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ABSTRACT
Communication over large-bandwidth millimeter wave (mmWave)
spectrum bands can provide high data rate, through utilizing high-
gain beamforming vectors (briefly, beams). Real-time tracking of
such beams, which is needed for supporting mobile users, can be
accomplished through developing machine learning (ML) models.
While computer simulations were used to show the success of such
ML models, experimental results are still limited. Consequently in
this paper, we verify the effectiveness of mmWave beam tracking
over the open-source COSMOS testbed. We particularly utilize a
multi-armed bandit (MAB) scheme, which follows reinforcement
learning (RL) approach. In our MAB-based beam tracking model,
the beam selection is modeled as an action, while the reward of the
algorithm is modeled through the link throughput. Experimental
results, conducted over the 60-GHz COSMOS-based mobile plat-
form, show that the MAB-based beam tracking learning model can
achieve almost 92% throughput compared to the Genie-aided beams
after a few learning samples.

CCS CONCEPTS
• Networks→ Network experimentation;Wireless access net-
works; • Hardware→ Radio frequency and wireless circuits.
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1 INTRODUCTION
Communication over Millimeter wave (mmWave) spectrum bands
can provide high data rate, thanks to their abundant bandwidth [1–
3]. Such high data rate is crucial for many emerging applications,
over static or mobile networks, such as extended reality and self-
driving cars. However mmWave communication, with its frequency
bands of 30GHz or more, suffers from the inherent large path-loss
at such high frequencies. To compensate for such large path-loss,
high-dimensional phased antenna arrays have been employed. The
directional alignment of these phased antenna arrays at both trans-
mitter and receiver can produce high power gain to compensate
for large path-loss [4–6]. While such alignment of beamforming
vectors is possible for static communication nodes (i.e., transmitter,
receiver), it is much harder to be maintained for mobile users in-
cluding vehicles [7]. In particular, beamforming requires accurate
knowledge for pointing beams towards the receiver, which comes
at the cost of large overhead [8]. This is achievable for static or
slowly-changing environments but is difficult for fast-changing
environments, such as those in the vehicular context where the
UEs are dynamic [9]. Therefore, there is a need for real-time track-
ing of mmWave beamforming vectors (briefly, beams) in mobile
communication, and this is the scope of this paper.

Recently, mmWave beam tracking was addressed in the liter-
ature via either analytical approaches or machine learning (ML)
models. For example, beam tracking approaches using extended
Kalman filtering were proposed in [9, 10]. Furthermore, data detec-
tion was jointly considered with mmWave beam tracking in [11].
Beyond model-based analytical approaches, multiple ML models
have been proposed for mmWave beam tracking. For example, a
supervised deep learning (DL) model was employed in [12] for
mmWave mobile systems. Furthermore, a recurrent neural network
(RNN) was proposed in [13] to track the angle of arrival (AoA) at the
user equipment (UE). Moreover, a deep neural network (DNN) was
introduced in [14] to predict a user’s temporal channel behavior
using a long short term memory (LSTM) model.

In addition to supervised DL, multiple reinforcement learning
(RL) models were also proposed beam tracking in mmWave commu-
nications. For example, mmWave beam tracking for single-user was
considered in [15]. Going beyond a single user, we were able to de-
velop in [16] an RL model for simultaneously tracking the mmWave
beams for multiple UEs. While the aforementioned learning models
introduce novel beam tracking solutions, they were mostly verified
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via computer simulations or proprietary testbeds (e.g., in [15]). On
the contrary, there is a need to validate such mmWave beam track-
ing solutions on open-source and large-scale testbed, and this is the
experimentation gap addressed in this paper.

The National Science Foundation (NSF), through its Platforms for
AdvancedWireless Research (PAWR) program, is currently support-
ing a few open-source testbeds. Of particular interest in this paper
is the Cloud Enhanced Open Software Defined Mobile Wireless
Testbed for City-Scale Deployment (COSMOS) platform [17, 18].
The COSMOS platform supports mmWave communication and
can emulate multiple mobility scenarios, which can be remotely
controlled. Therefore, the goal of this paper is to design and vali-
date an RL model for mmWave beam tracking, using the COSMOS
platform.

In this paper, we propose an RL-basedmulti-armed bandit (MAB)
learning model to track the mmWave beams in the indoor COSMOS
platform, which is located in Rutgers University, New Jersey, USA.
In the COSMOS platform, two software-defined radio (SDR) kits
are used to represent two communication nodes, namely, a base
station and a UE. The UE is placed over a remotely-controlled XY-
table, which is used to randomly move the UE within the lab area.
The proposed MAB model aims to continuously find an adequate
beamforming vector for the moving UE, as it traverses the COSMOS
lab area. In doing so, the base station works as the MAB agent to
select the best beam.

TheMAB formulation is well suited algorithm for the exploration-
exploitation learning nature of RL models [19], as it can track the
changes in a mobile environment and adapt to them accordingly.
Moreover, Thompson Sampling (TS) [19] is considered for selecting
the best arms (i.e., beams) of the proposed MAB model. Through-
out the learning process, one arm is played by the MAB agent at
each time slot and an associated reward is observed. We model the
reward as the achievable throughput at the UE, which is computed
using the information-theoretic Shannon capacity formula taking
into account the received signal-to-noise ratio (SNR). Our experi-
mental results show that the proposed MAB model can successfully
track the best beams after a few time instants, and achieve 92% of
the genie-aided throughput, which always picks the optimal beam.

The rest of the paper is organized as follows. Section 2 introduces
the system model and describes how we formulate the beam se-
lection problem into an MAB one. Section 3 explains the proposed
MAB solution. The system setup and the experimental results are
discussed in Section 4. Finally, Section 5 concludes the paper.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, we first describe the system model for beamforming
selection in mmWave mobile communications over the COSMOS
testbed. Then, we show the problem formulation of the beam track-
ing and its mapping into an MAB one.

2.1 System Model
We consider a downlink system with a base station sending data
packets to a mobile UE. This consideration can be applied to a vehic-
ular system, as illustrated in Fig. 1. While we fix the position of the
base station, the mobile UE moves along a random trajectory within

gNB

UE

Figure 1: An illustration of the considered network with a
base station serving a mobile UE.

the COSMOS testbed over the COSMOS XY-table. We asssume that
the base station has𝑀 antennas while the UE has a single antenna.
The 𝑀 × 1 complex channel vector between the base station and
the UE at a specific time slot 𝑡 is denoted as h𝑡 . We choose the
beamforming vectors from a fixed codebook F = {f1, f2, · · · , f𝑚},
where𝑚 indicates the maximum number of available beams in the
codebook. We assume a beamforming vector f𝑡 is selected at time
slot 𝑡 from the codebook F.

The received signal for a given time slot 𝑡 is modeled as

𝑦𝑡 = h𝐻𝑡 f𝑡 𝑥𝑡 +𝑤𝑡 , (1)

where 𝑥𝑡 is the transmitted signal at time 𝑡 with a transmission
power 𝑃 . The𝑤𝑡 term in (1) represents an additive white Gaussian
noise (AWGN) with zero-mean and variance 𝜎2. The received SNR
can be computed as,

SNR𝑡 =
𝑃 |h𝐻𝑡 f𝑡 |2

𝜎2
. (2)

Finally, we apply the Shannon’s modified capacity formula to com-
pute the throughput at time slot 𝑡 as

𝐶𝑡 = 𝐵
𝑆𝑐

𝑆tot
log2 (1 + SNR𝑡 ) , (3)

where 𝐵 is the transmission bandwidth, and 𝑆𝑐 is the number of
subcarriers, for orthogonal frequency divisionmultiplexing (OFDM)
technology, used out of the total 𝑆tot subcarriers.

2.2 Problem Formulation
The problem can be formulated as maximizing the capacity given in
(3), over the𝑇 time slots. Consequently, the optimum beamforming
codeword, f∗𝑡 , is the one that maximizes the following optimization
formula

f∗𝑡 = argmax
f𝑡 ∈F

1
𝑇

𝑇∑︁
𝑡=1

𝐵
𝑆𝑐

𝑆tot
log2

(
1 +

𝑃 |h𝐻𝑡 f𝑡 |2

𝜎2

)
. (4)

Such problem is mapped into an MAB one by first modeling each
beamforming vector in codebook F as an arm of the MAB agent.
Therefore, selecting an action a𝑡 for any time 𝑡 refers to select-
ing the beamforming vector f𝑡 from codebook F by the proposed
MAB solution. Second, the observed reward, denoted as r𝑡 , for
any selected action a𝑡 (i.e., a codebook vector) is equivalent to the
throughput given in (3). These rewards are modeled as random
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samples from the selected beams underlying reward distribution.
Third, the proposed MAB solution based on TS algorithm, produces
a set of selected arms a𝑡 that are equivalent to the desired beams
f𝑡 , and their associated rewards r𝑡 are observed till 𝑡 = 𝑇 . The goal
of the proposed MAB model is to select the optimal beams that
maximize the expected time-average reward i.e., [ 1

𝑇

∑𝑇
𝑡=1 = r𝑡 ].

3 PROPOSED MULTI-ARMED BANDIT
LEARNING MODEL

The proposed MAB beam tracking scheme selects a beam based on
its prior knowledge from the past information. One arm is played by
the agent at each time slot 𝑡 and an associated reward is observed.
The algorithm uses this information about the reward to select the
beam in the next time slot 𝑡 + 1.

Algorithm 1: Thompson sampling based MAB
for 𝑡 = 1 to 𝑇 do

for any beam 𝑏 in F do
// Choose and apply action

Select action a𝑡 based on {𝛼1, 𝛼2, · · · , 𝛼𝑚};
for action a𝑡 observe reward r𝑡 do

// Update distributions

for 𝑏 ∈ 𝑭 do
if a𝑡 = 𝑏 then

𝛼𝑏,𝑡+1 ← 𝛾1𝛼𝑏,𝑡 + 𝛾2r𝑡
else if a𝑡 ≠ 𝑏 and max{𝛾1𝛼𝑏,𝑡 } > 1 then

𝛼𝑏,𝑡+1 ← 𝛾1𝛼𝑏,𝑡
else

𝛼𝑏,𝑡+1 ← 1

Since we consider a mobile environment, assuming fixed knowl-
edge about the beams associated rewardwill result in lower capacity.
Therefore, we need an update of each beams reward. We employ TS,
which is a Bayesian inference algorithm [19], to update the knowl-
edge about the beams associated reward according to [15, 16]. TS
is a posterior sampling technique that requires a suitable prior to
represent the knowledge of an arm’s reward before making an ob-
servation. The main idea is to choose an arm based on its probability
of being the best arm.

We apply Dirichlet distribution [20] to model the Bayesian prior
of the expected reward for each selected arm. The base station
selects a beam based on the reward distribution of each arm from
a knowledge distribution set {𝛼1, 𝛼2, . . . , 𝛼𝑚}, and observes an as-
sociated reward from the reward distribution set {𝜽 1, 𝜽 2, . . . , 𝜽𝑚}.
We assume a feedback link is available that passes the information
about the observed reward to the base station. The base station
continues to apply the Bayesian inference based on the feedback to
update its knowledge of each arm’s mean reward until time 𝑡 = 𝑇 .
In other words, the base station continuously explores for the best
beam and exploits based on its past learning from the feedback,
thus balancing the exploration/exploitation trade-off. The optimal
reward for any time slot 𝑡 is achieved when the selected action a∗𝑡
is equivalent to the optimal codeword f∗𝑡 in (4).

Table 1: Parameters

Parameter Value
No. of codebook beams 16

Tx Antenna M layout (𝜆/2) 16 × 4
Operating Frequency 60GHz
Bandwidth (BW) 983MHz

Used subcarriers (𝑆𝑐 ) 800
Total subcarriers (𝑆tot) 1024

Noise figure 7 dB
No. of time slots 1024
Forget factor (𝛾1) 0.3
Boost factor (𝛾2) 12

Furthermore, we need to keep in mind that we want the algo-
rithm to always keep exploring to meet the dynamic vehicular
demand. To accomplish this, we introduce a “forget" factor 𝛾1, that
ignores the relevance from past occurrences and a “boost" factor
𝛾2, that increases the impact of the most recent observations to
account for the non-stationary behaviour [15]. This makes our pro-
posed MAB algorithm adaptive that keeps track of the changes in a
mobile environment. The proposed TS based MAB algorithm for
beam selection considering a mobile user is given in Algorithm 1.

4 PERFORMANCE EVALUATION
In this section, we describe the experimental results of our proposed
MAB model for beam selection in COSMOS testbed.

4.1 Experimental Setup
In [21], the authors describe the mmWave capabilities of the COS-
MOS testbed and the available open-source tutorials [22]. In this
work, we use the resources of the benchtop mmWave setup of
COSMOS-sb1. More specifically, we use a Xilinx RFSoC evaluation
board connected to a Sivers IMA 57−64GHz transceiver. Each array
is on top of an XY table, enabling movement along the X and Y-axis
and rotation around Z-axis. At the transmitter, we select 16 beams
evenly spread from -45 to 45 degrees, while on the receiver, we
select the beam pointing at 0 degrees. The UE moves at a random
location on the X-Y plane at each time step, while the base sta-
tion remains at a specific location throughout the experiment. The
movement of the considered UE is limited by the XY table, which is
1.3m long. The UE requires around 3.6 seconds to cover this length.
The distance between the transmitter and the UE is approximately
20m, according to the COSMOS lab setup. To calibrate the arrays,
we follow the techniques developed by the authors in [23, 24]. To
estimate the received signal strength, we use a frequency-domain
channel sounder. The transmitter repeats a sequence with cyclic
repeat while the receiver performs correlation for each sequence
to collect the power delay profile from every direction. We provide
the implementation as open-source in [25].

Several benchmarks are considered for comparison to our pro-
posed solution. The Genie-aided solution is equivalent to an opti-
mal scheme that always selects the best beam resulting in highest
capacity. This scheme is considered as the upper bound for our
MAB-based RL model. The static oracle is the other considered
benchmark that conducts an exhaustive search to find the optimal
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Figure 2: Achievable throughput versus group of time slots
(16 × 4 phased array).

codeword at the beginning of each phase and continues to pick that
particular codeword until the next scan. This scheme is equivalent
to what is proposed for beam tracking in 5G NR, i.e., using the
same beam until the next scan [15]. Lastly, the random selection is
considered as the lower bound that has no prior knowledge of the
beam quality and arbitrarily selects one at each time instance. The
parameters considered for our experiment are given in Table 1.

4.2 Experimental Results
Fig. 2 shows the performance of the proposed MAB beam selection
model with comparison to the other benchmarks. We consider 1024
time slots, each of which are approximately 3.5 ms long. We parti-
tion the available time slots into small groups of 100 instances, and
average over each of them to evaluate the throughput performance.
As shown in Fig. 2, the proposed MAB model can achieve a higher
throughput than the static oracle and random selection benchmarks,
thanks to its accurate learning capability of the best beams. This is
because, unlike our MAB beam selection model, the static oracle or
the random selection benchmark cannot track the optimal beams at
every time slot and hence, achieves lower throughput. In addition,
our proposed MAB beam selection scheme achieves a throughput
of 700 Mb/s, which is 92% compared to the capacity of 760 Mb/s
achieved by the Genie aided solution.

Fig. 2 also shows that it takes a few iterations (i.e, 4 groups of time
slots) before the accomplished throughput starts to be monotoni-
cally increasing. This is an indication that the MAB-based learning
model takes a few iterations to learn the dynamic environment
and allocates the mmWave beamforming vectors accordingly. The
random selection lower bound performs worst as it has no prior
knowledge of the good beams and arbitrarily picks one at each time
instance.

Fig. 3 shows the selected beam index by our proposed MAB
solution approach for the given time slots. As shown in Fig. 3, the
15-th beam index is selected more frequently until the 550-th time
slot due to its high associated reward. However, as the UE moves
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Figure 3: Selected beam index for proposed Thompson sam-
pling based MAB scheme.
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Figure 4: Achievable throughput at each time slot (16 × 4
phased array).

and the reward associated with 15-th beam index deteriorates, the
algorithm responses to the environmental change by selecting beam
index 1 for most of the remaining time slots. Also, there are some
instances when the proposed scheme selects some other beams,
such as 6-th beam index at 184-th time slot, 9-th beam index at
500-th time slot and 8-th beam index at 920-th time slot. This is a
key feature of the considered TS method, demonstrating that while
beams with currently high predicted rewards are more likely to
be chosen, other beams may also be explored at some instances,
even if they have a lower associated reward i.e., exploration versus
exploitation.

The impact of selecting such beams with lower associated reward
is demonstrated in Fig. 4, where we show the throughput achieved
at every time slot by the proposed MAB model. The lower spikes
produced by our MAB approach at some instances indicate that
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a less significant throughput was achieved due to the selection of
beams which are not optimal for those locations. Nonetheless, over
90% of occurrences indicate a high throughput, implying that the
proposed beam tracking model can select the good beams more
often due to its improved learning accuracy.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we have proposed a multi-armed bandit learning
model for tracking of mmWave bramforming vectors in mobile
environment. The proposed model was experimentally evaluated
using the mmWave COSMOS lab. The proposed MAB beam track-
ing model applies Thompson sampling to select the best beam that
maximizes the capacity for a mobile user. Experimental results vali-
dated the efficacy of the proposed model with comparison to other
benchmarks. We have shown that the proposed learning model
provides 92% of the data rate achieved by a Genie-aided benchmark
within a few learning iterations. The solution was applied for a
single-user scenario considering two SDRs, where one acted as the
base station and the other as the UE. Considering multiple dynamic
UEs for beam tracking in mmWave COSMOS environment is a
future work of this paper.
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