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Abstract

Modern vehicles use automated driving assistance systems (ADAS)
products to automate certain aspects of driving, which improves
operational safety. In the U.S. in 2020, 38,824 fatalities occurred due
to automotive accidents, and typically about 25% of these are
associated with inclement weather. ADAS features have been shown
to reduce potential collisions by up to 21%, thus reducing overall
accidents. But ADAS typically utilize camera sensors that rely on
lane visibility and the absence of obstructions in order to function,
rendering them ineffective in inclement weather. To address this
research gap, we propose a new technique to estimate snow coverage
so that existing and new ADAS features can be used during
inclement weather. In this study, we use a single camera sensor and
historical weather data to estimate snow coverage on the road.
Camera data was collected over 6 miles of arterial roadways in
Kalamazoo, MI. Additionally, infrastructure-based weather sensor
visibility data from an Automated Surface Observing System (ASOS)
station was collected. Supervised Machine Learning (ML) models
were developed to determine the categories of snow coverage using
different features from the images and ASOS data. The output from
the best-performing model resulted in an accuracy of 98.8% for
categorizing the instances as either none, standard, or heavy snow
coverage. These categories are essential for the future development of
ADAS products designed to detect drivable regions in varying
degrees of snow coverage such as clear weather (the none condition)
and our ongoing work in tire track detection (the standard category).
Overall this research demonstrates that purpose-built computer vision
algorithms are capable of enabling ADAS to function in inclement
weather, widening their operational design domain (ODD) and thus
lowering the annual weather-related fatalities.

Introduction

According to the Fatality Analysis Reporting System (FARS)
encyclopedia by the National Highway Traffic Safety Administration
(NHTSA), there were nearly 103,172 fatal crashes from the year
2018-2020 in the United States [1]. Out of these fatal crashes, nearly
10% were related to inclement weather such as snow, ice, sleet, and
rain. Similarly, during 2007-2016, weather-related vehicular crashes
accounted for nearly 21% of all reported crashes annually resulting in
16% of crash fatalities and 19% of crash injuries throughout the
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United States [2]. It is really crucial to understand how different
weather conditions can affect the transportation network.
Fundamentally, adverse weather conditions can cause 1) Impairment
of situational awareness and 2) Inhibitions to vehicular
maneuverability [3]. Due to poor visibility caused by heavy rain,
blowing dust or snow, or dense fog, multi-vehicle collisions can
occur when drivers lose awareness of their position, location, and
speed in relation to other cars. Automated vehicles can open the way
for dependable and safe driving in any weather [4]—[7].

Nearly 94% to 96% of all auto accidents are caused due to human
errors (speeding, aggressive/reckless driving, distracted driving,
chemical impairment, and drowsy driving), which are preventable
according to a study conducted by NHTSA in 2016 [8]. ADAS
systems were created to automate driving tasks, improve aspects of
the driving experience, and increase safety and safe driving practices
[9]. About 40% of all accidents in passenger vehicles can be
prevented or significantly reduced with the use of ADAS features
including Forward Collision Warning (FCW), Automated Emergency
Braking (AEB), Lane Departure Warning (LDW), Lane Keeping
Assistance (LKA), blind spot warning assistance, and many more.
[4], [10]-[12]. Furthermore, ADAS features such as FCW and AEB
alone reduce front-to-rear crashes by nearly 50% [6]. From the 1,853
driver injury crashes studied in [13], [14], it was discovered that
LDW and LKA systems were able to reduce head-on and
single-vehicle crashes on roads at higher speed limits (45-75 mph)
and visible lane markings by nearly 53%. Based on the statistics,
ADAS features such as LDW, LKA, AEB, and FCW significantly cut
down on collisions caused by human and external variables[15].

One of the ways that ADAS improves safety is to provide vital
information about the vehicle and its surroundings by classifying
road lanes [16], [17]. Lane recognition is the foundation of many
driving assistance systems such as LKA, LDW, and Lane Centering
Assist (LCA), specifically identifying lane markings. During snowy
conditions, lane markings can get obscured or hidden which can
render driving assistance systems ineffective. In reality, snow
accumulation on highways frequently leads drivers to disregard lane
positions and drive on different regions of the road as necessary, in
other words, forming informal auxiliary traffic lanes [3]. The poor
performance of driver assistance systems in adverse weather
conditions, such as rain, snow, fog, and hail, is among the most
crucial challenges in vehicle automation. Unfortunately, just like a
human's vision, the sensors used by driving assistance systems can be
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negatively affected by inclement weather. Rainy and foggy
conditions cause significant degradation in the performance of
Camera, Radar, and LiDAR [18], [19]. The LiDAR will misdetect
objects under rainy and snowy conditions due to rain droplets, snow
particles, and ice [20]. Similarly, Radar, which is used for many
driver assistance systems such as adaptive cruise control (ACC) and
AEB, has an issue with signal attenuation in the rain [18], [21], [22].
On-board vehicle cameras are essential in providing both the systems
and the driver with crucial information. Cameras come standard in all
vehicles with level 1 and level 2 autonomy [23]. Various sensors
operate differently in various weather conditions, according to the
literature review conducted in this section. To enable ADAS
performance in inclement weather conditions and actively toggle
between sensors based on environmental conditions, a method to
determine the category of road conditions in inclement weather needs
to be established so that purpose-built perception techniques can be
deployed.

There are few studies in the literature that address the issue of
estimating road weather conditions for inclement weather. One such
study conducted in 2011 introduced a method of estimating road
weather using a ML model trained with camera images and Road
Weather Information Systems (RWIS) data [24], [25]. The results
from this study indicate that the model was capable of achieving a
91% accuracy on the test set for classifying the road conditions into
five different categories (dry, ice, snow, track and wet). This study
utilized Principal Component Analysis (PCA) to determine which
inputs contributed the greatest to model performance. The model
used limited training data and had a biased dataset gathered from
static images at intersections. Another study conducted by Qian
proposes a system that categorizes road conditions using static
images using a camera [26]. This study obtained an accuracy of 68%
on classifying the road conditions into dry, wet, and snow. However,
this study only uses a dataset of 100 images with a 50-50 train test
split. Having such a small dataset, specifically a small training set can
lead to poor performance and generalization. The methods and results
of these studies provide ways to estimate the weather conditions
mainly for object-dependent ADAS purposes and do not talk about
lane-dependent features such as lane lines, road type, and amount of
snow coverage in the lane which are independent of any objects in
the environment. Additionally, they only employ camera data using a
small dataset as the input, and no additional input is provided to the
models. Therefore, a more rigorous study of snow coverage
estimation using a multi-input model is needed to move this research
forward. It is crucial for estimating the road snow coverage in order
to expand the ODD of ADAS and use algorithms that detect the
drivable region in snow-occluded lane lines as done in our previous
studies [12], [27].

To address the need for real-time estimation of road snow coverage,
the proposed method uses Machine Learning (ML) models that use
camera data and infrastructure weather sensor data as inputs to
predict road snow coverage. We recorded and labeled each image in
different categories based on the subjective level of snow coverage
on the road. The three different snow coverage categories were none,
standard and heavy. The images were processed using feature
engineering, and different image features were obtained. The inputs
to the ML models were the image-level features and ASOS
infrastructure weather sensor features. We tested the performance of
the different models on key metrics such as accuracy, precision,
recall, and F1 score. The goal of this work is to provide a robust snow
coverage estimation method for ADAS perception systems using a
single-camera sensor and infrastructure-based weather sensor data.
The methods discussed in the next section talk about the details of the
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different feature sets, ML methods, and the overall performance of
the various models in classifying road snow coverage.

Methodology

In this section, we will first examine the drive cycle that was selected,
the vehicle platform, and the equipment used, followed by a
discussion of the methods to collect and prepare the data. Following
that, several ML models will be developed and assessed.

Drive cycle

The drive cycle consisted of the two-lane arterial roads in
Kalamazoo, MI. The route was selected based on having low traffic
volume, two lanes, clear visible lane lines, and occluded lane lines.
Arterial roads receive snow level variation as they are plowed
irregularly and have a low amount of traffic which results in varying
amounts of snow coverage. The route consisted of 5 different road
sections, which were A, B, C, D, and E each one mile in length with
different cardinal directions. To add variation to the dataset, the data
was collected on different days with changing snow precipitation
forecast through the 5 different road segments during the winter of
2020-2021.

Start oA
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A:
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Figure 1. Road segments used for data collection during the winter of
2020-2021 in Kalamazoo, MI.

Vehicle Platform and Sensors

The Energy Efficient Autonomous Vehicles (EEAV) research vehicle
platform, shown in Figure 2, was used to collect data. This is a 2019
Kia Niro and includes a forward-facing RGB camera, Polysync
Drivekit, Neousys in-vehicle computer, vehicle Controller Area
Network (CAN) bus interface, and a Mobileye camera. We used the
forward-facing ZED 2 RGB camera from Stereolabs [28]. The ZED 2
is a widely available machine vision camera, which is available with
a Software Development Kit (SDK) that provides greater
functionality for our instrumented research vehicle. The ZED 2
provided us with the raw RGB images used to build the dataset. We
have used the ZED 2 along with its SDK for our previous studies, but
potentially any RGB camera could be used for this study [10], [12].
The images were captured at a resolution of 1280 x 720 and at a
frame rate of 30 frames per second
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Figure 2. (a) Kia Niro Instrumented Research Vehicle, (b) ZED 2 stereo
camera.

Infrastructure Weather Sensor

This study used historical weather data collected by the Automated
Surface Observation System or ASOS station located at the
Kalamazoo Battle Creek International Airport. ASOS is considered a
“gold standard” observation, used widely in the atmospheric sciences
[29]. The intention of ASOS was to provide reliable and useful
automated weather observations in a cost-effective manner [30]. The
ASOS dataset used contains weather data observations for the
corresponding days of collected drive cycles. This data is published
in one-minute intervals for parameters such as visibility, temperature,
wind characterization, precipitation, and atmospheric pressure. While
ASOS stations are capable of observing falling precipitation, there
are a number of issues that can lead to erroneous precipitation
reports. These include the inability to recognize precipitation type for
frozen or mixed precipitation events [31] and undercatch of snowfall
amount or intensity in strong winds [32]. However, in the U.S,,
snowfall intensity is measured not by accumulation but by visibility,
with light snow categorized as >1 km visibility, moderate between
0.5 and 1 km visibility, and heavy snow less than 0.5 km visibility
[33]. In order to calculate visibility, ASOS uses a sensor that gauges
the air's clarity directly at the sensor in a condensed area. The
visibility coefficient is derived based on the maximum distance the
sensor can see. Due to the more reliable automated visibility
observations, for this study, we focused on the visibility coefficient.
The visibility coefficient only serves as an additional input to the ML
models and we are not interested in finding the relation between the
raw dataset and the visibility coefficient.

Data Pipeline

Figure 3 shows the overall model development pipeline. This pipeline
shows the different steps taken to achieve model results.

5. ML Model
Train Data Training

raw images

3. Data & labels 4. Feature Features &

predictions

Labeling Extraction label vectors
——— v
I
memmgcs labels | 6 ML Model | results 7. ML Model
Test Data Baibion — Performance
2. Data Results
Selection
4M°
1. Data
Collection

Figure 3. Overall model development pipeline.

Data selection and filtering

We collected ~ 100,000 RGB images. The images were resampled
from 30 fps to match the ASOS dataset. As the ASOS data was
sampled every minute (0.167 Hz), we had to map the images with
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ASOS data based on the timesteps. Further quality control was taken
into account and these images were assessed for poor quality such as
over-exposed images from sun glare, windshield wiper obstruction,
image noise, distortion, etc. When finished the final dataset had a
total of 20,883 images spanning across the five road sections on
different days.

Labeling

A subjective method was used to place data from each road segment
into three categories: none, standard, or heavy. We had collected the
dataset and visually assessed each image for snow coverage. After
looking at the entire dataset, we could find that all road segments fell
into three main categories. Each of the road segments were assigned
into one of these categories based on how much snow was covering
the surface of the road. Figure 4 shows the three different snow
conditions. Figure 4a shows the none condition, Figure 4b shows the
standard condition, and Figure 4c shows the heavy condition. We
labeled all the images in the dataset based on the subjective snow
condition.

Figure 4: (a) none condition, (b) standard condition, and (c) heavy condition.

Feature extraction

To build and train the ML models, we first needed to preprocess the
data and then extract features. Feature extraction transforms raw data
into numerical features the model can process while retaining original
data. This works better than applying ML to the raw dataset [34]. To
start the process of feature engineering, the raw image was first
resized to 256 x 256 from its original dimensions of 720 x 1280.
Resizing results in reduced computational load while training models.
To further improve feature detection and reduce computational
complexity, images were masked with a static Region of Interest
(ROI) that only included the road surface as shown in Figure 5. The
Road ROI mask (Figure 5b) was then fused with the raw image
(Figure 5a) to output the Masked ROI (Figure 5c¢). The masked ROI
contains less than 10% of the total pixels when compared to the raw
image. Similar to our previous study, we decided to create different
feature sets, each containing various image features, which will help
in identifying features that perform better compared to others. [10]

Figure 5: (a) Raw Image, (b) ROI, and (c) Masked ROL.

Images contain pixel-level color channel values which are contained
in 3 dimensional arrays which contain the Red, Green and Blue
values for each pixel (RGB). For this study we decided to use the
RGB mean and standard deviation values as the image-level features.
The RGB values change as the level of snow coverage changes in the
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image, with a lower road snow coverage, we have lower overall RGB
intensities in the image and as the snow coverage increases the RGB
intensities increase. These features strongly correlate with the
changing snow coverage on the road.

Table 1 shows the different feature sets that were created for this
study. We organized these features into sets where each set has its
corresponding feature vector. For example, feature set 0 has three
feature vectors which are the mean values for the red, green and blue
color channels in the masked ROI image, feature set 2 has six feature
vectors which are the mean (Equation 1) and standard deviation (std.
dev) (Equation 2)

N

Y ==

X == Zl X, (Eq.1)
i=

21
o =\—— (Eq. 2)

values for red, green and blue color channels respectively. Feature set
3,4 and 5 include the ASOS visibility coefficient input along with the
image-level features. Each feature set has its own feature array X, the
shape of feature array X = (m x n) dimensions where m = number of
images in the array and n = number of features. The feature array X is
the input. Similarly label vector y = (m x 1) dimensions, where m
is the number of images in array corresponding to the feature array X
representing the subjective snow coverage, as mentioned in the
labeling location section (none : 0, standard : 1, heavy: 2). Each
element in the label vector maps the label to its corresponding input
from the feature array X. The dataset was split into 70 - 30% for
training and testing.

Table 1. Included feature sets used in model development along with their

array shapes.

Feature Set Included Train Array Test Array
Feature Vector Shape Shape
(m = 14,618) (m = 6265)
0 R,G,B (mean) (14,618, 3) (6,265, 3)
(Img-level)
1 R,G,B (std. dev) (14,618, 3) (6,265, 3)
(Img-level)
2 R,G,B (mean), (14,618, 6) (6,265, 6)
R,G,B (std. dev)
(Img-level)
3 R,G,B (mean), (14,618, 4) (6,265, 4)
(Img-level + | visibility
ASOS) coefficient
4 R,G,B (std dev), (14,618, 4) (6,265, 4)
(Img-level + | visibility
ASOS) coefficient
5 R,G,B (mean), (14,618, 7) (6,265, 7)
(Img-level + | R,G,B (std. dev),
ASOS) visibility
coefficient
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Machine learning techniques

We evaluated different types of ML algorithms to test which models
perform better in combination with the different types of feature sets.
The six different ML models that were evaluated were: Decision
Trees (dtrees), Random Forests (rforest), K-Nearest Neighbors
(KNN), Logistic Regression, Support Vector Machines (SVM), and
Naive-Bayes (naive). These models were selected based on their
capabilities and demonstrated performance for computing
classification tasks for computer vision applications. [35]-[37].

Let us look at an overview of all the models used in this study and
their computational capabilities. Dtrees and rforest work by making a
series of logical decisions mapped as nodes on a tree. This offers
insight into relevant features. Training these models is
computationally heavy. Both decision trees and random forest work
well with less number of features. Logistic Regression works by
fitting a logistic curve to the data and works well on datasets in which
there is minimal overlap on the classes. Naive Bayes offers a
relatively simple model and performs well on datasets with less
features that are independent of each other. Support Vector machines
work by mapping the data points onto a space with more than two
dimensions and then finding a hyperplane that groups them. K
Nearest Neighbors is a simple algorithm that performs well in
classification tasks. With our dataset k neighbors are used to label
new data based on proximity to neighboring data-point. KNN works
well with large, noisy datasets. [38], [39]. The work in this paper
was performed in Python using models provided by the open-sourced
”scikit-learn” python package [40]

Evaluation Metrics

The predicted outputs of the model Y prea VT compared with the

ground truth labels y and then evaluated for various metrics. The
metrics used for evaluation were prediction accuracy, precision,
recall, F1 score, and average model compute time. Equations 3 to 6
show how these metrics are calculated using the four corners of the
confusion matrix as shown below:

e  True Positive (TP) : no. of images classified correctly with
respect to their snow coverage label

e  False Positive (FP) : no. of images classified incorrectly
with respect to their snow coverage label

e True Negative (TN) : no. of images classified correctly
with respect to a negative label

e  False Negative (FN) : no. of images classified incorrectly
with respect to a negative label

TP, FP, TN, and FN provide us with the different combinations of
predicted and actual values which are useful to calculate crucial
performance evaluation metrics such as Accuracy, Precision, Recall
and F1 Score. These Accuracy is the fraction of predictions the model
got right which means the number of images were correctly classified
as none, standard or heavy snow based on their condition. Precision
measures the quality of a model's positive prediction. Recall displays
the proportion of accurate positive predictions made among all
possible positive predictions. Precision and recall together make up
the F1 score.

TP+TN

Accuracy TP+TN+FP+FN Eq. (3)
Precision TPT+7PFP Eq.4)
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TP
TP+FN Eq. (5)

Recall

F1 Score - 2 * precision*recall Eq. (6)

precision+recall

Results

The results of this research include an overview of the analyses
conducted for image level features and ASOS weather data features
as well as the results from the ML training for estimating the snow
coverage using different features as inputs. Results were obtained for
a total of 35 different ML models. When using only image-level
features, the order of the best-performing ML models was: SVM,
Naive-Bayes, Logistic Regression, KNN, Random Forests, and
Decision Trees. When we use variation in the feature sets as input to
the model, such as feature set 5 which includes all image-level
features and the snow visibility, we obtained the best-performing
model. The results indicate that using image-level features along with
the visibility coefficient from the ASOS dataset improves the
performance of the model in key metrics such as accuracy, F1 score,
and precision by a significant margin irrespective of the model used.
To look at one such example, Figure 6 highlights the most important
feature in feature set 5 for dtrees. The feature importance technique
rates the input features according to how well they can predict the
target variable. We used skicit learn’s Plot Feature Importance
method to get the feature importance. The two most important
features for this model and feature set combination are the blue mean
value from the image-level feature and the visibility coefficient from
the ASOS dataset. This implies that both image-level features and
infrastructure weather sensor data input play an important role in
enhancing the models performance which is consistent with the
results from other models as well. (Table 2 in the appendix for all
results).

Feature Importance

Blue-Mean

Visibility

Blue-Std

Green-Mean

Features

Green-Std

Red-Mean

Red-Std

0.0 . . 0.6

Relative Importance

Figure 6. Feature importance for Dtrees with the feature set 5.

To further illustrate the importance of adding the weather sensor data
as an input, we obtained the confusion matrix for dtrees with all
image-level features (feature set 2) in Figure 7b, and all image-level
and infrastructure weather sensor data (feature set 5) in Figure 7a.
The vertical axis shows the true labels and the horizontal axis shows
the predicted classes. The diagonal shows the classifications for each
of the snow coverage conditions as the first element in the diagonal
shows the True Positives for class 0 (none), class 1 (standard), and
class 2 (heavy). The confusion matrix heatmap shows that feature set
5 outputs more TP’s for each class than the feature set 2.
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Figure 7: Confusion matrix heat map for (a) Dtrees with feature set 5, and (b)
Dtrees with feature set 2.

Figure 7 shows the comparison between the 6 different models for
feature set 2 and feature set 5. As seen in Figure 8 all of the models
perform at least ~67% better with both image-level and weather data
features (feature set 5) when compared to only image-level features
(feature set 2). The best performing model for feature set 2 was svm
which tied with logistic regression, and naive. Dtrees with feature set
2 performed poorly when compared to the other models.
Contrastingly, adding the snow visibility input from ASOS improved
the model performance significantly for all models which is shown
by the blue bars. The best performing model for feature set 5 is
dtrees.

Feature Set Accuracy Comparison

rforest
dtrees

knn

flodel

svm
legistic
naive

0.000 0.200 0.400 0.600 0.200 1000

m Accuracy with Image Data Alone B Accuracy with Image and Weather Data

Figure 8. Feature Set Accuracy Comparison between feature set 2 (Image
data alone) and feature set 5 (Image and Weather Data).

Figure 9 shows Accuracy, and F1 Score by the models using all
features (feature set 5). Dtrees achieved an average compute time of
9.51 seconds and rforest achieved an average compute time of 0.09
seconds. For feature set 5 the best performing models are random
forest and decision trees both achieving 98.8 % Accuracy and 98.8%
F1 score. As the number of features increase, both rforest and dtrees
perform significantly better on the same dataset.

Some feature set combinations perform better when compared to
their individual feature sets. For example, as shown in Table 2
(Appendix), feature set 1 and feature set 2 yield similar results in key
metrics such as accuracy, precision, recall and F1 Score. When we
add weather data inputs to feature set 1 and 2, they make feature sets
3 and 4. We can observe that adding the weather data inputs
significantly improved the performance of feature set 4 (originally
feature set 2) when compared to the performance of feature set 3
(originally feature set 1). This shows that feature set 4 (RGB std. dev
+ weather data) outperformed feature set 3 (RGB mean + weather



data). This implies that RGB std. dev is a better feature when
compared to RGB mean in the context of our study.

Metrics by Model Using All Features (Feature Set
5)

Iodel

0.500 0.600 0.700 0.800 0.500 1.000

mFl_Score mAcCcuracy

Figure 9. Comparison of Accuracy, Precision, Recall, and F1 score by model
for feature set 5.

So to summarise the results, both the image-level features and
weather sensor input are equally important as shown in Figure 6,7,8,
and 9. A critical advantage of the image data is that is that it is
precisely local to the car, although the weather sensor provides
excellent area-wide information that may impact road visibility, the
image data from the vehicle can be used to accurately determine, with
input from the general weather data, what the road conditions are in
the current location of the vehicle. Adding easily available weather
data from existing infrastructure is a highly effective means of
improving our ability to estimate local road conditions.

Conclusions

In this study we derived a method of estimating the snow coverage on
the road using a single camera sensor and infrastructure weather data
inputs using ML. Firstly, data was collected using the instrumented
research vehicle along arterial roads in Kalamazoo, MI. This data was
then processed and cleaned for model development. Additionally,
infrastructure based weather sensor data such as snow visibility was
acquired from ASOS. Features were extracted from the processed
camera data and ASOS dataset to further create different features
sets. These feature sets were used as inputs to the different supervised
ML models. In total we had 35 different model-feature sets
combinations. We compared and analyzed the performance of all
models based on metrics such as Accuracy, Precision, Recall, and F1
score. The best-performing model using all image-level features
(feature set 2) yielded an accuracy of 52.8% whereas the
best-performing model with both image-level features and weather
data feature (feature set 5) had an accuracy of 98.8%. This
demonstrates that both image-level features and weather sensor
inputs equally improve the performance of the models.

Overall this study demonstrates that we can estimate the snow
coverage on the roads using a custom dataset with just one camera
sensor and infrastructure weather data. Categorizing snow coverage
will enable ADAS products to operate in inclement weather
conditions. This study lays the foundation for broadening the ODD of
AVs which will also positively impact the operation of AVs,
minimizing crash injuries and fatalities. Additionally, higher
resolution on-vehicle weather sensor data as inputs in conjunction
with image data would further enhance the model's performance. We
could get accurate local weather information from an on-vehicle
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weather sensor such as the MARWIS which provides us with
dynamic road condition information [41]. Adding additional features
available in the ASOS dataset along with the on-vehicle weather
sensor data such as friction, ice percent, road condition, water film
height, and precipitation would help in improving the model's
performance. Future work for this study will include estimating snow
coverage using data from both infrastructure and on-vehicle sensor
data and using DL models.
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Definitions/Abbreviations
FPS Frames Per Second
Advanced Driver Assistance
ADA
S Systems RGB Red, Green, Blue
ASOS Automated Surface Observing MARWIS  Mobile Advanced Road Weather Information
Systems Sensor
Energy Efficient Autonomous
EEAV Vehicles Laboratory
FARS Fatality Analysis Report System
LC Lane-Centering
FCW Frontal Collision Warning
LDW Lane Departure Warning
LKA Lane-Keeping Assist
AEB Automated Emergency Braking
Operational Design Domain -
ODD domain an autonomous system
is designed to operate within
Appendix
Table 2. All results for the 35 ML model feature set combinations
ML_method Feature_set Accuracy Average Precision Recall loU F1_Score
Images
Computed
Per Second
dtrees 0 0.387 4865268 0.387 0.387 0.240 0.387
knn 0 0.459 47328.52 0.459 0.459 0.298 0.459
logistic 0 0.528 23737412 0.528 0.528 0.359 0.528
naive 0 0.528 5954524 0.528 0.528 0.359 0.528
rforest 0 0.434 53057.19 0.434 0.434 0.278 0.434
svm 0 0.528 2729.719 0.528 0.528 0.359 0.528
dtrees 1 0.382 4853586 0.382 0.382 0.236 0.382
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knn 0.468 48293.94 0.468 0.468 0.305 0.468
logistic 0.528 19138612 0.528 0.528 0.359 0.528
naive 0.528 6002128 0.528 0.528 0.359 0.528
rforest 0.470 56281.48 0.470 0.470 0.307 0.470
svm 0.528 2690.322 0.528 0.528 0.359 0.528
dtrees 0.377 5070883 0.377 0.377 0.232 0.377
knn 0.466 44479.39 0.466 0.466 0.304 0.466
logistic 0.528 18959101 0.528 0.528 0.359 0.528
naive 0.528 3402475 0.528 0.528 0.359 0.528
rforest 0.464 60098.56 0.464 0.464 0.302 0.464
svm 0.528 2468.811 0.528 0.528 0.359 0.528
dtrees 0.381 4973938 0.381 0.381 0.236 0.381
knn 0.462 46111.47 0.462 0.462 0.300 0.462
logistic 0.528 22306719 0.528 0.528 0.359 0.528
naive 0.528 6158264 0.528 0.528 0.359 0.528
rforest 0.461 58234.34 0.461 0.461 0.299 0.461
svm 0.528 2701.033 0.528 0.528 0.359 0.528
dtrees 0.988 9002163 0.988 0.988 0.975 0.988
knn 0.898 45209.99 0.898 0.898 0.814 0.898
logistic 0.855 13237942 0.855 0.855 0.746 0.855
naive 0.841 5610016 0.841 0.841 0.725 0.841
rforest 0.989 91570.39 0.989 0.989 0.978 0.989
svm 0.861 6712.247 0.861 0.861 0.755 0.861
dtrees 0.988 9513872 0.988 0.988 0.975 0.988
knn 0.915 43620.82 0.915 0.915 0.844 0.915
logistic 0.837 10435788 0.837 0.837 0.720 0.837
naive 0.837 4001418 0.837 0.837 0.720 0.837
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rforest

0.988

86083.72

0.988

0.988

0.977

0.988

svm

0.861

6126.979

0.861

0.861

0.755

0.861
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