Check for
Updates

Experimental Evaluation of Virtual Reality
Applications Running on Next-Gen Network Scenarios
with Edge Cloud Assistance

Shalini Choudhury

shalini@winlab.rutgers.edu
WINLAB, Rutgers University
North Brunswick, New Jersey, USA

Ivan Seskar
seskar@winlab.rutgers.edu
WINLAB, Rutgers University
North Brunswick, New Jersey, USA

ABSTRACT

Volumetric video is an emerging key technology for immer-
sive representation of 3D spaces and objects. Rendering vol-
umetric video at client’s end requires significant compu-
tational power which is challenging especially for mobile
devices. One of the ways to mitigate this is to offload the
rendering at the edge cloud and stream the video and audio
to the thin client. Remote edge-cloud rendering may increase
the end-to-end delay of the system due to the added network
and processing latency which is greater than local render-
ing system. We investigate network latency in edge-based
remote rendering over NextG networks and identify the bot-
tleneck deteriorating the application performance. Further,
we delve into the current state of the art and challenges of
performing rendering remotely at the edge cloud and study
the associated problems that need to be addressed in order
to realize remote augmented reality(AR)/virtual reality (VR).
Our prototype implementation shows effectiveness of main-
taining the application QoE by prioritizing data at the level
of a sub-flow and reducing the motion-to-photon latency.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

WINTECH ’22, October 17, 2022, Sydney, NSW, Australia

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9527-4/22/10...$15.00
https://doi.org/10.1145/3556564.3558235

16

Jakub Kolodziejski

jkol@winlab.rutgers.edu
WINLAB, Rutgers University
North Brunswick, New Jersey, USA

Dipankar Raychaudhuri
ray@winlab.rutgers.edu
WINLAB, Rutgers University
North Brunswick, New Jersey, USA

CCS CONCEPTS

« Networks — Network performance evaluation; Net-
work experimentation; - Computer systems organiza-
tion — Real-time systems.

KEYWORDS

Virtual Reality, edge-computing, remote rendering, latency,
experiments, wireless networks and communications

ACM Reference Format:

Shalini Choudhury, Jakub Kolodziejski, Ivan Seskar, and Dipankar
Raychaudhuri. 2022. Experimental Evaluation of Virtual Reality
Applications Running on Next-Gen Network Scenarios with Edge
Cloud Assistance. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (WiNTECH °22).
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3556564.
3558235

1 INTRODUCTION

AR/VR technologies are gaining momentum in view of the
anticipated impact on various industries including educa-
tion sector [7, 20], medical training [18], military operation
[11] and entertainment [15] and smart city [4, 13] to name
a few. There have been considerable advances in both the
AR/VR technology domains as well as platform network
and computing technologies, and these advances have help
create new solution verticals bringing additional immersive
experiences at the client’s end. Virtual Reality (VR) is an
artificial rendering of an environment making use of audio
and visual fields possibly supplemented with other sensory
devices [1]. Traditionally, rendering can be performed at the
client’s side leveraging a compute platform connected to the
VR headset systems such as Oculus Rift or HTC Vive [10]. In
this scenario a high-quality graphics is achieved when the
head-mounted display (HMD) is tethered to a powerful GPU,

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3556564.3558235
https://doi.org/10.1145/3556564.3558235
https://doi.org/10.1145/3556564.3558235
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3556564.3558235&domain=pdf&date_stamp=2022-10-26

WINTECH ’22, October 17, 2022, Sydney, NSW, Australia

"L~
BN
(. |
Client's VR Headsgt

I N 3
Displaying Tracking

MEC Server

Encoding |
Head and » L J
Body Motion

| epPu Rendering
(Decoding } Game Processing

[UserPlane |

Ghe ["Controlling |
4 | commands
Benbibndsiict

Figure 1: VR remote rendering at the edge cloud via
mobile network

thus, limiting the users’ mobility to narrow head movement.
Untethered HMDs, such as the Samsung Gear VR or Google
Cardboard, allow the user to freely move around while wear-
ing the device, but they do not provide translational position
tracking and the mobile GPUs force design compromises
on rendering quality. However, it is possible to improve the
graphics quality on low powered, untethered HMDs by of-
floading the rendering task to a remote compute platform
[21]. Remote rendering serves audio and video content from
a VR application to a client, encodes the rendered frames
and system audio and sends the frames and audio files to
the client for decoding and display. The server also accepts
motion coordinates and other control data from the client
device as shown in figure 1. There is a stringent low latency
requirement for remote rendering in order to provide an
acceptable user experience. A popular application of remote
rendering is cloud gaming and depending on the type of
game its latency requirement typically ranges between 60
and 120ms (only includes game action) [8]. To address the
low latency VR gaming requirement, the remote rendering
was performed at the Mobile Edge Cloud (MEC).However,
even rendering at MEC couldn’t comply to the low latency
requirement of the VR applications.

2 BACKGROUND AND RELATED WORK
2.1 Capacity Limitation

Current 5G system design efforts aim to support the enor-
mous growth in data rate requirements from resource-hungry
applications [19]. This will be realized through increased
bandwidth and improved spectral efficiency. Considering
VR technology, a study [2] reveals that with each human
eye being able to see up to 64 million pixels at a certain mo-
ment, and up to 15.5 billion pixels/s are needed to experience
real-like view. To be able to facilitate such an experience a
required bit rate of up to 1 Gb/s is a necessity. The values

17

Choudhury, et al.

above are clearly unrealizable with the current state-of-the-
art access network architecture. Additionally, to address the
requirement of real-time response for dynamic and inter-
active collaborative VR applications, there is a significant
ongoing research effort aimed at reducing bandwidth needs
in mobile VR. In a previous study [16] in the context of 360°
immersive VR video streaming, head movement prediction is
used to spatially segment raw frames and only deliver their
field of view (FOV) portion in HD. Similarly in [9], splitting
the video into separate grid streams and serving grid streams
corresponding to the FOV is attempted. Such a foveated ren-
dering approach reduces the data rate requirement to about
100 Mb/s for a VR system with less than 10 ms round trip
time including rendering in the cloud. However, even if we
allow only 5 ms latency for generating a foveated 360° trans-
mission, existing networks cannot serve 100 Mb/s to multiple
users VR application with reliable round-trip times of less
than 5 ms. Thus, there is a gap between the network require-
ment of a VR application which necessitates careful design
of the NextG (5G and beyond) access.

2.2 Latency Constraint

VR applications demand stringent latency requirements to
be able to provide a pleasant immersive experience. The hu-
man eye needs to perceive accurate and smooth movements
with motion-to-photon (M2P) latency of less than 20ms [6]
to avoid motion sickness. However, with the state-of-the-
art network the M2P requirement is violated. The challenge
for bringing M2P latency down to acceptable levels starts
by first understanding the various delay components that
contribute to the latency budget as shown in figure 2. Delay
contributions to the end-to-end wireless mobile VR latency
include sensor detection and action capture; computation,
rendering and encoding; framing and streaming; network
transport; terminal decoding; and screen refresh. Sensor de-
lay contributes less than 1 ms, and display delay is expected
to drop to 5 ms [14], which leaves 14 ms as delay budget for
computing and communication. Both computing and com-
munication delay serve as delay bottlenecks in VR systems.
Heavy image processing requires high computational power
that is often not available in the local HMD GPUs. Offloading
computing tasks for remote rendering relieves the comput-
ing burden from the users’ HMDs at the expense of incurring
additional communication delay in both directions. Current
communication delay (edge of network to server) can reach
40 ms [5], which clearly exceeds the less than 20ms MTP
latency budget.

2.3 Reliability Requirement

VR applications need to consistently meet stringent latency
and reliability constraints. Packet drops need to be kept to a

Experimental Evaluation of Virtual Reality Applications Running on Next-Gen Network ScenariosWiitiT Edgt Qo @t fudséstanc2022, Sydney, NSW, Australia

VR Game Server:

Open VR App

Video Encoding
Audio Encoding

MEC Server

¢

Wireless network

VR Client:
FOV Change
Location Change
Movements

D
> (@l v~ Hvo

_{ T1: user motion
detected

Compute: =
Lastest posture &
location update

Al PR T2 : network
6 T3: rendering a view

latency

T4: Framet
encoding Y. T5 : network

DS latency

A" X6 : Frame
dencoding
T7 : Frame

display

Figure 2: Components of motion-to-photon (M2P) la-
tency: user motion is detected at T1, after T2 network
delay, the user motion reaches server, and the render-
ing occurs for time T3, followed by frame encoding T4.
Incurring network delay T5, encoded frames reaches
the client and frame decoding happens for time T6 and
displayed after T7.

minimum for enhanced user experience. In order to be able
to deliver degradation-free Immersive VR experience, error
robustness guarantee in different layers, spanning from the
video compression techniques in the coding level to the video
delivery schemes in the network level is mandatory. This
can be guaranteed with ultra-reliable VR service, but the fact
is that enhancing reliability always comes at the price of
using more resources and may result in additional delays.
Another important reliability aspect in current state-of-the-
art network is that a maximum packet error rate (PER) of
10-5 is specified in the 3GPP standard. This correlates with
the VR/AR tracking messages that have to be delivered with
ultra-high reliability to ensure smooth VR service.

Previous studies explore solutions to improve the perfor-
mance of the current VR system [2, 9, 16]. To provide high-
quality VR on a mobile device, [3] presents a pre-rendering
and caching design. Parallel rendering and streaming mech-
anism are adopted to reduce the add-on streaming latency,
by pipe lining the rendering, encoding, transmission, and
decoding procedures [12]. This work [10] presents a collabo-
rative rendering method to reduce overall rendering latency
by offloading to an edge computing node. Clearly, in the cur-
rent state-of-the-art situation ultra-low latency VR applica-
tion not only relies on video frame pre-rendering, viewpoint
prediction or parallel rendering but also relies on network
latency budget in order to address the low end-to-end M2P
latency requirement. The latency budget for the round-trip
network transport delay in M2P is considered to be around

18

5 to 7ms [14]. However, the current network architecture is
unable to provide the higher bit rates and deliver less than
20ms M2P latency.

As part of our efforts we address some of the challenges
that have been identified above in this work, including:

o Building a framework which supports and facilitates
experimentation to study the components of network
latency and identify the network parameters degrading
VR application performance.

e Showcasing the framework’s capabilities by designing
an experiment where the VR application traffic subflow
was prioritized to achieve gain in quality-of-experience
(QoE).

e Development of a framework allowing VR tracking

messages’ reliable delivery over TCP, while streaming
the audio and video frames over UDP to reduce re-
source consumption and adhere to the latency budget
for smooth VR service.
To provide a description of the framework and experi-
mentation and analyze the impact of network parame-
ters on the VR application, this paper is organized as
follows: Section 3 discusses the system architecture of
the VR prototype setup, Section 4 provides a detailed
overview of how the measurements were conducted,
results and discussion is given in Section 5, future
experimentation is discussed in Section 6 and finally
Section 7 concludes the paper.

3 SYSTEM ARCHITECTURE

In this section the prototype framework is discussed, to en-
able several experiments for emulating diverse network con-
ditions and understanding how network conditions affect
the performance of remotely rendered VR game application.
A simplified version of this architecture is shown in figure 3.

3.1 MEC server architecture

The server is a windows 10 machine backed by NVIDIA Vir-
tual GPU technology. NVIDIA’s CloudXR is used for stream-
ing virtual reality from any OpenVR application on the server
to the client device such as a VR head-mounted display. The
CloudXR presents a virtual HMD driver to SteamVR on the
server side. This allows existing OpenVR applications to
see the HMD as being locally connected, and thus does not
require any changes at the application level. The CloudXR
server receives audio and video frames from the OpenVR
application and subsequently encodes and transports them
to the CloudXR client. The server also accepts motion and
control data from the client device. The application that will
be streamed on the client’s side is launched on the server
and the application typically used for this work was a VR
game named Open Saber discussed later in this section .

WINTECH ’22, October 17, 2022, Sydney, NSW, Australia

[vRap |
A

Audio
Video
Haptics

Pose
Controller liP
Video feedback

Cloud XR
Server

Choudhury, et al.

Client (VR
Backpack)

Figure 3: VR Prototype System Setup

3.2 Client architecture

The Windows 10 client decodes and renders content that is
sent from the server and collects motion and controller data
that is sent to the server. The client is connected to an HTC
Vive HMD, a pair of controller to track client motions and
has an installation of Steam and SteamVR tools. When the
client first connects to the server it reports its specifications
such as refresh rate and resolution to the server which is then
provided to the open VR application. Software development
kit (SDK) at the client’s end streams graphics-intensive VR
content by accessing the graphics server and streaming over
a radio signal to the thin client. The SDK enables mobile
access to graphics-intensive applications on relatively low-
powered graphics hardware.

3.3 Setting up the network

The Server is on the wired network and the client is unteth-
ered and wirelessly connected. To avoid packet drops and
ensure low latency the client uses Dynamic Frequency Selec-
tion (DFS) channel for the wifi network. DFS is a WiFi func-
tion that enables WLANSs to use 5 GHz frequencies. One main
benefit of using DFS channels is to utilize under-serviced
frequencies to avail less interference and better wifi perfor-
mance. A channel availability check was executed during the
boot process of the access point (AP) and there after Chan-
nel 100 with associated frequency of 80 MHz was selected.
With this approach a link-speed of 800 Mbps was achieved
between the VR server and client. Close enough to the 5G
network’s 1 Gb/s bitrate requirement and can achieve peak
frame rate of 90 frames per second (fps) for the Open Saber
VR game. We initially setup an efficient network that would

19

support enhanced gaming experience. Following which net-
work parameters are varied parametrically one at a time to
identify key influence factors for application QoE

3.4 Portable COSMOS Node: Access Point

As seen from figure 3 the yellow box is a COSMOS testbed
[17] node which is positioned single hop away from both
the VR Client and MEC server. The COSMOS node acts as
a bridging device and AP through which the client traffic
is steered towards the game server and includes Ethernet
connectivity to introduce network fluctuations beyond what
a single hop network would experience. This COSMOS node
is imaged with network emulation (NetEm) functionalities
to achieve traffic control facilities and add or reduce delay,
packet loss, packet reordering and other characteristics to
traffic outgoing from the client. As shown in figure 3 the
traffic outgoing from etho0 interface of the COSMOS node
has injected NetEm functionalities.

3.5 Game Selection

We carefully selected the following two representative VR
games for our experiments

e Open Saber is a rhythm VR music game. In this game,
players slash the boxes, which are flying toward them.
We chose Open Saber because it is a latency-sensitive
game with faster pace. We conjecture that its gaming
experience is affected by the latency

e Together VR is a leisure interactive game. In this
game, players experience everyday life with an avatar.
This game has the slowest pace with simple game
scenes
The experimental measurements presented in this pa-
per is based on Open Saber game since it is complex

Experimental Evaluation of Virtual Reality Applications Running on Next-Gen Network ScenariosWiitiT Edgt Qo @t fudséstanc2022, Sydney, NSW, Australia

in both spatial information and temporal information
domain.

4 MEASUREMENT OVERVIEW

The majority of the end-to-end latency comes from the net-
work [22]. Additionally, the network will be strained even
more, if it has to support high resolution HMDs in the fu-
ture. Hence, in this section we conduct several experiments
emulating diverse network conditions to understand how
network variability affect the objective performance of the
VR gaming. The network parameters varied in the gaming
prototype are listed in table 1. Table 2 provides baseline mea-
surements of Open Saber VR game quality-of-service (QoS)
parameters. The baseline measurements were conducted
while playing the game over public wifi and then over DFS
wifl. The QoS parameter measurements over public wifi gives
a clear idea that the Open Saber VR game was almost un-
playable. However, an efficient QoE was achieved when the
game was played over the DFS wifi.

In order to evaluate how network parameters influence VR
application QoE, we start regulating the parameters at the
AP. The Cloudxr sdk application at the clients end record run-
time QoS statistics. The API call to log the QoS parameters is
executed by providing launch options from the client console
and the measurements are accessed from the client’s end.

In our prototype implementation given in figure 3, one
network parameter is adjusted at the AP one at a time, for
instance when varying the bandwidth, we do not add addi-
tional delay nor inject packet losses. As seen from table 1
we vary the following parameters throughout our measure-
ments:

e Bandwidth: The bandwidth (BW) is varied from 400 -
900 kbps during the game run-time. The effect of rate
limiting impact on QoS parameters including frames
per second (fps), average video bit rate, frame time
CXR and received packets are recorded and the results
are discussed in section 5.

e Packet Loss & Packet Re-ordering Rate: We vary
the packet loss and reordering rate in the rage 2%, 4%,
6%, 8%, 10%. We drop and reorder packets in only one
direction, specifically when packets being sent from
the client to server.

o Delay: In our experiments one-way delay is varied
between 0 - 500 ms. Similar to packet loss rate, the
delay is also injected at the AP when traffic is sent
from the VR client to the server.

5 RESULTS AND DISCUSSION

The results obtained by varying the network parameters in
the prototype framework is discussed in this section:

20

Table 1: Network Parameter Varied in the Experiments

Parameter Variation Value
Delay 0 - 500ms
Packet drop 1-10%
Packet reordering 1-10%
Bandwidth 400-900kbps

Table 2: VR game baseline performance over different
network

QoS Parameter Public Wifi DFS Wifi

Average Video Bitrate (kbps) 525 3200
Frames per sec (fps) 29-31 90
Frame Time (ms) 62 34
MZ2P Latency (ms) 163 70
Packet Re-Tx (%) 8.1-8.7 0

5.1 Frame rate and frame time are sensitive
to uplink network bandwidth
bottleneck

Varying the network bandwidth in the range 400 to 900 kbps,
we evaluate the effect on the following VR game application
parameters:

Video bitrate - Videos to stream steadily, the video resolu-
tions have to match with the right video bitrate

Frame rate - Frame rate also expressed in frames per sec-
ond (FPS) is the frequency at which consecutive frames are
captured or displayed.

Frame time - It is the one way latency from when the player
movement leaves the client library to when it is received at
the server.

In figure 4 it is seen that a bandwidth bottleneck (rate
limiting) is injected in the network for uplink control traffic
(control requests and client motions). Due to this limitation,
the average video bitrate at the client’s end initially is 750
kbps, which corresponds to medium quality video with reso-
lution of 640 x 360. However, when the bottleneck is relaxed
beyond 600 kbps, 80% gain is observed in average video bi-
trate and there is no further improvement in both the QoS
parameters (received packets and avg video bitrate). From
figure 4a it can be concluded that the maximum average
video bitrate required for the Open Saber game is 3200 kbps
which corresponds to HD video quality with 1280 x 720 reso-
lution. From figure 4b we notice an interesting phenomenon
that when bandwidth bottleneck (rate limiting) is injected
for uplink control traffic the frame rate is less than 78 fps. A
substantial improvement in fps is seen as we keep increas-
ing the bandwidth, however after 600 kbps the fps shows

WINTECH ’22, October 17, 2022, Sydney, NSW, Australia

Choudhury, et al.

3500

3000

@
8
2 14000 2500 2
x @
E 12000 2000 ®
< 10000 5
3
§ 8000 1500 g
& 6000 1000 En
4000 <
500
2000
0 0

300 400 500 600 700

kbps-> Rate limiting

800 900 1000

Received Packets (Cumulative) —@— Average Video Rate (kbps)

90 80

88 70

26 60

50
84

FPS

40

82
30

80 20

78 10

Frame Time CXR (ms)

76 0
300 400 500 600 700 800 900 1000
kbps -> Rate limiting

FPS =@ Frame time CXR (ms)

Figure 4: Effect of Bandwidth Bottleneck on a)Left:Avg video bitrate & Received packets - b)Right:Frames per

second & Frame Time

w oW A
g o v o

[y
(5,

M2P latency (ms)
N N
[=]

e— M2P latency for pktloss (ms) ====M2P latency for pkt reordering (ms)

0 2 4 6 8

~ Loss/Reordering %

10 12

Figure 5: Effect of Packet loss/reordering on Motion-
to-Photon Latency

no further improvement. The frame time (client to server
delay) gradually decreases with increase in the uplink band-
width and after 700 kbps the frame time stabilizes at 40ms.
Thus, a significant observation made from this experiment is
that the uplink bottleneck has an impact on the frame time
latency which effects the number of frames (fps) received
at the clients due to delayed rendering of audio and video
frames at the VR game server. However, the average video
bitrate downlink is not significantly impacted by the uplink
bottleneck.

5.2 Increase in latency budget due to
network packet loss and re-ordering

Figure 5 compares M2P latency for packet loss and packet
reordering events. In our prototype packets are dropped dur-
ing data transmission from the client to the server. Similarly,

21

packet reordering is a common phenomenon in the internet
and it is evident from figure 5 that it impacts M2P latency
either more or equal to packet loss phenomenon because
reordering not only affects the performance of the network
but also the packets receiver.

Another observation that can be drawn comparing fig-
ure 4b and figure 5 is that the bandwidth bottleneck ef-
fects VR gaming latency way more significantly than packet
loss/reordering events.

1200 80
70
- 1000
E 60
E 800 50 .
L %
+* 600 40 =
= &
° 30
*E 400
S 20
200 10
0 =—@— Control Latency (ms) —@— Re-Tx%
0 100 200 300 400 500 600

NetEm Delay (ms)

Figure 6: Effect of delay on control latency & retrans-
mission

5.3 Effect of packet retransmission on
control latency and streaming latency

The relation between injected NetEm delay and its effect
on control and streaming latency is shown in figure 6 and
7. Before discussing the control and streaming latency, it
is noted that VR gaming uses real time streaming proto-
col (RTSP) as the application-level network protocol that

Experimental Evaluation of Virtual Reality Applications Running on Next-Gen Network ScenariosWiitiT Edgt Qo @t fudséstanc2022, Sydney, NSW, Australia

1200 80
.
2 1000 70
= 60
© 800
< 50 ©
= x
S 600 40 H
0o Q
c -4
E 400 30
3 20
g 200 10
0 ®— Streaming Latency (ms) —@—Re-Tx%
0 100 200 300 400 500 600

NetEm Delay (ms)

Figure 7: Effect of delay on streaming latency

transfers real-time data to and from client device by com-
municating directly with the server streaming the VR game.
RTSP operates over user datagram protocol (UDP) when
streaming real-time data like game audio and video traffic.
The control traffic (includes control request operations and
the HMD/controller motions) is sent over transmission con-
trol protocol (TCP). In this experiment as we inject delay
over the control traffic flow, the current value of TCP retrans-
mission timer is violated and TCP times out and retransmit
the outstanding segments to ensure reliability. This event
leads to increase in % retransmission depicted by the green
curve in figure 6. Hence, as expected both the % retrans-
mission and control latency share a linear relationship with
the delay parameter. However, an interesting observation
is noted in figure 7 where the injected delay increases %
retransmission and a similar trend is observed in the stream-
ing latency curve even though the audio and video streams
are sent over connectionless UDP. This phenomenon can
be explained with the help of figure 2. The client head and
controller movements are sensed and sent to the MEC game
server and frames are updated in response to the user in-
teraction. This event spans over time T1 + T2 + T3 + T4
as shown in figure 2. Considering delay is injected in the
path of control traffic, the latency component T2 surges, im-
pacting T3 and T4. Thus, resulting in delayed VR audio and
video frames update at the VR game server. Specifically, the
latency budget for sending the client motion and processing
VR content based on client’s motion request in the server
is exceeding, adding to the streaming latency from server
to the client. Thus, similar trend in streaming latency and %
retransmission is observed on varying network delay.

5.4 Prioritizing control flow to achieve
reduced retransmission and latency

From the previous subsection we took cognizance of the fact
that increase in network delay has a positive correlation with
control latency and the rate of retransmission. Additionally,

22

1200 80

70

- 1000
.g. 60
Z 800
s 50 e
3 #— Streaming Latency (ms) —#—Re-Tx% *
5 e00 0 &
g 30 &
E 400 .
])i . 20
= L]
n 200 r 10

:,_.,‘_‘___./*’_"

0 0
0 10 20 30 40 50 60

NetEm Delay (ms)

Figure 8: Effect low latency control flow and reduced
retransmission rate on streaming latency

the rate of increase in retransmission is same as rate of in-
crease in audio and video streaming latency. Hence, in this
experiment an attempt was made to reduce the injected delay
on the control traffic and study the behaviour of the stream-
ing latency. Injecting reduced delay in the control traffic flow
depicts that the control flow is scheduled on a low latency
network slice (figure not included due to space constraint).
This approach reduces retransmission rate and as seen from
figure 8, this retransmission rate reduction also reduces the
streaming latency of the VR game by quick update of client
motion on the game server. This allows us to conclude that
by prioritizing a traffic sub-flow, we can achieve reduced
Motion-to-Photon latency and thus maintain the application

QoE.
6 FUTURE EXPERIMENTATION

Our future work will focus on implementing VR applications
over a 3GPP compliant standalone 5G network. The exper-
iment will be setup on COSMOS testbed [17] with Open
Radio Access Network (O-RAN), CORE, COTs UE enacting
as the VR client. COSMOS testbed will support prototyp-
ing platform for 5G and comprises of the 5G-NR protocol
stack, including standard-compliant implementations of both
gNB and UE. Initially, our effort will be to perform an inter-
operability test of 5G NR with a COTs VR client and then
proceed with quantifying and benchmarking performance of
VR applications. Key performance parameters of 5G network
- resource utilization in time, in frequency, the modulation
and coding scheme (MCS), and the transmit and receive gains
of the RF front-end, will be regulated to obtain the effect of
the system throughput. Throughput and latency profiling
for an application involves numerous parameters which we
will aim to achieve through a practical system setup in COS-
MOS 5G testbed for our future work. In the future work
we aim to evaluate the system based on multiple clients ac-
cessing the network and setting up multiple PDU sessions

WINTECH ’22, October 17, 2022, Sydney, NSW, Australia

simultaneously. To further enable traffic sub-flow priority
over a standard complaint 5G network, COSMOS platform
supports UE with multiple slices. The network slices will be
defined within a public land mobile network (PLMN) and it
will incorporate the RAN and Core components. Thus, we
will assign different traffic sub-flows of the VR application
over multiple slices to maximize the QoS requirement. For
example we can enable control traffic flow over ultra-reliable
low latency communication (URLLC) and the data traffic
flow over enhanced mobile broadband (eMBB) slices.

7 CONCLUSION
This work highlights the challenges degrading VR appli-

cation performance and analyses the QoS parameters ef-
fected by network variability. Even though the rendering is
offloaded to the edge of the network, achieving M2P latency
of less than 20ms is not practical with current state-of-the-
art network. A VR game prototyping framework has been
introduced where initially the network supports efficient VR
gaming experience but gradually network parameters are
adjusted one at a time at the access point to identify the key
network parameters that influence the VR application QoE.
Further, from the experiments conducted it was concluded
that if the control traffic sub-flow was prioritized and sched-
uled over a low latency network slice the VR game streaming
latency can be significantly reduced to approach the desired
MZ2P latency.

ACKNOWLEDGMENTS

This work was supported in part by a research gift from Ac-
centure. We would like to thank Dr. Sanjoy Paul, Accenture
Technology Labs, for his comments and thoughtful sugges-
tions in this project

REFERENCES

[1] Christoph Anthes, Rubén Jests Garcia-Hernandez, Markus Wiede-
mann, and Dieter Kranzlmiiller. 2016. State of the art of virtual reality
technology. In 2016 IEEE aerospace conference. IEEE, 1-19.

Ejder Bastug, Mehdi Bennis, Muriel Médard, and Mérouane Debbah.
2017. Toward interconnected virtual reality: Opportunities, challenges,
and enablers. IEEE Communications Magazine 55, 6 (2017), 110-117.
Kevin Boos, David Chu, and Eduardo Cuervo. 2016. Flashback: Im-
mersive virtual reality on mobile devices via rendering memoization.
In Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services. 291-304.

[4] Joel Carneiro, Rosaldo JF Rossetti, Daniel C Silva, and Eugénio C
Oliveira. 2018. BIM, GIS, IoT, and AR/VR integration for smart main-
tenance and management of road networks: a review. In 2018 IEEE
international smart cities conference (ISC2). IEEE, 1-7.

Christina Chaccour, Mehdi Naderi Soorki, Walid Saad, Mehdi Bennis,
and Petar Popovski. 2022. Can terahertz provide high-rate reliable
low latency communications for wireless VR? IEEE Internet of Things
Journal (2022).

—
w
=

23

Choudhury, et al.

[6] David Goedicke, Alexandra WD Bremers, Hiroshi Yasuda, and Wendy
Ju. 2021. Xr-oom: Mixing virtual driving simulation with real cars and
environments safely. In 13th International Conference on Automotive
User Interfaces and Interactive Vehicular Applications. 67-70.

Sandra Helsel. 1992. Virtual reality and education. Educational Tech-
nology 32, 5 (1992), 38-42.

Min Huang and Xu Zhang. 2018. MAC scheduling for multiuser wire-
less virtual reality in 5G MIMO-OFDM systems. In 2018 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops).
IEEE, 1-6.

Ran Ju, Jun He, Fengxin Sun, Jin Li, Feng Li, Jirong Zhu, and Lei Han.
2017. Ultra wide view based panoramic VR streaming. In Proceedings
of the Workshop on Virtual Reality and Augmented Reality Network.
19-23.

Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, Ningwei Dai, and Hung-
Sheng Lee. 2019. Furion: Engineering high-quality immersive virtual
reality on today’s mobile devices. IEEE Transactions on Mobile Com-
puting 19,7 (2019), 1586-1602.

Ajey Lele. 2013. Virtual reality and its military utility. Journal of
Ambient Intelligence and Humanized Computing 4, 1 (2013), 17-26.
Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong
Zhang, Lintao Zhang, and Marco Gruteser. 2018. Cutting the cord: De-
signing a high-quality untethered vr system with low latency remote
rendering. In Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services. 68—80.

Zhihan Lv, Tengfei Yin, Xiaolei Zhang, Houbing Song, and Ge Chen.
2016. Virtual reality smart city based on WebVRGIS. IEEE Internet of
Things Journal 3, 6 (2016), 1015-1024.

Simone Mangiante, Guenter Klas, Amit Navon, Zhuang GuanHua, Ju
Ran, and Marco Dias Silva. 2017. Vr is on the edge: How to deliver 360
videos in mobile networks. In Proceedings of the Workshop on Virtual
Reality and Augmented Reality Network. 30-35.

Wendy Powell, Tom Alexander Garner, Seth Shapiro, and Bryce Paul.
2017. Virtual reality in entertainment: The state of the industry. (2017).
Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. 2016. Op-
timizing 360 video delivery over cellular networks. In Proceedings of
the 5th Workshop on All Things Cellular: Operations, Applications and
Challenges. 1-6.

Dipankar Raychaudhuri, Ivan Seskar, Gil Zussman, Thanasis Korakis,
Dan Kilper, Tingjun Chen, Jakub Kolodziejski, Michael Sherman, Zoran
Kostic, Xiaoxiong Gu, et al. 2020. Challenge: COSMOS: A city-scale
programmable testbed for experimentation with advanced wireless.
In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking. 1-13.

Greg S Ruthenbeck and Karen J Reynolds. 2015. Virtual reality for
medical training: the state-of-the-art. Journal of Simulation 9, 1 (2015),
16-26.

José Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck. 2017.
Fog computing: Enabling the management and orchestration of smart
city applications in 5G networks. Entropy 20, 1 (2017), 4.

Serkan Solmaz, Jessica L Dominguez Alfaro, Pedro Santos, Peter
Van Puyvelde, and Tom Van Gerven. 2021. A practical development of
engineering simulation-assisted educational AR environments. Educa-
tion for Chemical Engineers 35 (2021), 81-93.

Marko Viitanen, Jarno Vanne, Timo D Haméladinen, and Ari Kulmala.
2018. Low latency edge rendering scheme for interactive 360 degree
virtual reality gaming. In 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 1557-1560.

Zhehui Zhang, Shu Shi, Varun Gupta, and Rittwik Jana. 2019. Analysis
of cellular network latency for edge-based remote rendering streaming
applications. In Proceedings of the ACM SIGCOMM 2019 Workshop on
Networking for Emerging Applications and Technologies. 8—14.

[7

—

8

—

[9

—

[10]

[11]
[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

	Abstract
	1 Introduction
	2 BACKGROUND AND RELATED WORK
	2.1 Capacity Limitation
	2.2 Latency Constraint
	2.3 Reliability Requirement

	3 System Architecture
	3.1 MEC server architecture
	3.2 Client architecture
	3.3 Setting up the network
	3.4 Portable COSMOS Node: Access Point
	3.5 Game Selection

	4 Measurement Overview
	5 Results and Discussion
	5.1 Frame rate and frame time are sensitive to uplink network bandwidth bottleneck
	5.2 Increase in latency budget due to network packet loss and re-ordering
	5.3 Effect of packet retransmission on control latency and streaming latency
	5.4 Prioritizing control flow to achieve reduced retransmission and latency

	6 Future Experimentation
	7 Conclusion
	Acknowledgments
	References

