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Abstract

Contemporary ADS and ADAS localization technology utilizes
real-time perception sensors such as visible light cameras, radar
sensors, and lidar sensors, greatly improving transportation safety in
sufficiently clear environmental conditions. However, when lane
lines are completely occluded, the reliability of on-board automated
perception systems breaks down, and vehicle control must be
returned to the human driver. This limits the operational design
domain of automated vehicles significantly, as occlusion can be
caused by shadows, leaves, or snow, which all occur in many regions.
High-definition map data, which contains a high level of detail about
road features, is an alternative source of the required lane line
information. This study details a novel method where high-definition
map data are processed to locate fully occluded lane lines, allowing
for automated path planning in scenarios where it would otherwise be
impossible. A proxy high-definition map dataset with high-accuracy
lane line geospatial positions was generated for routes at both the
Eaton Proving Grounds and Campus Drive at Western Michigan
University (WMU). Once map data was collected for both routes, the
WMU Energy Efficient and Autonomous Vehicles Laboratory
research vehicles were used to collect video and high-accuracy GNSS
data. The map data and GNSS data were fused together using a
sequence of data processing and transformation techniques to provide
occluded lane line geometry from the perspective of the ego vehicle
camera system. The recovered geometry is then overlaid on the video
feed to provide lane lines, even when they are completely occluded
and invisible to the camera. This enables the control system to utilize
the projected lane lines for path planning, rather than failing due to
undetected, occluded lane lines. This initial study shows that
utilization of technology outside of the norms of automated vehicle
perception successfully expands the operational design domain to
include occluded lane lines, a necessary and critical step for the
achievement of complete vehicle autonomy.

Introduction

The US Centers for Disease Control and Prevention (CDC) and the
US National Highway Traffic Safety Administration (NHTSA) report
that motor vehicle accidents account for nearly 40,000 US deaths in
2019 and comprised the 13th leading cause of death in the US in
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2016 and 2017 [1-3]. CDC data indicates the estimated cost of US
motor vehicle fatalities to be about $390 billion in 2019 when
accounting for both medical costs and economic productivity losses
[4]. Additionally, motor vehicle traffic crashes consistently rank the
7th greatest contributor to years of life lost, as they disproportionately
cause more deaths to younger people [3]. In response to the great cost
of motor vehicle accidents, the emerging technological field of
vehicle automation seeks to mitigate motor vehicle accidents and
injuries. While in the future, high levels of autonomy through
Automated Driving Systems (ADS) and Autonomous Vehicles (AVs)
will be available, some vehicles available today offer Advanced
Driver Assistance Systems (ADAS) features to improve safety.

ADAS features such as lane departure warning (LDW), lane keeping
assistance (LKA), and lane centering assistance (LCA) can
dramatically improve motor vehicle safety. LDW reduces
single-vehicle, sideswipe, and head-on injury crashes by 21% [5]. It
is estimated by Benson et al. that LDW and LKA could have
prevented about 520,000 crashes in 2016, associated with about
190,000 injuries. They also report that ADAS technology at large has
the potential to mitigate 40% of all passenger vehicle crashes, and
about 30% of all crash-related deaths [6]. In terms of the cost of
motor vehicle accidents, Harper, Hendrickson, and Samaras estimate
that incorporating ADAS features into the entire US light-duty
vehicle fleet would lead to an annual net savings of between $4
billion to $215 billion when considering the cost of the technology
and the cost of motor vehicle crash injuries and deaths [7]. ADAS has
also been demonstrated to be useful for enabling energy efficiency
improvements for individual vehicles [8-11]. But, these ADAS
features have an operational design domain (ODD) limited to
unoccluded lane lines, as they work by using real-time perceptive
sensors such as computer vision (CV) to detect road features,
primarily lane lines, which are normally visible in clear driving
environments [12-14]. However, many vehicle crashes occur in
inclement weather, where road features can be completely occluded
by snow or ice.

In fact, while vehicles regularly travel less in winter seasons as
evidenced by seasonal vehicle-miles-traveled trends, the inclement
driving environment conditions associated with the colder seasons
leads to increased vehicle accidents and fatalities [15-16], as seen in
Figure 1. According to the Federal Highway Administration



(FHWA), approximately 21% of all vehicle crashes in the US from
2007 to 2016 were weather-related [17]. The ODD of vehicle
autonomy does not effectively include inclement weather conditions
where lane lines are occluded, as perception systems lack the
necessary input to determine road geometry [18-19]. It is estimated
that approximately 70% of US roads are located in snowy regions,
meaning for higher levels of automation throughout the continental
US, the ODD of automated vehicles must be expanded to handle
roads occluded by snow and ice [20].
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Figure 1. Percent changes in crash rate due to inclement weather [1G].

Greater connectivity of the vehicle to the internet of things has great
potential to aid automated vehicle technologies [21]. Specifically, the
utilization of high-definition maps for localization of the ego vehicle
has been shown to have great potential. High-definition maps are
datasets that contain highly detailed regional data, far surpassing the
minimum level of detail required for road network route planning as
is available in standard maps. Notably, they can include the positions
of road features such as traffic signs, road shape, and lane lines [22].
Little research has focused on occluded lane line scenarios, despite
the potential for safety improvements. Poggenhans, Salscheider, and
Stiller present a method of localization where high-definition maps
are queried with estimated lane line locations to determine the true
ego vehicle position. This method begins to lose accuracy in
inclement weather and relies on real-time perception of road
markings, thus would likely break down when lane lines are
occluded, similar to the current state-of-the-art [23]. VSI Labs
described use of high-definition maps in their study, where lane lines
were used directly as an input to the ego vehicle control system, but
their exact methodology appears to be proprietary and confidential
[24]. High-definition maps have the potential to increase the level of
automation of ADS technology, but no method exists with sufficient
ability to operate in occluded lane line scenarios. In this paper we
describe a novel method for utilizing high-definition map data to
expand the ODD of ADS and ADAS technologies to occluded lane
line scenarios.

Methods
Data Collection

Though high-definition maps often include lane line geometry, to
avoid the cost of a high-definition map service for this study, data
was collected manually over two distinct routes in order to generate a
proxy high-definition map. The collection of this data is detailed to
give more context for the results and to inform those who wish to
replicate this study without purchasing a high-definition map service
subscription. The first route was selected to be a portion of the Eaton
Proving Grounds main test track in Marshall, Michigan, shown in
Figure 3. This route contained a straight section, followed by a curve
to the left surrounded by trees. The second route was selected to be
the Campus Drive loop near Western Michigan University’s
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Parkview Campus, shown in Figure 4. This route consisted of a
winding, continuously curving road segment. Several hundred
extremely high-precision geospatial points were collected along the
right and left lane lines for each route using a Trimble Catalyst DA2
GNSS receiver, as shown in Figure 2, which advertises an accuracy
of 2 centimeters when using the Catalyst 1 subscription level. High
accuracy geospatial data was especially important in this study, as the
lane lines are relatively small and any substantial displacement
degrades the results significantly. The distance between collected
points was varied, with the Eaton Proving Grounds data being
regularly sampled every 50 feet, and the Campus Drive data being
sampled about every 10 feet. These both proved to be a small enough
sampling distance to sufficiently describe gently curving roads, so it
is likely that larger sampling distances would perform reasonably
well.

Figure 2. Trimble Catalyst DA2 GNSS receiver [25].
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Figure 3. Collected lane line points at the Eaton Proving Grounds test track.
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Figure 4. Collected lane line points over the Campus Drive loop.

To achieve smoothed lane lines over both routes, all lane lines points
were put in order along the route and cubically interpolated, resulting
in many equidistant geospatial points. This interpolation of geospatial
points should theoretically be mapped to true distances before
interpolation, as the length of latitude and longitude increments is not
constant over Earth, but at this relatively small scale the error is
negligible. After this step, the proxy high-definition maps for both
routes were complete.

The Western Michigan University (WMU) Energy Efficient and
Autonomous Vehicles Laboratory research vehicles, shown in Figure
5, were then used to collect data over both routes. The Kia Niro



Hybrid was used at the Eaton Proving Grounds, and the Kia Soul
Electric Vehicle was used to collect data over the Campus Drive
route. Both vehicles were equipped with the same sensor suite,
including but not limited to a Stereolabs ZED 2i stereo camera
(Eigure 6) and a Swift Navigation Duro Inertial RTK GNSS receiver
(Figure 7), which advertises 4 centimeter accuracy when using the
Skylark Precise Positioning service.

Figure 5. WMU EEAV Lab research vehicles.

Figure 6. Stereolabs ZED 2i stereo camera [26].
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Figure 7. Swift Navigation Duro Inertial RTK GNSS receiver [27].

The ego vehicles were driven over the selected routes and data was
collected from the camera, IMU, and GNSS receiver using the Robot
Operating System (ROS). The ego vehicle was operated by a human
driver, driving no more than 25 miles per hour. A data processing
methodology was developed to project lane lines over the camera
feed utilizing the sensor data in various ways.

Figure 8. Frame from image data collected over the Eaton Proving Grounds
test track.
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Figure 9. Frame from image data collected over the Campus Drive loop.
Data Processing

The overarching goal of data processing was to transform the
geospatial points of both the lane lines and the ego vehicles into a
local coordinate frame aligned with the camera, where the data could
be overlaid and given to camera-based path planning systems. To do
this, several coordinate transformations were necessary. All points
were transformed from the WGS 1984 coordinate system to the
north, east, down (NED) coordinate system, with the origin specified
as the ego vehicle GNSS base station. This transformation brings the
data from a global coordinate system into a right-handed /local
coordinate system. The NED coordinate system was chosen over the
east, north, up (ENU) coordinate system in order to best match the
coordinate system of the camera, shown in Figure 10, as well as the
pinhole camera model coordinate system used by the OpenCV
Python/C++ library. The coordinate transformation of the lane line
points to the NED system was handled by the pymap3d Python
library.

Figure 10. Stereolabs ZED camera coordinate frame [28].

Next, the local NED coordinate frame needed to be rotated to align
with the ego vehicle heading. However, the sampling rate of the
vehicle heading was insufficient for real-time alignment of the lane
line points, especially for curved road segments. To better align with
the vehicle over time, IMU data were then used to interpolate the
vehicle heading. Measurements of the angular velocity were
multiplied by elapsed time to provide angular adjustments to the
heading as shown in Equation 1. In summary, the coordinate frame
was rotated by the adjusted heading 0 about the down axis. This can
be represented as shown in Equation 2, where the x-axis is right, the
y-axis is down, and the z-axis is forward. This rotation is shown

graphically in Figure 11.
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where:

o 0o is the heading reported by the sensor,

6 is the angular velocity about the IMU (up) z-axis,
At is the time elapsed from the heading sample, and
f is the adjusted heading

X, —sinf cosf 0| |N
Y. | = 0 0o 1| |F )
Z, cosf sinf 0| | D
N
A
Z.
0
D
> |
e 0
Xe

Figure 11. NED to XYZ coordinate frame rotation.

Once all points were rotated to the new XYZ coordinate system,
offsets in each direction were used as appropriate to translate from
the base station GNSS receiver to the left camera. Once this was
complete, all lane line points had been transformed from the global
WGS 1984 coordinate system to the local XYZ coordinate system
used by the camera. Next, the points needed to be projected onto the
camera image feed, applying a maximum-distance threshold if
desired. To do this, the pixel location (u, v) of each point must be
found, which can be done given the XYZ coordinates and intrinsic
camera properties retrieved from the camera metadata. The point
projection method equations below are summarized from the
OpenCV documentation, following the notation in Figure 12 [29].
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Figure 12. OpenCYV pinhole camera model coordinate frame [29].
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First, the ratios of the x- and y-coordinates to the z-coordinate of the
point are calculated, and the hypotenuse of the x- and y-coordinates »
is found.

AbE

7'2 — I/Z + y/Z (4)

The relevant camera properties were the radial distortion coefficients
k;, k,, and k;, the tangential distortion coefficients p, and p,, the
principal point coordinates ¢, and c,, and the focal lengths f, and f,.
These properties can be used to find an intermediate result in both the
x- and y-directions. The additional radial distortion coefficients k,, ks,
and k, and thin prism distortion coefficients s,, s,, 53, and s, were not
necessary and are excluded here.
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Finally, the projected pixel location (u, v) of the point is found using
the focal lengths f; and f, and the principal point x- and y-coordinates
c.and c,.
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Sequential application of Equation 3 through Equation 6 results in the
appropriate pixel locations of all 3-dimensional points projected onto
the 2-dimensional camera image. This is the basis for augmentation
of a camera-frame path planning algorithm with high-definition map
lane line geometry, without the need for line-of-sight to the lane line.
Additionally, for a sense of distance, a radius or diameter 7, for
each point to be drawn can be calculated by dividing a size scaling
factor s by the distance of the point from the origin, and rounding the
result to the nearest integer. This is shown in Eguation 7 and
Egquation 8. Alternatively, as shown in this study, a polygonal chain
can be drawn connecting all points for a result that most closely
imitates lane lines.

dist = \/ X2+ Y2+ 22 7

Tpoint = round(s/dist) ®)

Artificial Occlusion of Lane Lines

For result comparison, lane lines were extracted from the data using
CV techniques. Hue/saturation/lightness thresholding masks were
created to isolate yellow and white lane line pixels. While this did
successfully identify the appropriate pixels, many pixels from the sky
and background passed through the threshold. To remedy this, a
second processing step was taken where a region of interest (ROI)
mask crops the image to a trapezoidal shape. The values of the
threshold masks and the shape of the ROI mask differed between the
two datasets due to different camera orientation and different lighting
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conditions. This provided a basic methodology for extraction of lane
line pixels.

Data along both routes could not be collected when lane lines were
occluded, e.g. by collected snow or leaves. For this reason, lane lines
in the camera feed were artificially occluded using further video
postprocessing, thereby simulating road coverage conditions. The
concept of postprocessing the camera feed in order to simulate
different conditions is not entirely novel — Rubaiyat, Qin, and
Alemzadeh utilized a similar method in their study in order to
analyze resilience of autonomous vehicles to disturbed camera input
[30]. The specific postprocessing methodology chosen was to use
extracted lane line pixels and draw circles at each, using
approximately the same color as the road surface. This resulted in the
camera feed now having fully occluding lane lines, making normal
detection of lane lines through CV or machine learning techniques
impossible. Indeed, if one applies the same lane detection CV
technique to detect lane lines on these processed images, no
detections would be possible. The result of this CV image processing
is shown for the Eaton Proving Grounds test track route in Figure 13,
and for the Campus Drive loop route in Figure 14. Lane line
geometry extracted from the proxy high-definition map was drawn on
top of these images to demonstrate that the methodology is entirely
independent of camera-based lane line detections. The occluded lane
lines shown in subsequent figures does not perform perfectly, but as
this was just for demonstration purposes current results are
satisfactory.

Figure 13. Eaton Proving Grounds test track camera frame with lane lines
artificially occluded; compare to Figure 8.

Figure 14. Campus Drive camera frame with lane lines artificially occluded;

compare to Figure 9.
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Metrics of Evaluation

Data Accuracy Metrics

The most important metric for ensuring the quality of collected data
was horizontal and vertical accuracy. These metrics are reported by
both the Trimble Catalyst DA2 handheld sensor as well as the Swift
Navigation Duro Inertial sensor. The Swift Navigation Duro Inertial
sensor also operates in several accuracy modes, depending on
satellite visibility and mobile network conditions. The highest
accuracy mode is RTK fixed, determined by the number of visible
satellites and whether the rover is receiving corrections from the base
station. The goal of data collection was to keep collected lane line
points accurate to 2 centimeters, and to keep the ego vehicle GNSS
system operating in RTK fixed mode, accurate to 4 centimeters.

Lane Line Overlay Metrics

At present, no metrics exist for quantitative analysis of projected lane
line accuracy. The scope of this study did not include development of
such a quantitative metric, instead a qualitative analysis showcasing
the current strengths and areas of improvement was selected. Among
the hypothesized metrics was quantification of the mean intersection
over union over the drivable region, that is, the area bounded
between the two lane lines. Another metric hypothesized involves
using the transformed high-definition map lane line data to construct
mathematical equations for the lines on the image, and quantify the
geometric distance of detected lane line pixel locations as the error.
We highlight the need for exploration and development of a
quantitative metric as a topic for future work in the conclusions of
this study.

Results
Data Accuracy Analysis

In the lane line data collected with the Trimble Catalyst DA2 sensor
over the Campus Drive route, the horizontal accuracy of the collected
lane line points never exceeded 2 centimeters, and the vertical
accuracy never exceeded 5 centimeters. Weather conditions and
mobile network strength were poorer at the Eaton Proving Grounds
test track, so despite multiple attempts, the maximum horizontal
accuracy reached 7 centimeters, and the maximum vertical accuracy
reached 25 centimeters. In general, most collected points had a
horizontal accuracy between 1 to 3 centimeters and a vertical
accuracy between 6 to 9 centimeters. The lane line data collected
along both routes were more than sufficient to create the proxy
high-definition map.

The Swift Navigation Duro Inertial sensor consistently operated in
the highest accuracy fixed RTK mode for the duration of the Campus
Drive route. As such, the Campus Drive route data has very good
accuracy; the horizontal accuracy of the ego vehicle GNSS receiver
was at most 5.0 centimeters, and the vertical accuracy was at most
7.2 centimeters. The ego vehicle GNSS receiver faced more accuracy
challenges at the Eaton Proving Grounds test track, switching from
fixed RTK to float RTK mode near the end of the route, when the
vehicle was surrounded by trees.

Lane Line Overlay Analysis
Eaton Proving Grounds Test Track

The projected lane lines in the straight road segment of the Eaton
Proving Grounds route align very well with the true lane line



locations, and little deviation is observed. This shows the
methodology holds promise for determination of occluded lane lines,
especially for straight roadways. Two example results from this
segment are shown in Figure 15.

(a)

(b)

Figure 15. Two examples of Eaton Proving Grounds camera frames from
straight road segments with high-definition map lane line data overlaid on
artificially occluded lane lines. These show well-aligned lane lines.

When the ego vehicle entered the more wooded area, the Swift
Navigation Duro Inertial sensor switched from the higher-accuracy
RTK fixed mode to the lower-accuracy RTK float mode. This
resulted in a divergence of the projected lane lines away from the true
lane lines. Curves present a challenge to this method, even in RTK
fixed mode, as discussed further in the following Campus Drive route
results. This divergence is shown in Figure 16.

Figure 16. Eaton Proving Grounds camera frame from a curved road segment
with high-definition map lane line data overlaid on artificially occluded lane
lines. Deviation from true lane lines occurs in this curved road segment due to
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the GNSS operating in lower-precision RTK float mode and the insufficient
sampling rate of the GNSS heading sensor.

Campus Drive Loop

The transformed and projected lane line geometry aligns well with
the lane line pixels in the Campus Drive dataset in straight road
segments as well, as shown in two examples in Figure 17. The text
overlaid on the images shows the instantaneous Swift Navigation
Duro Inertial sensor accuracy and operating mode. Note that the
Eaton Proving Grounds dataset did not include this accuracy data due
to technical limitations at the time of collection.

Mode: Fixed RTK

(a)

Mode: Fixed RTK
Bdcc: 3.6 g

(b)

Figure 17. Two examples of Campus Drive camera frames from straight road
segments with high-definition map lane line data overlaid on artificially
occluded lane lines. These show well-aligned lane lines.

The largest challenge in this dataset was caused by heading sensor
sampling rate and the constantly curving road. As the road curves,
any delay in the heading data will cause lateral misalignment of the
projected lane lines. This is why IMU data was utilized for
corrections, as described in Equation 1. This is shown in Figure 18.
These results show that in order to most accurately overlay lane line
geometry using high-definition map data, in addition to very high
sensor accuracy, the ego vehicle IMU and GNSS sensors must
sample at a very high rate, otherwise the projected lane lines will
become misaligned with the true lane lines in curves. This problem is
less apparent for straight road segments, where the sensed ego
vehicle heading does not change much.



Mode: Fixed RTK

Figure 18. Campus Drive camera frame from a curved road segment with
high-definition map lane line data overlaid on artificially occluded lane lines.
Deviation from true lane lines occurs in this curved road segment due to the
insufficient sampling rate of the GNSS heading sensor.

Results Summary

Overall, the results of this proof-of-concept study are encouraging.
Lane line geometry was successfully transformed from a proxy
high-definition map into a local coordinate frame, then projected onto
the camera feed. This allows for the control system of the ego vehicle
to utilize high-definition map data in the same way that it would have
used camera-detected lane line data, thus solving the problem of lane
line occlusion. These results show that this methodology, with
sufficient further development, can be used to assist the ego vehicle
controller when lane lines become occluded, such as by shadows,
leaves, or snow on the road surface.

One challenge with the development of this technology is alignment
of the lane lines in curved road segments. Any rotation of the ego
vehicle not captured frequently enough will effectively cause a drift
of the projected lane lines away from the true lane lines. A very
frequently sampled heading sensor could address this challenge.
Further development of quantitative metrics is also suggested.

Conclusions

In this paper, we describe and demonstrate a novel methodology to
extract lane line geometry through high-definition maps, without the
use of real-time camera perception. The lane lines from the
high-definition maps were transformed from a global coordinate
frame to a local coordinate frame aligned with the camera, and then
projected onto the image. This results in the lane lines effectively
becoming visible once again and able to be used by the path planning
process that would otherwise be inoperable due to lack of input.
Overall the results show that this technology concept can be used for
augmenting vehicle automation in occluded lane line scenarios. The
reconstructed lane lines align very well with the true lane lines in
straight road segments, but challenges presently exist with overlay
accuracy in curved roads and when GNSS accuracy degrades due to
obstruction by trees.

This methodology provides a foundation from which to build an
automated navigation procedure robust to lane line occlusion.
Perception technology that breaks out of the established norms of
camera, radar, and lidar sensing is needed to address the problems of
resilient operation and operation in inclement weather. This initial
study should be expanded through development of a quantitative
measurement in order to rigorously define the accuracy of projected
lane lines and enable refinement of the methodology. This could also
be compared with artificial intelligence/machine learning based lane
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line detection algorithms to analyze performance relative to the
current state of the art. Furthermore, this methodology can be applied
to winter driving, where lane lines may be occluded by snow
collected on the road surface and line-of-sight to satellites can be
disturbed by cloudy weather or precipitation.
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Definitions/Abbreviations

CDC

NHTSA

ADS

AVs

ADAS

LDW

LKA

LCA

ODD

CV

FHWA

WMU

NED

ROI

Centers for Disease Control and Prevention
National Highway Traffic Safety Administration
Automated Driving Systems

Autonomous Vehicles

Advanced Driver Assistance Systems

lane departure warning

lane keeping assistance

lane centering assistance

operational design domain

computer vision

Federal Highway Administration

Western Michigan University

north, east, down

region of interest
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