
Information Sciences 615 (2022) 90–102
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/ locate/ ins
Building siamese attention-augmented recurrent convolutional
neural networks for document similarity scoring
https://doi.org/10.1016/j.ins.2022.10.032
0020-0255/� 2022 Elsevier Inc. All rights reserved.

⇑ Corresponding author at: Tsui Laboratory, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, 2716 Sou
Philadelphia, Pennsylvania, USA.

E-mail address: tsuif@chop.edu (F.R. Tsui).
Sifei Han a, Lingyun Shi a, Russell Richie a, Fuchiang R. Tsui (‘‘Rich”) a,b,⇑
a Tsui Laboratory, Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, 2716 South Street, Philadelphia, Pennsylvania, USA
b Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Suite 680 Dulles, Philadelphia, Pennsylvania, USA
a r t i c l e i n f o

Article history:
Received 13 April 2022
Received in revised form 8 July 2022
Accepted 3 October 2022
Available online 7 October 2022

Keywords:
Attention neural network
Deep learning
Machine learning
Natural language processing
Information retrieval
Text similarity
a b s t r a c t

Automatically measuring document similarity is imperative in natural language process-
ing, with applications ranging from recommendation to duplicate document detection.
State-of-the-art approach in document similarity commonly involves deep neural net-
works, yet there is little study on how different architectures may be combined. Thus,
we introduce the Siamese Attention-augmented Recurrent Convolutional Neural
Network (S-ARCNN) that combines multiple neural network architectures. In each subnet-
work of S-ARCNN, a document passes through a bidirectional Long Short-Term Memory
(bi-LSTM) layer, which sends representations to local and global document modules. A
local document module uses convolution, pooling, and attention layers, whereas a global
document module uses last states of the bi-LSTM. Both local and global features are con-
catenated to form a single document representation. Using the Quora Question Pairs data-
set, we evaluated S-ARCNN, Siamese convolutional neural networks (S-CNNs), Siamese
LSTM, and two BERT models. While S-CNNs (82.02% F1) outperformed S-ARCNN (79.83%
F1) overall, S-ARCNN slightly outperformed S-CNN on duplicate question pairs with more
than 50 words (39.96% vs. 39.42% accuracy). With the potential advantage of S-ARCNN for
processing longer documents, S-ARCNN may help researchers identify collaborators with
similar research interests, help editors find potential reviewers, or match resumes with
job descriptions.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

In various applications, knowing the similarity between documents is essential to users’ needs. An editor might want
to know if a paper submission is similar enough to others to warrant concerns of plagiarism, an avid book reader might want
to find books similar to one they enjoyed, and a user on a help website might want to know if questions similar to their own
have already been asked and answered. Crowdsourced annotation of the similarity between documents can be useful in
some cases, but still requires enormous collective human effort, and is inapplicable in some cases where privacy is
paramount.

Accordingly, the last few decades have seen intense development of natural language processing (NLP) methods to auto-
matically score document pairs on their similarity. State-of-the-art approach on various document similarity bench-
th Street,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2022.10.032&domain=pdf
https://doi.org/10.1016/j.ins.2022.10.032
mailto:tsuif@chop.edu
https://doi.org/10.1016/j.ins.2022.10.032
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


S. Han, L. Shi, R. Richie et al. Information Sciences 615 (2022) 90–102
marks is commonly achieved by deep neural networks (DNNs), and in particular by convolutional neural networks
(CNNs), long short-term memory (LSTM) networks, feedforward attention networks (i.e., transformers like Bidirectional
Encoder Representations from Transformers [BERT]), and/or Siamese neural networks (S-NNs). For example, the original BERT
model [1] was tested on the Quora Question Pairs (QQP) dataset, achieving 71.2% F1 with BERT_base and 72.1% with BER-
T_large. Yaghoobzadeh et al. [2] used BERT to embed a document, and fed these embeddings into a k-NN (k-Nearest Neigh-
bor) model, and achieved an AUC of 80% in detecting duplicate questions in the QQP dataset. McCreery et al. [3] fine-tuned
XLNet to predict medical question–answer pairs, and then transferred this model to the task of detecting duplicate Aedical
questions, where it achieved 82.6% accuracy. Imtiaz et al. [4] used Siamese LSTM’s with Manhattan distance for measuring
similarity, and achieved 91.14% accuracy on QQP. Zheng et al. [5] used a CNN model to detect the similarity of medical texts
(to enhance downstream information retrieval), achieving a macro F1-score of 93.5% on their in–house dataset of clinical
reports.

While each of the popular network components or architectures – CNN, LSTM, attention, Siamese – has shown value for
document representation and similarity when used in isolation, it is less well-known how powerful the combination of all
of these network components might be. We believe this is a crucial knowledge gap, since different components are
thought to serve different purposes. That is, convolution allows extraction of local features while the LSTM allows extraction
of global features [6]. Thus, having both local and global features may be important for developing a system that can measure
similarity of both short and long texts. Attention, on the other hand, allows token representations to be influenced by the
most relevant other tokens in a sentence, while the Siamese architecture allows (among other things) efficient inference
and robustness to class imbalance.

Despite the potential power of combining these components, to our knowledge, there is only one previous study that
combines convolution, recurrence (LSTM), and attention in Siamese neural networks for document similarity: Huang
et al. (2020) [7]. In one subnetwork (dubbed ARC-2) of Huang et al.’s Siamese architecture, convolutional and LSTM layers
are applied in parallel and merged, then passed through a fully connected layer and then an attention layer. This is, of course,
only one of many possible ways that these components could be combined, and so it is essential to test different possible
combinations of these components, since it is largely an empirical question which combinations perform better than others.

In this paper, we therefore propose and test a new architecture for measuring document similarity – the Siamese
attention-augmented recurrent convolutional neural network (S-ARCNN). S-ARCNN extracts both local and global rep-
resentations from a document. It first applies a bi-LSTM, and then sends extracted representations to two separate modules:
a module with convolution to extract local features, and another module that extracts global features by max and average
pooling, attention weighting, and concatenating the last states of the forward and backward LSTM’s. We then concatenate
these local and global features to form a single sentence representation. We compare S-ARCNN to two standard (DNN) mod-
els, Siamese Long Short-Term Memory (S-LSTM) and Siamese Convolutional Neural Networks (S-CNN), on a standard bench-
mark dataset of sentence similarity, the Quora Question Pairs dataset of duplicate questions. We hypothesize that our
proposed model S-ARCNN can outperform current state-of-the-art DNNs in measuring document similarity. Overall, then,
our contributions are:

� A novel deep neural network architecture combining recurrence, convolution, and attention in Siamese neural networks
for measuring document similarity

� Comparisons of this architecture on the Quora Question Pairs dataset of duplicate questions, to more traditional architec-
tures including Siamease LSTM, Siamese CNN, and a range of state-of-the-art transformer architectures.

� Evaluation of our and competitor models on longer question pairs (P 50 words), where our model out-performs others on
duplicate questions.

The rest of the paper is organized as follows. Section 2 briefly describes background onmeasuring text similarity. Section 3
and Section 4 present information about the dataset and models we test, respectively. The experiment settings and the eval-
uation on the Quora Question Pairs (QQP) dataset are described in Section 5. Section 6 contains discussion. Finally, we give
our conclusion and some suggestions for future work in Section 7.

2. Background on measuring text similarity

Measuring document similarity is one of the oldest tasks in natural language processing. The oldest, most conventional
approaches generally rely simply on representing documents with vectors of word frequency, known as the Bag of Words
(BoW). For example, the two sentences/documents I like cats and I love cats and dogs would be represented as vectors [1,
1, 1, 0, 0, 0] and [1, 0, 1, 1, 1, 1], respectively, indicating their count of the six word types in the two sentences: I, like, cats,
love, and, and dogs. Similarity between such vectors can then be computed in various ways, e.g., cosine similarity [8], Min-
kowski distance [9], and Jaccard similarity [10]. Additional pre-processing steps can be used to improve performance, like
lemmatization (mapping both cats and cat to cat), removing low information stop words like the, which, and at, or TF-IDF
weighting (which down weights uninformative words occurring across many documents). However, all such approaches
have a fundamental limitation: they cannot recognize similarity between documents that do not have common words, like
Biden spoke in Nashville and The president greeted the press in Tennessee.
91



S. Han, L. Shi, R. Richie et al. Information Sciences 615 (2022) 90–102
To address this issue, various word embeddings have been developed (e.g., word2vec, GloVe, fastText), which use patterns
of word usage in large corpora to derive fixed-length, real-valued vectors for words such that semantically similar words
have similar vectors. Because Biden and President or Nashville and Tennessee will have similar vectors, the similarity of the
above two sentences can be captured in various ways, e.g., by summing or averaging words in a sentence or document. Aver-
aging or summing word embeddings (or even BoW) can be an excellent baseline in many document similarity tasks, but it
also has a crucial shortcoming: simple averages or sums ignore word order and syntax. Thus, syntax and word order are
tremendously important, cf. Dog bites man and Man bites dog.

This shortcoming, in turn, led to various deep neural network (DNN) approaches that exploit word embeddings but also
respect the sequential nature of language. Recurrent neural networks like RNN and LSTM, for example, process text one
token at a time, providing a nonlinear update to the current context based on the combination of new and old inputs. Con-
volutional neural networks (CNN), on the other hand, use so-called convolution filters (CFs) that are traditionally used in sig-
nal processing. The general idea is to learn multiple CFs which can capture useful, local features from a document. Recent
transformer models like BERT and sentence-BERT are purely feedforward (dispensing with recurrence) but use positional
embeddings and many self-attention layers to allow an order-sensitive document representation to emerge. These networks
can be used in various ways to predict document similarity and generally form the current state-of-the-art in automatic
measures of document similarity or duplication [11–14].

Any of the above types of neural networks can be used to create a Siamese neural network (SNNs), a class of neural
network architectures which contains two or more identical subnetworks, each with the same configuration and
parameters. Each subnetwork processes an input (here, a document), and the outputs of these subnetworks can then
be compared to produce a prediction of similarity (Fig. 1a). SNNs have shown utility in document similarity, as well
as signature verification [15–17] face recognition [18,19], and content-based (medical) image retrieval [20–22]. The
advantage of SNNs are that they are more robust to class imbalance, can be easily combined with various downstream
classifiers, and allow learning directly from gold labels of document similarity (instead of indirectly relevant information
about, e.g., document classification). Siamese neural networks also offer more efficiency than does the most straightfor-
ward sentence similarity approach with BERT, which entails concatenating two documents (with a special [SEP] token
between them), and passing the concatenation through BERT. Unfortunately, as this approach is quadratic in the number
of documents, it quickly becomes intractable. Siamese neural networks, however, only require that each document be
processed by the subnetwork once, which is only linear in the number of documents, and therefore much more efficient
than the above BERT-based approach.
3. Dataset and pipeline

3.1. Corpus data set

The Quora Question Pairs dataset contains a training set of 404,290 question pairs and a test set of 2,345,795 question
pairs. This dataset is provided as part of a Kaggle shared-task competition. The training set has 255,027 (63.08%) pairs with
a label 0 (not duplicate/similar) and 149,263 (36.92%) pairs with a label 1 (duplicate/similar). Those labels were manually
determined by human experts. Unlike the training set, the publicly available test set does not provide labeled outcomes
as a reference standard; thus, this study does not use the test set. As will be mentioned later, we instead conduct cross-
validation on the training set. Each data entry consists of the following four data fields:

� id: unique ID of each pair
� qid1/qid2: ID for first/s question
� question1/question2: text of first/s questions
� is_dupliate: 0 indicates not duplicate, 1 indicates duplicate

The question pairs cover a great range of topics including technology, entertainment, politics, culture, and philosophy.
Some questions have special characters, such as math symbols and non-ASCII characters.
3.2. Text processing pipeline

Fig. 1a summarizes the pipeline shared by our novel S-ARCNN, as well as the S-LSTM and S-CNN, to which we compare.
The pipeline first preprocesses the text of each question pair by (1) removing non-ASCII characters, (2) converting the con-
tractions with ’ to separate words (e.g., ’t ! not, ’re ! are, ’d ! would, ’ll ! will, ’ve ! have, i’m ! i am), (3) adding space
before and after punctuation, and (4) normalizing elongated words (lesssson ! lesson). The pre-processed text of the ques-
tion pair is then fed through a Siamese neural network (S-ARCNN, S-LSTM, or S-CNN), which yields a fixed length, real-valued
vector representation for each question. These question representations are then merged, passed through an additional layer,
and then passed to a final output node for determining the probability that the paired questions are duplicates.
92



Fig. 1. Siamese Attention-Augmented Recurrent Convolutional Neural Network (S-ARCNN) Architecture, (b) is the represent the gray block: Encoder
(ARCNN) in (a).

S. Han, L. Shi, R. Richie et al. Information Sciences 615 (2022) 90–102
4. Models

4.1. Convolutional neural network

We compared our proposed ARCNN encoding strategy with CNN and LSTM approaches. The first encoding strategy is a
CNN model. The input is the textual content of a question represented as a sequence of words w ¼ ðw1;w2; . . . ;wnÞ each rep-
resented by their corresponding index to the vocabulary V. The words are mapped to word vectors via an embedding matrix
93



S. Han, L. Shi, R. Richie et al. Information Sciences 615 (2022) 90–102
E 2 RjV j�d to produce a document matrix D 2 Rn�d where d is the dimension of the word representation vectors. The central
idea is CNN employs a convolution operation over the document matrix to produce a feature map representation using a con-
volution filter (CF). We define a CF W 2 Rh�d, where h is the window size, which represents the number of words we wish the
convolution filter to span, and d is again the dimension of the word vectors. The 2-D convolution operation * is defined as
W � Dj:jþh�1 ¼
Xjþh�1

i¼j

Xd�1

k¼0

Wi;kDi;k
where j is j-th row of document D. Next, we map a length h word window, Dj:jþh�1 of the document to a real number cj 2 R

using a non-linear function f as in
cj ¼ f ðW � Di;j:jþh�1 þ bÞ

where b 2 R represents the bias term. After convolving over the entire document using W, we have the corresponding con-
volved feature map
v ¼ ½c1; c2; � � � ; cn�hþ1�

The goal is to learn multiple CFs that can collectively capture diverse representations of the same document. Choosing k fil-
ters results in k corresponding feature maps v1; � � � ;vk. The most distinctive feature of each feature map is selected using a
max-over-time pooling operation [23] to produce the final feature vector p 2 Rk, such that
p ¼ ½v1
max; � � � ; vk

max�
where v j
max ¼ maxðvj

1; � � � ;vj
n�hþ1Þ. Different sets of k CFs are typically learned for different window sizes, h. The window sizes

are parameterized as a sequence h1; � � � ;hH of H unique sizes. Suppose pðhiÞ denotes the feature vector produced on k filters
with a window size of hi, then the final kH � 1 feature vector is
p� ¼ pðh1Þjj � � � jjpðhHÞ
where jj is the vector concatenation operation. The resulting vector p� provides a semantic representation of the question
text. See previous work for additional details of CNNs used for text classification [24–26].

4.2. Long short-term memory

The second encoding strategy is an LSTMmodel. LSTM’s are extensions of the basic RNN setup and were designed to obvi-
ate the vanishing gradient issue that plagued vanilla RNNs. LSTMs use Eq. 1 to decide how much information needs to be
remembered from the previous output.
f t ¼ rðWf � ½ht�1; xt � þ bf Þ ð1Þ
where f t is forget gate, the hidden vector ht�1 2 Ra�b where a is the hidden dimension and b is 1, the input vector xt 2 Rc�b

where c is the input embedding dimension and Wf 2 Rd�e is the parameter matrix for the forget gate, where d is batch size
and e is the sum of hidden and input embedding dimensions, i.e., e ¼ aþ c, [] is a concatenation operation between the hid-
den vector and the input vector, and the bias of forget gate bf 2 Rd�b.

In Eq. 2, the input gate it is similar to the forget gate, but instead controls howmuch information needs to be remembered
from the input vector whereWi 2 Rd�e andWc 2 Rd�e. Then we apply the hyperbolic tangent function, tanh, on the input vec-
tor to get ~Ct , the current state.
it ¼ rðWi � ½ht�1;xt � þ biÞ
~Ct ¼ tanhðWc � ½ht�1;xt� þ bCÞ

ð2Þ
Now, we let the model learn the information based on the output from forget gate and input gate. If f t is close to zero, most
information from previous stages ought to be forgotten as shown in Eq. 3.
Ct ¼ f t � Ct�1 þ it � ~Ct ð3Þ
The last step is to create output state ot with Wo 2 Rd�e, and get the new hidden layer vector ht 2 Ra�b
ot ¼ rðWo½ht�1; xt � þ boÞ
ht ¼ ot � tanhðCtÞ
We employ a bidirectional LSTM, which uses one LSTM to process the input from the first to the last token and another LSTM
to process the input from the last to the first token. Typically, in a bidirectional LSTM, ht of the last token of the forward LSTM
and ht of the first token of the backwards LSTM are concatenated and used as the sentence representation.
94



S. Han, L. Shi, R. Richie et al. Information Sciences 615 (2022) 90–102
4.3. Siamese-ARCNN (S-ARCNN) models

The third encoding strategy is a novel approach we propose, and is a hybrid of the first two methods, with the addition of
attention mechanisms. Again, we combine these components as they are thought to have complementary advantages: con-
volutional captures local features, recurrence with LSTM cells captures global features, and attention helps networks focus
on the most relevant tokens. Fig. 1b illustrates our proposed ARCNN model. The model can be split into three parts. The first
part is applying a bidirectional LSTM with 256 units (128 units in each direction), which converts the word embeddings He

into context-aware word embeddings Hb (as shown in the green part).
The following two parts focus on the local and global levels of feature representation. First, we discuss the global docu-

ment representation. In this module, we applied average pooling and max-over-time pooling on the Hb to get the represen-
tation gave ¼ aveðHbÞ and gmax ¼ maxðHbÞ, respectively. Second, the attention mechanism shown in Eq. 4 produces a
document representation from the words by weighting the importance of each constituent word to the prediction task.
ui ¼ hðciÞwa; ai ¼ eðuiÞ=
Xn

i

eðuiÞ

ac ¼
Xn

i

aihðciÞ

ð4Þ
Where a context-aware token embedding hðciÞ is fed through a one-layer multilayer perceptron with weight matrix wa to
obtain a hidden representation ui. Next, a normalized importance weight for each token is obtained through the softmax
function. The document representation ac is then the ai-weighted sum of all tokens’ context-aware embeddings hðciÞ. Finally,
we concatenate all the outputs to have a global representation pglobal ¼ gavejjgmaxjjLSTMF jjLSTMBjjaðcglobalÞ where LSTMF and
LSTMB represent the last state of the forward and backward LSTM’s, respectively.

To calculate the local document representation, the LSTM outputs Hb pass through a convolutional layer to capture 1- to
5-gram features, v1; � � � ;v5. Max-over-time pooling and average pooling are then applied to obtain lmax ¼ ½v1

max; � � � ;v5
max� and

lave ¼ ½v1
ave; � � � ;v5

ave�, respectively. As in the global document representation, we also apply an attention mechanism to obtain
aðclocalÞ. The output for the local document representation is then plocal ¼ lavejjlmaxjjaðclocalÞ. Finally, we concatenate the global and
local representations to have the output of the encoding p� ¼ pglobaljjplocal, which is the representation of a single document or
sentence.

4.4. Baseline: logistic regression

As a baseline non-DNN model, we also considered a logistic regression (LR) on relatively simple features extracted from
question pairs. In particular, the LR model uses a logistic function to compute the probabilities of a certain class as shown in
Eq. 5
f ðxÞ ¼ 1
1þ e�x

ð5Þ
where f ðxÞ 2 ½0;1� is the probability estimate of two questions being duplicates, x denotes the input values to the function,
and e is the natural logarithm.

In this approach, in addition to the text pre-processing applied for the DNNs (see Section 3.2), we removed stopwords
with the NTLK list [27]. We then constructed the following features: (1) the length of the question, (2) number of word types
in common between the question pair, (3) the total number of words in the question pair, (4) if the last word of both ques-
tions is the same or not, (5) if the first word of both questions is same or not, (6) the average token length of both questions,
(7) the absolute difference of the questions’ lengths, (8 and 9) the number of common word types divided by the token
length of each question, (10 and 11) the number of stopwords divided by the token length of each question, and (12 and
13) the number of non-stopword tokens divided by the token length of each question. Finally, we used the TF-IDF vectorizer
from scikit-learn [28] to extract TF-IDF weights for each question. We then used these, as well as GloVe [29] vectors from
spaCy [30], to calculate weighted averages of the word embeddings in a question, to obtain an embedding for each question.
The 96-dimensional embeddings for each question were then concatenated to the 13 features mentioned above, so that there
were 205 features in total for the logistic regression.

4.5. Transformers

As mentioned in the introduction, transformers (e.g., BERT [1]), have achieved state-of-the-art results in a wide variety of
NLP tasks. Thus, we also tested three transformer-based models using Siamese encoding and cross-encoding (see Fig. 2)
through Sentence-Transformers, a Python library for state-of-the-art sentence, text, and image embeddings [31] (for math-
ematical details of transformers, see [32]). Under both cross-encoding and Siamese encoding (referred to as bi-encoding in
Sentence-Transformers), transformers are pre-trained with very large corpora (billions of tokens) on tasks like masked word
prediction or next sentence prediction, and then fine-tuned via the cross-encoding or Siamese approach on tasks like detect-
95



Fig. 2. Siamese vs cross-encoding in the Sentence-Transformers library. Figure adapted from [31].

S. Han, L. Shi, R. Richie et al. Information Sciences 615 (2022) 90–102
ing duplicate questions or question–answer pairs. For fine-tuning under a cross-encoding approach, two documents are con-
catenated with the special [SEP] token between them, passed through a transformer, and then a classifier outputs the prob-
ability that the documents are duplicates, or an appropriate question–answer pair, etc. Under the Siamese approach,
however, each document is processed by identical transformers, the final layer outputs are pooled to produce vectors u
and v representing the first and second document, respectively, and then cosine similarity (or other metrics) between u
and v can be calculated.

We tested a single pre-trained cross-encoder, stsb-roberta-large, which we refer to henceforth simply as CrossEncoder. We
also tested two pre-trained Siamese encoders, paraphrase-multilingual-mpnet-base-v2 and all-mpnet-base-v2. This latter
model’s (all-mpnet-base-v2 fine-tuning included Quora Question Pairs, and thus we may have data leakage when we evaluate
it on QQP and this model preforms the best among all the pre-trained model provided by Hugging face. As this model is a
Siamese transformer fine-tuned with QQP, we refer to it as S-Trans(with QQP), and refer to the other Siamese transformer as
just S-Trans. For all three models, we passed two documents through the cross-encoder or Siamese encoder to obtain a doc-
ument similarity score, which is a cosine similarity in the Siamese encoder and a probability in the cross-encoder. We fed
this single score into a logistic regression to find an optimal decision threshold. Thus, we emphasize that, in contrast to
the other deep neural networks, we are not fine-tuning these transformers’ millions of parameters to the QQP duplicate
detection task. In addition, these models take raw text, i.e., we do not apply the text pre-processing steps described above.
5. Experiment and results

5.1. Experiment

We used 10-fold cross-validation to train and evaluate the three DNNs (Siamese-CNN, Siamese-LSTM, and Siamese-
ARCNN), one traditional machine learning approach (Logistic Regression), and the transformers. First, we split the dataset
into ten stratified folds. Then a model was trained in nine folds and tested in the remaining fold. After repeating this process
ten times, we calculated average metrics: accuracy, precision, recall, and F1 score.
5.2. Model configuration for deep learning

All DNNs (except transformers) used commonly selected 300-dimensional GloVe embeddings [29] pre-trained on the
Common Crawl corpus with 840 billion tokens to convert tokenized texts of length n into an embedding layer in Rn�300.
These embeddings were further updated by training. The maximum sequence length was set to 60 tokens, such that shorter
and longer questions were padded or trimmed, respectively. As is standard [24], our S-CNN used convolution filters spanning
3, 4, and 5 words, and each filter size had 100 filters for the CNN encoding. We used a dropout rate at 0.5, set the final dense
layer dimension to 100 and the hidden dimension to 200, and used a batch size of 2048. We used Adam optimization and a
cross-entropy loss function. Models trained for a maximum of 30 epochs, with early stopping if loss did not change dramat-
96



S. Han, L. Shi, R. Richie et al. Information Sciences 615 (2022) 90–102
ically for 10 epochs. Our experiments were performed on a machine with Intel Xeon(R) Silver 4214 @ 2.20 GHz, 754 GB
memory, and Tesla V-100 PCIE-32 GB graphical card. Our proposed S-ARCNN model’s average training time was around
2 min for each epoch.
5.3. Evaluation measures

The precision, recall/sensitivity, and F1-score defined as follow:
Table 1
Model c

LR1

Cross
Cross
S-Tra
S-Tra
S-Tra
S-LS
S-AR
S-CN

1 LR:
2 Cro
3 Cro
4 S-T
5 S-T
6 S-T
Precision ¼ TP
TP þ FP
Recall ¼ TP
TP þ FN
F1� score ¼ 2 � Precision � Recall
Precisionþ Recall
where TP, FP, and FN are true positive, false positive, and false negative, respectively. The ideal classifier has precision and
recall equal to one, which means FP and FN are zero. F1-score is the harmonic mean of precision and recall.
5.4. Results

Table 1 shows the accuracy, F1-score, precision, and recall with the corresponding confidence intervals. As can be seen,
our Siamese Neural Network with CNN encoding has the best performance among the three deep learning models, our base-
line model, and the five transformers. Because the transformers and baseline logistic regression did not perform competi-
tively (F1’s 5% or more below the three DNNs), we omit them from the following finer-grained analyses.
5.4.1. Secondary analysis results
In the Quora Question Pairs dataset, it turns out that most questions are, as one might guess, quite short. Fig. 3 shows the

distribution of question lengths in number of words, and shows that the majority (64.44%) of questions have less than 12
words. In contrast, there were only 817 unique questions with more than 50 words.

Since the vast majority of questions are only of sentence or phrase length, our proposed S-ARCNNmodel may be too com-
plicated for such short texts. Therefore, we hypothesized that our proposed model would perform better on long sentences.
To test this, we calculated each model’s accuracy among question pairs that have at least N words, for N 2 ½1;100�. As Fig. 4
shows, performance of our proposed model, S-ARCNN, closes in on that of the S-CNN model as question length increases,
becoming essentially identical with question pairs longer than 50 or 60 words.

Next, we tested our model on question pairs longer than 50 words. We found that as a question’s length increases, the less
likely it is a duplicate of another question. More specifically, when question pair length is > = 50, only 624 out of 7273 pairs
are duplicates, and when the length is > = 80, only 13 out of 505 are duplicates. Similarly, in the full dataset, 37% of pairs are
duplicates, while less than 3% are duplicates among question pairs over 80 words. Therefore, we believe it is more important
to focus on the accuracy of the duplicate class (the minority class) than the overall accuracy. Among duplicates over 50
words, we found that S-ARCNN outperformed the Siamese based CNN model, as shown in Fig. 5.
omparison for question pairs detection (95% CI).

F1 Precision Recall Accuracy

62.06% (61.83%-62.28%) 64.80% (64.62%-64.99%) 59.53% (59.19%-59.88%) 73.12% (72.99%-73.25%)
Encoder-Base2 73.60% (73.48%-73.71%) 60.06% (59.89%-60.22%) 95.04% (94.89%-95.19%) 74.83% (74.67%-74.99%)
Encoder3 74.65% (74.49%-74.81%) 74.06% (73.88%-74.23%) 75.26% (74.92%-75.59%) 81.13% (81.03%-81.23%)
ns-Base4 65.64% (65.58%-65.70%) 48.89% (48.83%-48.95%) 99.86% (99.83%-99.88%) 61.41% (61.31%-61.50%)
ns5 72.80% (72.62%-72.98%) 70.39% (70.16%-70.61%) 75.39% (75.12%-75.65%) 79.20% (79.06%-79.35%)
ns(with QQP)6 74.91% (74.69%-75.12%) 72.53% (72.28%-72.78%) 77.44% (77.15%-77.73%) 80.84% (80.68%-81.01%)
TM 79.62% (79.51%-79.74%) 79.26% (79.19%-79.34%) 80.80% (79.97%-80.43%) 80.69% (80.61%-80.77%)
CNN 79.83% (79.33%-80.33%) 80.35% (79.95%-80.74%) 79.50% (78.83%-80.17%) 81.46% (81.07%-81.84%)
N 82.02% (81.83%-82.20%) 82.18% (81.99%-82.38% 81.88% (81.60%-82.17%) 83.32% (83.17%-83.47%)

Logistic Regression.
ssEncoder: CrossEncoder with stsb-roberta-large pre-trained model without fed into logistic regression.
ssEncoder: CrossEncoder with stsb-roberta-large pre-trained model.
rans: Siamese Transformer with paraphrase-multilingual-mpnet-base-v2 pre-trained model without fed into logistic regression.
rans: Siamese Transformer with paraphrase-multilingual-mpnet-base-v2 pre-trained model.
rans(with QQP): Siamese Transformer with all-mpnet-base-v2 pretrained model.

97



Fig. 3. Distribution of question lengths.

Fig. 4. Accuracy for different length of question pairs.

S. Han, L. Shi, R. Richie et al. Information Sciences 615 (2022) 90–102
5.4.2. Error analysis
As another effort to better understand the S-ARCNN, we conducted an error analysis on the question pairs that con-

tributed most to the loss. The three positive examples with the lowest predicted logits (false negatives) and three negative
examples with the highest predicted logits (false positives) are shown in Table 2.

Reviewing the false positives, it is apparent that the questions are very similar, with just fairly subtle differences in cer-
tain concepts (FP1: desktop vs. laptop; FP2: Colorado vs. Vermont; FP3: T795 44-in vs. T520 36-in). This suggests that our model
does not sufficiently distinguish subtle yet critical differences between concepts that are generally rather similar. One way to
address this issue may be to train the model with an attention to the noun phrases to classify these two questions as the
same or not. In the false negatives, FN1 and FN2 pairs have trouble with singular and plural be verbs. In the future, removing
stopwords during pre-processing can handle this issue. In FN3, the adjectives good and impressive clearly mean the same
things in these questions, yet our model predicts these questions are different. One way to address this is the same as han-
dling the false positives, which is to force the model to pay attention to concepts (nouns, verbs, adjectives).
6. Discussion

In this study, we built a Siamese attention-augmented recurrent convolutional neural network (S-ARCNN) to score doc-
ument pairs on their similarity, and evaluated it on the Quora Question Pairs dataset of duplicate questions. We also com-
pared S-ARCNN to S-CNN, S-LSTM, S-ARCNN, and logistic regression models. Contrary to our expectations, a plain S-CNN
(83% accuracy, 82% F1) outperformed our S-ARCNN model (81% accuracy, 80% F1), as well as S-LSTM (81% accuracy, 80%
F1), our baseline logistic regression (73% accuracy, 62% F1), all with statistical significance at p < :05.

These DNN’s also outperformed five models based on pre-trained transformers – CrossEncoder-Base, CrossEncoder, S-Trans-
Base, S-Trans, and S-Trans(with QQP) – with the best of these (S-Trans(with QQP)) achieving 81% accuracy and 75% F1. We also
found that fitting an optimal decision threshold for the transformer’s embedding is helpful: the CrossEncoder with a fitted
98



Table 2
Error analysis for misclassified question pairs.

Error type Pair Question 1 Question 2

False
positives

FP1 Which is the best desktop computer under 25000 INR? What will be best laptop Under 25000 INR?
FP2 What are the safety precautions on handling shotguns

proposed by the NRA in Colorado?
What are the safety precautions on handling shotguns proposed
by the NRA in Vermont?

FP3 How does the HP OfficeJet 4620 Airprint compare to the HP
DesignJet T795 44-in Printer?

How does the HP OfficeJet 4620 Airprint compare to the HP
DesignJet T520 36-in Printer?

False
negatives

FN1 Who is the bigger global competitor of bizbilla.com the
global marketplace?

Who are the bigger global competitor of bizbilla.com the global
marketplace?

FN2 What is the review of lenovo vibe P1? What are the reviews for Lenovo Vibe P1 M Smart Phone?
FN3 What is a good inpatient drug and alcohol rehab center

near Maricopa County Arizona?
What is the most impressive Inpatient Drug and Alcohol Rehab
Center in Maricopa County Arizona?

Fig. 5. Duplicate class accuracy for different length of question pairs.

S. Han, L. Shi, R. Richie et al. Information Sciences 615 (2022) 90–102
decision threshold (CrossEncoder) improves the F1 score by 1% compare with CrossEncoder-Base. Similarly, the Siamese Enco-
der S-Trans outperformed the Siamese Encoder without a fitted threshold S-Trans-Base by about 7% in F1 score. These two
results – poorer performance of pre-trained transformers compared to other DNN’s, and superiority of pre-trained trans-
formers with task-specific decision thresholds over pre-trained transformers without task-specific decision thresholds –
both suggest that good performance relies on adapting the transformer for the task. Fitting a single decision threshold to
the continuous scores output by the pre-trained transformers is a simple way to do this, but fine-tuning some or all of
the transformers’ internal layer weights to the task may improve performance further.

Unfortunately, it is difficult to compare our results to previous studies’ results on QQP, as different studies have used dif-
ferent training and test sets, and it is not always known how these training and test sets were constructed (e.g., what pos-
itive–negative sample balance they used). For example, the original BERT paper [1] achieved an F1 score of 72.1% (with BERT-
large) on the first Quora dataset release [33], with a training set of 364,000 samples and a test set of 391,000 samples. We,
however, conducted 10-fold cross-validation on 255,027 samples, which implies training sets with 229,524 samples and test
sets with 25,502 samples. Similarly, Yaghoobzadeh et al. [2] used BERT to embed a document, and fed these embeddings into
a k-NN (k-Nearest Neighbor) model, and achieved an AUC of 80% with 9,100 training samples and a test of unknown size and
positive–negative sample balance. Imtiaz et al. [4] used Siamese LSTM’s with Manhattan distance for measuring similarity,
and achieved 91.14% accuracy on QQP with a test set of 100,000 pairs of questions. Part of this problem in standard train-test
splits is likely because, as we noted, the publicly available QQP test set does not contain labels. Instead, participants in the
Kaggle competition needed to submit their test predictions to a website, which conducted evaluation for them, to minimize
test set leakage. Thus, researchers have chosen their own ad hoc splits of the Kaggle training set. Reaching a consensus
throughout the field on shared train-test (or train-dev-test) splits of QQP is therefore important for researchers to make
appropriate comparisons between each other’s work.

We attribute the success of the S-CNN’s performance to the fact that the vast majority of questions are short (90% of ques-
tions have fewer than 20 words). Thus, a simple model that mostly extracts local features (as CNN’s are typically thought to
do [6]) could be enough to represent the meanings of most questions. Consistent with this hypothesis, in the secondary
99



S. Han, L. Shi, R. Richie et al. Information Sciences 615 (2022) 90–102
analysis, we found that when the length of the questions pairs was greater than 50 words, our S-ARCNN model performed
better than the S-CNN model for identifying duplicate questions. We speculate that this is because our S-ARCNN model has
an LSTM component to extract global features from longer documents [6].

As shown in Fig. 4, there is a drop in accuracy for questions between 80 and 95 words long. This is because the longer
question pairs are less likely to be duplicates; as the length increases, the percentage of duplicate questions among all ques-
tion pairs is changing, and the misclassification on the duplicate class affects the accuracy.

We also found that when word length increased, accuracy increased. One simple explanation for this is that the longer the
question, the less likely it has a duplicate. Therefore, the overwhelming majority class in the long question pairs is non-
duplicate. However, we also suspect that longer questions contain more information for the model to make a decision, there-
fore increasing the chance that a model makes a correct prediction.

Lastly, an error analysis revealed that our model seemed not to pay appropriate attention to subtle differences between
concepts (e.g., Vermont vs Colorado). This error analysis provides a guideline for us to further improve our model, e.g., forcing
a model to pay extra attention to nouns and other concepts.

6.1. Limitations

This study contains the following limitations. First, the dataset skewed to short questions: 99.8% of questions have less
than 50 words, and 64.4% of questions have less than 12 words. Relatedly, duplicates are increasingly rare among longer
question pairs: among the 7273 pairs with > 50 words, 624 (8.58%) are duplicates, and among the 505 pairs with >80 words,
only 13 (2.57%) are duplicates. With such a small number of longer questions, and with such skew in the label distribution,
models might not be able to effectively learn what duplicates look like among longer documents. We are therefore cautious
in drawing conclusions about the S-ARCNN model’s performance across the full range of possible document lengths. Second,
relatedly, the Quora Question Pairs, while covering a broad range of subjects, still represent a very particular type of text
(questions). To address these limitations, we plan to reproduce our tests on longer documents of other types (see next sec-
tion). Last, there are no available annotation guidelines for this QQP public dataset. The ground truth labels are inherently
subjective, as the true meaning of sentences can never be known with certainty. Human labeling is also a ’noisy’ process,
and reasonable people will disagree. Therefore, the dataset labels are not 100% accurate, and may include incorrect labeling.
The effect of incorrect labeling on our model is unknown.

7. Conclusions and future work

State-of-the-art approach in automatically measuring document similarity involves deep neural networks with attention,
recurrence, convolution, and Siamese networks. These components are thought to serve complementary functions, yet their
combination in a single architecture is underexplored. We therefore developed and evaluated an attention-augmented
recurrent convolutional Siamese neural network for matching duplicate questions. Overall, the simple Siamese-CNN model
performed best, given that most of the questions contained fewer than 12 words. However, our model performed best for the
duplicate question pairs with longer sentences, i.e., a total length of more than 50 words. Given this apparent advantage of S-
ARCNN in matching longer documents, we plan to apply our proposed model to match longer documents such as scientific
article abstracts. This could help researchers identify collaborators with similar research interests, or help editors find poten-
tial reviewers, or match resumes with job descriptions. Additionally, comparing the similarity between a special request for
proposal (RFP) and a researcher’s biosketch containing a brief introduction on the researcher’s interests can help researchers
find matched RFPs.

CRediT authorship contribution statement

Sifei Han: Investigation, Methodology, Software, Visualization, Writing - original draft. Lingyun Shi: Formal analysis, Val-
idation, Writing - review & editing. Russell Richie: Formal analysis, Investigation, Writing - review & editing. Fuchiang R.
Tsui: Conceptualization, Investigation, Methodology, Supervision, Visualization, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgment

This material is based upon work supported by the National Science Foundation under Grant No. 2031150 and Children’s
Hospital of Philadelphia. The content is solely the responsibility of the authors and does not necessarily represent the official
views of funding agencies. We would like to gratefully acknowledge Edward Gruver from the Tsui Lab at the Children’s
Hospital of Philadelphia and anonymous reviewers for their valuable feedback.
100



S. Han, L. Shi, R. Richie et al. Information Sciences 615 (2022) 90–102
Appendix A. Training Deep Models and Pseudocode

We train our proposed model using a binary cross-entropy loss
Loss ¼ �
XL

i¼1

yi � logðŷiÞ þ ð1� yiÞ � logð1� ŷiÞ
where ŷi is the i-th scalar value in the model output, yi 2 f0;1g is the ground truth for the i-th label.

Algorithm1: Pseudocode for S-ARCNN Model
References

[1] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, in: Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Association for Computational Linguistics, Minneapolis, Minnesota, 2019, pp. 4171–4186. doi:10.18653/v1/N19-1423.https://
aclanthology.org/N19-1423.

[2] Y. Yaghoobzadeh, A. Rochette, T.J. Hazen, Cross-domain generalization through memorization: A study of nearest neighbors in neural duplicate
question detection, arXiv preprint arXiv:2011.11090 (2020).

[3] C. McCreery, N. Katariya, A. Kannan, M. Chablani, X. Amatriain, Domain-relevant embeddings for medical question similarity, arXiv preprint
arXiv:1910.04192 (2019).

[4] Z. Imtiaz, M. Umer, M. Ahmad, S. Ullah, G.S. Choi, A. Mehmood, Duplicate questions pair detection using siamese malstm, IEEE Access 8 (2020) 21932–
21942.

[5] T. Zheng, Y. Gao, F. Wang, C. Fan, X. Fu, M. Li, Y. Zhang, S. Zhang, H. Ma, Detection of medical text semantic similarity based on convolutional neural
network, BMC Med. Inform. Decision Making 19 (1) (2019) 1–11.

[6] W. Yin, K. Kann, M. Yu, H. Schütze, Comparative study of cnn and rnn for natural language processing, arXiv preprint arXiv:1702.01923 (2017).
[7] D. Huang, A. Ahmed, S.Y. Arafat, K.I. Rashid, Q. Abbas, F. Ren, Sentence-embedding and similarity via hybrid bidirectional-lstm and cnn utilizing

weighted-pooling attention, IEICE Trans. Inform. Syst. 103 (10) (2020) 2216–2227.
101

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0020
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0020
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0025
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0025
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0035
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0035


S. Han, L. Shi, R. Richie et al. Information Sciences 615 (2022) 90–102
[8] B. Li, L. Han, Distance weighted cosine similarity measure for text classification, in: International conference on intelligent data engineering and
automated learning, Springer, 2013, pp. 611–618.

[9] M. Nishom, Perbandingan akurasi euclidean distance, minkowski distance, dan manhattan distance pada algoritma k-means clustering berbasis chi-
square, J. Inform. 4 (01) (2019).

[10] S. Niwattanakul, J. Singthongchai, E. Naenudorn, S. Wanapu, Using of jaccard coefficient for keywords similarity, in: Proceedings of the international
multiconference of engineers and computer scientists, vol. 1, 2013, pp. 380–384.

[11] O. Khattab, M. Zaharia, Colbert: Efficient and effective passage search via contextualized late interaction over bert, in: Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information Retrieval, 2020, pp. 39–48.

[12] N. Peinelt, D. Nguyen, M. Liakata, tbert: Topic models and bert joining forces for semantic similarity detection, in: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 2020, pp. 7047–7055.

[13] J. Rabelo, M.-Y. Kim, R. Goebel, Combining similarity and transformer methods for case law entailment, in: Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Law, 2019, pp. 290–296.

[14] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks, arXiv preprint arXiv:1908.10084 (2019).
[15] S. Dey, A. Dutta, J.I. Toledo, S.K. Ghosh, J. Lladós, U. Pal, Signet: Convolutional siamese network for writer independent offline signature verification,

arXiv preprint arXiv:1707.02131 (2017).
[16] Z.-J. Xing, F. Yin, Y.-C. Wu, C.-L. Liu, Offline signature verification using convolution siamese network, in: Ninth International Conference on Graphic

and Image Processing (ICGIP 2017), Vol. 10615, International Society for Optics and Photonics, 2018, p. 106151I.
[17] J. Bromley, J.W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Säckinger, R. Shah, Signature verification using a ‘siamese’ time delay neural network,

Int. J. Pattern Recognit Artif Intell. 7 (04) (1993) 669–688.
[18] Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: Closing the gap to human-level performance in face verification, in: Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014, pp. 1701–1708.
[19] L. Song, D. Gong, Z. Li, C. Liu, W. Liu, Occlusion robust face recognition based on mask learning with pairwise differential siamese network, in:

Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 773–782.
[20] S�. Öztürk, Two-stage sequential losses based automatic hash code generation using siamese network, Avrupa Bilim ve Teknoloji Dergisi (2020) 39–46.
[21] S�. Öztürk, A. Alhudhaif, K. Polat, Attention-based end-to-end cnn framework for content-based x-ray image retrieval, Turkish J. Electr. Eng. Comput. Sci.

29 (SI-1) (2021) 2680–2693.
[22] S�. Öztürk, Hash code generation using deep feature selection guided siamese network for content-based medical image retrieval, Gazi Univ. J. Sci.

(2021), 1–1.
[23] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural language processing (almost) from scratch, J. Mach. Learn. Res. 12 (Aug)

(2011) 2493–2537.
[24] Y. Kim, Convolutional neural networks for sentence classification, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), Association for Computational Linguistics, Doha, Qatar, 2014, pp. 1746–1751. doi:10.3115/v1/D14-1181.https://aclanthology.org/
D14-1181.

[25] A. Rios, R. Kavuluru, Convolutional neural networks for biomedical text classification: application in indexing biomedical articles, in: Proceedings of
the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics ACM, 2015, pp. 258–267.

[26] S. Han, T. Tran, A. Rios, R. Kavuluru, Team uknlp: Detecting adrs, classifying medication intake messages, and normalizing adr mentions on twitter., in:
SMM4H@ AMIA, 2017, pp. 49–53.

[27] E. Loper, S. Bird, Nltk: The natural language toolkit, arXiv preprint cs/0205028, 2002.
[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al, Scikit-learn: Machine

learning in python, J. Mach. Learn. Res. 12 (Oct) (2011) 2825–2830.
[29] J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word representation, in: Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), 2014, pp. 1532–1543.
[30] M. Honnibal, I. Montani, spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing, to

appear (2017).
[31] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks, in: Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing, Association for Computational Linguistics, 2019.
[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, Adv. Neural Inform. Process. Syst.

30 (2017).
[33] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, S.R. Bowman, Glue: A multi-task benchmark and analysis platform for natural language understanding,

arXiv preprint arXiv:1804.07461 (2018).
102

http://refhub.elsevier.com/S0020-0255(22)01153-7/h0040
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0040
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0040
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0045
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0045
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0055
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0055
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0055
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0060
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0060
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0060
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0065
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0065
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0065
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0085
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0085
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0090
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0090
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0090
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0095
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0095
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0095
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0100
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0105
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0105
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0110
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0110
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0115
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0115
https://aclanthology.org/D14-1181
https://aclanthology.org/D14-1181
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0125
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0125
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0125
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0135
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0135
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0140
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0140
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0145
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0145
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0145
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0155
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0155
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0155
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0160
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0160
http://refhub.elsevier.com/S0020-0255(22)01153-7/h0160

	Building siamese attention-augmented recurrent convolutional neural networks for document similarity scoring
	1 Introduction
	2 Background on measuring text similarity
	3 Dataset and pipeline
	3.1 Corpus data set
	3.2 Text processing pipeline

	4 Models
	4.1 Convolutional neural network
	4.2 Long short-term memory
	4.3 Siamese-ARCNN (S-ARCNN) models
	4.4 Baseline: logistic regression
	4.5 Transformers

	5 Experiment and results
	5.1 Experiment
	5.2 Model configuration for deep learning
	5.3 Evaluation measures
	5.4 Results
	5.4.1 Secondary analysis results
	5.4.2 Error analysis


	6 Discussion
	6.1 Limitations

	7 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Training Deep Models and Pseudocode
	References


