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A  b s t r a c t.  T h e  r e c e nt   p r o of  of  t h e  s h a r p    w ei g ht e d   b o u n d  f o r    C al d e r ´o n-
Z y g  m u n d  o p e r a t o r s  h a s l e d  t o    m u c h i n v e s ti g a ti o n  i n  s h a r p    mi x e d  b o u n d s f o r  o p-
e r a t o r s  a n d  c o  m  m u t a t o r s,  t h a t i s,  a  s h a r p   w ei g ht e d  b o u n d  t h a t i s  a  p r o d u c t  of  a t
l e a s t  t  w o  di ff e r e nt  A p w ei g ht  c o n s t a nt s.    T h e  r e a s o n    w h y  t h e s e  a r e  s o u g ht  aft e r
i s  t h a t  t h e  p r o d u c t   will  b e  s t ri c tl y  s  m all e r  t h a n  t h e  o ri gi n al  o n e- c o n s t a nt  b o u n d.
We  p r o v e  a  v a ri e t y  of  t h e s e  b o u n d s i n  s p a c e s  of  h o  m o g e n e o u s  t y p e,  u si n g  t h e  n e  w
t e c h ni q u e s  of   L e r n e r,  f o r  b o t h  o p e r a t o r s  a n d  c o  m  m u t a t o r s.

1.   I n t r o  d u c ti o n

T h e t h e o r y of s p a r s e  d o  mi n ati o n, t h at is,  p oi nt  wis e ( o r  bili n e a rl y)  b o u n d-
i n g a n o p e r at o r b y a  fi nit e s u  m of si  m pl e, s o- c all e d s p a r s e o p e r at o r s,  h a s  b e e n
a n  a cti v e  a r e a  of i n v e sti g ati o n.  Si n c e  t h e  o ri gi n al  p r e p ri nt  of  t his  a rti cl e  a p-
p e a r e d, t h e r e h a s  b e e n a  pl et h o r a of t h e o r y a n d a p pli c ati o n s of s p a r s e  b o u n d s
t o  a   wi d e  v a ri et y  of  o p e r at o r s  a n d  s etti n g s.    R ef e r e n c e s  a r e  t o o  n u  m e r o u s  t o
list,  b ut o n e c o ul d st a rt  b y l o o ki n g at [3 1 ], [5 ], [3 5 ]  a n d t h e r ef e r e n c e s t h e r ei n.
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‡ T h e  s e c o n d  a u t h o r    w a s  s u p p o r t e d  b y  J u nt a  d e    A n d al u c ́  ı a  (  G r a nt    N o.    P 0 9-  F  Q  M- 4 7 4 5 )  a n d

t h e  S p a ni s h    Mi ni s t r y  of  S ci e n c e  a n d  I n n o v a ti o n  (  M  T  M 2 0 1 2- 3 0 7 4 8 ).
K e y    w o r d s  a n d  p h r a s e s:  s p a c e  of  h o  m o g e n e o u s  t y p e,    m a xi  m al  f u n c ti o n,    C al d e r ó n – Z y g  m u n d
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T his  a rti cl e,  cir c ul at e d i n  p r e p ri nt  f o r  m  si n c e  2 0 1 4,  u s e s  t h e  ol d e r  t e c h n ol-
o g y  d e v el o p e d  b y   L e r n e r; it is li k el y  t h at   m a n y  of  o u r  r e s ult s  c o ul d  b e  e v e n
m o r e  u p d at e d   wit h  t h e  r e c e nt  t e c h n ol o gi c al  s u r g e.    O u r  r e s ult s  h a v e  p r o v e n
r el e v a nt  i n  s e v e r al  ot h e r  p r oj e ct s;  a  p r e p ri nt  f o r  m  of  t his  a rti cl e  h a s  b e e n
cit e d i n  [ 2 9 ],  [1 4 ],  [9 ],  [2 8 ],  [1 7 ],  f o r  e x a  m pl e.    Wit h  t his  fi r  ml y  i n    mi n d,   w e
p r o c e e d   wit h  t h e i nt r o d u cti o n.

I n  t h e l a st  d e c a d e s,  h a r  m o ni c  a n al y st s  h a v e  p ai d    m u c h  att e nti o n  t o  t h e
a r e a  of   w ei g ht e d  i n e q u aliti e s  f o r  si n g ul a r i nt e g r als.   Si n c e    M u c k e n h o u pt  i n-
t r o d u c e d i n [ 3 8 ]  t h e A p cl a s s e s i n t h e  1 9 7 0’s t o  a n s  w e r t h e  n e c e s s a r y a n d s uf-
fi ci e nt  c o n diti o n s f o r  t h e  b o u n d e d n e s s  of  t h e   m a xi  m al f u n cti o n  o n   w ei g ht e d
L p s p a c e s,   m a n y  h a v e s o u g ht a  d e e p e r u n d e r st a n di n g of t h e c o n st a nt s p r e s e nt
i n  s u c h   w ei g ht e d  b o u n d s.

T h e  fi r st r e s ult i n t his  a r e a   w a s  d u e t o   B u c kl e y,   w h o  a s s e rt e d t h e  p r e cis e
d e p e n d e n c e  of  t h e  A p c o n st a nt i n [ 6 ]  w a s

( 1. 1) M L p ( w  ) ≤  c p [w  ]
1

p  −  1

A p
.

Si n c e  t h e n,    m u c h    w o r k    w a s  p ut  i nt o  s ol vi n g  t h e  s o- c all e d  A 2 c o nj e ct u r e,
w hi c h st at e d t h at t h e  c o n st a nt i n  t h e  c o r r e s p o n di n g   w ei g ht e d  n o r  m i n e q u al-
it y  f o r    C al d e r ́o n – Z y g  m u n d  si n g ul a r  i nt e g r als  d e p e n d e d  li n e a rl y  o n  t h e  A 2

c o n st a nt.    T his    w a s  s ol v e d  b y    H yt ̈o n e n  i n  [ 2 0 ].   S e e  als o  [2 1 ]  f o r  a  s u r v e y
a b o ut  t h e  hist o r y  of  t h e  c o nj e ct u r e  a n d [ 3 0 ] f o r  a  si  m pl e r  p r o of.

Aft e r  t h e  s ol uti o n  of  t h e  A 2 c o nj e ct u r e,  a n  i  m p r o v e  m e nt  of  t his  r e s ult
w a s  o bt ai n e d  i n  [  2 4 ].    T his  n e  w  r e s ult  c a n  b e  b ett e r  u n d e r st o o d if    w e  fi r st
c o n si d e r  t h e  c a s e  of   B u c kl e y’s  e sti  m at e  ( 1. 1 ) f o r  t h e   m a xi  m al f u n cti o n.    F o r
t h e  c a s e  p  =  2,  t h e   m a xi  m al  e sti  m at e is  gi v e n  b y

M L 2 ( w  ) ≤  c n [w  ]A 2
.

T h e i d e a is  t o  r e pl a c e  a  p o rti o n  of  t h e  A 2 c o n st a nt  b y  a n ot h e r  s  m all e r  c o n-
st a nt  d e fi n e d i n  t e r  m s  of  t h e  A ∞ c o n st a nt  gi v e n  b y  t h e f u n cti o n al

( 1. 2) [w  ]A ∞
=  s u p

Q

1

w  ( Q  )

ˆ

Q
M  ( w χ Q ) .

T o  b e    m o r e  p r e cis e,  t h e i  m p r o v e  m e nt  of   B u c kl e y’s  t h e o r e  m is  t h e f oll o  wi n g
“ A 2 – A ∞ ”  e sti  m at e:

M L 2 ( w  ) ≤  c n [w  ]
1 / 2
A 2

[w −  1 ]
1 / 2
A ∞

,

w hi c h  c a n  b e f o u n d i n [  2 4 ]  al o n g   wit h it s L p c o u nt e r p a rt.    T h e  A ∞ c o n st a nt
a s  gi v e n  b y  ( 1. 2 )    w a s  o ri gi n all y  i nt r o d u c e d  b y    F ujii  i n  [ 1 5 ]  a n d  r e dis c o v-
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e r e d l at e r  b y    Wils o n i n [ 4 2 ].    T his  d e fi niti o n is    m o r e  s uit a bl e  t h a n  t h e   m o r e
cl a s si c al  c o n diti o n  d u e  t o   Hr u s ̌c ̌e v [ 1 9 ],   w hi c h is  d e fi n e d  b y  t h e  e x p r e s si o n

[w  ]HA ∞
=  s u p

Q

1

|Q  |

ˆ

Q
w  ( t) dt  e x p

1

|Q  |

ˆ

Q
l o g w  ( t) −  1 dt  ,

si n c e

[w  ]A ∞
≤  c n [w  ]HA ∞

,

a s it   w a s  o b s e r v e d i n [ 2 4 ].  I n f a ct it is s h o  w n i n t h e s a  m e  p a p e r   wit h  e x pli cit
e x a  m pl e s  t h at [ w  ]A ∞

i s    m u c h  s  m all e r  ( a ct u all y  e x p o n e nti all y  s  m all e r)  t h a n
[w  ]HA ∞

.
C o n si d e ri n g t h e c a s e of si n g ul a r i nt e g r als, t h e   mi x e d s h a r p  A 2 – A ∞ r e s ult

b el o  w  o bt ai n e d i n [ 2 4 ] i  m p r o v e s  t h e A 2 t h e o r e  m:

T L 2 ( w  ) ≤  c n [w  ]
1 / 2
A 2

[w −  1 ]
1 / 2
A ∞

+ [  w  ]
1 / 2
A ∞

.

T his is t h e ri g ht e sti  m at e   w h e n c o  m p a r e d   wit h  M  si n c e t his r e fl e ct s t h e  p r o p-
e rt y  t h at  T  is  ( e ss e nti all y)  s elf- a dj oi nt.    T h e r e is  als o  a f u rt h e r i  m p r o v e  m e nt
i n v ol vi n g  [w  ]A p

i n [2 3 ].
I n t his  p a p e r   w e f oll o  w t his i d e a  of r e pl a ci n g  a  p o rti o n of t h e  A p c o n st a nt

b y t h e  A ∞ c o n st a nt f o r t h e  p r o bl e  m s c o n si d e r e d i n [ 3 2 ]  a n d i  m p r o v e d i n [3 3 ],
wit hi n  t h e  c o nt e xt  of  s p a c e s  of  h o  m o g e n e o u s t y p e.    T o  d o  t his   w e   will  p r o v e
fi r st  t h e  f oll o  wi n g  t h e o r e  m    w hi c h  f oll o  ws  e ss e nti all y  fr o  m  [ 3 3 ],  b ut  i n  t his
st at e d f o r  m  c a n  b e f o u n d i n [ 3 9 ].

T h e o r e  m  1. 1. L et T b e  a   C al d e r ó n – Z y g  m u n d  o p e r at o r  a n d l et 1 < p  <  ∞ .
T h e n  f o r  a n y   w ei g ht w a n d r  >  1 ,

( 1. 3) T f L p ( w  ) ≤  C  p p  ( r  )
1

p f L p ( M r w  ) ,

w h e r e  t h e    w ei g ht  o n  t h e  ri g ht- h a n d  si d e  i s   n o  w  t h e  “ L r H a r d y – Littl e  w o o d

m a xi  m al  f u n cti o n ”  : M r w  =  s u p Q  x

ffl
Q w r 1 / r

,  a n d  t h e  s y  m b ol  i n di c at e s

t h e  d u al  e x p o n e nt.

T his    mi x e d  t h e o r e  m l e a d s  t o  s h a r p    mi x e d  A 1 – A ∞ w ei g ht e d  b o u n d s f o r
C al d er ́ o n – Z y g  m u n d  o p e r at o r s  u si n g  si  m pl e  p r o p e rti e s  of  A p w ei g ht s:

( 1. 4) T f L p ( w  ) ≤  C  p p  [w  ]
1 / p
A ∞

f L p ( M  w  ) ,

a n d if  w  ∈  A 1 ,

( 1. 5) T f L p ( w  ) ≤  C  p p  [w  ]
1 / p
A ∞

[w  ]
1 / p
A 1

f L p ( w  ) ,

w h e r e  C  is  a  di  m e n si o n al  c o n st a nt  t h at  als o  d e p e n d s  o n  T  .
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R e c e nt r e s ult s r el ati n g  t o  t h e si  m pl e  p r o of  of  t h e  A 2 c o nj e ct u r e  all o  w  u s
t o  si  m plif y  a n d  st r e a  mli n e  t h e  p r o of  of  t his  t h e o r e  m,  a n d  als o  e xt e n d it  t o
s p a c e s  of  h o  m o g e n e o u s  t y p e  ( S  H  T).   T o  d o  t his   w e  u s e  t h e  t h e o r y  of  s p a r s e
d o  mi n ati o n  i n  s p a c e s  of  h o  m o g e n e o u s  t y p e,    w hi c h  h a s  r a pi dl y  d e v el o p e d.
H o  w e v e r,  f o r  o u r  p u r p o s e s  t h e  ol d e r  t e c h n ol o g y  of  [  4 ]  s u  ffi c e s  ( s e e  t h e  n e xt
s e cti o n f o r  d et ails).

A  si  mil a r  a p p r o a c h  c a n  als o  b e  d o n e   wit h  s h a r p   w e a k  b o u n d s.    We  h a v e
t h e f oll o  wi n g  s h a r p  b o u n d  of   L e r n e r,   O  m b r o si  a n d   P ́e r e z i n [ 3 3 ],

T L p ( w  ) ≤  C p p  [w  ]A 1
,

w hi c h l e d  t o  s e v e r al  e n d p oi nt  e sti  m at e s i n [  2 4 ].
A g ai n,   w e  c a n  u p d at e  t his  p r o of  b y  a p pl yi n g  r e c e nt  e sti  m at e s i n  s h a r p

w ei g ht e d  t h e o r y  a s   w ell  a s  e xt e n d  t o  s p a c e s  of  h o  m o g e n e o u s  t y p e.    We   will
e  m pl o y  a  n e  w  s h a r p  r e v e r s e    H ̈ol d e r  i n e q u alit y  f o r  s p a c e s  of  h o  m o g e n e o u s
t y p e  ( s e e   L e  m  m a  4. 6 ).

Fi n all y,   w e  s h o  w  s h a r p   w ei g ht e d  b o u n d s f o r  c o  m  m ut at o r s  of   C al d e r ́o n –
Z y g  m u n d  o p e r at o r s   wit h f u n cti o n s i n   B  M  O  a n d  t h eir it e r at e s.    T h e s e  q u e s-
ti o n s  h a v e  b e e n  c o n si d e r e d  b ef o r e i n [ 8 ]  a n d l at el y i  m p r o v e d i n [2 4 ]  b ut  o u r
b o u n d s  a r e  n e  w i n  t h e  c o nt e xt  of  s p a c e s  of  h o  m o g e n e o u s t y p e  ( s e e  als o [ 3 4 ],
w hi c h  a p p e a r e d  aft e r  t his  p r e p ri nt).

T h e  o r g a ni z ati o n  of  t his  p a p e r   will  b e  a s  f oll o  ws.   I n  S e cti o n  2  w e  gi v e
s o  m e  b a c k g r o u n d  a n d  d e fi niti o n s   w hi c h    will  h el p  u s  t o  p r o v e  o u r    m ai n  r e-
s ult s, list e d i n  S e cti o n  3 .    Fi n all y,  S e cti o n 4  c o nt ai n s  all  t h e  p r o of s  a s   w ell  a s
s o  m e  r e  m ar k s.

2.    P r eli  mi n a ri e s

2. 1.    S p a c e s  of    h o  m o g e n e o u s  t y p e.  We    will  b e    w o r ki n g  o n  s p a c e s
of  h o  m o g e n e o u s  t y p e,   w hi c h  g e n e r ali z e  t h e   E u cli d e a n  sit u ati o n  of  R n wit h
L e b e s g u e    m e a s u r e.    Ot h e r  e x a  m pl e s  of  s p a c e s  of  h o  m o g e n e o u s  t y p e i n cl u d e
C ∞ c o  m p a ct   Ri e  m a n ni a n   m a nif ol d s,  g r a p h s  of   Li p s c hit z f u n cti o n s  a n d   C a n-
t o r  s et s    wit h    H a u s d o r ff    m e a s u r e.    T h e s e  a n d    m o r e  e x a  m pl e s  a r e  d e s c ri b e d
i n [7 ];  s o  m e  a p pli c ati o n s  of  t h e s e  s p a c e s  c a n  b e f o u n d i n [3 7 ,4 3 ].

D e fi ni ti o n   2. 1.  A  s p a c e   of   h o  m o g e n e o u s  t y p e  is   a n   o r d e r e d  t ri pl e
( X, ρ,  μ  )  w h e r e  X  is  a  s et, ρ  is  a  q u a si  m et ri c,  t h at is:

( 1)  ρ ( x, y )   =  0 if  a n d  o nl y if  x  =  y .
( 2)  ρ ( x, y )  =  ρ ( y,  x ) f o r  all  x, y  ∈  X  .
( 3)  ρ ( x, z )  ≤  κ ( ρ ( x, y )  + ρ ( y, z )), f o r  all  x, y, z  ∈  X  .

f o r s o  m e c o n st a nt κ  >  1 ( q u a si  m et ri c c o n st a nt), a n d t h e p o siti v e   m e a s u r e  μ  is
d o u bli n g,  t h at is

0  <  μ  ( B  ( x 0 , 2 r ) )  ≤  D μ μ ( B  ( x 0 , r) )  <  ∞  ,

f o r  s o  m e  c o n st a nt D μ ( d o u bli n g  c o n st a nt).
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We   will  s a y  t h at  a  c o n st a nt is  a b s ol ut e  if  it  o nl y  d e p e n d s  o n  t h e  s p a c e
( X, ρ,  μ  ).    P a rti c ul a rl y,  κ  a n d  D μ a p p e a ri n g i n  t h e  a b o v e  d e fi niti o n  a r e  a b-
s ol ut e  c o n st a nt s.

T h a n kf ull y,    m a n y  b a si c  c o n st r u cti o n s  a n d  t o ols  f o r  cl a s si c al  h a r  m o ni c
a n al ysis  still  e xist i n  s o  m e f o r  m i n  s p a c e s  of  h o  m o g e n e o u s t y p e,  s u c h  a s  c e r-
t ai n  c o v e ri n g l e  m  m a s,  h o  w e v e r,  t h e   L e b e s g u e   Di ff e r e nti ati o n   T h e o r e  m  d o e s
n ot  ( s e e  [ 1 ]  f o r  a  t h o r o u g h  d e s c ri pti o n).    T h e r ef o r e,   w e    will  al  w a ys  a s s u  m e
t h at  o u r   m e a s u r e is i n  a d diti o n   B o r el  r e g ul a r,  t o  a v oi d  t e c h ni c aliti e s.

We  als o  r el y  o n  a  d y a di c  g ri d  d e c o  m p o siti o n,  a n d  c a n  u s e  t h e  c o n st r u c-
ti o n  of   C h rist [ 7 ];  s e e  als o  t h e  n e  w e r  c o n st r u cti o n  of [2 2 ]..

T h e o r e  m   2. 2. T h e r e   e xi st s   a  f a  mil y   of   s et s D  = k ∈ Z D k ,  c al l e d   a
d y a di c   d e c o  m p o siti o n   of X ,  c o n st a nt s 0  <  C, ε  <  ∞ ,  a n d   a  c o r r e s p o n di n g
f a  mil y  of  p oi nt s { x c ( Q  ) } Q  ∈  D s u c h  t h at :

( 1 )  X  = Q  ∈  D k
Q , f o r  all k  ∈  Z .

( 2 ) If Q 1 ∩  Q 2 =  ∅ , t h e n Q 1 ⊆  Q 2 o r Q 2 ⊆  Q 1 .

( 3 ) F o r  e v e r y Q  ∈  D k t h e r e  e xi st s  at l e a st  o n e  c hil d  c u b e Q c ∈  D k −  1 s u c h
t h at Q c ⊆  Q .

( 4 ) F o r  e v e r y Q  ∈  D k t h e r e  e xi st s  e x a ctl y  o n e  p a r e nt  c u b e Q̂  ∈  D k + 1 s u c h

t h at Q  ⊆ Q̂ .

( 5 ) If Q 2 i s  a  c hil d  of Q 1 t h e n μ ( Q 2 )  ≥  ε μ ( Q 1 ) .

( 6 )  B  ( x c ( Q  ) , δ
k )  ⊂  Q  ⊂  B  ( x c ( Q  ) ,  C δ

k ) .

We   will  r ef e r  t o  t h e l a st  p r o p e rt y  a s  t h e  s a n d  wi c h  p r o p e rt y .
L at e r,    w e    will  u s e  a    m ulti pl e  L  of  a  d y a di c  c u b e  Q  ,  d e fi n e d  a s  L  Q  =

B  ( x c ( Q  ) ,  C  L δ
k ),  a  c o n c e pt  t h at  h a s  a p p e a r e d i n  ot h e r  p a p e r s i n cl u di n g [ 4 ]

a n d [ 2 2 ].
A  w ei g ht  w  is  a  n o n n e g ati v e  l o c all y  i nt e g r a bl e  f u n cti o n  o n  (X,  μ  )  t h at

t a k e s  v al u e s i n  ( 0 , ∞  )  al  m o st  e v e r y  w h e r e.   F o r  a n y  1  <  p  <  ∞  w e  d e fi n e  t h e
A p c o n st a nt  of t h e   w ei g ht  w  o n t h e s p a c e  of  h o  m o g e n e o u s t y p e  X  a s f oll o  ws:

( 2. 1)   [w  ]A p
:  = s u p

Q

1

μ ( Q  )

ˆ

Q
w  ( x ) d μ

1

μ ( Q  )

ˆ

Q
w  ( x ) 1 −  p d μ

p −  1

.

H e r e   w e c a n t a k e  Q  t o  b e  a  b all, si n c e t h e c o n c e pt of  a  n o n- d y a di c c u b e is
n ot  d e fi n e d i n s p a c e s of  h o  m o g e n e o u s t y p e.    H o  w e v e r,  oft e n   w e   will   w o r k   wit h
a n  a n al o g u e  of  t his  c o n st a nt   w h e r e  Q  is  a  d y a di c  c u b e  ( a s  d e fi n e d  a b o v e).
If  w  ∈  A p wit h  r e s p e ct t o  b alls,  t h e n it is  d y a di c  A p (  wit h  r e s p e ct t o  c u b e s)
f o r  a n y  d y a di c  g ri d D  ,   wit h  a  c o n st a nt i n d e p e n d e nt  of D  .  C o n v e r s el y, if w  is
i n  d y a di c  A p wit h  r e s p e ct  t o  all  d y a di c  g ri d s  i n  a n  a dj a c e nt  d y a di c  s y st e  m
( a s  s h o  w n  i n  [ 2 2 ]),  t h e n w  ∈  A p wit h  r e s p e ct  t o  b alls.  It   will  b e  cl e a r fr o  m
c o nt e xt if   w e  a r e   w o r ki n g   wit h  r e s p e ct  t o  b alls  o r  d y a di c  c u b e s.
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We  d e fi n e t h e   F ujii –  Wils o n  A ∞ c o n st a nt i n  a s p a c e  of  h o  m o g e n e o u s t y p e
a s f oll o  ws:

[w  ]A ∞
=  s u p

Q

1

w  ( Q  )

ˆ

Q
M  ( w χ Q ) d μ,

w h e r e  w  ( Q  )  =
´

Q w  d μ  .    W hil e  t his A ∞ c o n st a nt is  c o  m p a r a bl e  u si n g  d y a di c

c u b e s o r  b alls, t h e c o n st a nt  of c o  m p a ris o n  d e p e n d s o n t h e   m e a s u r e  w  (  w hi c h
is  d o u bli n g  si n c e w  ∈  A ∞ ).    H e n c e  t o  a c hi e v e  s h a r p  b o u n d s i n  s p a c e s  of  h o-
m o g e n e o u s  t y p e    w e  c a n n ot  si  m pl y  s  wit c h  b et  w e e n  t h e s e  c o n st a nt s  d e fi n e d
wit h r e s p e ct t o c u b e s  o r  b alls si n c e   w e i nt r o d u c e  a  w  - d e p e n d e nt f a ct o r.    T his
is  r e fl e ct e d  i n  t h e  di ff e r e n c e  b et  w e e n  t h e  s h a r p  r e v e r s e    H ̈ol d e r  i n e q u aliti e s
i n v ol vi n g  t his A ∞ c o n st a nt:  if  d e fi n e d   wit h  r e s p e ct  t o  c u b e s   w e  g et  a  s h a r p
r e v e r s e   H ̈ol d e r  ( s e e   L e  m  m a  4. 6 ),  b ut if  d e fi n e d   wit h  r e s p e ct t o  b alls   w e  o nl y
g et  a  s h a r p   w e a k  v e r si o n  ( s e e [ 2 5 ]).

We  als o  n ot e  t h at    w e  d e fi n e  t h e    H a r d y – Littl e  w o o d    m a xi  m al  f u n cti o n
wit h  r e s p e ct  t o  b alls,  b ut  t his  is   w ell  k n o  w n  t o  b e  b o u n d e d  a b o v e  a n d  b e-
l o  w  b y  a  fi nit e  s u  m  of  d y a di c    m a xi  m al  f u n cti o n s  (f r o  m  a n  a dj a c e nt  d y a di c
s y st e  m)  ( s e e [ 2 2 ]  o r [2 7 ], f o r  e x a  m pl e).

2. 2.    C al d e r ó n –  Z y g  m u n d  o p e r a t o r s  a n d  c o  m  m u t a t o r s.  N e xt   w e
r e c all  s o  m e  d e fi niti o n s  r el at e d  t o    C al d e r ́o n – Z y g  m u n d  o p e r at o r s  a n d  t h eir
c o  m  m ut at o r s i n  t h e  h o  m o g e n e o u s s etti n g.

D e fi ni ti o n  2. 3.  We  s a y  t h at  K  : X  ×  X  \  { x  =  y }  →  R  is  a   C al d e r ́o n –
Z y g  m u n d  k e r n el if t h e r e e xist  η  >  0  a n d  C  <  ∞  s u c h t h at f or  all  x 0 =  y  ∈  X
a n d  x  ∈  X  it  s atis fi e s  t h e  d e c a y  c o n diti o n

( 2. 2) |K  ( x 0 , y) |  ≤
C

μ ( B  ( x 0 ,  ρ( x 0 , y) ) )

a n d  t h e  s  m o ot h n e s s  c o n diti o n s f o r  ρ ( x 0 ,  x)  ≤  η ρ ( x 0 , y):

( 2. 3)  |K  ( x, y ) −  K  ( x 0 , y) |  ≤
ρ ( x, x 0 )

ρ ( x 0 , y)

η C

μ ( B  ( x 0 ,  ρ( x 0 , y) ) )
,

a n d

( 2. 4)  |K  ( y,  x ) −  K  ( y,  x 0 ) |  ≤
ρ ( x, x 0 )

ρ ( x 0 , y)

η C

μ ( B  ( x 0 ,  ρ( x 0 , y) ) )
.

D e fi ni ti o n   2. 4.  L et  T  b e  a  si n g ul a r  i nt e g r al  o p e r at o r  a ss o ci at e d  t o
C al d er ́ o n – Z y g  m u n d  k e r n el  K  .   If  i n  a d diti o n  T  is  b o u n d e d  o n  L 2 ,  w e  s a y
t h at  T  is  a   C al d e r ́o n – Z y g  m u n d  o p e r at o r.

T h e o r e  m  2. 5  [1 0 ]. L et T b e  a   C al d e r ó n – Z y g  m u n d  o p e r at o r  o n  a  s p a c e
of  h o  m o g e n e o u s  t y p e .  T h e n T i s  b o u n d e d  f r o  m L 1 t o L 1 ,∞ .
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We   will  b e i n v o ki n g  s p a r s e  o p e r at o r s  t o  b o u n d  o u r   C al d e r ́  o n – Z y g  m u n d
o p e r at o r s  u si n g  t h e f o r  m ul a  o ri gi n all y  d u e  t o   L e r n e r [ 3 0 ].    B ef o r e   w e  dis c u s s
t his,    w e  n e e d  t o  d e fi n e  a  s p a r s e  f a  mil y  o n  a  d y a di c  g ri d  D  = k D k a s  i n
T h e o r e  m  2. 2 .

D e fi ni ti o n  2. 6.  A  s p a r s e f a  mil y  S  = k S k , S k ∈  D k o n  D  is  a  c oll e c-
ti o n  of  d y a di c  c u b e s  s u c h  t h at f o r  Q ,  Q ∈  S  ,

μ
Q  Q

Q ≤
μ ( Q  )

2
.

D e fi ni ti o n  2. 7.  Gi v e n  a  s p ar s e  f a  mil y  S  ,   w e  d e fi n e  a  s p a r s e  o p e r at o r
a s f oll o  ws

T S ( f )  =
Q  ∈  S

 

Q
f  · χ Q .

We  als o  i nt r o d u c e  t h e  d e c o  m p o siti o n  of   L e r n e r,  p r o v e d  i n  t h e  h o  m o g e-
n e o u s  s etti n g i n [ 3 ].

T h e o r e  m   2. 8. F o r  a n y    C al d e r ó n – Z y g  m u n d  o p e r at o r T o n  a  s p a c e  of
h o  m o g e n e o u s  t y p e X , w e  h a v e

T f Y ≤  C  s u p
D, S

T S f Y ,

w h e r e  t h e  s u p r e  m u  m  i s  t a k e n  o v e r  all  d y a di c  g ri d s D i n  a n  a dj a c e nt  d y a di c
s y st e  m ,  a n d  o v e r  all  s p a r s e  f a  mili e s   wit h  r e s p e ct  t o  t h o s e  g ri d s , C o nl y  d e-
p e n d s  o n t h e  o p e r at o r  a n d t h e  s p a c e X , a n d Y i s  a n y   B a n a c h f u n cti o n  s p a c e.

Fi n all y,    w e  i nt r o d u c e  t h e  d e fi niti o n s  of  a    B  M  O  f u n cti o n  a n d  t h e  it e r-
at e d  c o  m  m ut at o r s  of   C al d e r ́o n – Z y g  m u n d  o p e r at o r s   wit h  f u n cti o n s i n   B  M  O
i n  s p a c e s  of  h o  m o g e n e o u s t y p e.

D e fi ni ti o n  2. 9.  F o r  a l o c all y i nt e g r a bl e f u n cti o n  b : X  →  R  w e  d e fi n e

b B  M  O =  s u p
Q

1

μ ( Q  )

ˆ

Q
|b ( y ) −  b Q | d μ ( y )  <  ∞  ,

w h e r e  t h e  s u p r e  m u  m is  t a k e n  o v e r  all  d y a di c  c u b e s i n  X  ,  a n d

b Q =
1

μ ( Q  )

ˆ

Q
b ( y ) d μ ( y ) .

D e fi ni ti o n   2. 1 0.  Gi v e n   a    C al d e r ́ o n – Z y g  m u n d  o p e r at o r  T  wit h   k e r-
n el  K  a n d  a f u n cti o n  b  i n   B  M  O,   w e  d e fi n e t h e  k-t h  o r d e r c o  m  m ut at o r   wit h b ,
f o r  a n i nt e g e r k  ≥  0,  a s f oll o  ws

T k
b ( f ) ( x )  =

ˆ

X
( b ( x ) −  b ( y ) ) k K  ( x, y ) f ( y ) d μ ( y ) .
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I n  t h e  p a rti c ul a r  c a s e   w h e n  k  =  1,  T 1
b i s  t h e  cl a s si c  c o  m  m ut at o r  a n d   w e

will  d e n ot e it  b y  T b .
T h r o u g h o ut  t his   p a p e r,  X  will   d e n ot e  a  s p a c e  of   h o  m o g e n e o u s  t y p e

e q ui p p e d   wit h  a  q u a si  m et ri c  ρ  wit h  q u a si  m et ri c  c o n st a nt  κ  a n d  a  p o siti v e
d o u bli n g   m e a s u r e  μ  wit h  d o u bli n g  c o n st a nt  D μ .    We   will  d e n ot e  b y C  a  p o s-
iti v e  c o n st a nt i n d e p e n d e nt  of t h e   w ei g ht  c o n st a nt   w hi c h   m a y  c h a n g e fr o  m  a
li n e  t o  ot h e r.    We  r e  mi n d  t h e  r e a d e r  t h at   w e  c all  c o n st a nt s  a b s ol ut e if  t h e y
o nl y  d e p e n d  o n  p a r a  m et e r s  of  t h e  s p a c e,  s u c h  a s  μ ,  b ut  a r e i n d e p e n d e nt  of
t h e   w ei g ht.

3.    M ai n  r e s ul t s

O u r  g o al is  t o  p r o v e  t h e f oll o  wi n g  r e s ult s.

T h e o r e  m  3. 1. L et T b e  a   C al d e r ó n – Z y g  m u n d  o p e r at o r  a n d l et 1 < p  <  ∞ .
T h e n  f o r  a n y   w ei g ht w a n d r  >  1 ,

( 3. 1) T f L p ( w  ) ≤  C  p p  ( r  )
1

p f L p ( M r w  ) ,

w h e r e C i s  a n  a b s ol ut e  c o n st a nt  t h at  al s o  d e p e n d s  o n T .

Fr o  m  t h e  p r e vi o u s  t h e o r e  m   w e  o bt ai n  t h e  f oll o  wi n g  e sti  m at e s  a s i  m  m e-
di at e  c o r oll a ri e s.

C o r o l l a r y  3. 2. L et T b e  a    C al d e r ó n – Z y g  m u n d  o p e r at o r  a n d  l et 1  <
p  <  ∞ .  T h e n  if w  ∈  A ∞ w e  o bt ai n

( 3. 2) T f L p ( w  ) ≤  C  p p  [w  ]
1 / p
A ∞

f L p ( M  w  ) ,

a n d  if w  ∈  A 1 ,

( 3. 3) T f L p ( w  ) ≤  C  p p  [w  ]
1 / p
A ∞

[w  ]
1 / p
A 1

f L p ( w  ) ,

w h e r e C i s  a n  a b s ol ut e  c o n st a nt  t h at  al s o  d e p e n d s  o n T .

N ot e  t h e  p a s s a g e  of  ri g ht- h a n d  si d e  a b o v e  fr o  m  L p ( M r w  )  t o  L
p ( M  w  )

t o  L p ( w  ).    T h e  fi r st  p a s s a g e  is  d u e  t o  a n  a p pli c ati o n  of  a  r e v e r s e    H ̈ol d e r

i n e q u alit y  a n d  t h e  s e c o n d  p a s s a g e  g ai n s [w  ]
1 / p
A 1

.
A s  a n  a p pli c ati o n  of  (  3. 1 )   w e  o bt ai n  t h e f oll o  wi n g  e n d p oi nt  e sti  m at e.

T h e o r e  m  3. 3. L et T b e  a    C al d e r ó n – Z y g  m u n d  o p e r at o r .  T h e n  f o r  a n y
w ei g ht w a n d r  >  1 ,

( 3. 4) T f L 1  , ∞ ( w  ) ≤  C  l o g (e  +  r  )  f L 1 ( M r w  ) ,

w h e r e C i s  a n  a b s ol ut e  c o n st a nt  t h at  al s o  d e p e n d s  o n T .
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A d diti o n all y    w e  g et  t h e  f oll o  wi n g  e sti  m at e s  a s  c o r oll a ri e s  of  t h e  a b o v e
r e s ult  c h o o si n g  r  a s  t h e  s h a r p  e x p o n e nt i n  t h e  r e v e r s e   H ̈ol d e r i n e q u alit y f o r
w ei g ht s  i n  t h e  A ∞ cl a s s  i n  t h e  s etti n g  of  s p a c e s  of  h o  m o g e n e o u s  t y p e  ( s e e
L e  m  m a  4. 6 )  a n d  t a ki n g i nt o  a c c o u nt  t h at  r ≈  [w  ]A ∞

.

C o r o l l a r y  3. 4. L et T b e  a   C al d e r ó n – Z y g  m u n d  o p e r at o r .  T h e n

( 1 ) if w  ∈  A ∞ ,

T f L 1  , ∞ ( w  ) ≤  C  l o g (e  + [  w  ]A ∞
)  f L 1 ( M r w  ) ;

( 2 ) if w  ∈  A 1 ,

T f L 1  , ∞ ( w  ) ≤  C  [w  ]A 1
l o g (e  + [  w  ]A ∞

)  f L 1 ( w  ) .

I n  b ot h  c a s e s C i s  a n  a b s ol ut e  c o n st a nt  t h at  al s o  d e p e n d s  o n T .

We  als o  p r o v e  t h e  f oll o  wi n g  b o u n d  f o r  a    C al d e r ́  o n – Z y g  m u n d  o p e r at o r
t h at is  u s ef ul  t o  g et  s h a r p  A 2 – A ∞ b o u n d s f o r  t h e  c o  m  m ut at o r s i n  s p a c e s  of

h o  m o g e n e o u s t y p e.    T h r o u g h o ut  d e fi n e  t h e  d u al   w ei g ht  σ  =  w
−  1

( p  −  1 ) .

T h e o r e  m   3. 5. L et T b e   a    C al d e r ó n – Z y g  m u n d   o p e r at o r   a n d w  ∈  A 2 .
T h e n  t h e  f oll o  wi n g  s h a r p    w ei g ht e d  b o u n d  i n  a n  s p a c e  of  h o  m o g e n e o u s  t y p e
h ol d s :

T L 2 ( w  ) ≤  C  [w  ]
1 / 2
A 2

[w  ]A ∞
+ [  σ ]A ∞

1 / 2
.

We  r e  m a r k  t h at  o n e  s h o ul d  b e  a bl e  t o  u s e  t h e  e xt e n si o n  of [  2 3 ]  dir e ctl y  t o
o bt ai n  t h e f oll o  wi n g  e xt e n si o n.

C o r o l l a r y  3. 6. L et T b e  a    C al d e r ó n – Z y g  m u n d  o p e r at o r  a n d w  ∈  A p .
T h e n  t h e  f oll o  wi n g  s h a r p    w ei g ht e d  b o u n d  i n  a n  s p a c e  of  h o  m o g e n e o u s  t y p e
h ol d s :

T L p ( w  ) ≤  C  [w  ]
1 / p
A p

[w  ]
1 / p
A ∞

+ [  σ ]
1 / p
A ∞

.

Fi n all y,  a s  a  c o r oll a r y  of  t h e  p r e vi o u s  r e s ult  a n d  u si n g  a  p r e cis e  v e r si o n
of t h e  J o h n –  Nir e n b e r g i n e q u alit y  p r o v e d i n  S e cti o n  4. 3 ,   w e  p r o v e t h e f oll o  w-
i n g  g e n e r ali z e d  s h a r p   w ei g ht e d  b o u n d f o r  t h e  k-t h  it e r at e  c o  m  m ut at o r  of  a
C al d er ́ o n – Z y g  m u n d  o p e r at o r.

C o r o l l a r y  3. 7. L et T b e  a    C al d e r ó n – Z y g  m u n d  o p e r at o r  d e fi n e d  o n  a
s p a c e  of  h o  m o g e n e o u s  t y p e  a n d b  ∈  B  M  O .  T h e n

( 3. 5)  T k
b ( f ) L 2 ( w  ) ≤  C  [w  ]

1 / 2
A 2

[w  ]A ∞
+ [  σ ]A ∞

k + 1  / 2
b B  M  O f L 2 ( w  ) .

w h e r e C i s  a n  a b s ol ut e  c o n st a nt.  I n  p a rti c ul a r ,  f o r  t h e  cl a s si c al  c o  m  m ut at o r
w e  g et  t h e  e sti  m at e

( 3. 6)  T b ( f ) L 2 ( w  ) ≤  C  [w  ]
1 / 2
A 2

[w  ]A ∞
+ [  σ ]A ∞

3 / 2
b B  M  O f L 2 ( w  ) .
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R e  m a r k  3. 8.  We r e  m a r k t h at   w e  c a n  als o e xt e n d t his r e s ult t o  a n  a n al-
o g o u s  st at e  m e nt  i n v ol vi n g  [ w  ]A p

b y  u si n g    C o r oll a r y  3. 6 .    Fi n all y,  t h e  o pti-
m alit y  of t h e e x p o n e nt s i n t h e s e r e s ult s f oll o  w fr o  m t h e c o r r e s p o n di n g r e s ult s
i n R n w hi c h   w e r e  o bt ai n e d  b y  b uil di n g  s p e ci fi c  e x a  m pl e s  of   w ei g ht s f o r  e a c h
o p e r at o r.    H o  w e v e r,  a  n e  w a p p r o a c h t o  d e ri v e t h e o pti  m alit y of t h e e x p o n e nt s
wit h o ut  b uil di n g  e x pli cit  e x a  m pl e s  c a n  b e f o u n d i n [  3 6 ].

4.    P r o of s

4. 1.    P r o of s   of    T h e o r e  m   3. 1   a n d    C o r oll a r y   3. 2.  Fir st,    w e    will
p r o v e  t h e  n e xt i n e q u alit y  of   C oif  m a n –  Fe ff e r  m a n  t y p e.

P r o p o si ti o n  4. 1. L et T b e  a   C al d e r ó n – Z y g  m u n d  o p e r at o r  a n d  l et 1  <
p  <  ∞ .  If w  ∈  A p t h e n

( 4. 1)

ˆ

X
|T f  ( x ) |w  ( x ) d μ ( x )  ≤  C  [w  ]A p

ˆ

X
M f  ( x ) w  ( x ) d μ ( x ) ,

w h e r e C i s  a n  a b s ol ut e  c o n st a nt  t h at  d e p e n d s  al s o  o n T .

B ef o r e  p r o vi n g    Pr o p o siti o n  4. 1  w e  n e e d  t o  r e c all  t h e  f oll o  wi n g  l e  m  m a
t h at    will  all o  w  u s  t o  o bt ai n  t h e  p r e cis e  c o n st a nt  i n  ( 4. 1 )  a n d  t h at  c a n  b e
f o u n d i n [1 8 ,   E x a  m pl e  9. 2. 5]  a s   w ell  a s i n [1 6 ,  p.  3 8 8] i n  t h e  c o nt e xt  of  t  w o
w ei g ht s.  It is li k el y  t h at t h e f oll o  wi n g  r e s ult is  als o  t r u e   wit h [  w  ]A p

r e pl a c e d
b y  [ w  ]A ∞

,  a s  t his  h a s  b e e n  r e  m a r k e d  t o  t h e  a ut h o r s  t o  h ol d  i n  R n .  T his
w o ul d  i  m pr o v e    Pr o p o siti o n  4. 1  a n al o g o u sl y.    H o  w e v e r,  si n c e    w e  o nl y  n e e d
t h e  v e r si o n  st at e d  a n d  c o ul d  n ot  fi n d  a  r ef e r e n c e,   w e l e a v e  t his  a s  a  r e  m a r k.

L e  m  m a   4. 2. L et μ b e  a  p o siti v e  d o u bli n g    m e a s u r e  a n d 1  <  p  <  ∞ .  If
w  ∈  A p t h e n

( 4. 2)
μ ( A  )

μ ( Q  )

p

≤  [w  ]A p

w  ( A  )

w  ( Q  )
,

w h e r e A  ⊂  Q i s  a μ -  m e a s u r a bl e  s et  a n d Q i s  a  c u b e.

P r o o f   o f   P r o p o si ti o n  4. 1 .  It is  p o s si bl e t h at t his a r g u  m e nt a p p e a r e d
i n  e x a ctl y  t h e  s a  m e  f a s hi o n  i n  R n p ri o r  t o  t h e  a p p e a r a n c e  of  o u r  p r e p ri nt.
H o  w e v e r,   w e  a r e  u n a  w a r e  of  t his  a n d  t h e r ef o r e  c h o o s e  t o  i n cl u d e  t h e  s h o rt
p r o of.    We  h a v e  t h at

ˆ

X
|T f  ( x ) |w  ( x ) d μ ( x )  ≤  C X, T s u p

S,  D

ˆ

X Q  ∈  S

 

Q
f ( x )  χ Q ( x )  w  ( x ) d μ ( x )
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b y  t h e  f o r  m ul a  of   L e r n e r  p r o v e d  i n  t h e  h o  m o g e n e o u s  s etti n g  i n  [ 3 ].    Usi n g
( 4. 2 ),   w e  o bt ai n  t h at

ˆ

X
|T f  ( x ) |w  ( x ) d μ ( x )  ≤  C X, T s u p

S,  D Q  ∈  S

 

Q
|f ( x ) |  w  ( Q  )

≤  C X, T s u p
S,  D

[w  ]A p

Q  ∈  S

 

Q
|f ( x ) |  w  ( E  ( Q  ) )

≤  C X, T [w  ]A p
s u p
D, S Q  ∈  S

ˆ

E  ( Q  )
M f  ( x ) w  ( x ) d μ ( x ) ,

w h e r e   w e  h a v e  a p pli e d   L e  m  m a  4. 2 ,  n oti n g  t h at  t h e  f a  mil y is  1/ 2-s p a r s e,  t o
a r ri v e  at  t h e  s e c o n d  li n e  a b o v e.    Fi n all y,  si n c e  t h e  f a  mil y  E  ( Q  )  is  disj oi nt,
w e  c a n  b o u n d  t h e  a b o v e  b y

ˆ

X
|T f  ( x ) |w  ( x ) d μ ( x )  ≤  C  [w  ]A p

s u p
D, S

ˆ

X
M f  ( x ) w  ( x ) d μ ( x )

≤  C  [w  ]A p

ˆ

X
M f  ( x ) w  ( x ) d μ ( x ) ,

w h e r e  C  is  a n  a b s ol ut e  c o n st a nt  t h at  d e p e n d s  als o  o n  T  ,  p r o vi n g  (4. 1 )  a s
d e sir e d.

N o  w   w e  p r o v e  t h e f oll o  wi n g l e  m  m a.

L e  m  m a  4. 3. L et w b e  a n y   w ei g ht  a n d l et 1  ≤  p, r   <  ∞ .  T h e n  t h e r e  i s  a
c o n st a nt C  =  C X, T s u c h  t h at

T f L p ( ( M r w  ) 1  −  p ) ≤  C  p  M f L p ( ( M r w  ) 1  −  p ) .

T h e  p r o of  of  t his  l e  m  m a  is  b a s e d  i n  a  v a ri ati o n  of  t h e    R u bi o  d e   Fr a n-
ci a  al g o rit h  m  t h at  c o ul d  b e f o u n d i n [ 3 9 ].    T h e  o nl y    m ai n  n e  w i n g r e di e nt is
t h e   C oif  m a n –  R o c h b e r g  t h e o r e  m i n  s p a c e s  of  h o  m o g e n e o u s t y p e [ 1 3 ,  Pr o p o-
siti o n  5. 3 2].

B y  u si n g   L e  m  m a  4. 3  a p pli e d  t o  T ∗ w e  c a n  p r o v e    T h e o r e  m  3. 1 ,  w h o s e
p r o of is  o  mitt e d si n c e  a g ai n it is  a n al o g o u s f o r  S  H  T,  b y r e pl a ci n g t h e  di  m e n-
si o n al  c o n st a nt s   wit h  g e o  m et ri c  o n e s.

P r o o f   o f    C o r o l l a r y  3. 2 .  T h e  p r o of s  of  (  3. 2 )  a n d  ( 3. 3 )  a r e i  m  m e di-
at e.  I n  t h e  fi r st  c a s e,  t h e  e sti  m at e is  d e ri v e d  b y  a p pl yi n g  t h e  s h a r p  r e v e r s e
H ̈ ol d e r i n e q u alit y f o r   w ei g ht s i n  t h e  A ∞ cl a s s  p r o v e d i n   L e  m  m a  4. 6  t o  ( 3. 1 )
a n d  u si n g  t h e  f a ct  t h at  r ≈  [w  ]A ∞

.    T h e  l att e r  is  a  dir e ct  c o n s e q u e n c e  of
( 3. 2 )  si n c e  w  ∈  A 1 .
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4. 2.    P r o of  of    T h e o r e  m  3. 3.  Fir st   w e  e st a blis h  a  l e  m  m a    w hi c h  f ol-
l o  ws  si  mil a r i d e a s  of [1 6 ,   C h.  4,   L e  m  m a  3. 3],  t h at   w e   will  n e e d f o r  t h e  p r o of
of   T h e o r e  m  3. 3 .

L e  m  m a  4. 4. L et T b e  a C Z  O . L et w b e  a   w ei g ht  a n d a  ∈  L 1 ( w  ) b e  s u p-
p o rt e d  i n  a  c u b e Q wit h

´
Q a ( y ) d μ ( y )  =  0 a n d η b e  t h e  s  m o ot h n e s s  c o n st a nt

f r o  m  t h e  d e fi niti o n  of  a C Z  O k e r n el  i n  S  H  T . T h e n  , if   w e  s et Q̃  =  L  Q f o r  a
l a r g e L  ≥  1 / η   >  0 , t h e  i n e q u alit y

( 4. 3)

ˆ

X  \ ˜Q
|T  ( a ) ( x ) |w  ( x ) d μ ( x ) ≤  C

ˆ

X
|a ( x ) |M  w  ( x ) d μ ( x ) ,

h ol d s   wit h  a n  a b s ol ut e  c o n st a nt C d e p e n di n g  o n  t h e  k e r n el K .

N ot e t h at  all   w e  n e e d is t h at  L  >  1  a b o v e.    T his is  a ut o  m ati c all y s atis fi e d
if  0 <  η  <  1,  ot h e r  wis e,  c h o o s e  a n y  L  >  1.

P r o o f.  Fi x  y 0 ∈  X  a n d  a ss u  m e f o r  si  m pli cit y  t h at  Q  =  B  ( y 0 ,  R),   wit h
R  >  0.    N o  w    m a ki n g  u s e  of  t h e  c a n c ell ati o n  p r o p e rt y  of  a ,  w e  o bt ai n

ˆ

X  \ ˜Q
T  ( a ) ( x )  w  ( x ) d μ ( x )  =

ˆ

X  \ Q̃

ˆ

Q
K  ( x, y ) a ( y ) d μ ( y )  w  ( x ) d μ ( x )

≤

ˆ

Q

ˆ

X  \ Q̃
K  ( x, y ) −  K  ( x, y 0 )  w  ( x ) d μ ( x ) |a ( y ) | d μ ( y )  =

ˆ

Q
I ( y ) |a ( y ) | d μ ( y ) .

We  o nl y  n e e d  t o  p r o v e  t h at  I  is  b o u n d e d  b y C  M  w  ( y )  w h e r e  C  =  C X,  K

i s  a n  a b s ol ut e  c o n st a nt  als o  d e p e n di n g  o n  t h e  k e r n el  K  .    F o r  e v e r y  y  ∈  Q  ,
u si n g  t h e  s  m o ot h n e s s  p r o p e rt y  of  K  i n  t h e  s e c o n d  v a ri a bl e  ( si n c e  ρ ( y, y 0 )
≤  η ρ ( x, y 0 ) ),   w e  o bt ai n

I ( y )  =

ˆ

X  \ Q̃
K  ( x, y ) −  K  ( x, y 0 )  w  ( x ) d μ ( x )

≤  C X,  K

ˆ

X  \ Q̃

ρ ( y, y 0 )

ρ ( x, y 0 )

η 1

μ ( B  ( y 0 ,  ρ( x, y 0 ) ) )
w  ( x ) d μ ( x )

=  C X,  K

∞

l= 1

ˆ

2 l Q  \ 2 l −  1 Q

ρ ( y, y 0 )

ρ ( x, y 0 )

η 1

μ ( B  ( y 0 ,  ρ( x, y 0 ) ) )
w  ( x ) d μ ( x )

≤  C X,  K

∞

l= 1

ˆ

2 l Q

2 η

2 l η

μ ( B  ( y 0 , 2
lR  ) )

μ ( B  ( y 0 , 2 l−  1 R  ) )

1

μ ( 2 lQ  )
w  ( x ) d μ ( x )

≤  C X,  K

∞

l= 1

1

2 l η

1

μ ( 2 lQ  )

ˆ

2 l Q
w  ( x ) d μ ( x )  ≤  C X,  K M  w  ( y ) .
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A b o v e  w e  h a v e  u s e d t h e f a ct t h at  ρ ( y, y 0 ) <  R  a n d si n c e  ρ ( x, y 0 )  >  L  R  ,  t h e r e
e xist s  a n  l  > 1  s o  t h at  2 l−  1 R  <  ρ  ( x, y 0 )  ≤  2 lR  .  T h u s  w e  h a v e  s h o  w n  t h at
( 4. 3 )  h ol d s.

P r o o f   o f    T h e o r e  m  3. 3 .  T h e  p r o of  of   T h e o r e  m  3. 3  f oll o  ws  t h e  p r o of
of  [ 4 0 ,    T h e o r e  m  1. 6],    wit h  t h e  f oll o  wi n g  t  w o  c h a n g e s.    L et  Q j b e  a  c u b e,
˜Q j =  2  Q j ,  Ω  = j Q j , Ω̃  = j

˜Q j a n d  x  ∈  Q j Fir stl y   w e  u s e  t h e  f a ct  t h at

f o r r  >  1  a n d  a  n o n- n e g ati v e f u n cti o n  w  wit h  M r w  ( x )  <  ∞  a. e.,   w e  h a v e

( 4. 4) M r ( w χ Ω̃ c ) ( x )  ≤  C X i nf
y ∈  Q j

M r ( w χ Ω̃ c ) ( y )

w h e r e  t h e  c o n st a nt  d e p e n d s  o nl y  o n  t h e  d o u bli n g  c o n st a nt  D μ .  T his  w a s
p r o v e d  i n  [ 3 ].    T his  r e pl a c e s  t h e  u s e  of  t h e  cl a ssi c al  c a s e    wit h  t h e    H a r d y –
Littl e  w o o d    m a xi  m al  o p e r at o r  M  ,  s e e  f o r i n st a n c e  [1 6 ,  p.   1 5 9].    Fi n all y,    w e
u s e   L e  m  m a  4. 3  t o  r e pl a c e  t h e  a n al o g o u s l e  m  m a  u s e d i n [ 4 0 ].

4. 3.    P r o of s  of   T h e o r e  m  3. 5  a n d   C o r oll a r y  3. 7.  T o  p r o v e t h e   m ai n
r e s ult i n  t his s e cti o n   w e  fi r st  n e e d t h e f oll o  wi n g l e  m  m a s.    T h e  fi r st is  a s h a r p
r e v e r s e    H ̈ol d e r  i n e q u alit y  f o r  A ∞ w ei g ht s  i n  s p a c e s  of  h o  m o g e n e o u s  t y p e
a d a pt e d  fr o  m  a n  a r g u  m e nt  d u e  t o    H yt ̈o n e n,    P ́e r e z,  a n d    R el a    w h o s e  p r o of
c a n  b e  f o u n d  i n  [ 2 5 ].    B ef o r e   w e  st at e  a n d  p r o v e  t his,    w e  n ot e  t h at  i n  t his
s a  m e  p a p e r  t h e r e  is  a    w e a k  v e r si o n  of  t his  i n e q u alit y  st at e d  b el o  w.    T h e y
c all  t his  r e s ult  a    w e a k  i n e q u alit y  si n c e  o n  t h e  ri g ht- h a n d  si d e    w e  h a v e  t h e
dil ati o n  2 κ  B  of  t h e  b all  B  .

L e  m  m a  4. 5  [2 5 ]. L et w  ∈  A ∞ a n d  d e fi n e

r  =  r w =  1  +
1

τ [w  ]A ∞

=  1  +
1

6( 3 2 κ 2 ( 4 κ 2 +  κ ) 2 ) D μ [w  ]A ∞

w h e r e τ d e p e n d s  o n κ , t h e  q u a si  m et ri c  c o n st a nt  of X .  T h e n

 

B
w r d μ

1 / r

≤  2 ( 4 κ ) D μ

 

2 κ  B
w  d μ  ,

f o r  a n y  b all B  ∈  X .

H o  w e v e r, t his l e  m  m a is  n ot s u  ffi ci e nt f o r  o u r  p u r p o s e s.    T h e  di  ffi c ult y li e s
i n  t h e f a ct  t h at  t h e   F ujii –  Wils o n A ∞ c o n st a nt is  c o  m p a r a bl e   w h e n it is  d e-
fi n e d   wit h r e s p e ct t o  c u b e s  o r  b alls,  b ut t h e c o n st a nt  of  c o  m p a ris o n  d e p e n d s
o n  t h e  d o u bli n g  c o n st a nt  of  t h e    m e a s u r e  i n d u c e d  b y  w  (  w hi c h  a ff e ct s  t h e
s h a r p  c o n st a nt s  t h at   w e  a r e  t r yi n g  t o  a c hi e v e).    Pl e a s e  r ef e r  t o [ 2 ]  f o r  m o r e
di s c u s si o n  o n t h e r e v er s e   H ̈ol d e r i n e q u alit y   wit h r e s p e ct t o  b alls.  Si n c e  u si n g
b alls  p r o vi d e s  a  di  ffi c ult y i n  c o n v e rti n g  b et  w e e n  t h e  c o n st a nt s,   w e  n e e d e d  a
s h a r p  r e v e r s e   H ̈ol d e r i n e q u alit y   wit h  c u b e s.    H e r e is  t h e l e  m  m a  t h at   w e  u s e
wit h  r e s p e ct  t o  c u b e s.
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L e  m  m a  4. 6. L et w  ∈  A ∞ a n d l et

0  <  r  ≤
1

τ [w  ]A ∞
−  1

=
1

2 D  [w  ]A ∞
−  1

,

wit h D  =  1  / ε ,  w h e r e ε i s  t h e  a b s ol ut e  c o n st a nt  a p p e a ri n g  i n  t h e  d y a di c  d e-
c o  m p o siti o n  of X .  T h e n

 

Q
w 1  + r d μ  ≤  2

 

Q
w  d μ

1  + r

,

f o r  a n y  c u b e Q  ⊂  X .

T h e  p r o of   will  u s e  t h e f oll o  wi n g  s u bl e  m  m a.

L e  m  m a  4. 7. L et w  ∈  A ∞ a n d Q 0 a  c u b e .  T h e n  f o r  all  s u b c u b e s Q  ⊆  Q 0

a n d

0  <  r  ≤
1

2 D  [w  ]A ∞
−  1

w e  h a v e
 

Q
( M  ( w χ Q 0

) ) 1  + r d μ  ≤  2[ w  ]∞

 

Q
w  d μ

1  + r

w h e r e M i s  t h e    H a r d y – Littl e  w o o d    m a xi  m al  o p e r at o r    wit h  r e s p e ct  t o  a  fi x e d
d y a di c  g ri d D .

P r o o f    o f    L e  m  m a  4. 7 .  As s u  m e    wit h o ut  l o s s  of  g e n e r alit y  t h at  w  =
w χ Q 0

.  L e t  Ωλ =  Q o ∩  {  M  w   >   λ  } .    T h e n  u si n g  t h e l a y e r  c a k e f o r  m ul a
ˆ

Q 0

|f ( x ) |r |f ( x ) | d μ  =

ˆ ∞

0
r |f ( x ) |r −  1

ˆ

Ω λ

|f ( x ) | d μ d λ

wit h  f  =  M  w  w e  g et
ˆ

Q 0

( M  w  ) 1  + r d μ  =

ˆ ∞

0
r λ r −  1 M  w  (  Ω λ ) d λ

=

ˆ w Q 0

0
r λ r −  1 d λ

ˆ

Q 0

M  w  d μ  +

ˆ ∞

w Q 0

r λ r −  1 M  w  (  Ω λ ) d λ.

N ot e  t h at  if  λ  ≤  w Q 0
t h e n    Ω λ =  Q 0 .  I n  t h e  r e gi  m e  w h e r e  w Q 0

≤  λ ,  s el e ct
a  d y a di c  c u b e  Q j if  it  is    m a xi  m al    wit h  r e s p e ct  t o  t h e  c o n diti o n  λ  <  w Q j

.
( Si n c e  x  ∈  Ω λ ,  t h e n  t h er e    m u st  e xist  s o  m e  Q  ⊂  Q 0 s u c h  t h at  t his  c o n di-
ti o n  h ol d s.)    T h e n   Ω λ = j Q j w h e r e  λ  <

ffl
Q j

w  ≤ 1
ε λ  a n d  ε  is  t h e  a b s ol ut e

c o n st a nt f r o  m   T h e o r e  m  2. 2 .    H e n c e   w e  h a v e
ˆ

Q 0

( M  w  ) 1  + r d μ  ≤

 

Q 0

w
r

[w  ]∞ w  ( Q 0 )  +

ˆ ∞

w Q 0

r λ r −  1

j

ˆ

Q j

M  w d μ d λ.
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N o  w   w e  c a n l o c ali z e

M  w  ( x )  =  M  ( w χ Q j
) ( x )

b y  t h e   m a xi  m alit y  of  t h e  Q j s  f o r  a n y  x  ∈  Q j .  T h e n,

ˆ

Q j

M  w  d μ  =

ˆ

Q j

M  ( w χ Q j
) d μ  ≤  [w  ]∞ w  ( Q j )  ≤  [w  ]∞ w  ( ˆQ j )

= [  w  ]∞

 

ˆQ j

w  μ ( ˆQ j )  ≤  [w  ]∞ λ
1

ε
μ ( Q j ) ,

w h e r e ˆQ j i s t h e  p a r e nt  of t h e c u b e Q j a n d   w e  h a v e  u s e d t h e  d e fi niti o n  of  A ∞

a n d  t h e    m a xi  m alit y  a n d  c o nt ai n  m e nt  p r o p e rti e s  of  t h e  c u b e s.    C all 1
ε =  D  .

H e n c e

j

ˆ

Q j

M  w  d μ  ≤
j

[w  ]∞ λ  D μ ( Q j )  ≤  [w  ]∞ λ  d μ (  Ω λ ) ,

s o

 

Q 0

( M  w  ) 1  + r d μ  ≤

 

Q 0

w
r

[w  ]∞ w  ( Q 0 )  + r [w  ]∞ D

ˆ ∞

w Q 0

λ r μ (  Ω λ ) d λ.

Di vi di n g  b y  w  ( Q 0 ),   w e  o bt ai n

 

Q 0

( M  w  ) 1  + r d μ  ≤

 

Q 0

w
1  + r

[w  ]∞ +
r  D [w  ]∞

1  +  r

 

Q 0

( M  w  ) 1  + r d μ,

s o  b y  s u bt r a cti n g  t h e l a st  t e r  m  o n  t h e l eft  h a n d  si d e fr o  m  b ot h  si d e s  of  t h e
e q u ati o n,  s o  t o  g et  t h e  d e sir e d  c o n st a nt  of  2   w e    m u st  h a v e  t h at

1  −
r  D [w  ]∞

1  +  r
≥

1

2
,

w hi c h  aft e r s o  m e  c al c ul ati o n r e s ult s i n  c h o o si n g  0  <  r  ≤ 1
2 D  [w  ]∞ −  1 a s  st at e d.

N ot e t h at   w e i  m pli citl y  a ss u  m e d t h at
ffl

Q 0
( M  w  ) 1  + r d μ   <  ∞  ( s e e, f o r e x a  m pl e

[1 1 ]).

P r o o f   o f   L e  m  m a  4. 6 .  Wit h o ut l o s s  of  g e n e r alit y l et  w  =  w χ Q 0
.  T h e n

ˆ

Q 0

w 1  + r d μ  ≤

ˆ

Q 0

( M  w  ) r w  d μ  =

ˆ ∞

0
r λ r −  1 w  (  Ω λ ) d λ,
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w h e r e   Ω λ =  Q 0 ∩  {  M  w   >  λ  } .    N ot e t h at  a s i n t h e  p r e vi o u s l e  m  m a   w e c a n  d e-
c o  m p o s e   Ω λ = j Q j w h e r e t h e  Q j a r e t h e   C al d e r ́o n – Z y g u  m n d c u b e s.    T h e n
s plitti n g  u p  t h e i nt e g r al   w e  g et

ˆ w Q 0

0
r λ r −  1 w  (  Ω λ ) d λ  +

ˆ ∞

w Q 0

r λ r −  1 w  (  Ω λ ) d λ

≤  w r
Q 0

w  ( Q 0 )  +

ˆ ∞

w Q 0

r λ r −  1

j

w  ( Q j ) d λ.

N o  w  b y t h e d e c o  m p o siti o n,   w e  h a v e t h at  w Q j
≤  D λ μ  ( Q j ),   w h e r e D  = 1

ε si n c e
t h e  d e c o  m p o siti o n is   wit h  r e s p e ct  t o  d y a di c  c u b e s,  s o   w e  g et

ˆ

Q 0

( M  w  ) r w  d μ  ≤  w r
Q 0

w  ( Q 0 )  + r  D

ˆ ∞

w Q 0

λ r

j

μ ( Q j ) d λ

≤  w r
Q 0

w  ( Q 0 )  + r  D

ˆ ∞

w Q 0

λ r μ (  Ω λ ) d λ  ≤  w r
Q 0

w  ( Q 0 )  +
r  D

1  + r

ˆ

Q 0

( M  w  ) 1  + r d μ.

H e n c e,  di vi di n g  b y  w  ( Q 0 )  a n d  u si n g   L e  m  m a  4. 7 ,   w e  a r ri v e  at

 

Q 0

w 1  + r d μ  ≤  w 1  + r
Q 0

+
r  D 2[ w  ]∞

1  +  r

 

Q 0

w
1  + r

≤
r  D 2[ w  ]∞ + 1  +  r

1  +  r

 

Q 0

w
1  + r

.

T h e r ef o r e,  c h o o si n g  r  i n  t h e   m e nti o n e d r a n g e,   w e  c a n   m a k e  t h e  c o n st a nt  o n
t h e  ri g ht- h a n d  si d e l e s s  t h a n  o r  e q u al  t o  2.

T h e  n e xt  l e  m  m a  is  a  p r e cis e  v e r si o n  of  J o h n –  Nir e n b e r g  i n e q u alit y  i n
s p a c e s  of  h o  m o g e n e o u s t y p e t h at   will  b e  v e r y  u s ef ul i n  t h e f oll o  wi n g  r e s ult s.

L e  m  m a  4. 8  ( J o h n –  Nir e n b e r g  i n e q u alit y). T h e r e  a r e  a b s ol ut e  c o n st a nt s
0  ≤  α X <  1  <  β X s u c h  t h at

( 4. 5)   s u p
Q

1

μ ( Q  )

ˆ

Q
e x p

α X

b B  M  O
|b ( y ) −  b Q |  d μ ( y )  ≤  β X .

I n  f a ct, w e  c a n  t a k e α X = l n 3
√

2 a , w h e r e 0  <  a  <  1 i s  a n  a b s ol ut e  c o n st a nt.

N ot e  t h at   w e  a r e  d e fi ni n g   B  M  O   wit h  r e s p e ct  t o  d y a di c  c u b e s;  h o  w e v e r,
b y  t a ki n g  a  fi nit e f a  mil y  of  d y a di c  g ri d s  ( a n  a dj a c e nt  d y a di c  s yst e  m, f o r  e x-
a  m pl e),  it  is  k n o  w n  t h at   B  M  O   wit h  r e s p e ct  t o  b alls  is  e q ui v al e nt  t o   B  M  O
d e fi n e d  o v e r  e a c h  d y a di c  g ri d  [ 2 2 ].    T h e  p r o of  of    L e  m  m a  4. 8  f oll o  ws  t h e
s c h e  m e  of  pr o of  s h o  w e d  i n  [ 2 6 ];  d u e  t o  t h e  a n al o g o u s  n at u r e;    w e  o  mit  t h e
d et ails.

N o  w   w e   will  p r o v e  t  w o  l e  m  m a s  r el at e d  t o  t h e  A 2 a n d  A ∞ c o n st a nt s  of
a  p a rti c ul a r   w ei g ht  t h at   w e   will  n e e d i n  t h e f oll o  wi n g,  e xt e n d e d fr o  m  t h o s e
i n [2 5 ].

A n al y si s    M at h e  m ati c a  4 8,  2 0 2 2



W  E I  G  H  T  E  D  I  N  E  Q  U  A  L I  T I  E S  I  N   S  P  A  C  E S    O  F    H  O  M  O  G  E  N  E  O  U S    T  Y  P  E 9 5 5

L e  m  m a  4. 9. L et w  ∈  A 2 .  T h e n w e 2  R e  z  b ∈  A 2 ; m o r e o e v e r  ,  t h e r e  a r e  a b-
s ol ut e  c o n st a nt s γ a n d c s u c h  t h at

[w e 2  R e  z  b ]A 2
≤  c [w  ]A 2

f o r  all

|z |  ≤
γ

b B  M  O ([w  ]A ∞
+ [  σ ]A ∞

)
,

w h e r e γ  =  α X m a x  { 1
C 1

, 1
C 2

} wit h C 1 ,  C2 >  0 a r e  a b s ol ut e  c o n st a nt s .

P r o o f   o f   L e  m  m a  4. 9 .  We   will  u s e t h e s h a r p r e v e r s e   H ̈  ol d e r i n e q u alit y
t  wi c e,  fi r st  f o r  r  =  1  + 1

τ [w  ]A ∞
a n d  t h e n  f o r  r  =  1  + 1

τ [σ ]A ∞
.  Wit h  t h e  s h a r p

r e v e r s e   H ̈ol d e r i n e q u alit y f o r t h e  fi r st c h oi c e  of  r ,  H ̈ol d e r’s i n e q u alit y  a n d t h e
s h a r p  J o h n –  Nir e n b e r g i n e q u alit y  ( 4. 5 ),   w e  h a v e

 

Q
w e 2  R e  z b d μ  ≤

 

Q
w r d μ

1 / r  

Q
e r  2  R e  z ( b −  b Q ) d μ

1 / r

e 2  R e  z  b Q

≤  2

 

Q
w  · β X · e 2  R e  z b Q ,

f o r  |z |  ≤ α X

2 C 1 b B  M  O [w  ]A ∞
.  N ot e  t h at  t h e  c o n st a nt  α X c o  m e s  f r o  m  ( 4. 5 )  a n d

C 1 i s  a n  a b s ol ut e  c o n st a nt  f r o  m  t h e  s h a r p  r e v e r s e    H ̈ol d e r  i n e q u alit y  si n c e
b y  o u r  c h oi c e  of  r ,  r =  C 1 [w  ]A ∞

(  w e  c a n  e v e n  c al c ul at e  t h at  τ [w  ]A ∞
<  r

≤  ( τ  +  1)[  w  ]A ∞
).    We  c a n  als o  g et  a  si  mil a r  b o u n d  a s  a b o v e  f o r  t h e  s e c o n d

c h oi c e  of  r  =  1  + 1
τ [σ ]A ∞

,  gi vi n g  u s

 

Q
w −  1 e −  2  R e  z b d μ  ≤  2

 

Q
w −  1 d μ  · β X · e −  2  R e  z b Q

f o r  |z |  ≤ α X

2 C 2 b B  M  O [σ ]A ∞
.  M ulti pl yi n g  t h e s e  t  w o  e sti  m at e s  a n d  t a ki n g  s u p r e-

m u  m,   w e  fi nis h  t h e  p r o of  b y  s h o  wi n g  t h at f o r  all  z  a s i n  t h e  a s s u  m pti o n

 

Q
w e 2  R e  z b d μ

 

Q
w −  1 e −  2  R e  z  b d μ  ≤  4 β 2

X [w  ]A 2
.

We  als o  h a v e  a  si  mil a r l e  m  m a f o r  t h e  A ∞ w ei g ht  c o n st a nt.

L e  m  m a  4. 1 0. T h e r e  a r e  a b s ol ut e  c o n st a nt s γ a n d c s u c h  t h at

[w e 2  R e  z  b ]A ∞
≤  c [w  ]A ∞

f o r  all |z |  ≤
γ

b B  M  O ([w  ]A ∞
)
,

w h e r e   w e c a n t a k e γ  = α X

4 D wit h D b ei n g t h e  a b s ol ut e c o n st a nt f r o  m   L e  m  m a  4. 6 .
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P r o o f    o f    L e  m  m a  4. 1 0 .  T h e  p r o of  f oll o  ws  i n  a  si  mil a r    w a y  a s  i n  [  8 ],
s u b stit uti n g  t h e  a p p r o p ri at e  c o n st a nt s  f r o  m  t h e  s h a r p  J o h n –  Nir e n b e r g  i n-
e q u alit y i n   L e  m  m a  4. 5  a n d t h e s h a r p r e v e r s e   H ̈ol d e r i n e q u alit y i n   L e  m  m a  4. 6 .

N e xt    w e    will   p r o v e    T h e o r e  m  3. 5  w h er e   a    mi x e d  A 2 – A ∞ b o u n d  f o r
C al d er ́ o n – Z y g  m u n d  o p e r at o r s  i n  s p a c e s  of  h o  m o g e n e o u s  t y p e  is  o bt ai n e d.
D u e  t o   L e r n e r’s  d e c o  m p o siti o n i n  s p a c e s  of  h o  m o g e n e o u s  t y p e  fr o  m [  3 ],   w e
c a n  f airl y  e a sil y  p r o v e  t h e    mi x e d  r e s ult.    T h e  p r o of  e ss e nti all y  f oll o  ws  fr o  m
[2 1 ].    O nl y  a  b ri ef  s k et c h is  gi v e n  b el o  w.

P r o o f   o f    T h e o r e  m  3. 5 .  As  st at e d  i n  [  2 1 ,  S e cti o n  2  D],   T h e o r e  m  3. 5
f oll o  ws fr o  m  v e rif yi n g  t h e f oll o  wi n g  t e sti n g  c o n diti o n s:

( 1)  S Q ( σ  · χ Q ) L 2 ( w  ) ≤  C 1 χ Q L 2 ( σ ) ,

( 2 )  S Q ( w  · χ Q ) L 2 ( σ ) ≤  C 2 χ Q L 2 ( w  )

w h e r e

S Q f  =
L  ∈  S,   L ⊆  Q

 

L
f  χ L ,

a n d  S  is  a  s p a r s e  f a  mil y  ( t his  is  a  s p a r s e  o p e r at o r).  It  s u  ffi c e s  t o  still  j u st
c h e c k  t h e s e i n  S  H  T,  s e e [ 1 2 ], [4 1 ].

T o  v e rif y  t h e  t e sti n g  c o n diti o n s,  o n e  si  m pl y  f oll o  w s  t h e  a r g u  m e nt  o ut-
li n e d i n [2 1 ,  S e cti o n  5  A].

Fi n all y,   w e  c a n  p r o v e  t h e  r e s ult s  c o n c e r ni n g  t o  t h e  c o  m  m ut at o r  a n d it s
it e r at e s.

P r o o f   o f   C o r o l l a r y  3. 7 .  T h e  p r o of f oll o  ws  a s i n [  8 ], s o   w e  o nl y   m e n-
ti o n  t h e  n e  w  i n g r e di e nt s:  t h e  A 2 t h e o r e  m  f o r  s p a c e s  of  h o  m o g e n e o u s  t y p e
[4 ],  a n d  t h e  b o u n d

w e 2  R e  z  b
A ∞

≤  c [w  ]A ∞

f r o  m   L e  m  m a  4. 1 0  f or  all  |z |  ≤ δ
b B  M  O ([ w  ]A ∞ +[  σ ]A ∞ ) w h e r e  t h e  δ  is  t h e    mi ni-

m u  m  of  t h e  a b s ol ut e  c o n st a nt s fr o  m  t h e  c o r r e s p o n di n g l e  m  m a s.

R e  m a r k  4. 1 1.  C o r oll a r y  3. 7  c a n  b e  p r o v e d  u n d e r  t h e   w e a k e r  a s s u  m p-
ti o n  t h at  T  is  a li n e a r  o p e r at o r t h at  s atis fi e s  t h e  s h a r p   w e a k    mi x e d  A 2 – A ∞

i n  s p a c e s  of  h o  m o g e n e o u s t y p e.

A c k n o  wl e d g e  m e n t s.  T h e  a ut h o r s    w o ul d  li k e  t o  e x p r e s s  t h eir  g r ati-
t u d e  t o   P r of.   C a rl o s   P ́e r e z f o r  h el pf ul  c o  m  m e nt s  a n d   m oti v ati n g  dis c u s si o n s
i n  S e vill e,  S p ai n.   T h e  fi r st  a ut h o r   w o ul d li k e  t o  t h a n k   T u o  m a s   H yt ̈o n e n f o r
s u g g e sti o n s  a n d t h e  o p p o rt u nit y t o  e nj o y t h e f a nt a sti c   w o r ki n g  e n vir o n  m e nt
at t h e   U ni v e r sit y  of   H elsi n ki.  S h e  als o   w o ul d li k e t o t h a n k   D a vi d   Cr u z-  Uri b e
f o r  h el pf ul c o  m  m e nt s a n d f o r e n c o u r a gi n g t h e  p u bli c ati o n of t his   m a n u s c ri pt.
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T h e  s e c o n d  a ut h o r   w o ul d  als o li k e  t o  t h a n k   P r of.  Jill   Pi p h e r f o r  t h e i n vit a-
ti o n t o c o nti n u e t his c oll a b o r ati o n   wit h t h e  fi r st  a ut h o r  at   B r o  w n   U ni v e r sit y,
Pr o vi d e n c e.

R ef e r e n c e s

[ 1]    R.    Al v a r a d o  a n d    M.    Mi t r e a,  H a r d y  S p a c e s  o n    A hlf o r s-  R e g ul a r    Q u a si    M et ri c  S p a c e s  ,
L e c t u r e   N o t e s i n    M a t h e  m a ti c s,  v ol.  2 1 4 2,  S p ri n g e r  ( 2 0 1 5 ).

[ 2]    T.  C.  A n d e r s o n,  T.  H y t ö n e n,  a n d    O.    T a pi ol a,    We a k  A ∞ w ei g ht s  a n d    w e a k    R e v e r s e
H ¨ol d e r  p r o p e r t y i n  a  s p a c e  of  h o  m o g e n e o u s  t y p e,  J.    G e o  m.    A n al. , 2 7  ( 2 0 1 7 ),
9 5 – 1 1 9.

[ 3]    T.    C.    A n d e r s o n,    D.    C r u z-  U ri b e   a n d    K.    M o e n,    L o g a ri t h  mi c   b u  m p   c o n di ti o n s  f o r
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f o r   C al d e r ó n – Z y g  m u n d  o p e r a t o r s  o n  h o  m o g e n e o u s  s p a c e s,  J.   G e o  m.   A n al. , 2 4
( 2 0 1 4 ),  1 2 7 6- 1 2 9 7.
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[ 2 0]    T.    H y t ö n e n,    T h e  s h a r p    w ei g ht e d   b o u n d  f o r  g e n e r al    C al d e r ó n – Z y g  m u n d   o p e r a t o r s,
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o p e r a t o r s.  I n di a n a   U ni v.    M at h.  J. , 6 1  ( 2 0 1 2 ),  2 0 4 1 – 2 0 9 2.
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s p a c e s  of  h o  m o g e n e o u s  t y p e,  J.   F u n ct.    A n al. , 2 6 3  ( 2 0 1 2 ),  3 8 8 3 – 3 8 9 9.
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