements respectively. Additionally, in our proposed scheme,
the traffic volume across AMFs increases gradually. As a result,
even though some AMFs serve more traffic due to higher avail-
able resources, the average and tail control plane delays do not
overshoot abruptly. For example, although AMF 5 has 5.23X more
peak utilization, the average and 95 percentile latency are degraded
only by 2.4x and 3x respectively. Therefore, our scheme provides
a better trade-off between resource utilization vs. QoS.

6 CONCLUSION

This paper proposes a MEC-IA framework that performs intelligent
resource management in the cloud-native core network in order to
address the issue of the bottleneck at the core, while simultaneously
improving the traffic capacity and QoS. The MEC-IA is hosted at
the mobile edge computation platform and is tasked with collect-
ing AMF resource utilization statistics from the network exposure
function over the N33 interface while maintaining a centralized
database repository. The MEC-IA executes the Resource-Aware Best
Fit AMF Selection algorithm. Additionally, this framework has been
validated by a simulation study. It can be concluded from the re-
sults that the MEC-IA is able to address the mobile core network
bottleneck problem by distributing the UE control traffic amongst
available AMF instances and performing UE assignments to the
best-fit AMF, thus also guaranteeing better QoS and enhancing end
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user experience. The control plane delay at the 95 percentile shows
an improvement of 3.33X in comparison to the baseline, which
clearly shows that the connection time is significantly reduced and
the UE obtains more than 3x faster access to the network core.
Similarly, it is observed that with the premium service assignment
through slicing mechanism, the MEC-IA framework succeeds in
assigning more intended slices (URLLC, eMBB, mMTC) to the UEs
subscribing for the slicing services with fewer UEs being denied
connectivity.

In the future, we will investigate the performance of the MEC-IA
framework in a private 5G cloud-native smart factory environment.
The MEC-IA will be incorporated in a 5G open-source implemen-
tation and a study will be conducted to evaluate how the core
resources will be orchestrated in real-time to achieve low control
plane delay. It will be interesting to study the MEC-IA performance
in a smart industry setup since it supports a wide variety of appli-
cations with stringent QoS.
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