A Superconducting Nanowire-based Architecture for

Neuromorphic Computing

Andres E. Lombo

Division of Engineering Science, University of Toronto, Toronto, Canada

Jesus Lares, Matteo Castellani, Nancy Lynch, and Karl K. Berggren
Electrical Engineering and Computer Science Department,
Massachusetts Institute of Technology,

Cambridge, United States of America

Chi-Ning Chou
School of Engineering and Applied Sciences,
Harvard University, Cambridge, United States of America

Abstract

Neuromorphic computing would benefit from the utilization of improved customized hardware.
However, the translation of neuromorphic algorithms to hardware is not easily accomplished. In
particular, building superconducting neuromorphic systems requires expertise in both supercon-
ducting physics and theoretical neuroscience, which makes such design particularly challenging. In
this work, we aim to bridge this gap by presenting a tool and methodology to translate algorith-
mic parameters into circuit specifications. We first show the correspondence between theoretical
neuroscience models and the dynamics of our circuit topologies. We then apply this tool to solve
a linear system and implement Boolean logic gates by creating spiking neural networks with our

superconducting nanowire-based hardware.

I. INTRODUCTION

Neuromorphic computing attempts to mimic the behavior of biological neurons and synapses
in the human brain. Recently, increased understanding of the physics of devices for neuro-
morphic computing [1, 2], and the theory of algorithms for neuromorphic computing [3] has
led to the development of CMOS-based neuromorphic architectures [4] that are three orders
of magnitude more efficient in terms of their energy-delay product when compared to tra-
ditional multiply-and-accumulate operations [5]. However, these systems are also nowhere
near the power figure of merit (energy per operation) required to create a massive scale
neuromorphic computer, such as the human brain.

For these reasons, efforts to mimic neurons and synapses may need to move towards
systems that have an intrinsic spiking ability and extremely low energy consumption. This
is the case in superconducting electronics where the constituent elements exhibit nonlinear
characteristics and have very low or no power dissipation. Superconducting circuits offer
drastically lower power consumption even when cryogenic cooling energy costs is taken into
account [6, 7]. Previous developments of neuromorphic architectures using superconducting
electronics have used Josephson junctions [8-11], quantum-phase slip junctions [12-14], mag-
netic tunnel junctions [15], systems with Josephson junctions and superconducting nanowire
single photon detectors [16, 17], and nanowires as relaxation oscillators [7] to construct cir-
cuits that emulate biological neurons and synapses. Superconducting nanowires offer ease

of fabrication and are most easily integrated with classical circuit elements. In addition, the

ability of superconducting circuits to operate with near-lossless interconnects makes them

an attractive choice for implementing a low-power neuromorphic architecture.

Simultaneously, the success of Artificial Neural Networks (ANNs) [18] in computing ap-
plications such as pattern recognition and natural language processing coupled with the
widespread adoption of machine learning methods in many areas of science and engineering
is an indication that abstracting a computing problem and eliminating hardware dependen-
cies is a promising approach for going beyond Moore’s law. Among these networks, Spiking
Neural Networks (SNNs) closely simulate the dynamics of biological neurons and synapses
in the brain. Approaches to spiking neural networks that possess brain-like properties have
gained increased attention due to their widespread use in applications spanning decision

making [19], image recognition [20] and optimization problems [21].

The direct translation of superconducting neuromorphic architectures into algorithmic
formulations of a problem has been little explored, and a complete description of an algo-
rithmic implementation in neuromorphic hardware remains to be seen. It is very difficult
for hardware designers to condense an abstract algorithmic problem into a specific hardware
platform without increasing the complexity of circuits or compromising energy efficiency.
This gap in the field stems from the difficulty in reconciling the algorithmic and hard-
ware oriented approaches. At this point in time, this issue is often a question of expertise:
hardware designers do not have ready knowledge of algorithmic subtleties, while algorithm
developers do not have access to the hardware. Thus, there is a need for a tool to allow
computer scientists to test algorithms on neuronal circuits. We devise and present such a

tool here.

In this work, we address the issue of translation from theoretical algorithms to a specific
implementation by using the example of solving linear systems with a superconducting
neuromorphic network. We show the direct relation between a basic compositional model as
well as a leaky integrate-and-fire model and the proposed superconducting nanowire-based
neuromorphic hardware. We compile this correspondence into a tool to translate between
hardware and algorithmic descriptions of the neuromorphic architecture. We conclude with
a discussion on the outlook of the scaling of superconducting nanowire-based circuits in the

context of neural networks.

II. METHODS

The building blocks of the hardware architecture are superconducting nanowires [22] and
hTrons [23]. In a superconducting nanowire biased with a current, superconductivity breaks
down when the current when the current exceeds the critical current I.. As a consequence,
the nanowire develops a resistance Rj, and a voltage v = i,,Rns. Superconductivity is
restored in the nanowire when its current is reduced below the retrapping current 7. When
a superconducting nanowire is placed in parallel with a resistor, the relaxation from the
normal to the superconducting state of the nanowire can couple with the resistor. When
biased by a current above I., the nanowire switches and electrothermal feedback produces
continuous voltage spikes across the nanowire. This is termed a relaxation oscillator [24].

The hTron is a circuit element that acts as a thermally activated switch. It consists of
a superconducting nanowire (the channel), placed in close proximity to a resistive element
(the gate) [23]. When the channel is biased by a current below its threshold .5, heat dissi-
pated by the gate can increase the temperature of the channel and break superconductivity.
Superconductivity is restored in the channel when it has cooled and its current is reduced
below a threshold I, . This threshold is dependent on the temperature of the channel and
decreases for increasing temperature [23].

The simulations used in this work are based on models for superconducting nanowires

[22] and for hTrons [23] implemented in LTSPICE [25].

A. Hardware Design

In previous work [7], the application of two superconducting nanowires whose intrinsic non-
linear inductance L,,, was used to generate spiking behaviour is presented. We summarize
the description here.

As illustrated in Figure 1, the nanowire neuron consists of a main and control relaxation
oscillator in a loop. A source I,s biases both oscillators below their critical currents but
in opposite directions. An input current pulse at I;, applied to the loop then results in the
current in the main oscillator to exceed I., causing it to switch. Then, current is diverted
counterclockwise in the loop which causes the control oscillator to switch while the main

oscillator relaxes. The switching of the control oscillator diverts current clockwise and causes

4

Neuron } » Synapse » Neuron |

Figure 1. Circuit topology for a circuit consisting of an input neuron (left) upstream, a synapse
(centre), and a target neuron (right) downstream. The neuron has a control (pink) and main (blue)
relaxation oscillator each with a nanowire nwi; nws. Voltage spikes at node V1 generate heat
(orange arrows) in close proximity of the hTron in the synapse which will be transferred to the

target neuron via Ry;.

the main oscillator to switch again. Each time main oscillator switches, a voltage spike will
be seen at node V,,;. The main and control oscillator act analogously to the Na+ and K+
ion channels in the Hodgkin-Huxley neuron model [26].

The synapse consists of an hTron and an integration loop formed by Lgyy, Rsyn,1, and
Rgyn2. When a voltage spike appears at V,,;, heat is dissipated across Ry (orange arrows).
R, acts as the gate of the h'Tron, and the heat from it lowers the critical current of the h'Tron
channel, causing the hTron to switch. In the switched (normal, non-superconducting) state,
the resistance of the channel is typically on the order of 10?2 2 for NbN films. The typical
resistance for Ry, 1 and Ry, 2 is on the order of 10 Q. Thus, when the hTron channel
switches, the majority of the current Iy,), is diverted into the integration loop. A portion
of the current through L, is then transmitted to the target neuron via R,,. This process
is analogous to the integration behaviour of the Hodgkin-Huxley model [26].

The simulated operation of a simple neuron-synapse-neuron connection demonstrating

(@) o

Synapse

Ihm.\.hé

Synapse

(b)

20

Vi [uV] 0.5
! /m,l UJA]
0.0 0

20
b (441 03%
-20
20

v, [uV] 0.5

u

? } L lin,2 [WA]
0.0 0

20

Vs [uv] 0.5

u

’ ’\ L \ ’\ W
0.0 0

0 50 100 150 200
Time [ns]

Figure 2. Simulation results of excitatory and inhibitory connections between neurons. (a) Circuit
schematic for a neuron-synapse-neuron network (b) Waveforms showing the spikes V; of neuron 1,
the current in the synapses I,y,, and the spikes V5 and V3 of neurons 2 and 3. In this simulation,

Iz’n,l =22 ,LLA, Iin,g =19 ,LLA and Iz'n’g =22 ,U,A

excitatory and inhibitory behavior is shown in figure 2. The network illustrated consists of
an input neuron (1) connected to two target neurons (2,3). The spike output from neuron
1 is connected thermally to the synapses via the hTron and the synapses are connected
electrically to neuron (2,3). When I, ; makes neuron 1 fire, the spikes are integrated in
the synapse as shown by I, in figure 2b. This synaptic current leads to the excitation of
neuron 2 for a brief period of time. Similarly, the same current I;yn but in the opposite
direction leads to inhibition of the firing of neuron 3 for a brief period of time.

In spiking neural networks, information must be encoded in the timing of the spikes in the
network. In figure 3, we demonstrate the time-domain response of the neuron circuit with

respect to its current biasing conditions. We define the spike period as the time between

(a) (b)
2.01 100
26 LA < 80
§1-5W = 96 3
8 3
O % N U N 0 3
N m
o 1.01 — 92 ©
(@) c 8‘
g S 40
©° 22 A 5 =
> 0
0.51 © 88 |
k< 20 =
20 uA [ea)
0.0 ‘ ‘ ‘ ‘ ‘ 84 0
0 10 20 30 40 50 60 0 10 20 30
Time [ns] Input current (i) [UA]

Figure 3. Simulation results of the frequency tunability of the nanowire neuron. (a) Plot of spike
waveforms at neuron output with varying I;,. Note that the waveforms are offset vertically for
clarity. Spiking frequency increases with increased input current to the neuron. (b) Colour map
of the firing rate (inverse of the spike period) of nanowire neurons as a function of I;;, and Ipus.

These tuning currents determine the firing potential of the neuron.

the voltage spikes in a neuron. Figure 3a demonstrates a decrease in the spike period of
the nanowire neuron as a function of increasing input current. This same behaviour is seen
in overbiased relaxation oscillators, where biasing a nanowire above its critical current also
results in frequency-tunable oscillations [27]. We map the effect of this current-controlled
frequency-tunability in figure 3b. From the color map a firing threshold for the nanowire
neuron can be identified from the summation of the input and bias currents. Once this
threshold is reached, either an increase in the bias current or an increase in the input
current result in an increase in the firing rate. This behavior can be explained from the

critical current dynamics of the nanowires in the neuron circuit.

Similarly, the synapse circuit presented in figure 1 also demonstrates tunable character-
istics. The integration loop of the synapse acts as a leaky integrator circuit. The time-
domain response of this circuit can be set during its design, by choosing the ratio between
the Lgy,/Rsyn time constant and the L,,, /R, time constant, where L, is the inductance
of nwy. The leakiness of the synapse is illustrated in figure 4a where the current in the
synaptic inductor is plotted for different values of synaptic inductance. In addition, lpqs

controls the amount of current injected into the integration loop, modifying the output of

7

—
Q
~
—
O
~

10} Lsyn [uH] S Ibias,nflc,
, — 01 — 0.125

< beeh = 0.325 02 | 4} - 0.25
E 81 Ie.n — os Lsyn 1uH — 0375
€ — — 05
£ 6 3
S
O
2 4f 2r
a
[]
S,
n 2r 1r

0 ‘ ‘ ‘ 0 ‘ ‘ ‘

0 50 100 150 200 O 50 100 150 200
Time [ns] Time [ns]

Figure 4. Simulation results of the design space of the hTron synapse and the current-controlled
tunability of the hTron synapse. (a) The time-domain response of the synaptic current plotted for
various values of Ly, (b) The tunability of the synapse strength for various values of Ipiqsp for

Lgy, =1 pH. This plot is inverted for negative Iy p-

the synapse. Therefore, the strength of the synaptic connection can be updated externally
by tuning lp.s . Figure 4b shows the output current of the synapse for different values of

Ibias,h-

III. RESULTS

To connect our hardware with the computational picture of a neural network, we developed
two mappings from hardware to mathematical models. First is a mapping between the
physical system described in the previous section and the well-known leaky integrate-and-
fire neuronal model [28], second is the mapping to a recently developed compositional model

for spiking neural networks [3].

A. Correspondence
1. Correspondence to Leaky Integrate-and-fire Model

The Leaky integrate-and-fire neural network is one of the most commonly studied network-
level models in neuroscience. In a network of n neurons, each is associated with a time-
varying potential value. In this model, a neuron’s potential is governed by the following
equation:

duczit) = =X (u;(t) — up;) — Zaoijsj(t) + 1i(t) (1)

where u;(t) represents the potential of the ith neuron at time ¢; ug; is the initial potential
with no input; and I;(¢) is the external input to the neuron. The leaky integration dynamic is
encapsulated in the leakiness parameter A of the neuron, that is the rate at which the neuron
potential decreases. The synaptic strength from a neuron 7 to a neuron j is represented by
matrix coefficient C;; and a transfer parameter o. The spiking events of neuron 7 occur
according to the following spike rule s(t):
s(t) = 1,u(t) >n @
s(t) = 0, otherwise
where 7 is the threshold potential. We relate the parameters of this model to our supercon-
ducting hardware as described below.

In our hardware, the current in the nanowire i,,(t) of the neuron’s main oscillator cor-
responds to the potential u;(t) in the leaky integrate-and-fire model. In the nanowire-based
implementation, the spike rule corresponds to the voltage in the nanowire, the spiking events
of the nanowire neuron are described by the following spike rule:

Unaw (1) = tnw Rhsy tnw(t) > 1,
(3)
Unw(t) = 0, otherwise.

This relatively natural correspondence is what makes the superconducting system par-
ticularly elegant for the implementation of spiking neural networks.

Similarly, the initial potential ug directly corresponds to the initial value of é,,. For
instance, when the inductance and resistance values between the two branches of the neurons

are the same, the bias current in the nanowire of the main oscillator will be Ip;,,/2.

9

Moreover, the integration behaviour of the model corresponds to the ability of the hTron
synapses to integrate the voltage spikes generated by the upstream neurons. The switching
of the hTron channel and its subsequent diversion of current into the integration loop of the

synapse, can be approximated by a leaky integration circuit with dynamics described by:

At 1)
dtt = ; (Um - th) . (4)

Continuing with the analogy, the leakiness parameter A corresponds to the ratio of the
time constant of the relaxation of the nanowire in the neuron to the time constant of the
integration loop in the synapse Ty /Tsyn = (Lnw/R2) / (Lsyn/Rsyny)- Tsyn can be set such
that it is larger than 7,, to allow the synapse to retain the spike information from the
neurons.

The transfer parameter o in the model corresponds to the ratio between Ijqs 5 and the
current entering the nanowire of the main oscillator. The value of « is dependent on the
number of synapses connected to a neuron, the synaptic inductance, and the inductances
Ly and L, of the nanowire neuron. For a neuron with a large number of synapses connected
to its input terminal, less current from each synapse enters the neuron.

The matrix coefficients Cj; correspond to Ip.ss between the ith and jth neurons as
it represents the strength of the connection between two neurons via a synapse. In the
hardware, C;; can be externally tuned as discussed in the previous section and illustrated
in figure 4. Coupled together, C;; can be mapped to the current added to the nanowire of
the main oscillator.

The I;(t) terms in the model correspond to the external input current source I;, to the

1th neuron as shown in figure 1.

2. Correspondence to a Basic Compositional Model

An algorithmic model for spiking neural networks has been recently introduced.[3] The model
lays out a schema to track a set of neurons (nodes) V' with a set of synapses (edges) F, in

a graph by recording a potential for each neuron, at some discrete time.

e In the model, a neuron can be in one of two states: firing and not firing. For a neuron
at node u we have Cy(u) = 1 when the neuron is firing and C(u) = 0 when not firing.

We call this function the configuration of a neuron.

10

e The connection between a neuron w and neuron v via a synapse is encapsulated in a

function w(u,v).

e At discrete time ¢, every neuron u has a potential pot,(u) = [3_, ,ep Ce(v)w (v, v)] —

b(u).

e The firing rule for the neuron is probabilistic and is described by p;(u) = ——zr-
I

Here A is distinct from the leakiness parameter of the leaky integrate-and-fire model

and is instead an arbitrary real temperature parameter.

The neuron biasing condition b(u) is akin to the currents I, and Ij;,s into a neuron as in
figure 1. We associate the neuron biasing condition to be the location (I, Iy.s) as in figure
3b.

The configuration of a neuron C;(u) corresponds to the state of the nanowire of the main
oscillator of the neuron. When the nanowire switches, the neuron is firing. Conversely, when
the nanowire is in the superconducting state the neuron is not firing.

The weight of a synapse between two neurons w(u, v) is mapped to Ip;as 5, of the synapse
between them. As in the leaky integrate-and-fire model, this weight can be externally tuned
as demonstrated in figure 4.

The potential of the neuron pot,(u) can be associated with the current in the nanowire
of the main oscillator ,,,(¢). As shown in figure 1, this current dependent on the on ;s
and [;, and is affected by the current coming from the connections of other synapses.

The firing rule p;(u) can be associated with the switching of the nanowire in the main
oscillators. While it is true that the nanowire switches whenever i,,,(t) > I., this is proba-
bilistic in a physical implementation and is dependent on I;, and I;,s. The firing probability
as a function of I;, and I, was explored in experiments with nanowire neurons here [29].

We summarize the correspondence between the two models presented and the physical

parameters in the table I and II.

B. Model and Translational Tool

From the above descriptions of the leaky-integrate-and-fire model and the basic composi-
tional model for spiking neural networks, we built a tool to directly relate the parameters of

the models to the physical implementation of the nanowire neuron and synapse. This tool

11

Leaky integrate-and-fire model Physical Model

Initial potential of a neuron wp; |Initial current in the nanowire, iy, (0)

Spike function s(t) Voltage spikes at V1

Connection between neurons, aC;;|Bias current in the synapse Iyiqs

Potential of a neuron, w;(t) Current in the nanowire of the main oscillator iy, (%)
Spike rule w;(t) > n Nanowire switches when iy, (t) > I. with noise
Leakiness parameter, \ Time constants of the neuron and synapse T /Tsyn

Table I. Correspondence between the leaky integrate-and-fire model and the hardware description.

Compositional Model Physical Model

Bias conditions of a neuron, b(u)|I;, and Ijs in figure 3

Configuration of a neuron, C;(u) |Voltage spikes at Vi

Weight of a synapse, w(u,v) Bias current in the synapse, Ipigsp
Potential of a neuron pot.(u) Current in the nanowire of the main oscillator iy, (t)
Firing probability, p:(u) Nanowire switches when iy, (t) > I. with noise

Table II. Correspondence between the compositional model and the hardware description.

can help bridge the expertise gap between computer scientists and hardware engineers in

designing neuronal circuits as it provides a platform for a common description of a problem.

1. Implementation of the Translational Tool

In the tool, the network consisting of the neurons and synapses is described as a graph.
A vector V' describing the bias conditions to the neurons (the vertices) and a matrix F
describing the strength of the synapses between them (the edges) is specified. Then, the
algorithmic description from the leaky integrate-and-fire model, or the compositional model
is chosen. Depending on the choice of model, V' is treated as [;(t) or b(u) and E is treated as
C;; or w(u,v). Correspondingly, the parameters of the algorithmic model are tuned either
at each individual node or across the whole graph. The tool translates the parameters of
each algorithmic model to the low-level hardware description based on the correspondence

between the parameters described in each the previous section.

12

The tool uses SciPy’s numerical solver IVP [30] to simulate the underlying system based

on a state variable description of the nanowire neuron circuit, as follows:

di) . ;
d_tl = (ZgRl — Z1fghsnl) /Lm” (Zl)
diy 1 dign j di
= P <L1 7 + 19 Ry Z4R2) ar (5)
di-) . ;
d_; — (1Ry — Zthsng) /an (13)
diy 1 dign . j s
ke L - T
dt — Ly + Ly (g Tt MRQ) dt

in this case, L, (i) is a nonlinear function accounting for the kinetic inductance of the
nanowire following the expression from [22]. We define the current i;, as In, + > isynk
where igy, 1 is the current flowing through R,,; from each synapse to the neuron and I;, is
as in figure 1. The remaining current variables are further defined in the appendix.

Note that here we make a simplifying assumption about the dynamics of a supercon-
ducting nanowire. We specify a state variable n; for each nanowire to capture whether the
nanowire is in the superconducting (n; = 0) or the normal (n; = 1) state. The transition
from the superconducting to the normal state is brought about when i, (t) > I.. The
transition form the normal state back to the superconducting state occurs when i,,,(t) < I,.

Similarly, a state-variable description for the synapse is as follows:

di . . ;
d_tl = (ZQRsyn,l — Zthsh) /an,h ('Ll)
ds __di _diy
dt — dt dt
di . ~
d_tg = (12 Reyn1 — 14Rsyn2) /Lsyn (6)
din_diy i
d dt dt
dis . .
o = (Z4Rsyn,2 — i5Rout) [La.

We use the same simplifying assumption about the dynamics of the channel of the hTron as
we use for the nanowires in the neuron. Transitions to the normal state in the channel of the
hTron are brought about after its current surpasses /. and its return to the superconducting
state occurs when its current is below I,.;,. To couple neuron and the synapse, we force the
hTron channel to switch everytime the neuron fires, that is we set h = 1 whenever ny, = 1.

In an effort to facilitate broad use of this model, we reference the code implementing it here

13

[31].
As an example, using the tool to relate a leaky integrate-and-fire model to the hardware,

the following steps are taken to translate the algorithmic description to the hardware:

1. The neurons and the synapses between them are configured as specified by the user in

their graph description

2. By default, the internal parameters of a neuron (L,.,, L1, Lo, Ry, Ry) are set to typical
values (10nH, 20nH,20nH, 582, 590) as are the parameters of a synapse
(Lnw.hs Rsyn,1s Rsyn2, Rout) are set to (100nH, 10€2, 1092, 582).

3. ug and 7 are respectively mapped directly to ;s in the neuron and /.. of the nanowires.
4. Ly, is set such that the leakiness parameter A = (Ly.,/Ra) / (Lsyn/Rsyn)-

5. For each synapse, Ipiqs,p is set such that the current in nw, increases by a factor of Cj;.
This ratio is maintained across all synapses. Correspondingly, /. is set to be higher

than Ibias,h-

6. External inputs to the neurons I;(t) are proportionally mapped to the input currents

I; of each neuron.

7. The network is simulated by solving the IVP’s of underlying circuits.

In the following section apply the correspondence of our hardware to two algorith-
mic examples. We simulate Boolean gates and solve special linear systems with our
superconducting-nanowire-based neuromorphic architecture. These choices stem from the
ubiquitous nature of Boolean gates and algorithms to solve linear systems in classical

computing.

C. Solving Linear Systems

In a recent paper by Chou et al. [32], non-leaky integrate-and-fire neural networks were
shown to efficiently solve linear systems. Here, we demonstrate the computational power

of SNNs in simulation by implementing their theoretical models using our superconducting

14

nanowire-based architecture. As a proof of concept, we start with solving a simple two-
dimensional linear system. Then, we scale up the problem to a five-dimensional linear
system with Laplacian structure.

The motivation for Laplacian linear systems is two-fold: (1) many practical applications
and engineering problems rely on solving large Laplacian linear systems such as diffusion
models, graph models and random walks; (2) some Laplacian linear systems have infinitely
many solutions. Chou et al. [32] predicted that a SNN will converge to the solution with the
least vector magnitude. We use the approach taken by Chou et al. [32] to solve Laplacian
linear systems, namely a 2x2 and a 5x5 system.

To translate a linear system of the form Az = b to a SNN, we map Cj; to be the elements
of the matrix A”A and I(t) to be the vector ATb to ensure that the matrix C' is positive
semidefinite (PSD). The number of neurons in the SNN corresponds to the dimension of A.

For the first example, we attempt to solve the following Ax = b linear system which is

already PSD:

1 05 0.5
v = (7)
0.5 1 3.5

We illustrate the network for solving this system and use the tool to handle parameter
mapping as in figure 5. The connectivity matrix C;; from the leaky integrate-and-fire model
corresponds to the matrix (—1) x A in the problem. We can then map the elements of matrix
A from the problem to the weights of the synapses as shown in figure 5a. Similarly, the row
elements of vector b are mapped to the ramp rates of currents at I;, for each of the neurons
relative to the timescale T' of the neuron. To apply the leaky integrate-and-fire model, we
set the timescale of integration A = 0.02 to ensure that the current in the synapse decays
much slower relative to the decay of current after a neuron spike. Using the tool, we chose
a = 0.67 and ug = 0.957.

The evolution of the system is illustrated in figure 5c. Initially, neither neuron is firing.
As time progresses, the input current to each neuron increases at different rates. Since the
external bias for neuron 2 is greater, its potential will increase faster and it will fire earlier.
When neuron 2 fires, both of its outgoing synapses are activated. Neuron 2 excites neuron 1
but also inhibits itself. After some time, neuron 1 will fire as a result of the excitation from

neuron 2. When neuron 1 fires, it will excite neuron 2 but inhibit itself. As can be seen

15

(a) (b)

N

Firing Rate (1/T)
w

2,
0.5 pa 1] —— Neuron 1
—— Neuron 2
OO 10 20 30 40
Time [us
(c) [us]
400
Vi [uv]
200 LN N] ’
0) L
400
Vs, [uV] XX
200
L™ [WL
0.0 0.5 1.0 1.5 20 275 28.0 28.5 29.0
Time [us]

Time [us]

Figure 5. Implementation of an SNN to solve a linear system using simulated superconducting
hardware. (a) Graph representation of a network with two neurons (N1, N2) with synapses. The
weight of each synapse is inscribed in the synapse itself (b) Plot of the calculated firing rate of each
neuron as the system evolves. (c) Voltage spike waveforms for each neuron at its output voltage
node. For this simulation the timescale T of a neuron spike is approximately 37ns. Note that orange
arrows represent connections via the thermal domain and grey arrows represent connections via

the electrical domain

in figure 5b, two distinct firing rates emerge from the system. Specifically, we reference the

approach of Chou et al. [32] to define a firing rate as:

N(t)/t (8)

where N(t) is the cumulative number of spikes at time ¢. As can be seen in figure 5b, we
find that the firing rate of each neuron converges to the rows of the solution vector of the
linear system z = [3 5]7.

To illustrate the generality of the method, we extend the approach to solving a more

16

0.5

=

0.5 uA

Figure 6.

A

0.5

0
uA ©) 10°

0.5 uA

uA

(b) 4
— 3
=
Y
5:“ 2
e
L‘f

-

N1
N2
N3

“ |
T

10 20 30 40
Time [us]
S
|
o
]
3
o
n
k7
@©
o -1
10
0 10 20 30 40
Time [us]

Implementation of an SNN to solve a cycle graph using simulated superconducting

hardware. (a) Graph representation of a network with two neurons (N1-N5) with synapses. The

weight of each synapse is inscribed in the synapse itself (b) Plot of the firing rate of each neuron

as the system simulation evolves. (c) Calculated least square error of the solution as the system

evolves. For this simulation, the timescale of a neuron spike is approximately 31ns. Note that

orange arrows represent connections via the thermal domain and grey arrows represent connections

via the electrical domain

complex linear system. We apply the same approach to solving a cycle graph represented

by the following Az = b linear system which is again already PSD:

1
—-0.5
0
0

| 0.5

—0.5
1
—0.5
0
0

0
—0.5
1
—0.5
0

0

0
—0.5

1
—0.5

—0.5
0
0 |z=

—0.5
1

—2.5

We can map again the elements of matrix A to the connectivity matrix C;; and the

17

elements of vector b to the input currents of the neurons. We use the tool described in the
previous section to simulate the system and illustrate the results in figure 6.

These results can be understood from an energy minimization perspective. When neuron
5 fires, it will excite neuron 4 after a long period of time. When neuron 4 begins firing
continuously, neuron 3 will be excited. This same effect will propagate to neuron 2 after a
period of time. Neuron 1 will not fire due to the fact that the input current to the neuron is
negative. This is illustrated in figure 6b where the firing rates of the different neurons have
different activation times. It must then be noted that this linear system Ax = b defined
by the cycle graph has multiple solutions and the firing rate of our SNN approaches the
solution with the least L1 norm as predicted in [32]: z =[01234]"

To assess the evolution of the network and determine error in the firing rate, we defined

the least square error as follows:
err = || Az —b[|/|[b]] (10)

Where the notation ||b|| signifies the magnitude of the vector. We take x to be the

instantaneous firing rate vector. We plot the evolution of the least square error in figure 6c.

D. Boolean Gates

We also implement several Boolean gate network examples found in Lynch and Musco’s
paper [3]. The networks were created using their algorithmic model and then translated
into our neuromorphic hardware. Boolean gates are relevant algorithmic examples to convert
into neuromorphic computing hardware given their high importance in classical computing
and their use in neural networks. Thus, neuromorphic versions of a universal set of Boolean
gates could enable computation with both classical and neuromorphic paradigms.

We demonstrate a 3-input AND gate network in figure 7. In the following paragraph, we
describe the operation of this network using the compositional framework from Lynch and
Musco’s paper [3]. We understand the operation of the network using the compositional
model. The weight of the synapses are taken to be L. When all three of the input neurons
fire, the potential of the neuron is —b + 3L and the probability of the output neuron firing
is (1 + exp(b — 3L))~'. When only two input neurons fire, the probability of the output
neuron firing is (1+exp(b—2L))~". If we take L = 2In(152) and b = 2L we can see that the

18

Figure 7. 3-input AND gate. The synapse bias current for each connection is 27uA, the input
neuron bias current is 5844, and the corresponding bias for the output neuron is 54.6pA for 3
inputs. The critical current for nanowires in the neurons is I. = 30uA. The current from an input
neuron must be greater than 3.72uA for it to fire. As more inputs are added the output neuron

bias would have to be lowered accordingly.

probability of output neuron firing when all three input neurons fire is 1 — 9§ for § being an
arbitrary small parameter. In practice, the synapse and neuron biasing conditions determine
0, allowing § to be set arbitrarily close to 0. In a physical implementation of the network,
the probability of the output neuron firing can be attributed to current noise which causes
fluctuations in the current of the nanowires. If a nanowire is biased very closely to I. then
there is a probability it may switch.

In addition, we demonstrate a 3-input OR gate in figure 8. The input currents and the
synapse bias currents are similar to the AND gate. Through an analogous formulation as in
the AND gate, we can set the biases in the network such that the output neuron fires with
probability 1 — 0 when one of the input neurons fires, it fires with probability ¢ if none of
the input neurons fire. Again, 6 can be made arbitrarily close to 0 in this model. We can
understand this as a threshold problem allowing for the robust implementation of Boolean

gates.

IV. DISCUSSION

Solving a physical system by using another physical system with similar dynamics as its

model is a promising approach to computing. Here we discuss the advantages and failings

19

Figure 8. 3-input OR gate. The synapse bias current for each connection is 27uA, the input neuron
bias current is 58uA, and the corresponding bias for the output neuron is 57uA for 3 inputs. The
critical current for nanowires in the neurons is I, = 30uA. This output bias would not have to be
lowered upon adding inputs because it only needs to fire if it receives enough input current from

any one of the synapse connections.

of the approach and provide insight on how such a system could be realized.

A. Solving Linear Systems with Nanowire Neurons

The approach by Chou et al. for solving linear systems implemented in this paper is numer-
ically robust. The solution of the Az = b system is not physically tied to an experimental
observable, such as voltage or current. As in [32], the numerical accuracy is a function of the
total evolution time of the system. Accuracy can thus be optimized by increasing the time
as well as by decreasing the time scale of the components of the circuits. Superconducting
nanowires offer rise times on the order of a few ps and relaxation times as short as 2-5 ns
from previous measurements [27]. Thus, least-square errors below 1072 might be achieved
within tens of microseconds for large networks. The values of the resistors and inductors
chosen to set the L/R time constants with the tool do not constraint the time scale of the
SNN . Therefore, the solution can be obtained independently of the timing parameters set in
the system. The implementation of this approach with superconducting hardware remains
to be demonstrated experimentally. In neurons with high fan-in, that is with many incoming
connections from synapses, the resistive network connecting a set of synapses to the input

terminal of the neuron can result in significant power consumption. Higher current and

20

resistances are needed to account for leakage current in such a network. Some previous ap-
proaches [25, 33] have suggested the use of fan-in trees to mitigate this problem which could
be beneficial in our architecture. However, using either resistive networks or tree structure
would still pose problems with either power or area scaling. An improved architecture for
fan-in is needed to break this scaling concern.

The advantage of our architecture is the decoupling of the neuron output to the synapse
input via the hTron. Since no electrical connection is needed between the output node of
a neuron to a synapse, there is no need for impedance matching. Hence, large fan-out can
be achieved by patterning Rs to allow for heat dissipation at multiple locations where the
hTron channels of multiple synapses could be located. However, this of course comes at a
cost of higher power needed. An estimation of the power consumption of an implementation
of the nanowire neuron can be found in previous work [7].

Due to non-idealities in the fabrication process for superconducting electronics, there can
be difficulty in achieving small variance in the resistances, inductances, and critical currents
of circuit components. This can lead to a spread in the distribution of the spike rise and
relaxation times. However, variance across neurons is masked by the definition of the firing
rate. After the network evolves for an appreciable time, the time between the spikes need not
matter more than the total number of spikes. The firing rate is thus a robust quantity. Even
with non-idealities in the fabrication process, the architecture proposed in this work would
not be significantly different from biological neurons and synapses, which intrinsically have
variability. Here, we make the assumption that the design of the hTron can be optimized
such that the synapses are still activated despite variations in the strength of the voltage
spike at the neuron.

While some simple checks are implemented to check parameter ranges that are practically
realizable by fabrication, additional experimental verification may still be needed. For in-
stance, the range of synaptic weights in the synapses that can be designed via the inductance
of Ly, is limited by the kinetic inductance of the material used. We have chosen NbN with
kinetic inductance 33 pH/sq for our tool owing to previous reports of implementations and
measurements of nanowire neurons and synapses [7, 25|. To alleviate this problem, higher-
kinetic-inductance materials such as WSi with kinetic inductance of 260 pH/sq [34] can
be chosen instead. Achieving lower resistances is limited by the presence contact resistance

and the inherent variability in fabrication processes. Similarly, the range of synaptic weights

21

is also limited by the design of the hTron. The upper bound for the value of Ip,s 5 stems
from I. ;. Superconducting nanowires can be designed to have critical currents above 1 mA.
However, challenges could arise with the size of components on chip. Larger critical currents
typically are obtained from an increase in cross-sectional area of the superconducting trace.
As a result, there is a large area cost for synaptic inductors with large kinetic inductances
and high critical currents. This constraint may limit the values of Cj; that could be realized.

Another consideration in the design of the circuit network is the readout of the firing
rate. For a fully integrated system as in [4], we envision a multi-layered system with readout
and control circuitry connected by vias. For the firing rate readout circuit, superconduct-
ing counter circuits could be implemented based on nTron devices [35]. Similarly, a hybrid
superconductor-transistor approach could allow for readout via classical digital logic [36]. In
cases where the spike strength or the weights of the synapses are not known, the linearity
of an Az = b system could be exploited. Instead of using the individual firing rates of the
neurons as the components of the solution vector x, the ratio of the firing rates of the neu-
rons could be used instead. Superconducting single flux quantum (SFQ) logic architectures
would then be available to realize more complex readout circuits [37] while still offering the

advantages of superconducting electronics.

B. Modelling

We have taken a simpler approach to modelling superconducting elements to accommodate
the possibility of increased scaling. The tool ignores the microscopic electrodynamics of the
system and the rigorous electrothermal physics that describes device operation. Instead,
the state-variable description of the switching of the nanowires in the neuron and the hTron
channel in the synapses is a simplification of the phenomenological models of [22, 25] which
is convenient for algorithm designers and avoids non-linearities in the model [23]. For larger
nanowires, there may be non-trivial dynamics that would deviate from the lumped element
model and discrepancies that could arise from the temperature dependence of the physical
parameters.

In the first example presented in the previous section, the tool enabled the translation of
algorithmic parameters from the leaky integrate-and-fire model (), v, Cy;, I;) into specifica-

tions for the hardware (Ry 2, L12, Rsyn,1,2, Lsyn, Rout, €tc.) with ease. While the approach

22

presented in the previous section of choosing the parameters is not necessarily unique, it is
possible for experts outside of superconducting electronics to understand and apply. Hence,
there is no expertise in superconducting electronics required to explore further applica-
tions. Our superconducting hardware and its associated tool is versatile because it can be
associated with many computational models—two are shown in this paper. Superconduct-
ing nanowires have also been applied in image recognition, Winner-Takes-All algorithms,
stochastic behaviour [29]; and more conventional electronics [38]. By the same token, the
tool is not dependent on circuit modelling software such as LTSPICE and uses the more
common language of python rather than a higher-level professional language like Verilog A.
As a result, the functionality of the tool presented in this work can be similarly extended
to other superconducting systems based on Josephson junctions [8, 11, 17], and quantum
phase-slip junctions [13, 14] albeit with increased complexity for the component models.
Optimizing circuit layouts for power or area given a set of algorithmic constraints would
also be an area of extension for the tool. These ideas constitute a useful continuation of this

work.

V. CONCLUSION

We presented the fundamental components for the hardware implementation of a neural
network based on superconducting nanowires. We translated the hardware architecture to
its algorithmic description enabling a straightforward understanding of the algorithmic cor-
respondence of physical parameters. This understanding elucidates how more complicated
networks of arbitrary scale can be built based on robust theoretical models. In addition, the
work incites the future implementation of new models for biological neurons and synapses to
replicate more complex bio-realistic behaviour. The description of a leaky integrate-and-fire
model in terms of physical parameters enables the exploration of the design and fabrication
of circuit layouts corresponding to linear system solvers.

Most importantly, the encapsulation of this work in a python-based tool is key in filling
the gap between algorithmic designers and hardware designers. It is a point of commonality
for the expertise within both of these fields. It can thus enable, in the future, concrete and
fast approaches to solving neuromorphic problems using a superconducting nanowire-based

neuromorphic architecture. The direct translation of superconducting neuromorphic archi-

23

tectures into algorithmic formulations of a problem is facilitated with this tool. As a result,

it is now easier for hardware designers to condense an abstract algorithmic problem into a

specific hardware platform without increasing the complexity of circuits or compromising

energy efficiency as is typical of CMOS circuits. Thus, the issue is no longer a question of

expertise.

ACKNOWLEDGMENTS

We wish to acknowledge the support of and thoughtful discussions with collaborators.

VI.

VII.

1]

[3]

[4]

DATA

REFERENCES

D. Markovié, A. Mizrahi, D. Querlioz, and J. Grollier, Physics for neuromorphic computing,
Nature Reviews Physics 2, 499 (2020), bandiera_abtest: a Cg-type: Nature Research Jour-
nals Number: 9 Primary_atype: Reviews Publisher: Nature Publishing Group Subject_term:
Electronics, photonics and device physics;Nanoscale devices Subject_term_id: electronics-
photonics-and-device-physics;nanoscale-devices.

K. Berggren, Q. Xia, K. K. Likharev, D. B. Strukov, H. Jiang, T. Mikolajick, D. Querlioz,
M. Salinga, J. R. Erickson, S. Pi, F. Xiong, P. Lin, C. Li, Y. Chen, S. Xiong, B. D. Hoskins,
M. W. Daniels, A. Madhavan, J. A. Liddle, J. J. McClelland, Y. Yang, J. Rupp, S. S. Nonnen-
mann, K.-T. Cheng, N. Gong, M. A. Lastras-Montafio, A. A. Talin, A. Salleo, B. J. Shastri,
T. F. d. Lima, P. Prucnal, A. N. Tait, Y. Shen, H. Meng, C. Roques-Carmes, Z. Cheng,
H. Bhaskaran, D. Jariwala, H. Wang, J. M. Shainline, K. Segall, J. J. Yang, K. Roy, S. Datta,
and A. Raychowdhury, Roadmap on emerging hardware and technology for machine learning,
Nanotechnology 32, 012002 (2020), publisher: IOP Publishing.

N. Lynch and C. Musco, A Basic Compositional Model for Spiking Neural Networks,
arXiv:1808.03884 [cs] (2021), arXiv: 1808.03884.

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,

24

[10]

[11]

[13]

[14]

[15]

N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul,
J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, Loihi: A Neuro-
morphic Manycore Processor with On-Chip Learning, IEEE Micro 38, 82 (2018), conference
Name: TEEE Micro.

M. Davies, Lessons from Loihi: Progress in Neuromorphic Computing, in 2021 Symposium on
VLSI Circuits (2021) pp. 1-2, iSSN: 2158-5636.

D. S. Holmes, A. L. Ripple, and M. A. Manheimer, Energy-Efficient Superconducting Com-
puting—Power Budgets and Requirements, IEEE Transactions on Applied Superconductivity
23, 1701610 (2013), conference Name: IEEE Transactions on Applied Superconductivity.

E. Toomey, K. Segall, and K. K. Berggren, Design of a Power Efficient Artificial Neuron Using
Superconducting Nanowires, Frontiers in Neuroscience 13, 10.3389/fnins.2019.00933 (2019).
U. S. Goteti and R. C. Dynes, Superconducting neural networks with disordered Josephson
junction array synaptic networks and leaky integrate-and-fire loop neurons, Journal of Applied
Physics 129, 073901 (2021), publisher: American Institute of Physics.

M. L. Schneider and K. Segall, Fan-out and fan-in properties of superconducting neuromorphic
circuits, Journal of Applied Physics 128, 214903 (2020), publisher: American Institute of
Physics.

P. Crotty, D. Schult, and K. Segall, Josephson junction simulation of neurons, Physical Review
E 82, 011914 (2010), publisher: American Physical Society.

K. Segall, S. Guo, P. Crotty, D. Schult, and M. Miller, Phase-flip bifurcation in a coupled
Josephson junction neuron system, Physica B: Condensed Matter 21st Latin American Sym-
posium on Solid State Physics - SLAFES 2013, 455, 71 (2014).

R. Cheng, U. S. Goteti, and M. C. Hamilton, Superconducting Neuromorphic Computing
Using Quantum Phase-Slip Junctions, IEEE Transactions on Applied Superconductivity 29,
1 (2019), conference Name: IEEE Transactions on Applied Superconductivity.

R. Cheng, U. S. Goteti, and M. C. Hamilton, Spiking neuron circuits using superconducting
quantum phase-slip junctions, Journal of Applied Physics 124, 152126 (2018).

R. Cheng, U. S. Goteti, H. Walker, K. M. Krause, L. Oeding, and M. C. Hamilton, Toward
Learning in Neuromorphic Circuits Based on Quantum Phase Slip Junctions, Frontiers in
Neuroscience 15, 1470 (2021).

M. L. Schneider, C. A. Donnelly, S. E. Russek, B. Baek, M. R. Pufall, P. F. Hopkins, P. D.

25

[16]

[17]

[21]

22]

[24]

Dresselhaus, S. P. Benz, and W. H. Rippard, Ultralow power artificial synapses using nan-
otextured magnetic Josephson junctions, Science Advances 4, €1701329 (2018).

J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam, Superconducting Optoelectronic
Circuits for Neuromorphic Computing, Physical Review Applied 7, 034013 (2017).

J. M. Shainline, S. M. Buckley, A. N. McCaughan, J. T. Chiles, A. Jafari Salim,
M. Castellanos-Beltran, C. A. Donnelly, M. L. Schneider, R. P. Mirin, and S. W. Nam, Su-
perconducting optoelectronic loop neurons, Journal of Applied Physics 126, 044902 (2019),
publisher: American Institute of Physics.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification with Deep Convo-
lutional Neural Networks, in Advances in Neural Information Processing Systems, Vol. 25
(Curran Associates, Inc., 2012).

L. Ye and C. Li, Quantifying the Landscape of Decision Making From Spiking Neural Net-
works, Frontiers in Computational Neuroscience 15, 98 (2021).

J. Tapson, G. Cohen, S. Afshar, K. Stiefel, Y. Buskila, T. Hamilton, and A. van Schaik,
Synthesis of neural networks for spatio-temporal spike pattern recognition and processing,
Frontiers in Neuroscience 7, 153 (2013).

W. Maass, Energy-efficient neural network chips approach human recognition capabilities,
Proceedings of the National Academy of Sciences 113, 11387 (2016), publisher: National
Academy of Sciences Section: Commentary.

K. K. Berggren, Q.-Y. Zhao, N. Abebe, M. Chen, P. Ravindran, A. McCaughan, and J. C.
Bardin, A superconducting nanowire can be modeled by using SPICE, Superconductor Science
and Technology 31, 055010 (2018), publisher: IOP Publishing.

R. Baghdadi, J. P. Allmaras, B. A. Butters, A. E. Dane, S. Igbal, A. N. McCaughan, E. A.
Toomey, Q.-Y. Zhao, A. G. Kozorezov, and K. K. Berggren, Multilayered Heater Nanocry-
otron: A Superconducting-Nanowire-Based Thermal Switch, Physical Review Applied 14,
054011 (2020), publisher: American Physical Society.

E. Toomey, Q.-Y. Zhao, A. N. McCaughan, and K. K. Berggren, Frequency Pulling and Mixing
of Relaxation Oscillations in Superconducting Nanowires, Physical Review Applied 9, 064021
(2018).

M. Castellani, Design of Superconducting Nanowire-Based Neurons and Synapses for Power-

Efficient Spiking Neural Networks, Ph.D. thesis.

26

[26]

[36]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its
application to conduction and excitation in nerve, The Journal of Physiology 117, 500 (1952).
E. Toomey, Superconducting nanowire electronics for alternative computing, Ph.D. thesis.

C. Teeter, R. Iyer, V. Menon, N. Gouwens, D. Feng, J. Berg, A. Szafer, N. Cain, H. Zeng,
M. Hawrylycz, C. Koch, and S. Mihalas, Generalized leaky integrate-and-fire models clas-
sify multiple neuron types, Nature Communications 9, 709 (2018), bandiera_abtest: a
Cc_license_type: cc_by Cg_type: Nature Research Journals Number: 1 Primary_ atype:
Research Publisher: Nature Publishing Group Subject_term: Computational neuro-
science;Computational science Subject_term_id: computational-neuroscience;computational-
science.

E. Toomey, K. Segall, M. Castellani, M. Colangelo, N. Lynch, and K. K. Berggren, Super-
conducting Nanowire Spiking Element for Neural Networks, Nano Letters 20, 8059 (2020),
publisher: American Chemical Society.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, L. Po-
lat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt,
and SciPy 1.0 Contributors, SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python, Nature Methods 17, 261 (2020).

Https://github.com/gqnngroup /neuron.

C.-N. Chou, K.-M. Chung, and C.-J. Lu, On the Algorithmic Power of Spiking Neural Net-
works, arXiv:1803.10375 [cs] (2018), arXiv: 1803.10375.

B. A. Primavera and J. M. Shainline, An active dendritic tree can mitigate fan-in limitations
in superconducting neurons, arXiv:2107.05777 [cs] (2021), arXiv: 2107.05777.

A. N. McCaughan, E. Toomey, M. Schneider, K. K. Berggren, and S. W. Nam, A kinetic-
inductance-based superconducting memory element with shunting and sub-nanosecond write
times, Superconductor science & technology 32, 10.1088/1361 (2018).

A. N. McCaughan and K. K. Berggren, A Superconducting-Nanowire Three-Terminal Elec-
trothermal Device, Nano Letters 14, 5748 (2014), publisher: American Chemical Society.

Q. Xie, N. Chowdhury, A. Zubair, M. S. Lozano, J. Lemettinen, M. Colangelo, O. Medeiros,

27

I. Charaev, K. K. Berggren, P. Gumann, D. Pfeiffer, and T. Palacios, NbN-Gated GaN Tran-
sistor Technology for Applications in Quantum Computing Systems, in 2021 Symposium on
VLSI Technology (2021) pp. 1-2, iSSN: 2158-9682.

[37] G. Pasandi, A. Shafaei, and M. Pedram, SFQmap: A Technology Mapping Tool for Single
Flux Quantum Logic Circuits, arXiv:1901.00894 [quant-ph] (2019), arXiv: 1901.00894.

[38] Q.-Y. Zhao, E. A. Toomey, B. A. Butters, A. N. McCaughan, A. E. Dane, S.-W. Nam, and
K. K. Berggren, A compact superconducting nanowire memory element operated by nanowire

cryotrons, Superconductor Science and Technology 31, 035009 (2018).

Appendix A: Circuit Model

Figure 9. SEM images of fabricated relaxation oscillators (a), nanowire neurons (b), and synaptic

integration loop in the synapse (c). Obtained from [25]

The nanowire neuron is made from two relaxation oscillators. We define the currents i,
through ig for the nanowire neuron as the currents in each branch of the three loops as in

figure 10. Applying Kirchhoff’s voltage law for the three loops yields the following equations:

diy

Ly (1) 'y + 11 Rpsny = 19y (A1)
di
an (23) ﬁ + ithsTLQ = i4R2 (A2)
di , di)
le_; + iRy = de—f + i3y (A3)

The hTron synapse is similarly described by the equations from Kirchhoft’s voltage law:

28

Figure 10. Circuit schematic for the nanowire neuron (a) and the hTron synapse (b) with definitions

of currents for a state-description of the circuit in the superconducting state.

o di , .
an,h (Zl) d_tl + Z1}%/7,sh - Z2Rsyn,1 (A4)
. dig
ZQRsyn,l = Lsyn% + Z4Rsyn,2 (A5)
dis

ZA4Rsyn,2 = ZABRout + Lout (AG)

dt

Here L,,; is taken as Ly. We use state variables ni, ny to capture the state of the nanowires
in the neuron and h for the channel of the hTron. We modulate the critical current of the

hTron according to the following rule:
if Ng = 1, then [c,h/ = BIbias h

Where we define 3 to be a factor such that 0 < § < 1. This ensures that the hTron channel

switches when the nanowire in the main oscillator switches.

29

