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Abstract
The goods and services provided by riverine systems are critical to humanity, and our reliance increases with our grow-
ing population and demands. As our activities expand, these systems continue to degrade throughout the world even as 
we try to restore them, and many efforts have not met expectations. One way to increase restoration effectiveness could be 
to explicitly design restorations to promote microbial communities, which are responsible for much of the organic matter 
breakdown, nutrient removal or transformation, pollutant removal, and biomass production in river ecosystems. In this 
paper, we discuss several design concepts that purposefully create conditions for these various microbial goods and services, 
and allow microbes to act as ecological restoration engineers. Focusing on microbial diversity and function could improve 
restoration effectiveness and overall ecosystem resilience to the stressors that caused the need for the restoration. Advances 
in next-generation sequencing now allow the use of microbial ‘omics techniques (e.g., metagenomics, metatranscriptom-
ics) to assess stream ecological conditions in similar fashion to fish and benthic macroinvertebrates. Using representative 
microbial communities from stream sediments, biofilms, and the water column may greatly advance assessment capabilities. 
Microbes can assess restorations and ecosystem function where animals may not currently be present, and thus may serve 
as diagnostics for the suitability of animal reintroductions. Emerging applications such as ecological metatranscriptomics 
may further advance our understanding of the roles of specific restoration designs towards ecological services as well as 
assess restoration effectiveness.
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Introduction

Stream restoration activities are increasingly critical in 
humanity’s ongoing attempts to mitigate or reverse aquatic 
degradation. However, our interactions with freshwater 
ecosystems are a paradox. We rely on their many services 
from clean water for drinking, irrigation, and recreation 

to f lood control and biodiversity maintenance and 
protection. Yet, we intentionally, and often unwittingly, 
use them for waste disposal, and we divert their flows 
for many purposes. These actions alter physical and 
chemical properties to the detriment of the ecosystem’s 
inhabitants and have made freshwater systems some of the 
most sensitive and imperiled ecosystems on Earth [1–3]. 
Streams are particularly vulnerable to human activities and 
landscape change because they interact with uplands in a 
linear configuration. Actions at even the highest elevations 
of watersheds eventually reach and influence streams 
given enough precipitation. Persistent stressors can 
continue to influence streams with each runoff event, and 
the legacy of past insults may negatively impact stream 
ecosystems for decades [4, 5]. A few examples of such 
stressors in urbanized watersheds include eutrophication 
caused by increased inputs of nitrogen from agriculture 
and wastewater [6], acute toxicity from storm runoff 
for some fish species [7], chronically elevated stream 
conductivity from road salts [8], and more frequent flood 
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events and unstable habitats [9] cumulatively leading to 
reduced biodiversity and ecosystem function [10, 11]. 
Consequently, in-stream biota are forced to endure, flee, 
or perish when confronted with multiple spatiotemporal 
dimensions of stressors compressed into what is 
functionally a one-dimensional environment for higher 
organisms [12].

Despite billions of US dollars spent on stream restorations 
[13], little evidence exists for ecological improvements in 
urbanized watersheds with our current approaches [14–17]. 
Even well-executed restorations that provide seemingly 
good biotic habitats and physical conditions may not return 
the desired ecological communities because of larger 
constraints, such as high levels of impervious surface cover, 
imposed by human activities in the surrounding watershed 
[10, 11, 18]. Nonetheless, restoration activities will continue 
in the USA and elsewhere because of government anti-
degradation and water quality mandates and a long history of 
using in-channel construction in our efforts [19]. Therefore, 
new approaches and perspectives are needed to increase the 
chances of positive outcomes. One potentially beneficial 
approach is to design stream restorations to better harness 
the powers of stream microbiomes to enhance ecosystem 
functions. Microbes, including bacteria, archaea, protists, 
and microalgae, are dominant players in these ecosystem 
functions [20]. Microbial biomass is a primary food supply 
for stream food webs, and microbial metabolism drives 
cycling of biogeochemically active elements and transforms 
terrestrial organic matter, nutrients, and pollutants. Through 
these activities, microbes are intimately involved in limiting 
eutrophication, degrading toxins, and providing food 
to sustain stream biodiversity. Thus, facilitation of high 
functioning stream microbiomes, by focusing on details 
in restoration design to be more microbe-aware, has the 
potential to generate ecological benefits even in situations 
where enhancement or reintroduction of traditional aquatic 
indicator taxa is unsuccessful. In this paper, we describe 
ways in which microbes and their desired ecological 
functions may be more effectively incorporated into 
stream restorations and ways in which they can be used as 
diagnostics for tracking restoration success.

Microbiome enhancement has a long tradition in 
agriculture [21–24], and microbes are increasingly viewed as 
the primary agents of restoration in soil ecosystems [25, 26]. 
Microbial fertilizers or biofertilizers containing beneficial 
microbes have been shown to enhance soil restoration 
efforts [27, 28] and bioremediation [29, 30]. Many 
restoration strategies use microbes to encourage growth 
of specific plant or animal taxa that anchor restorations or 
serve as ecosystem engineers for jump-starting restoration. 
For example, inoculating soils with beneficial microbes 
via native soil enhancement or arbuscular mycorrhizae 
additions enhanced recovery of dune grasses [31–33] and 

prairie grasses [34–37]. Another approach is to use soil 
amendments to enhance growth of beneficial microbes, such 
as using biochar to improve wetland restorations [38].

Similar strategies may enhance stream restoration 
projects, but there are several challenges to overcome. 
Microbial communities are more transient in streams 
than soils (e.g., [39]) and are potentially less controllable 
for restoration purposes than higher organisms. The best 
approach in streams is probably to establish conditions that 
harness the continuous rain of microbes dispersed from 
landscapes and encourage them to colonize and perform 
desired functions in suitably created habitat zones for 
that desired function. Thus, the linear nature of streams 
makes them acutely vulnerable to disturbances, but the 
unidirectional, consistent flowpath has advantages for 
microbial dispersal and recolonization where it is difficult 
to create and maintain consistent geochemical gradients.

Microbes as Ecological Restoration 
Engineers

Microbes provide many different goods and services to 
target during restoration design, including organic matter 
breakdown, nutrient removal or transformation, pollutant 
removal, and biomass production (Table  1). But since 
microbial communities are immensely diverse and turn over 
rapidly, it is impractical to use restoration designs targeting 
specific microbial taxa in the same way that restoration 
design targets larger organisms. Instead, restoration designs 
that use a “build it and they will come” strategy are more 
likely to succeed at promoting microbial goods and services 
in contrast to the known limitations with higher organisms 
[40]. However, we know that various microbial goods and 
services require differing sets of environmental conditions 
to function and that streams are dynamic environments. 
For example, biomass production by microbial biofilms is 
favored under oxic conditions, but nutrient removal (via 
denitrification) requires anoxic conditions. Thus, a balanced 
approach is necessary in creating or manipulating suites of 
conditions that favor each of the desired microbial functions. 
At the same time, this balanced approach to restoration 
design may help the overall ecological system to better 
withstand the stressors that caused the degradation in the 
first place. To promote microbial goods and services, we 
propose that the keys are to retain organic matter within 
streams by creating storage within gravels, depositional 
areas, and debris jams, and to provide stable, hard substrates 
for microbial colonization.

An extreme example of site manipulation to maximize 
a microbial ecosystem service is the Regenerative Storm-
water Conveyance (RSC) approach designed to use bacte-
rial communities for denitrification [41] to achieve water 
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quality requirements of the Clean Water Act [42]. A series 
of step pools are created within a stream, and each pool has 
a deep organic layer up to several meters thick to serve as 
an anoxic microbial bioreactor. Stormwater from the sur-
rounding uplands is detained in the pools to reduce peak 
flows downstream, and nitrogen is removed as the stormwa-
ter infiltrates the organic layer. When designed correctly and 
properly sized for stormwater, RSC installations can return 
stream discharges to pre-development hydrograph shape and 
also reduce nutrients and suspended sediments [43].

RSC installations often underperform expectations of 
nitrogen removal for various reasons including position in 
the watershed, high seasonal water table, and under-sized 
pool and underlying media volumes [44, 45]. Seasonal per-
formance differences may also be related to the quantity 
and quality of DOC and temperature-associated patterns 
of microbial activity [46]. But perhaps more concerning 
for stream restoration efforts is that, by maximizing design 
for nitrogen removal, RSC construction results in tradeoffs 
between nitrogen reductions and degraded communities of 
higher organisms due to low dissolved oxygen and sub-opti-
mal habitats in the step pools [16] as well as the potential 
release of phosphorus under anoxic conditions [47]. A more 
integrated approach with restoration designs that use multi-
ple microbial pathways could be more effective than trying 
to make a stream perform a single function exceeding its 
natural abilities [18].

Stream restorations creating a greater diversity of sur-
face and subsurface physical conditions (Fig. 1) may help 
to achieve water quality goals while also providing redun-
dancy and resilience to the overall system. Hyporheic zones 
are “biogeochemical hotspots” [48, 49] where the mixing of 
groundwater and surface water under a range of oxygen con-
ditions promotes substantial microbial respiration to break 
down organic substrates and remove nutrients and pollut-
ants [50–52]. Most of the overall ecosystem respiration in 
streams occurs via microbial activity in hyporheic zones [53, 
54], and their potential importance in stream restoration is 
well known [55, 56]. Here and throughout stream ecosys-
tems, microbes take up dissolved organic matter and convert 
this largely unavailable component into bacterial biomass 
that can be consumed by higher trophic levels [57, 58].

Restorations creating a balance of substrates with areas 
of hypoxic conditions juxtaposed with areas promoting aer-
obic hyporheic exchange will increase ecosystem benefits 
from microbial communities by harnessing both aerobic and 
anaerobic potential. Such conditions are often coincidentally 
created in restorations, but more microbe-aware designs spe-
cific to each project and structure can further enhance the 
functionality. Water surface height differences like those that 
form around in-stream structures (Fig. 1) create head gra-
dients that generate rapid fluxes through hyporheic zones 
within the channel bed that feature anoxic sections upstream Ta
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in low-velocity pools and oxic conditions downstream in 
turbulent riffles [59]. The changes in surface height and 
composition of channel substrates substantially influence 
the water flux [60, 61], and these features can be controlled 
by the restoration design. Oxic zones around a structure can 
become net sources of nitrate (via microbial decomposition 
of organic N and nitrification of ammonium; [62]), while 
others become sinks for nitrate and dissolved oxygen (via 
denitrification and aerobic respiration; [63]). Designs that 
create consistent, reliable hyporheic mixing and exchange 
between oxic and anoxic environments through hydraulic 
head gradients can shift a system from one dominated by 
stochastic processes to a more deterministic system with 
elevated rates of biogeochemical processing [51].

Restoration designs for microbial processing need not 
be focused on restoration structures. Gravel bars and other 
coarse substrates that increase hyporheic depth or exchange 
can become enhanced sites for organic matter retention 
with increased compositional and functional diversity 
[64]. The stored organic matter in gravels increases 
nutrient retention [65] and can be the main carbon 
source for many microbial communities [66]. Microbial 
contribution to leaf breakdown can be higher in gravel than 
in debris jams where fungal and benthic macroinvertebrate 
activities are highest [67, 68]. Thus, intentionally created 
deep gravel bars may substantially increase ecological 
functions as well as provide additional habitats for benthic 
macroinvertebrates and fishes [69].

Careful thought to overall channel structure and stre-
ambed morphology in restorations can leverage microbial 
contributions (Fig. 1). Microbial diversity and differentia-
tion in pool habitats are associated with stream substrate 
stability, with soft or more mobile sediments dominated by 
heterotrophic bacteria and more stable substrates encour-
aging photosynthetic organisms in rock biofilms [70]. 

Pool habitats and debris jams also promote substantial 
fungal activity on coarser organic substrates and can sub-
stantially exceed bacterial number and biomass in these 
depositional areas [67]. Increased physical heterogeneity, 
such as a diversity of hard substrates (rocks, logs) with 
complex shapes within the channel and areas for organic 
matter deposition and storage, will lead to greater surface 
areas available for microbial biofilm colonization. Bio-
films can contain diverse members of the bacteria, archaea, 
and eukaryotes and are significant contributors to stream 
metabolism and material transfer [20, 71]. Diverse hydro-
dynamic conditions lead to variations in biofilm biomass 
and physical structure as well as increased resource use 
[72]. Thus, stream restorations containing high amounts 
of heterogeneity in both channel substrates and flow 
velocities should promote increased microbial activity for 
material transformations and increased microbial biomass 
available for direct consumption by benthic macroinverte-
brates. Greater biofilm diversity and production will sup-
port more biomass of higher organisms with an overall 
effect of greater total biomass binding more nutrients that 
might otherwise contribute to eutrophic conditions and 
dead zones in downstream receiving waters. Integrated 
across entire stream reaches, the cumulative results could 
be substantial for restored streams.

Not all stream restoration activities are confined to the 
stream channel, and many of the long-term gains can be 
made by altering off-channel and upland conditions to 
protect the receiving stream. Reconnecting a stream to its 
floodplain by lower bank height or instream debris jams 
that mimic beaver dams (Fig. 1) not only dissipates the 
kinetic energy of flood events from the channel and onto 
the floodplain, but can also remove substantial amounts of 
nutrients and sediments through deposition and microbial 
processing [73–75]. Riparian forests and uplands also 

Fig. 1   Conceptual diagram of 
areas where stream restoration 
elements can enhance ecosys-
tem services and assessments 
provided by microbes
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provide a regional and temporally variable source of 
microbial colonizers to allow the stream to change with 
varying environmental conditions [39].

In summary, we propose that more microbe-aware 
stream restorations can enhance the functioning of restored 
urban streams. Stream restorations in such highly modified 
watersheds usually fail to return the desired animal 
communities, and instead continue to reflect degraded 
conditions. Shifting to a microbe-aware focus leverages 
existing restoration approaches, and purposefully creates 
conditions that will enhance microbial function in both local 
reaches and impacted areas downstream (e.g., reduction of 
dead zones in large rivers and estuaries). We see this as an 
important research area in which future work should seek 
to determine if and how much increased functioning can 
be achieved with this strategy, and whether microbially 
enhanced restorations allow the return of desired higher 
organisms. To implement this strategy, restorations should 
focus on a balance of habitats and functions rather than 
maximizing one or two functions or services. Overly 
controlling environmental variation often results in 
additional problems or disappointments [76], whereas more 
balance should provide increased resilience to frequent 
disturbances and stressors in these highly modified systems.

Microbes as Ecological Indicators

The wide distribution and diversity of microbes make their 
use as environmental and ecological indicators an exciting 
new assessment and monitoring tool. We see this applica-
tion as particularly promising for stream restorations, where 
traditional bioindicators (i.e., fish and benthic macroinverte-
brates) are often lost to degradation, and absences may lead 
assessments to conclude a restoration was not ecologically 
successful. However, post-restoration conditions creating 
robust microbial communities and associated biogeochemi-
cal processes may allow higher organisms to re-establish.

Stream microbes are thus particularly promising for both 
ecological assessment and monitoring given their many 
useful attributes including broad distributions and disper-
sal abilities [77]; large taxonomic richness [78]; and wide 
functional diversity and redundancy across different envi-
ronments and levels of degradation [79]. Microbiomes thus 
have potential use as hydrological predictors [80, 81] and 
ecologically relevant indicator taxa [82].

Microbes as ecological indicators have transitioned from 
light microscopy of benthic algae [83, 84] to genomic-
based approaches using various gene sequence targets and 
next-generation sequencing. Periphyton- or diatom-based 
assessments such as the U.S. Geological Survey’s National 
Water Quality Assessment Program [85–87] are currently 
being supplemented or replaced by DNA (meta-) barcoding 

using the rbcL chloroplast gene [88–90]. Genomic-based 
approaches using both 16S and 18S amplicon sequencing 
to include bacteria, archaea, and eukaryotes are increasingly 
being adopted by agencies such as the U.S. E.P.A. [91, 92]. 
Their use is supported by work to optimize taxonomic reso-
lution [93], correlate microbial community structure with 
existing indices [82, 94], and develop watershed-specific 
metrics [95–97].

Specific riverine habitats harbor distinct microbial 
communities that reflect specific properties of the system 
(Fig. 1). Water column communities differ from stream 
sediments [98] and tend to reflect microbes in the sur-
rounding uplands [99]. Water column microbes also cor-
relate with watershed urbanization, impervious surfaces, 
and other landscape characteristics [39, 100, 101], which 
themselves strongly relate to ecological condition [102] 
and fish and benthic macroinvertebrate biodiversity [10, 11, 
103]. Sediment microbes better reflect environmental con-
ditions within a stream reach [100] and reproduce ecologi-
cal assessments using traditional benthic macroinvertebrate 
monitoring [94]. Biofilms from hard surfaces also have their 
own distinct community structures and were the first micro-
bial communities showing potential in assessments with 
genomic-based methods [95, 104, 105]. Biofilm communi-
ties on stable surfaces such as rocks may be very useful for 
assessing ecological conditions because they reflect time-
integrated conditions where communities develop through 
ecological sorting.

Developing applications incorporating all aspects of river 
microbiomes may advance assessments beyond current abili-
ties. We suggest exploring sampling regimes that include 
separate water column, sediment, and biofilm collections. A 
single water column collection may suffice in most systems 
due to homogenization via river flow, but multiple sediment 
samples should be collected in stable depositional areas and 
pooled. Biofilms should also be sampled across different 
substrates with hydrodynamic variability and can be pooled. 
Treating each habitat/community separately for library prep-
aration and sequencing will facilitate comparisons among 
different habitats, yet allow the data from all environments 
to be combined to produce ecological assessments.

Applications using microbial indicators may face 
tensions between specificity and generality. The thousands 
of microbial species (“operational taxonomic units” or 
OTUs) in streams could be highly specific to environmental 
conditions or even symbiotic or parasitic to specific 
metazoan taxa. Such cases would make these OTUs 
very specific and useful as indicators for some types of 
monitoring. However, their over-specificity limits their 
use as general indicators and misses the bigger picture for 
ecological assessments. Hilderbrand et al. [94] found that 
grouping bacteria and archaea at the Order level assessed 
stream ecological condition with similar accuracy as finer 
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levels of taxonomic resolution and avoided the issues 
with over-specificity. The approach was similar to Index 
of Biotic Integrity methods developed for fish [106] and 
benthic macroinvertebrates [107], which use community 
composition as diagnostic indicators. Similar to blood panels 
for human health, the proportions of different taxonomic or 
functional groups can be diagnostic of overall ecological 
condition. Although a taxonomic order may contain 
diverse ecological functions, there may be something 
ecologically diagnostic about the group. For example, the 
EPT (Ephemeroptera, Trichoptera, Plecoptera) triad of 
benthic macroinvertebrate orders is a diagnostic indicator of 
ecological condition because of general pollution intolerance 
despite this broad group containing numerous trophic groups 
and habitat uses [108]. Thus, we believe it is unlikely that 
individual OTUs can be used as general indicators because 
of the diversity of environmental conditions found even in 
undisturbed streams. As the numbers of classified microbial 
OTU sequences (and their functional roles) in databases 
increase, we will better understand the biogeography of 
microbes and taxonomic specificity required for ecological 
assessment at larger spatial scales.

An exciting emerging application to assess stream restora-
tion effectiveness is through ecological metatranscriptomics 
[109, 110]. Expression of genes associated with ecosystem 
services such as denitrification and polyaromatic carbon deg-
radation can be measured by sequencing the messenger RNA 
transcripts of bacteria, viruses, eukaryotes, and other groups 
individually or in total [111, 112]. Although this technology 
is in the early stages, ecological metatranscriptomes could be 
used to identify various functions and their relative levels of 
activity in streams. Restored streams could be compared against 
degraded and undisturbed streams to identify the degree to 
which restoration designs produce intended effects. Changes 
in ecosystem services could even be measured for individual 
restoration structures. If watershed conditions such as high 
amounts of impervious surfaces or intermittent or ephemeral 
streams preclude establishment of desired fish or benthic inver-
tebrate species, such an ecosystem functional perspective could 
determine if restorations are accomplishing water quality goals 
even when they fail on biodiversity measures for eukaryotes.

Despite the immense number of projects, stream restoration 
is still a young science trying to inform applications to systems 
vital to humanity’s well-being. With our current understanding, it 
may not be possible to restore many desired species to some sys-
tems because of watershed modifications. It becomes all the more 
critical for restorations to fully harness the power of microbes to 
enhance ecosystem services, and to evaluate ecological condi-
tion. We propose that microbial assessment will be a powerful 
tool to evaluate the effectiveness of restorations and different 
design approaches, and will help move this young science for-
ward. Applications to restorations across all levels of degradation 
can benefit from a more resilient and functional system.
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