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Abstract: DNA aptamers are short nucleotide oligomers selected to bind a target ligand with
affinity and specificity rivaling that of antibodies. These remarkable features recommend aptamers
as candidates for analytical and therapeutic applications that traditionally use antibodies as
biorecognition elements. Numerous traditional and emerging analytical techniques have been
proposed and successfully implemented to utilize aptamers for sensing purposes. In this work, we
exploited the analytical capabilities offered by the kinetic exclusion assay technology to measure
the affinity of fluorescent aptamers for their thrombin target and quantify the concentration of
analyte in solution. Standard binding curves constructed by using equilibrated mixtures of
aptamers titrated with thrombin were fitted with a 1:1 binding model and provided an effective K«
of the binding in the sub-nanomolar range. However, our experimental results suggest that this
simple model does not satisfactorily describe the binding process; therefore, the possibility that the
aptamer is composed of a mixture of two or more distinct Ka populations is discussed. The same
standard curves, together with a four-parameter logistic equation, were used to determine
“unknown” concentrations of thrombin in mock samples. The ability to identify and characterize
complex binding stoichiometry, together with the determination of target analyte concentrations in
the pM-nM range, supports the adoption of this technology for kinetics, equilibrium, and
analytical purposes by employing aptamers as biorecognition elements.
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1. Introduction

Aptamers are short nucleotide oligomers selected and isolated by the Systematic Evolution of
Ligands by Exponential Enrichment (SELEX) technique [1-4] to present high specificity and affinity
for a large variety of targets ranging from ions [5-8] and small molecules [9-12] to whole cells
[13-15]. Their ability to selectively recognize and bind targets recommends them as promising
alternatives to antibodies for scientific and medical purposes [9,13,16-25]. Aptamers have been
investigated as potential analytical and diagnostic tools with approaches and technologies that
traditionally employ antibodies as recognition elements. Compared to antibodies, DNA aptamers
are cost effective, present similar specificity and affinity for targets, have greater stability either
lyophilized or in solution at room temperature, and are readily amenable to chemical modifications
[17,25-28].

Numerous traditional and emerging analytical techniques have been proposed for
aptamer-based qualitative and quantitative assessments of molecular and cellular interactions
[23,25,28-32]. Aptamer-thrombin systems that use the 15-mer [33] and/or 29-mer [34] aptamer as
biorecognition elements are among the most used in scientific investigations focused on affinity and
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concentration determination [29,35-41], which is justified by the essential physiological role of
thrombin [42]. Nonetheless, both aptamers are far from fully characterized in terms of affinity and
binding models [35]. For example, the reported affinity of the 29-mer aptamer varies by more than
four orders of magnitude, and is also strongly dependent on the instrumental method and adopted
binding model [29,34-37,39-41]. Only a few studies reported affinities in the nM range [40,41], close
to the ~0.5 nM first reported by Tasset [34], while many others indicated affinities up to a few
hundred times larger [29,35-37,39]. It is not clear if such discrepancies originate in the
instrumentation and mathematical models employed, or whether particular experimental conditions
and methodologies also influence the measurements [35]. To better understand the
aptamer-thrombin interactions and pave the way towards analytical applications, we used the
kinetics exclusion assay (KinExA) technology, developed by Sapidyne, Inc. (Boise, ID, USA) to
determine the 29-mer aptamer affinity for thrombin, and thrombin concentration in solutions.

This technology provides highly accurate analyses of molecular interactions in true solution
phase systems [43-54]. The principle of operation relies on specifically assessing only the unbound
partner in a mixture of bound and unbound molecules [55-58]. The KinExA instrument is an
automatic solution-handling system equipped with a sensitive and versatile fluorescence detection
system [55,59-61]. To perform measurements, a small volume of a bi-molecular reaction mixture is
flowed into a low-volume flow cell over a solid phase consisting of small beads functionalized to
specifically bind one of the partners [52,56,62]. The contact time between the beads and solution is
brief enough that any dissociation of the bi-molecular complex is insignificant. The beads
specifically capture a small fraction of the free partner, proportional to total free molecule in
solution, which is quantified by either intrinsic fluorescence of the captured molecules or by using
fluorescent secondary probes (i.e., specific labels, anti-tag, or anti-species secondary antibody) that
do not participate in the primary interaction in the solution phase [63,64]. Depending on the
experiment goals, the resulting fluorescence signal measured directly on the beads is analyzed using
various binding models and protocols to determine kinetics, affinity, or concentration
[48,50,55,58,65-69].

Although this technology has been chiefly used with antibodies as biorecognition elements
[46,54-56,70], the only restriction on recognition molecules is that at least one of them needs to be
fluorescently detectable, either directly or indirectly [55]. We used this technology to interrogate an
aptamer-thrombin binding system, and our protocols make full use of the advantages offered by the
KinExA technology in terms of automation, accuracy, reliability, and adaptability. In addition, the
use of aptamers enables using a complementary DNA on a solid phase [71-74] to specifically capture
the free aptamer in solution (unbound to the target thrombin). By introducing a
fluorescently-labeled aptamer as a specific biorecognition element for thrombin, the detection of the
unbound aptamer can be achieved without using a secondary label. Our results demonstrate that the
KinExA platform is directly applicable to aptamers for determining their affinity for target, whether
simple or complex binding stoichiometries are considered, and for measuring concentration of target
molecules.

2. Materials and Methods

The 29 nucleotide thrombin-specific aptamer (sequence
5-AGTCCGTGGTAGGGCAGGTTGGGGTGACT-3'), identified by Tasset et al. [34] was obtained by
custom order from Integrated DNA Technologies, Inc. (IDT, Coralville, IA, USA). At our request, the
supplier provided the aptamer modified at the 5’ end by the addition of the fluorophore Alexa Fluor
647 to enable direct fluorescent detection. For the capture DNA (cDNA) strand, we selected a
16-nucleotide sequence complementary to bases 11-26, with two additional thymine residues and
biotin at the 3" end (5-CACCCCAACCTGCCCTTT-biotin-3'). This material was also obtained by
custom order from IDT. The DNA strands were reconstituted with nuclease-free water to a stock
concentration of 100 uM. Sample solutions consisting of fluorescent aptamer (FA) with various
concentrations of thrombin (MilliporeSigma, St. Louis, MO, USA) being prepared in sample buffer
(SB), consisting of phosphate buffered saline with 0.02% sodium azide (PBS, Sapidyne Instruments)
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supplemented with 1 mg/mL bovine serum albumin (BSA, Sapidyne Instruments). The running
buffer consisted of PBS alone.

2.1. Solid Phase and Sample Preparation, and Data Collection with the KinExA 3200 Instrument

The multi-step preparation of functionalized beads as solid phase for capturing the free FA in
solution is shown schematically in Figure 1. Following the manufacturer’s guidance, 1 mL of 20
ug/mL BSA-biotin (MilliporeSigma) in PBS was mixed with 200 mg of polymethylmethacrylate
(PMMA) beads of 98 um average diameter (Sapidyne Instruments). The beads were rotated for two
hours at room temperature, after which we performed five steps of gravity pelleting/PBS washing.
Next, the beads were exposed to 100 ug/mL egg white avidin (MilliporeSigma) in PBS containing 10
mg/mL BSA and rotated for two hours to functionalize them for anchoring the biotinylated cDNA
molecule through the strong biotin-avidin bond. After five steps of gravity pelleting/PBS washing,
one vial of beads functionalized with BSA-biotin and avidin (BSA-B-A) was reserved for preliminary
control experiments, while another vial underwent a last step of functionalization by immobilizing
the biotinylated cDNA on the beads, following similar equilibration and washing procedures in
which we used as bathing solution 1 mL of 2 puM biotinylated cDNA in PBS. The cDNA
functionalized beads (BSA-B-A-cDNA) were further used for control, equilibrium, and
concentration measurement experiments.

O\_ BSA-biotin

E:H Avidin
-— A~ Biotin-DNA (capture)

Thrombi
m Fluorescent 1 rombin

Aptamer

Aptamer-Thrombin
Complex

Figure 1. Bead preparation for equilibrium and concentration measurements with the kinetics
exclusion assay technology. Polymethylmethacrylate (PMMA) beads functionalized with bovine
serum albumin (BSA)-biotin and avidin serve as anchoring elements for the DNA strand with
sequence complementary to a portion of the fluorescent aptamer. The free aptamer is able to bind the
complementary strand anchored to the bead, while binding of the aptamer-thrombin complex is
prevented.

For the control experiments, we utilized the BSA-B-A and BSA-B-A-cDNA functionalized
beads, which were automatically injected into the flow cell of the KinExA 3200 instrument with
autosampler (Sapidyne Instruments). The controls included samples consisting of PBS alone (for
baseline) or 50 pM FA prepared in SB. The equilibrium measurements (see Figure Al and the
explanations provided in Appendix A) employed a constant concentration of FA (i.e., 10 pM, 50 pM,
and 10 nM) in SB, mixed with thrombin at final concentrations up to 1 uM, and equilibrated for at
least two hours at room temperature. To demonstrate the potential of the technology for
concentration and diagnostic testing using aptamers, we prepared mixtures of FA (50 pM) and
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thrombin (5 nM, 2.5 nM, and 0.5 nM). These samples were equilibrated at room temperature for two
hours.

Aliquots of samples were passed over the functionalized beads in the flow cell of the
instrument. A fresh aliquot of functionalized beads was used for each sample and replaced
automatically using the default protocol supplied with the instrument. Sample measurement steps
consisted of initiation with a flow of 100 uL of PBS, injection of 1 mL of the analytical sample (or
control), and injection of 1 mL of PBS, all at a flow rate of 0.5 mL/min. This was followed by a final
rinse with 1.5 mL of PBS at a rate of 1.5 mL/min. The fluorescence data from the detector (expressed
in volts) was recorded at a rate of one sample/second during the above steps and plotted for data
interpretation (see Figure Al in Appendix A for reference) and further analysis. The same
measurement steps were followed throughout for concentration measurements.

2.2. Data Analysis

Details of the signal equation used for fitting the 1:1 binding model [55,59,75,76], n-curve
analysis module [54,67,70,76], mixed model [75,77], and logistic equation for concentration
determination [61,78] are provided in Appendix A. The data were analyzed and plotted with
KinExA Pro software (version 4.4.36, Sapidyne Instruments), and Origin 8.5.1 software (Origin
Labs, Northampton, MA, USA).

3. Results and Discussion

In this work, we investigated the suitability of the kinetic exclusion assay technology for
measuring an aptamer’s binding affinity for its designated target, and for using the aptamer as a
recognition element in a bioassay for thrombin concentration measurements. Our proposed
investigative platform employs BSA-B-A-cDNA functionalized beads to capture a fraction of the
free FA remaining in equilibrated mixtures of analyte (thrombin) and FA. A potential impediment
to this approach would be an unexpected strong, non-specific binding of the aptamer molecules to
functionalized beads in the absence of cDNA immobilized on their surface. To address this issue,
we performed preliminary investigations of specific and non-specific binding by employing
functionalized beads without and with cDNA immobilized on their surface (control and capture
beads, respectively) and running the experiments with 1 mL of either FA-free SB or SB containing
50 pM FA.

The analysis of the evolution of the raw fluorescence signal (Figure 2) shows steady, almost
identical baselines (~1 V absolute signal value) recorded for both types of beads in the absence of
FA in the solutions. When the FA sample reached the flow cell containing control beads, the
fluorescence started to slowly increase and reached a maximum value of ~1.1 V (~0.1 V above
baseline). Such a small change of the signal was expected since the FA concentration in the flow
solution was very low (50 pM). During the rinsing step, the free FA was washed away with the
buffer, as inferred from the gradual decrease of the fluorescence signal. The small difference from
the baseline recorded at the end of the trace versus baseline indicated a weak, non-specific binding
(NSB).
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Figure 2. Preliminary testing of the fluorescent aptamer’s suitability for equilibrium and
concentration measurements by kinetic exclusion assay. The tests investigated specific and
non-specific binding of 50 pM fluorescent aptamer (FA) to control and capture beads. All the data in
the graphs represent experimental values, with the symbols added for identification. Each curve
shows the average values of experimental data (n =3, +SD).

When the FA-containing sample was flowed over capture beads (BSA-B-A-cDNA), the
fluorescence signal increased significantly (Figure 2) and reached an absolute value of ~2.9 V (~1.9 V
above baseline). This much larger signal may be explained by a continuous accumulation of the FA
in the flow cell as it was captured by the cDNA immobilized on the capture beads. The signal
decreased by only a small fraction during the rinsing process, suggesting that the FA bound very
strongly to the capturing beads. This was anticipated since the resulting duplex DNA, although
relatively short, has a predicted melting temperature of 58.4° C and the estimated free energy for
hybridization is large (AG = -39 kcal/mole; supplier data).

The specific binding of free FA resulted in a strong increase in the fluorescence signal (~1.9 V
above the baseline), while the non-specific binding led to a change in the signal of less than 0.1 V.
Consequently, we concluded that the experimental system was adequate for initiating further
investigation of affinity and concentration measurements.

Having established the existence of specific FA binding to our functionalized solid phase, we
turned our attention to determining the affinity of the aptamer for thrombin from kinetic exclusion
assay experiments. We assumed that the FA-thrombin complex will not be able to form a duplex
with the cDNA; therefore, specific capture of the complex will be prevented. In accordance with
standard practice for n-curve analysis, we set up three experimental curves, for which we adjusted
the concentration of the FA in SB (i.e., 10 pM, 50 pM, and 1 nM, respectively), used as a constant
binding partner (CBP) for each curve. The thrombin amount in the sample tubes was adjusted
(titrated) for final concentrations ranging from 5 pM to 1 uM, and we used up to 18 thrombin
concentrations (including no thrombin samples) for the experiments. The 1 nM and 50 pM FA
samples were incubated for two hours, and the 10 pM FA samples were incubated for 6.5 h before
measurements with the KinExA 3200 instrument, and each sample set was run at least in duplicate.
A typical run for the sample set that utilized 50 pM FA as CBP is shown in Figure 3. The plot clearly
indicates that the fluorescence signal, indicative of free FA in the equilibrated solutions decreased
significantly as the titrant (thrombin) concentration increased. The slope of the traces increased with
the amount of free FA in the equilibrated samples (therefore, it decreased as more thrombin was
added to the reaction tubes), and confirmed the signal rate’s dependency on the concentration of
binding partner [74].
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Figure 3. The evolution of the raw fluorescence signal recorded from capturing the free FA left in
solutions equilibrated with various thrombin concentrations. The free FA availability decreased as
the titrant concentration in the samples increased. For this experiment we utilized 50 pM FA as
constant binding partner (CBP).

The curves corresponding to the three different FA concentrations were simultaneously
analyzed with the n-curve analysis module [54,67,70,76] included with the KinExA Pro software
package to determine the equilibrium dissociation constant Ka. The calculated percent of free FA vs.
thrombin concentration and the theoretical curves for the three FA concentrations for a 1:1 binding
model (Equation (A1l)) are shown in Figure 4a.
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Figure 4. Analysis of FA binding data. (a) The n-curve analysis provided the calculated percent free
FA (symbols) and theoretical simulations (dashed lines) for 10 pM, 50 pM, and 1 nM FA in the
thrombin-titrated solutions for a 1:1 binding model. (b) The 10 pM and 1 nM FA signal data
(symbols) were fitted with a binding model (dashed lines) that comprised a hypothetical mixture of
two competing aptamers, characterized by different Ka values. The experimental data represents
average values = SD (n =3 for 50 pM FA, and n=2 for 10 pM and 1 nM FA).

The n-curve analysis provided a Kaof 298 pM (+111/-81 pM), which is in good agreement with
previous estimates of the same aptamer-thrombin system of ~0.5 nM [34], or a few nM [40,41]. We
also noted that the 10 pM and 50 pM FA curves were nearly identical (Figure 4a), which can only
occur when the thrombin concentration corresponding to the 50% inhibition point (approximately
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300 pM) of both curves is equal to the K4 [59]. In addition to data overlapping, the 10 pM and 50 pM
FA concentrations exhibited a better fit than the 10 nM FA samples. Even so, one may observe a
distinct deviation of the data from the 1:1 binding model used for analysis (i.e., Equation (A1)) for
the higher thrombin concentrations. All the additional curves we obtained and analyzed showed
the same systematic error in the same range. Aware that mixtures of antibodies can generate
standard binding curves of similar appearance [75,77], we wondered if the fit discrepancies in
Figure 4a could be the result of competition between two or more populations of FA, each with its
own affinity for thrombin. To examine this hypothesis, we followed the example provided by Glass
et al. [77] and set up a model that accounted for the competition of two FA of differing Ka for
thrombin [59,75]. With this competitive binding model, we obtained a qualitatively better fit to the
measured data (Figure 4b), which corresponded to a hypothetical two component FA mixture, in
which 84% has a calculated Ka for thrombin of 298 pM, and the remaining 16% has a Ka of 500 nM.

A better fit is not sufficient to prove that the dual binding model is the correct one, and we
have no reason to believe that the mixture, if it exists, would have only two components. In this
regard, we note that the fitted FA activity in Figure 4 was only ~47% for all FA concentrations,
suggesting that half of the FA was actually inactive with regard to binding thrombin. Previous
investigations on the same aptamer considered either a 1:1 binding model or models that imply
multiple binding sites, including cooperativity and induced fit mechanisms [29,35-41]. Nonetheless,
almost all of those approaches report significantly lower affinities, and the possibility of a mixed
population was not addressed. The fluorescent label that we added to the aptamer may alter the
binding and equilibrium, but most of the studies cited herein as comparison have also used labels
or spacers as modifiers. We do not believe that this particular label addition led to such a significant
increase in affinity, although this potential effect is worthy of further investigations. The complex
binding observed in our case may be inherent to this aptamer, or may originate in a potential
duplex formation between a shorter segment of the cONA and a complementary sequence of the
FA outside the thrombin binding site. Either way, it is a strength of the KinExA technology that
deviation from 1:1 binding can be discerned in the collected data, which we anticipate will prompt
further inquiry into mechanisms that may explain the observed binding curves for this and other
aptamers.

Our next experiments aimed at evaluating the FA as a bioassay recognition element using
kinetics exclusion assay technology. This task does not require a well-defined Ky, only that we have
a reproducible standard curve. To measure thrombin concentration by employing kinetic exclusion
assay using aptamers as ligands, we included measurements of mock unknowns (i.e., 5.0 nM, 2.0
nM, and 0.25 nM thrombin concentration) in the 50 pM FA assay. Similar to the experimental
results plotted in Figure 3, the resulting raw signal curves (Figure 5a) recorded with the
equilibrated mock samples show that the end signal decreased substantially when the thrombin
concentration increased, indicating reduced availability of FA in the equilibrated mixtures.
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Figure 5. Equilibrium measurements of thrombin concentration by kinetic exclusion assay. (a) The
raw fluorescence signal recorded for thrombin concentrations of 0.25 nM, 2nM, and 5nM (n=3, +
SD) in equilibrated mixtures at a constant FA concentration of 50 pM. The symbols were added to
facilitate curve discrimination and identification. (b) The end signal values measured against the
baseline for standard and mock samples (symbols) were plotted and fitted (dashed line) with the
four-parameter logistic equation (Equation (A2)) to determine the unknowns. The range of
concentrations represented by the x error bars on the “measured” data points represent
concentrations corresponding to the average measured signal (n = 3) +SD of the measured signals.

Since the 1:1 binding model (Equation (Al)) proved unsatisfactory to best describe the
experimental data, we used the four-parameter logistic (Hill slope) equation (Equation (A2)) [61,78]
to fit the signal data for the standard curve (Figure 5b). The best fit parameter values calculated
with this model are: upper asymptotic value B1 = 2.0 V, lower asymptotic plateau (NSB) B2=0.38 V,
inflection point Bs = 0.32 nM, and a Hill slope Bs = 0.87. These parameters were also used to compute
the “unknown” concentrations from the average values of the respective signals using Equation
(A3). Our calculations provided average concentration values equal to 5.4 nM for the 5 nM sample,
2.2 nM for the 2.0 nM sample, and 0.32 nM for the 0.25 nM sample (Figure 5b). It is interesting that
although only one of the samples (i.e., 0.25 nM thrombin) had a concentration near the middle of
the curve, while the more concentrated samples were intentionally outside this region, the
determined average concentration values were satisfactory. As expected, the uncertainty in the
determined concentration is larger and asymmetrical for the higher concentrations because of the
more gradual slope and curvature of the standard curve at these concentrations. From the signal
curve (Figure 5b) one may easily observe that for this FA concentration, visible changes in the
binding signal occurs for thrombin concentrations in the pM range; further optimizations of the FA
concentration in relation to affinity may provide improved sensitivity, even in the sub-pM range
[59].

4. Conclusions

This work strongly supports the hypothesis that the kinetic exclusion assay technology is
suitable for kinetics and equilibrium measurements employing aptamers as specific biorecognition
elements. Our experimental results demonstrate that both aptamer characterization and analyte
concentration measurements are achievable through this methodology. All the advantages
presented by this technology are anticipated to be maintained when aptamers are used as ligands for
analytes. The KinExA technology does not suffer from surface matrix affinity effects [45,79], mass
transport limitations, or mobility effects [55,80], does not require radioactive labels, avoids any
surface-immobilization procedure that may alter binding constants compared to those measured in
true solution phase, is highly accurate for repeated readings [81], and has no molecular weight
limitations [55,82,83]. Multiple studies have revealed its superiority to SPR or ELISA in terms of
accuracy, sensitivity, versatility, and reliability [45,48,49,76,81,82,84]. The instrument may assess, in
various formats, the binding of partners ranging from ions [82,83] and small molecules [50,85,86] to
large structures (e.g., whole cells, including fixed cells) [49,76,85,87], which makes aptamers an
excellent choice for numerous kinetics, equilibrium, and concentration measurements by using the
KinExA technology. The ability to identify complex binding stoichiometries may provide valuable
insights into fundamental analyses of aptamer—analyte interactions, while its high sensitivity and
accuracy recommend this technique for numerous bioanalytical applications.
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Appendix A

Kinetics Exclusion Assay Principles

The principles of measurement and the anticipated evolution of the fluorescence signals
during the various steps of the adapted protocol are briefly presented in Figure Al. The instrument
automatically handles the packing of beads and the injection of all the required solutions into the
microfluidic system, while monitoring the fluorescence signal of the label captured by the beads. In
our case, the beads (Figure A1, panel A) are functionalized for capturing the free FA by following
the procedures presented in Materials and Methods and Figure 1, and introduced into the flow cell.
The reactants (FA and thrombin) are equilibrated in reaction tubes in which we kept constant the
concentration of FA and varied the amount of thrombin (Figure A1, panel B). The concentration of
free FA in pre-equilibrated solutions is in inverse proportion to the amount of thrombin added to
the reaction tube. A fraction of the free FA is captured by the functionalized beads upon injection
into the flow cell (Figure Al, panel C). For otherwise identical settings, the amount of captured FA
is proportional to the amount of free FA; more thrombin in the equilibrated sample leads to less FA
available for capture. FA injection after bead handling leads to an immediate increase in
fluorescence signal owing to specific capture on the beads (Figure Al, panel D). The subsequent
rinsing step washes away any non-captured FA, with the end signal representing only captured FA.
This end signal is proportional to the amount of free FA that was injected in the previous step. It is
assumed that the FA-thrombin complex (bound FA) will not bind to the cDNA, and the rate of
dissociation of the pre-equilibrated complex is slow enough to be negligible during the brief
residence time in the flow cell. Consequently, the end signal represents only binding of a fraction of
FA free in equilibrated FA-thrombin solutions. An affinity value may be derived from further
analysis of the relative changes in the end signal versus baseline (Figure Al, panel D) of a series of
equilibrated solutions [55,59].
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Figure Al. Using aptamers as biorecognition elements for kinetic exclusion assay measurements.
(A) A pack of beads functionalized with cDNA for FA capture is introduced in the flow cell. (B)
Samples consisting of constant FA concentrations and variable thrombin amounts are equilibrated
in test tubes. (C) Aliquots of equilibrated samples are flowed over the beads in the flow cell and a
fraction of free FA is captured. This fraction is inversely proportional to the amount of thrombin
added during the equilibration step. (D) The expected evolution of the fluorescence signal in
response to different concentrations of free FA in solution. FA injection produces an increasing
fluorescence signal owing to its capture and accumulation onto beads. The end signal recorded after
the unbound FA is rinsed from the flow cell is proportional to the amount of free FA present in the
equilibrated sample (not complexed with thrombin). For identical label (FA) concentrations in
equilibrated solutions, the end signal decreases as the concentration of the target molecule
(thrombin) increases, indicative of a reduced availability of the free, unbound label.

Signal Equations and Modeling
The instrument end signal as a function of concentration for a 1:1 binding model is described by

Equation (A1) [55,59,75,76]:

Sig 000 — NSB 2 2 2
%)(([FA]O =Ky ~[T1,)+ \[FAL + 2 FAL K, + K} + AT, K, +[A]; )+ NSB (A1)

Signal =

where Sigio0% represents the end signal recorded in the absence of thrombin in the mixture, NSB is
the end signal corresponding to non-specific binding (or the signal when all of the aptamer is
complexed with thrombin), and [FA]o and [T]o are the initial concentrations of FA and thrombin in
the mixtures. This equation is fitted by the method of least squares to the experimental data obtained
by using FA as CPB and thrombin as titrant. The n-curve analysis simultaneously fits Equation (A1)
to multiple signal curves generated by using different CBP concentrations [54,67,70,76].

For the two-population aptamer mixture, the total concentration of FA, [FA]o, is assumed to be
composed of two fractions [FA]1 = f x [FA]o, and [FA]2= (1 - f) x [FA]o, where fis the fraction of the
tightest binder in the population. We assumed that an FA molecule will provide the same signal
irrespective of the population to which it belongs. For this fit, we used the 298 pM reported in the
KinExA n-curve analysis as the tighter Kb, and varied both the fraction f of the tightest binder and
the Ko of the second fraction. The competitive equilibrium concentrations of FA1 and FA: were
calculated using a model described elsewhere [75,77]. We scaled the resulting combined free
fraction of FA using a maximum binding signal (Sigi%) and offset it using a non-specific binding
variable (NSB), as has been reported previously [59,75].

For the mock sample concentration measurement, the standard binding curve was obtained by
averaging and fitting with a four-parameter logistic equation [61,78]:

B, -B
Signal =———=—-+ B,

” A2
1+ xJ (A2)

3

where Bi is the upper asymptotic plateau (maximum signal), B is the lower asymptotic plateau
(NSB), Bs is the inflection point (the concentration at which the signal is halfway between the
extreme values), Bs is the Hill coefficient (slope), and x is the titrant’s concentration.

The same equation, rearranged to solve for x, allows calculation of the unknown concentrations
from the corresponding signals:
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_ln — (- Signal + B,)
(- Signal + B,)
B4

[x] = exp , (A3)
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