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ABSTRACT

Substandard and falsified pharmaceuticals, prevalent in low- and middle-income countries, sub-
stantially increase levels of morbidity, mortality and drug resistance. Regulatory agencies combat
this problem using post-market surveillance by collecting and testing samples where consumers
purchase products. Existing analysis tools for post-market surveillance data focus attention on the
locations of positive samples. This article looks to expand such analysis through underutilized sup-
ply-chain information to provide inference on sources of substandard and falsified products. We
first establish the presence of unidentifiability issues when integrating this supply-chain informa-
tion with surveillance data. We then develop a Bayesian methodology for evaluating substandard
and falsified sources that extracts utility from supply-chain information and mitigates unidentifi-
ability while accounting for multiple sources of uncertainty. Using de-identified surveillance data,
we show the proposed methodology to be effective in providing valuable inference.
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1. Introduction

Substandard and Falsified Pharmaceuticals (SFPs) are a press-

ing global health issue. Recent studies estimate that around

10% of medical products in low-and middle-income countries

are unsuitable for consumption; estimates indicate higher bur-

dens depending on the disease or assessment methodology

(Koczwara and Dressman, 2017; Ozawa et al., 2018; World

Health Organization (WHO), 2018). Mortality estimates assert

that SFPs lead to 450,000 preventable deaths every year

(Karunamoorthi, 2014). SFPs also contribute to the growing

worldwide threat of drug resistance (WHO, 2017a), as well as

diminished public confidence in health systems (Cockburn

et al., 2005).

1.1. Post-market surveillance

Medical products regulators ensure pharmaceutical quality

through different activities conducted throughout the manu-

facturing and distribution processes. Following data moni-

tored at United States Pharmacopeia, this article considers

Post-Market Surveillance (PMS) where regulators collect sam-

ples from consumer-facing outlets and test those samples for

compliance with registration specification (Nkansah et al.,

2017). The goal of PMS is estimation of SFP prevalence in

regulatory domains and identification of sources of either sub-

standard or falsified pharmaceuticals. Usual PMS in low- and

middle-income countries comprises of three stages. The

first stage selects a subset of locations that distribute

pharmaceuticals to consumers, and the second stage collects
and tests pharmaceuticals from these locations. The third
stage analyzes testing data and enforces corrective actions.
Corrective actions can include issuing warnings or recalls for
particular brands or supply-chain locations. Stretched regula-
tory budgets translate to limited PMS data: a single PMS activ-
ity may comprise a few hundred tests, used to evaluate an
entire pharmaceutical indication, e.g., antimalarials. Data con-
straints necessitate effective use of available metadata and
regulatory domain knowledge to better understand SFP
patterns.

Current methods for the analysis stage of PMS focus on estab-
lishing tolerance thresholds of SFP prevalence at sampled sup-
ply-chain locations. Supply-chain information is regularly stored
as part of PMS protocols. The MEDQUARG guidelines of
Newton et al. (2009), an industry standard for PMS, recommend
collection of various supply-chain features of the outlet location
and manufacturer of each sample. The Medicines Quality
Database (MQDB), featured in the case study of Section 6, cap-
tures PMS results submitted by dozens of participating national
medical products regulators in line with the MEDQUARG
guidelines (United States Pharmacopeial Convention (USP),
2021). Each MQDB record contains testing results and associ-
ated supply-chain metadata such as manufacturer, manufacturer
country, sampling location, and region of the sampling location.

Consideration of PMS within supply chains carries
unique properties in the field of network detection. SFP
sources can be situated at any location from manufacturer
to consumer; testing data from consumer-facing locations
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measure quality reflective of SFP sources throughout the

supply chain beyond tested locations. Thus, it is not clear

whether a detected SFP is due to the consumer-facing loca-

tion or an upstream supply-chain location. Additionally, the

supply-chain path of each sample is typically only partially

known: labels are not applied every time a sample traverses

the supply chain, and paths are only known probabilistically

in some cases. Different consumer-facing locations often

share manufacturers or other upstream supply-chain loca-

tions. Understanding these shared supply-chain connections

can help regulators identify SFP sources. In current practice,

PMS data may be analyzed by manufacturer or aggregation

of regional consumer-facing locations, but the information

contained in supply-chain connections is underutilized.

1.2. Supply-chain PMS

There is a need for PMS analysis methods that can infer the

origin of SFP generation by modeling the paths of SFPs

across separate supply-chain echelons. An echelon is a col-

lection of supply-chain locations that share a key attribute

or function, such as the collection of manufacturers or the

collection of outlets that sell products. SFP generation refers

to either the degradation of product quality or the infiltra-

tion of falsified products. The origin of an SFP is the loca-

tion where an SFP is generated. The origin can differ from

where the SFP is detected. For instance, pharmaceuticals can be

produced according to good manufacturing practices, but

stored at a distribution warehouse where temperatures exceed

allowable limits, causing degradation and resulting in substand-

ard products. Alternatively, an outlet can receive quality prod-

ucts, but sell a falsified substitute to the public while re-selling

the quality products elsewhere. This article explores if identifi-

cation of origins of SFP generation can be improved by incor-

porating supply-chain connections between consumer-facing

testing locations and one upstream echelon. We model only

one additional upstream echelon due to PMS data availability

common to low- and middle-income settings. While we model

two echelons of a larger, more complex supply chain, this work

is a step to expanding PMS capabilities through supply-chain

information, even when such information is limited.
In our analysis of consumer-facing testing locations and

an upstream echelon, we identify three types of uncertainty:

fundamental unidentifiability, testing accuracy, and

untracked supply-chain information. Uncertainty due to

fundamental unidentifiability results from only testing the

lower echelon of a supply chain. Confirmation of SFP gener-

ation at upstream locations is not possible without upstream

testing; thus the aim is to examine if SFPs were generated at

tested locations or further upstream, requiring additional

investigation. Uncertainty due to testing accuracy comes

from imperfect testing equipment, human error, and

inappropriate use of testing methods (Kovacs et al., 2014).

Testing accuracy is measured through sensitivity, which cap-

tures the ability to correctly detect SFPs, and specificity,

which captures the ability to correctly detect quality prod-

ucts. Uncertainty due to untracked supply-chain information

arises when the path traversed by a sample is only known

probabilistically. Under untracked information, rather than
knowing the exact supply-chain path a product takes to

reach the sampled location, there is a known probability dis-
tribution for a sample’s path across upper-echelon locations.

Our methodology accounts for these sources of uncertainty
using a Bayesian framework that synthesizes testing data
with available supply-chain information to infer SFP sources

and thus guide regulator decisions.

1.3. Contributions

1.3.1. Consideration of PMS in supply chains

This article builds on existing PMS practice through incorp-
oration of frequently available supply-chain information. We

use as an experiment the MQDB, which contains manufac-
turer labels as well as province and sub-region information

for the consumer-facing location of each test. Current prac-
tice does not synthesize PMS test results with supply-chain
information towards inference of SFP sources. Given that

SFPs are recognized as a supply-chain problem—as
described in Section 2—integrating readily available supply-

chain information with testing results is a novel advance in
PMS analysis.

1.3.2. Understanding unidentifiability

Whether SFP rates throughout a supply chain can be recov-

ered through PMS has not been explored. By integrating
testing data with supply-chain information, we establish

unidentifiability of SFP rates in supply chains. Establishing
unidentifiability is a key contribution: we show SFP rates

cannot be recovered through consideration of PMS testing
results alone. Understanding PMS results requires
approaches that mitigate this unidentifiability.

1.3.3. General algorithms for low- and middle-income

countries

Low- and middle-income countries require flexible analysis

methods. PMS data collection in these countries features
considerable heterogeneity in available metadata. PMS sam-
ples usually have a manufacturer label, and may also have a

label designating one or more intermediate distributors. The
sampling location carries additional regional designations

such as city or district. Crucially, any of these designations
may be critical to understanding SFP occurrence (Pisani

et al., 2019). Although frameworks such as MEDQUARG
for standardizing the collection of such metadata have been
proposed, data collection from country to country struggles

to attain such standards (Ozawa et al., 2018). Thus, general
approaches are needed that meet real-world data collection.

This article is organized as follows. Section 2 presents
related literature regarding PMS and network inference.

Section 3 describes supply-chain PMS and associated sources
of uncertainty. Section 4 demonstrates the unidentifiability

inherent in using PMS testing results. Section 5 introduces a
Bayesian method for inferring SFP sources. Section 6 illus-
trates an application of our method to PMS data from a low-

and middle-income country and demonstrates improvements
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on current PMS practice. Section 7 discusses implementation

considerations and future directions.

2. PMS and network inference literature

This section reviews the state of the literature for PMS and

network inference in addressing the problem of identifying
SFPs in supply chains.

2.1. PMS and SFP detection

Two WHO reports from 2017 detailed the global impact of
SFPs and highlighted gaps in current monitoring and means

of strengthening SFP regulation, including PMS (WHO,
2017a; WHO, 2017b). Regulators in low- and middle-income

countries face a multitude of challenges: limited operational

budgets, overstretched regulatory frameworks, and a global
supply chain with little international regulatory coordin-

ation. Procurement streams for many countries involve a

web of manufacturers and intermediary suppliers with
numerous exchanges before reaching consumers (United

Nations Interregional Crime and Justice Research Institute

(UNICRI), 2012; USP, 2020). Limited PMS data combined
with many potential SFP causes means regulators require

more sophisticated analysis tools to better identify SFP
sources.

Studies of SFP prevalence span several countries and a

variety of pharmaceuticals. Koczwara and Dressman (2017)
analyzed 41 such SFP studies and noted significant differen-

ces in SFP prevalence based on sample source, country, and

therapeutic class. Ozawa et al. (2018) also described consid-
erable study heterogeneity in a survey of 265 SFP studies.

Current PMS methodologies rely on principles of risk-based

surveillance and/or lot-quality assurance sampling. Risk-based
surveillance involves applying regulatory resources as a function

of public-health risk and SFP risk. Nkansah et al. (2017) pro-
posed a risk-based PMS approach that maximizes resource util-

ization in low- and middle-income countries. Nkansah et al.

leveraged resource availability, assessments of SFP risk, and val-
uations of public-health importance in generating PMS policies.

Risk-based surveillance thus provides guidance on which phar-

maceuticals and outlets to sample; lot-quality assurance sam-
pling is a method that provides guidance on the sample sizes

required to draw conclusions from PMS data. Newton et al.

(2009) developed guidelines for PMS sampling using the lot-
quality-assurance-sampling principle of tolerance thresholds for

the proportion of pharmaceuticals or outlets of unsuitable qual-
ity in a particular region or country. The regulator sets an SFP

tolerance level for each region, and analysis of tested random

samples from different regions reveals if the SFP prevalence
level within a region exceeds this tolerance. Risk-based PMS

and lot-quality assurance sampling recognize the medicine-

specific and regional drivers of SFPs, but upstream supply-chain
effects or assessments are not yet fully integrated.

Studies have identified supply-chain factors that drive the

generation and distribution of SFPs. Analysis of falsified
products collected throughout sub-Saharan Africa in

Newton et al. (2011) suggested original manufacture in

eastern Asia. Suleman et al. (2014) analyzed the impact of

supply-chain echelon and other factors in Ethiopia and con-

cluded that the country of manufacturer is the most import-

ant indicator for SFPs. Pisani et al. (2019) illustrated how

different risks within a pharmaceutical market interact to

drive government, industry, counterfeiter and consumer

actions using qualitative data from China, Indonesia, Turkey

and Romania. Analyses in Pisani et al. (2019) include depic-

tions of how SFPs can be driven by supply-chain factors

both inside and outside a given country, with low- and mid-

dle-income countries facing more challenges regarding these

factors than high-income countries. The risk-based PMS

guidelines of Nkansah et al. (2017) acknowledge the effect

on SFP prevalence by upstream supply-chain locations in

risk calculations but do not use this in analysis of PMS test-

ing data.
With recent developments in technology for medical

products regulation, there are opportunities for new

approaches for PMS sampling and data analysis. Hamilton

et al. (2016) reviewed policies for combating SFPs under

testing uncertainty and called for a methodology that

accounts for testing accuracy. The growth of track-and-trace

technology, where bar-coded products are followed from

manufacturer to outlet, can provide important supply-chain

data to improve regulation (Rotunno et al., 2014; Pisani

et al., 2019). However, the implementation of full track-and-

trace systems is resource-intensive. Low-cost screening tools

that supplement expensive and centrally located laboratory

testing are well-suited to many low- and middle-income set-

tings despite their decreased accuracy. Chen et al. (2021)

demonstrated that low-cost screening tools have the poten-

tial to locate SFPs more cost-effectively than the exclusive

use of high-performance laboratory testing.
In summary, supply-chain effects on the occurrence of

SFPs are known to be crucial, but these effects are not yet

integrated into PMS methodology. Nkansah et al. (2017)

used assessments of SFP risk to better allocate limited PMS

resources to select consumer-facing sampling locations; we

leverage available supply-chain information to extract more

analytical power from limited PMS resources. Newton et al.

(2009) provided the sampling levels necessary to determine

if SFPs at tested sites exceeded designated threshold rates;

the method of this paper provides inference on the SFP rates

at tested locations as well as locations upstream in the sup-

ply chain.

2.2. Network inference

Studies of illicit supply chains span a variety of modeling

and solution approaches. Anzoom et al. (2022) reviewed

approaches to understanding and disrupting illicit systems.

Anzoom et al. (2022) classified studies as taking either a sup-

ply-chain view or a network view: a supply-chain view mod-

els production and distribution processes directly, whereas a

network view considers general associations among actors.

For instance, Basu (2014) described three supply-chain

phases of procurement, concealed transportation, and distri-

bution in the case of wildlife smuggling, whereas Schwartz

IISE TRANSACTIONS 3



and Rouselle (2009) proposed measuring nodes in criminal

networks according to the nodes’ resources and relationships

with other nodes. Our study considering two echelons of a

pharmaceutical supply chain falls within the supply-chain

view category; Anzoom et al. (2022) noted that studies in

this category usually meet the context of a particular field

rather than generalize to all illicit systems. Bayesian

approaches have also been used for illicit network problems;

Anzoom, et al. (2022) noted Hussain and Arroyo (2008),

which identified principal nodes in criminal social networks,

and Triepels et al. (2018), which used shipping documents to

detect smuggling.
Our objective is to guide detection of SFP origins given

testing at downstream nodes. This setting belongs to the

family of network-inference problems where parameters are

determined using measurements from network-deployed

sensors at nodes or links. Nodes can create or store infor-

mation or products, and a link between two nodes is a pos-

sible avenue of traversal of information or products (Diestel,

2005).
Network-tomography methods infer unknown network

parameters through measurements taken at a subset of net-

work locations (Castro et al., 2004). Network tomography

emerged with the internet’s rise, as transfer delay could only

be measured at origins and destinations while delay at inter-

ior network links remained unknown. A frequently studied

model is z? ¼ Qh, where z? is a vector of link-level meas-

urements of a phenomenon such as traffic flow or delay, h

is a vector of parameters characterizing phenomena for

paths between pairs of nodes, and Q is an incidence matrix

tying links with paths. In such models, either Q or h is

unknown. Tomography approaches infer the unknown

parameters from data. The conditions under which network

parameters are identifiable under sufficient data are often of

interest, so that approaches can be developed that allow par-

ameter identification. For example, Tebaldi and West (1998)

considered the problem of inferring road traffic between

nodes using link measurements and employed a Bayesian

approach to rectify identifiability issues. Network tomog-

raphy infers the path-level parameters in h, for example in

Chen et al. (2010), or the presence of links in Q, for

example in Ni et al. (2010).
Inference on quality rates in pharmaceutical supply chains

parallels prior work in network inference. However, to our

knowledge, the specific supply-chain structure of untested

nodes in a higher echelon that supply tested nodes in a lower

echelon cannot be recovered from the structures present in

the literature. A key difference in network inference under

PMS is that measurements are expensive, as emphasized by

the value of the risk-based approach in Nkansah et al. (2017).

PMS requires obtaining physical samples from pharmaceutical

vendors, while network tomography approaches, for instance,

can take network measurements every few minutes or seconds

(Cao et al., 2000). The strategies to discern parameters in net-

work-inference applications leverage techniques such as

Bayesian analysis, distributional assumptions, or problem-

specific characteristics such as user behavior or propagation

processes.

3. Modeling supply-chain PMS

This section describes PMS data collection and types of

associated uncertainty.

3.1. Pharmaceutical supply chains

The PMS activities we study entail the testing of products

sampled from outlets, which are locations where customers

purchase products (Nkansah et al. 2017). We consider the

echelon of outlets, plus one upstream echelon shared by out-

lets. The echelon of test nodes, denoted by A ¼ f1, :::, jAjg,
is the set of nodes from which the regulator collects samples

for testing. A test node may be an individual seller of phar-

maceuticals, or an aggregation of such sellers; Newton et al.

(2009) considered such aggregates for analysis. Some ech-

elon from which test nodes source their products is referred

to as the echelon of supply nodes, denoted by B ¼
f1, :::, jBjg: Designation of the upstream echelon is a model-

ing choice left to the regulator and often determined by the

metadata available. For instance, supply nodes may be

national importers who procure from international sources,

or collections of international manufacturers grouped by

country of operation. This flexibility generalizes to many

low- and middle-income settings, as discussed in Section 7.
Under these definitions, each product passes through

exactly one supply node and one test node before collection

by a regulator for testing, but products often have passed

through other echelons before and after the supply node

prior to reaching the test node. SFP generation at a node

may stem from factors merely associated with that node and

not because of intrinsic conditions at that node; for instance,

an outlet may consistently source from an intermediary

injecting falsified products, or a manufacturer may often use

a transport service with poor adherence to proper storage

conditions. This article’s approach provides inference on

where in the supply chain to further investigate.

3.2. PMS data collection

For sample i, regulators collect the product from a test node

for testing with a binary response: yi ¼ 1 represents SFP

detection and yi ¼ 0 represents no SFP detection. We

assume collected products are taken uniformly from across

all products at the test node, i.e., there is no bias in the SFP

probability of the collected product. This assumption is rea-

sonable as collection occurs before testing, and regulators

usually attempt to collect products covertly. Multiple sam-

ples can be collected from each test node. The test node ai
in A associated with sample i is known at the point of col-

lection, as the regulator visits the test node to collect the

sample. There are two cases for available supply-chain infor-

mation regarding supply nodes:

� Tracked: The supply-chain path for each sample is

known, meaning sample i includes the supply-node label

bi of B: For example, the tracked case applies if the

4 E. WICKETT ET AL.



supply node is identified on packaging or invoices for

samples.
� Untracked: Instead of knowing the specific supply node-

test node path for each sample, the vector of sourcing

probabilities from all supply nodes, Qa, is known for

each test node a. For example, the untracked case applies

if the packaging of samples does not have a supply-node

label, but the regulator has access to historical procure-

ment records for test nodes. Untracked supply-chain

information constitutes the minimum degree of informa-

tion required to integrate testing data and supply-chain

information towards forming inferences.

Some supply chains may feature both tracked and

untracked elements; however, we generally consider supply

chains that are wholly tracked or untracked, and discuss

supply chains featuring both information types in Section 7.
An illustrative example in Figure 1 depicts a tracked sup-

ply chain with three test nodes and two supply nodes. A

supply node b-test node a path, also called an ða, bÞ arc, is

the product route from supply node b of B to test node a of

A: Fraction labels indicate the number of positive tests over

the total tests. A regulator only inspecting aggregate values

at the test-node echelon may conclude that Test Nodes 1

and 2 are significant sources of SFP generation, given their

positivity rates. However, products at these nodes only test

positive when sourced from Supply Node 1. Half of the

tested products from Supply Node 1 are SFPs, whereas no

SFPs are associated with Supply Node 2. If the test nodes

were truly generating SFPs, a more even distribution of dis-

covered SFPs across supply-node paths would be expected.

It instead seems more reasonable that SFPs stem from

upstream factors associated with Supply Node 1. This

example illustrates the importance of supply-chain informa-

tion for determining SFP sources.

3.3. Sources of uncertainty

We describe three key sources of uncertainty when inferring

SFP sources using PMS. Fundamental unidentifiability refers

to the inability to conclude the origin of an SFP upon its

detection. Testing accuracy refers to the ability of testing

tools to correctly detect SFPs. Untracked sampling refers to

the case where the supply node associated with each test is

known probabilistically.

3.3.1. Fundamental unidentifiability

There is an inherent inability to identify the sources of SFPs

when sampling only at test nodes and not at supply nodes:

it cannot be stated with certainty that SFP generation did or

did not occur upstream in the supply chain.

3.3.2. Testing accuracy

Testing tools have an inherent sensitivity and specificity.

Sensitivity refers to the probability of a positive test result

given that the tested product is indeed an SFP, and specifi-

city refers to the probability of a negative test result given

that the tested product is not an SFP. Kovacs et al. (2014)

identified 42 SFP testing technologies and noted sensitivity

in the range of 78–100% and specificity in the range of

88–100%, although metrics for some technologies were not

reported and testing accuracy can depend on the type of

pharmaceutical being tested. The detected amount of SFPs

may increase or decrease from the amount that would be

detected with perfectly accurate testing tools, depending on

the testing accuracy as well as the SFP rates in the supply

chain.

3.3.3. Untracked samples

In the untracked setting, the supply node associated with a

sample is unknown. It is assumed instead that for each test

node, a distribution across supply nodes can be constructed

through historical procurement data or other means.

Modeling outlets as test nodes and intermediary distributors

as supply nodes, for example, testing data can be integrated

with outlet records of previous distributor transactions to

form untracked PMS data. The likelihood that test node a

in A procures from supply node b in B is called the sourc-

ing probability of test node a from supply node b, and is

captured by element Qab in matrix Q 2 ½0, 1�jAj�jBj: Note Q

Figure 1. Extending analysis of PMS test results by one additional upstream echelon. “Upstream sourcing” and “Distribution” signify supply-chain locations for
which information is not considered.
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resembles the path-link incidence matrices reviewed in

Section 2.2. The row vector corresponding to the set of

sourcing probabilities for test node a is Qa: Thus in the

untracked case, the sourcing probability vector Qa is known

for each test node a.

4. Problems in SFP inference

This section defines likelihood functions for PMS data and

establishes that tracked and untracked supply chains are

unidentifiable.

4.1. Tracked and untracked likelihoods

Binary data y1, :::, yn are obtained for samples from test

nodes in A that are tested with a device with sensitivity s 2
½0, 1� and specificity r 2 ½0, 1�: Each sample is collected uni-

formly from all products at the test node, and products at

test nodes are sourced from supply nodes according to

sourcing-probability matrix Q: Conditional on test node

random variable Ai ¼ ai for sample i, bi is a realization of

random variable Bi which is independently sampled accord-

ing to the probabilities in row Qa: The overall set of testing

data is represented by d ¼ ðy, a, bÞ in the tracked case,

where y ¼ fy1, :::, yng is the set of testing results, a ¼
fa1, :::, ang is the set of test-node labels, and b ¼ fb1, :::, bng
is the set of supply-node labels. For the untracked case, d ¼

ðy, a,QÞ: Test-node SFP rates are stored in vector g ¼

ðg1, :::, gjAjÞ 2 ð0, 1ÞjAj and supply-node SFP rates are stored

in vector h ¼ ðh1, :::, hjBjÞ 2 ð0, 1ÞjBj: A node’s SFP rate

denotes a constant proportion of products traversing the

node that become SFP. As nodes signify real-world loca-

tions, SFP rates of exactly zero or one are not considered: a

rate of zero implies a node incapable of error, whereas a

rate of one implies a node only distributing SFPs.
In multi-echelon supply chains, SFPs can be generated at

any echelon. In our modeling of two connected echelons,

when we say that products become SFP at either the test

node or the supply node, we mean that SFP generation

occurs at the test node, at an upstream location associated

with the supply node, or at the supply node itself.
The consolidated SFP rate of a sample denotes the prob-

ability that the sample is an SFP when accounting for SFP

rates at test nodes as well as supply nodes. It suffices to con-

sider only the test node-supply node paths where test nodes

have a non-zero probability of sourcing from the supply

node. Let E � A � B be the set of ða, bÞ arcs where

Qab > 0. The consolidated SFP rate of a tracked sample col-

lected from an ða, bÞ arc in E is

z?abðg, hÞ ¼ ga þ ð1� gaÞhb: (1)

The first term of (1) corresponds to the test-node SFP

rate and the second term corresponds to the supply-node

SFP rate, adjusted for the test-node rate. This adjustment is

necessary as an SFP cannot generate at both the test node

and the supply node; we assume once a pharmaceutical is

substandard or falsified, additional poor supply-chain

conditions do not make the pharmaceutical less suited for
consumption. Further, an SFP cannot be recovered into a
non-SFP. The consolidated SFP rate of an untracked sample
collected from test node a in A is

z?aðg, hÞ ¼
X

b2B

Qabz
?
abðg, hÞ ¼ ga þ ð1� gaÞ

X

b2B

Qabhb :

(2)

(Note
P

b2B Qab ¼ 1 for all a.) In the untracked case,

each supply node–test node path is weighted according to
the sourcing probabilities.

The tracked and untracked contexts differ in the supply-
chain information available, yet the expressions of SFP prob-
ability are similar. To simplify notation we use supply-chain
trace k of K to denote the supply-chain information avail-
able at sample collection: k of K is an ða, bÞ arc in the
tracked case and test node a in the untracked case, where K
represents E or A, respectively. The summary of the under-
lying SFP generation accordingly lies with vector z?ðg, hÞ of
length jKj, where element z?kðg, hÞ of z?ðg, hÞ refers to

z?abðg, hÞ for some ða, bÞ arc in the tracked case and z?aðg, hÞ

for some test node a in the untracked case. Similarly, supply-
chain trace ki associated with sample i refers to either arc
ðai, biÞ in the tracked case or ai in the untracked case, and
random variable Ki is ðAi,BiÞ in the tracked case or Ai in the
untracked case.

Given sensitivity s and specificity r, the probability of a
positive SFP test is zkðg, hÞ ¼ sz?kðg, hÞ þ ð1� rÞð1�

z?kðg, hÞÞ for each k of K: The random variable Yi of test i

with supply-chain trace Ki ¼ ki is one with probability
zkiðg, hÞ and zero otherwise. The log-likelihood of ðg, hÞ
under data d is

‘ðg, hjdÞ ¼
X

n

i¼1

log zkiðg, hÞ
� �

yi þ log 1� zkiðg, hÞ
� �

ð1� yiÞ
� �

:

(3)

The log-likelihood has a clearer form when summed over
supply-chain traces in K: Let I k ¼ i 2 f1, :::, ng : ki ¼ kf g
be the tests corresponding to k. The number of results for k

is nk ¼ jI kj, with mean positive test rate of �zk ¼
1
nk

P

i2Ik
yi:

The log-likelihood in (3) is equivalently expressed using nk
and �zk as

‘ðg, hjdÞ ¼
X

k2K

nk log zkðg, hÞ½ ��zk þ log 1� zkðg, hÞ½ �ð1� �zkÞ
� �

:

(4)

Thus, the �zk and nk values across all k in K are sufficient
statistics for the supply-chain traces of the data, as the likeli-
hood can be expressed using these values without other data
elements. As a result, the likelihood can be computed using
a summary of PMS testing results. A usable PMS summary
requires the number of positives and negatives associated
with each supply-chain trace.

4.2. Unidentifiability

The tracked and untracked likelihoods are unidentifiable,
i.e., for any set of SFP rates ðg, hÞ there exists another set of
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SFP rates ðg0, h0Þ such that ‘ðg0, h0jdÞ ¼ ‘ðg, hjdÞ:
Unidentifiability means data collection cannot uniquely
reveal SFP rates. Theorems 1 and 2 state that unidentifiabil-
ity is assured in the tracked and untracked cases for any set
of testing data. Proofs are in Appendix A.

Theorem 1 (Tracked unidentifiability).
Let ðg, hÞ be any set of SFP rates and let d ¼ ðy, a, bÞ be a

set of tracked data. There exists ðg0, h0Þ 6¼ ðg, hÞ such that

‘ðg0, h0jdÞ ¼ ‘ðg, hjdÞ:

Theorem 2 (Untracked unidentifiability).
Let ðg, hÞ be any set of SFP rates and let d ¼ ðy, a,QÞ be

a set of untracked data. There exists ðg0, h0Þ 6¼ ðg, hÞ such
that

‘ðg0, h0jdÞ ¼ ‘ðg, hjdÞ:

Establishing unidentifiability in supply-chain PMS is a
core contribution. We show unidentifiability exists when
only considering two echelons of a supply chain; a corollary
is that consideration of additional echelons also implies
unidentifiability challenges. Thus, SFP rates cannot be recov-
ered through PMS as currently practiced. Unidentifiability
indicates a need for approaches that distinguish among mul-
tiple explanations for a set of data; Section 5 presents such
an approach.

5. SFP-inference resolution

Theorems 1 and 2 show that identification of unique SFP
rates explaining PMS data is not possible; yet, unidentifiabil-
ity does not eliminate prospects for inferring SFP sources.
This section presents a Bayesian approach to statistical infer-
ence of SFP rates that mitigates identifiability issues.

5.1. Bayesian mitigation of unidentifiability

Bayesian analysis combines observations and prior beliefs to
infer unknowns. Placing priors on ðg, hÞ encodes beliefs
about SFP generation that distinguish candidate SFP rates
with similar likelihoods. For example, Tebaldi and West
(1998) employed a Bayesian approach to alleviate identifi-
ability issues for pair-wise traffic counts for nodes in a net-
work. Given different vectors of SFP rates with similar
likelihoods under a set of PMS data and supply-chain infor-
mation, prior expectations of the level and dispersal of SFPs
across the supply chain help discern plausible vectors of SFP
rates.

Let pðg, hÞ be a prior density on ðg, hÞ: Multiplying
pðg, hÞ with the likelihood under data d, exp ð‘ðg, hjdÞÞ, is
then proportional to the posterior, i.e.,

pðg, hjdÞ / exp ð‘ðg, hjdÞÞpðg, hÞ : (5)

Posterior concentration at a region of high SFP rates for
a particular node means that available information indicate
that node as a credible SFP source. Posterior concentration
at a region of low SFP rates indicates that node is not a
credible SFP source. Non-concentration of the posterior

means data are insufficient to overcome sources of

uncertainty.
Sections 5.4 and 5.5 discuss prior formation and generat-

ing suitable posterior draws. Sections 5.2 and 5.3 first illus-

trate the application of inference in a PMS context.

5.2. Inference example

We revisit the example from Section 3.2 from a Bayesian

perspective. Suppose one believes that SFP rates at nodes are

independent and, although nodes could exhibit SFP rates

near 40%, most nodes will exhibit SFP rates below 20%. A

prior that meets this criterion on test-node SFP rates g ¼

ðg1, g2, g3Þ and supply-node SFP rates h ¼ ðh1, h2Þ is

pðg, hÞ /
Y

a2f1, 2, 3g
exp �

1

2
gðgaÞ þ 2
� �2

� �

Y

b2f1, 2g
exp �

1

2
gðhbÞ þ 2
� �2

� �

,

where gðxÞ ¼ log x
1�x

� �

is the logit function. Using the logit

transformation moves analysis to the real number line:

manipulation of the posterior on the real number line avoids

computational issues that arise as SFP rates approach zero

or one.
Combining the prior with the likelihood under the testing

data from Figure 1 yields the posterior. Figure 2 depicts the

5% and 95% quantiles for 1,000 posterior draws of ðg, hÞ:

The quantiles for the prior are included for reference. A

node associated with sufficiently high 5% quantiles indicates

a significant posterior probability that SFP generation is

linked with that node. For instance, Supply Node 1 likely

constitutes a high SFP risk. However, although 9 of 20 tests

associated with Supply Node 1 are SFPs (45%), the prior

and the chance that the test nodes are responsible for some

SFP generation mean that most weight for the interval for

Supply Node 1 falls below the raw percentage of 45%. A

high 95% quantile means that sufficient data may show the

associated node to be a large driver of SFPs. For example,

Test Node 2 has a 95% quantile near 30%: more data

Figure 2. 5% and 95% quantiles for the posterior of example testing data in
Figure 1.
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collection may plausibly show that Test Node 2 is associated

with a higher SFP rate than Supply Node 1.

5.3. Interpreting posterior samples

Draws from the posterior are used to build credible regions for

the values of ðg, hÞ that generated the data d: Credible regions
signify a space of SFP rates with (1� a) posterior probability,

for some desired a level. For example, the 5% and 95% quan-

tiles are used to build a 90% interval. Wide intervals for particu-
lar nodes indicate that data are insufficient to draw conclusions.

Drivers of inconclusive intervals include low sample size and the

uncertainty sources of Section 3.3.
Interval interpretation should consider at least three catego-

ries for the application of regulatory resources. Similar to the

thresholds of the lot-quality assurance sampling approach of
Newton et al. (2009), categorization of nodes along the lines of

“act,” “do not act,” and “gather more data before deciding,”

allows regulators to translate PMS results into the allocation of
intervention resources or further PMS activities. Categorization

aids efficient use of limited resources under uncertainty.
We suggest using acceptance thresholds to build categories

from posterior intervals. The first category includes nodes with
interval lower bounds above some lower threshold l, where l sig-

nifies an SFP rate that triggers the use of further intervention

resources. Data are sufficient to suggest that the SFP rates asso-
ciated with members of this first category are as high as l. If the

example in Figure 2 uses l ¼ 5%, then Supply Node 1 is cate-

gorized as a high SFP risk. Designation of l by regulators should
consider the availability of intervention resources as well as what

SFP rates are unacceptable in their domains. For instance,

Newton et al. (2009) noted WHO guidelines for malaria pro-
grams that suggest a change in policy once treatment failure

exceeds 10%; similar treatment-specific rates may guide designa-

tion of l for different pharmaceuticals.
The second category includes nodes with interval lower

bounds below l, but upper bounds above an upper threshold u.

SFP rates for members of this category are potentially as high as
u, but more data are required to assert that SFP rates are not

below l. Thus, targeting further PMS sampling of these nodes

may be recommended. If the example in Figure 2 uses l ¼ 5%
and u ¼ 20%, then Test Node 2 is a moderate SFP risk.

Designation of u by regulators should consider what additional

resources can be expended in investigating nodes with the
potential for high SFP rates: setting u too low means potentially

categorizing all nodes as moderate SFP risks.
The third category captures nodes associated with inter-

vals that have upper bounds below u and lower bounds

below l. Nodes in this category are least likely to pose sig-

nificant SFP risk.

5.4. Prior formation

A variety of prior forms can be used with (5). Effective pri-

ors encode regulator expectations of SFP generation with

respect to size, variability, and dispersal pattern. Priors are
beneficial for mitigating unidentifiability when informed by

reliable regulatory domain knowledge.

Applications including the modeling of movie sales and
interventions against infections have employed density trans-
formations to enable application-specific analysis (Ainslie,
et al., 2005; Hui et al., 2020). Similarly, an effective strategy
here is developing priors on the real number line and trans-
forming the resulting posterior SFP rates to the ð0, 1Þ inter-
val for analysis. Priors defined on the real number line also
favorably correspond with the SFP rates indicated by studies
in the literature: the resulting distributions have long tails,
which aligns with the heterogeneity of SFP generation noted
by WHO (2017b).

Consider an independent normal prior, expressed as

pðg, hÞ /
Y

a2A

exp �
1

2

gðgaÞ � c

�

� 	2
( )

Y

b2B

exp �
1

2

gðhbÞ � c

�

� 	2
( )

:

Parameter c signifies a prior belief of the standard SFP
rate at test nodes and supply nodes, and � corresponds to
SFP-rate spread. The standard parameter centers expecta-
tions of SFP prevalence throughout the supply chain. The
spread parameter reflects the anticipated variety across rates.
For example, a normal prior on the real number line with
c ¼ �2 and � ¼ 1 produces a distribution in the ð0, 1Þ space
with respective 5%, 50% and 95% quantiles of 3%, 12%
and 41%.

For low c values, the independence within each prior
reflects an assumption that it is unlikely that many SFP
sources exist: one node carrying an SFP rate above c has
higher prior likelihood than many nodes carrying such SFP
rates. Using priors with lower spread parameters requires
more testing data to pull the posterior probability towards
regions favored by the likelihood.

Consider an independent Laplace prior, which carries a
similar shape to the normal:

pðg, hÞ /
Y

a2A

exp �
jgðgaÞ � cj

�

� �

Y

b2B

exp �
jgðhbÞ � cj

�

� �

:

For average and spread similar to the normal, an inde-
pendent Laplace concentrates nearer the average and has
heavier tails. A Laplace prior reflects an anticipation that
some nodes will have SFP rates far from the average; thus
the Laplace may better suit consideration of falsification,
where falsifiers exploit available, yet limited, entry points
(WHO, 2017b). A normal prior reflects an expectation that
rates will vary nearer the average; thus the normal may bet-
ter suit substandardization: production, transportation and
storage entail similar activities conducted by different actors.

5.5. Markov chain Monte Carlo sampling

To build the inference described in Section 5.3, samples
from the posterior are needed. The posterior in (5) does not
exhibit natural sampling, but tools such as Markov chain
Monte Carlo (MCMC) allow sampling from general posteri-
ors. Our study uses the No-U-Turn Sampler (NUTS) sam-
pler of Hoffman and Gelman (2014). This sampler uses
posterior gradient information; Supplementary Material I
contains applicable posterior derivatives. The NUTS sampler
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requires a number of samples to warm start, as well as a

parameter, d, that governs how the algorithm proposes sam-
ples. Our analysis uses d of 0.4, which falls within the region

suggested by Hoffman and Gelman (2014) The analysis then
generates 5,000 warm-start draws and 1,000 draws for infer-

ence; more inference draws could be used, but 1,000 draws

appear sufficient for analysis (see Supplemental Material II).
Computation time is not a major restriction for analyzing

data common to many low- and middle-income settings.
Supplementary Material II describes drivers of computation

time. In general, more nodes increases the dimensionality of

ðg, hÞ and slows down sampling. However, computation
time for a system with 100 nodes is seconds, and supply

chains in most cases will not feature more than a few hun-
dred nodes. Our code is publicly available on Github as

Python package logistigate (Wickett et al., 2021).

6. Case study

Several national regulatory agencies in low- and middle-

income countries provide data to United States
Pharmacopeia’s MQDB to strengthen global regulatory cap-

acity. We use a PMS data set from MQDB to show how

incorporating upstream information can add to the under-
standing of SFP sources. The case study demonstrates

unidentifiability in real PMS data and shows the value of
our Bayesian approach over current practice.

6.1. Case-study setting

The data consist of products collected and tested by a coun-
try’s pharmaceutical regulatory agency in 2010. The data are

anonymized to protect the country’s sources and mask the

outlets and manufacturers involved. A data record denotes
purchasing and testing information for a single form of a

pharmaceutical product as sold to consumers, e.g., a box of
12 tablets. A test result is either “Pass,” meaning compliance

with registration specification, or “Fail,” meaning non-com-

pliance. Each record is associated with multiple geographic
divisions. We consider the “District” and “Manufacturer”

levels of the supply chain, where District refers to the
second-largest geographic sub-division of the country. We

model Manufacturers as supply nodes and Districts as test

nodes.
The case-study data feature 25 Manufacturers and 23

Districts in 406 PMS records. These data contain 73 positive
tests, or an 18% SFP rate. An 18% SFP rate suggests signifi-

cant quality issues for the areas sampled by regulators; how-

ever, examination of the testing results by only supply-node
or test-node label reveals difficulties in defining SFP sources.

District 8 features seven SFPs of 12 associated tests (58%),
District 7 features 24 SFPs of 81 tests (30%), and District 16

features eight SFPs of 44 tests (18%). A natural regulatory

response would be to dedicate intervention resources to
these districts with SFP rates exceeding the national average

of 18%. At the same time, 8 of 21 samples from
Manufacturer 8 are SFPs (38%), 28 of 92 samples from

Manufacturer 5 are SFPs (30%), and 5 of 31 samples from

Manufacturer 3 are SFPs (16%). Examining data by manu-
facturer, a justifiable regulatory response would be to dedi-
cate resources to investigating supply-chain factors
associated with these manufacturers.

6.2. Limitations of current methods

Lot-quality assurance described in Newton et al. (2009) uses
standard 90% confidence intervals for proportions to deter-
mine if SFP prevalence for a node exceeds quality thresh-
olds, where the 90% interval for a given proportion ẑ and

number of samples nẑ is given as ẑ61:645
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ẑð1� ẑÞ=nẑ
p

:

The proportion ẑ can relate to either a test node or a supply
node. For instance, the standard interval for Manufacturer
13 is ð7%, 22%Þ and the standard interval for District 5 is
ð5%, 25%Þ: The intervals for six districts and eight manufac-
turers exceed a threshold of l ¼ 5%: A typical regulator
response would be to allocate investigative and intervention
resources to these locations.

Additionally, a common requirement for the standard
interval is nẑ ẑ � 5 and nẑ ð1� ẑÞ � 5 (Mann, 2010). In this
data set, the requirement is satisfied by only 5 of 25 manu-
facturers and 6 of 23 districts. Obtaining sufficient tests for
all test and supply nodes may be infeasible in many
resource-limited settings, as in our experiences at USP: regu-
lators must often allocate resources using insufficient num-
bers of tests. In contrast, our method does not have a
minimum to complete inference; Manufacturer 2, for
example, is featured on only one test.

6.3. Manufacturer–district analysis

The expectations grounding the prior in the Manufacturer–
District analysis follows past work in PMS. Previous studies,
such as those reviewed in Ozawa et al. (2018), typically
reported aggregated rates across countries, geographic
regions, or sub-divisions of the pharmaceutical market.
Research shows that although SFPs are a widespread global
problem, SFP generation is heterogeneous: much of the sup-
ply chain exhibits low rates while many SFPs derive from a
few supply-chain locations (UNICRI, 2012; WHO, 2017b).
Thus the prior for analysis employs an average SFP rate
anchored to what previous studies indicate and a spread suf-
ficiently high to capture anticipated heterogeneity. An inde-
pendent Laplace prior with average c ¼ �2:5 and spread
parameter � ¼ 1:3 produces an average of 15%, a median of
8%, and a 90% interval of [0.4%, 62%], meaning the prior
carries a long right tail covering high SFP-rate regions. In
fact, 70% of prior weight falls below an SFP rate of 14%.
The sensitivity analysis in Supplementary Material III indi-
cates that prior choice does not have an instrumental effect
on interval width; sufficient data seem to counterbalance the
prior designation.

The Manufacturer–District analysis assumes perfect testing
sensitivity and specificity to enable easier isolation of the
effects of fundamental unidentifiability and untracked set-
tings. As expected, sensitivity analysis shows that testing-tool
uncertainty generally has an inflationary effect on inference;
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this inflationary effect is larger for nodes for which there are

less data.
Figures 3 and 4 show 90% intervals for SFP rates corre-

sponding to Districts and Manufacturers, respectively, under

both tracked and untracked settings. (Figure 4 is in

Appendix B.) The figures use the classification scheme

described in Section 5.3 with l ¼ 5% and u ¼ 30%: First,

consider the tracked setting. Our method’s credible intervals

are comparable in width with the standard intervals

described in Section 6.2; however, as SFP rates are not con-

sidered across the supply chain, the standard intervals are

shifted higher by 10 to 30%. Let the raw SFP rate of a given

node be the SFP rate of all tests associated with that node,

despite the upstream or downstream supply-chain factors

causing SFPs. Raw rates only apply to supply nodes in the

tracked case, as the supply node for each test is unknown in

the untracked case. The raw SFP rates for samples from

Manufacturers 10, 8, and 5 are 57%, 38%, and 34%,

respectively, and the raw rates associated with District 8 and

7 are respectively 58% and 30%. The raw SFP rates sit near

the interval upper bounds for each Manufacturer and

District; the interval upper bound for Manufacturer 5, for

instance, is 38%. The intervals skew lower than the raw rates

for all nodes. The posterior constituting these intervals is

accounting for a prior with a low average, in addition to the

possibility that SFPs are generated at either test nodes or

supply nodes. In addition, our method reflects uncertainty

from low levels of data. For instance, Manufacturer 2 has

only one associated (positive) test: the associated interval

spans most of ð0%, 100%Þ:
Direct consideration of supply-chain connections and

associated testing data lends credence to the inferences illus-

trated in the figures. All seven SFPs associated with District

8 are tied to Manufacturers with at least 15% raw SFP rates:

Manufacturers 3, 5, 8, 10 and 24. The data also feature four

non-SFPs for tests from the District 8-Manufacturer 13 arc,

Figure 3. Test-node and supply-node 90% intervals for MCMC samples generated using case-study data in the tracked setting. Intervals with lower bounds above
l ¼ 5% are featured in solid lines on the left, intervals with lower bounds below l and upper bounds above u ¼ 30% are featured in dashed lines in the middle,
and all other intervals are featured in dotted lines on the right.
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which does not support District 8 as a major SFP source.

District 7, on the other hand, is associated with 19 tests fea-

turing Manufacturer 13, where eight of these tests are SFPs

(42%). The other 43 tests involving Manufacturer 13 feature

only one SFP; thus, District 7 is likely a significant SFP

source. The standard interval for Manufacturer 13 is

ð7%, 22%Þ, while our method’s interval for Manufacturer 13

is (0.1%, 9%). A regulator using the standard interval under

l ¼ 5% would find Manufacturer 13 to be associated with

significant SFP sources. Thus, we observe how the posterior

addresses the challenge of fundamental unidentifiability by

integrating testing data, supply-chain information, and prior

expectations to create credible intervals that regulators can

use to improve policy decisions.
The analysis also illustrates the importance of supply-chain

connections for forming inferences in the tracked setting:

without interconnected nodes, fundamental unidentifiability

renders too many SFP scenarios as plausible. Sourcing patterns

limit the number of scenarios that can credibly explain the

data. The interval associated with District 5 is an example of

the importance of sourcing patterns. Although testing at

District 5 yields five SFPs in 34 samples (15%), District 5 has

a narrower interval than the interval for District 17, which

yields no SFPs in nine samples. Inspection of the manufac-

turers associated with District 5 samples reveals that all five

SFPs are sourced from Manufacturer 5. The standard interval

for District 5 is ð5%, 25%Þ, exceeding the lower threshold of

l ¼ 5%, while our method’s credible interval for District 5 is

(2%, 9%). Instead of suspecting SFP generation at District 5,

supply-chain information allows us to infer the opposite:

District 5 is less likely an SFP source than another test node,

District 17, with no detected SFPs. A regulator using standard

intervals may invest intervention resources in District 5,

whereas incorporating supply-chain information avoids this

investment. Thus, the inferences resulting from our approach

can help regulators determine if data are sufficient to invest

limited regulatory resources.
For the untracked setting, the sourcing-probability

matrix, Q, is used as the supply-chain trace instead of the

supply-node labels. The estimated element of Q correspond-

ing to District a and Manufacturer b is formed by dividing

the number of observed samples from arc ða, bÞ by the total

number of samples collected from test node a. The resulting

matrix is sparse: test nodes only source from a subset of

supply nodes. Comparing the tracked and untracked inter-

vals, as shown in Figures 3 and 4, reveals the value of

tracked over untracked information. The intervals associated

with test nodes remain nearly identical, whereas the intervals

associated with supply nodes change considerably. This

effect is reasonable: we know test nodes exactly and supply

nodes only probabilistically. The untracked supply-node

intervals still indicate that upstream supply-chain factors are

associated with SFP generation, as shown by the many

Manufacturers classified as moderate risks. However, infer-

ring the most critical upstream direction from many options

is unclear. Untracked analysis for this case study thus carries

Type II risk, where potential upstream sources of SFP are

missed.

In the untracked case, the structure of Q is an important

factor in the ability to overcome unidentifiability. In particu-
lar, untracked inference is hampered when test nodes pos-

sess similar sourcing patterns. For instance, 18 of 23
Districts had more than 10% of associated tests tied to

Manufacturer 5. SFPs associated with upstream supply-chain

factors become difficult to infer. Even if it is known that
upstream factors are principal SFP drivers, SFPs can just as

likely stem from a supply node with high market share and
a low SFP rate as from a supply node with low market share

and a high SFP rate. Accordingly, the ideal sourcing envir-
onment for successful untracked inference is an environ-

ment where each test node sources from a small subset of

supply nodes, with only a few shared supply nodes among
any subset of test nodes.

Another challenge to untracked inference is sufficiently

estimating the sourcing structure from past data. Estimating
Q from procurement or sourcing records carries variance

due to the sampling variance of the records. Supplementary
Material III examines inference sensitivity to the estimation

of Q using bootstrap sampling; use of different Q estimates

for this case study impacts the resulting inference for supply
nodes but not for test nodes. In sum, untracked settings

carry challenges for inferring upstream SFP sources, particu-
larly if information for estimating Q is too limited.

7. Conclusion and discussion

Regulators in low- and middle-income countries can benefit
from new tools and methods to maximize the power of sur-

veillance activities. This article characterizes the challenge of
identifying SFP sources under PMS and demonstrates how

the analytical capacity of PMS can be expanded by consider-

ation of supply-chain information. Our case study illustrates
how a Bayesian approach can be combined with domain

expertise through well-chosen priors to strengthen identifi-
cation of SFP sources. PMS data, including upstream sup-

ply-chain information, are already collected routinely; this

article provides a means of extracting more utility from this
regular activity.

In addition to limited budgets, the WHO has identified
poor international coordination as a significant challenge for

regulators in low- and middle-income countries (WHO,

2017b). Placing PMS in a supply-chain context opens ave-
nues for collaboration among regulators in different coun-

tries with overlapping supply chains. As scanning and
tracking technology becomes more widely available, the col-

lection of additional supply-chain information presents

more opportunities for identifying quality issues. Our ana-
lysis shows the value of additional supply-chain information.

7.1. Implementation guidelines

Implementation of the approach will be accompanied by
challenges. In addition to low overall numbers of tests, sup-

ply-chain information in current PMS collection records can
be limited, and this information is crucial to identifying sup-

ply chain-driven problems. Standard PMS may benefit from
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supplementing the data-collection checklist proposed by
Newton et al. (2009), MEDQUARG, with key supply-chain
information such as importers, warehouses, and intermedia-
ries. Furthermore, proper accounting of the uncertainty
associated with a PMS test requires known sensitivity and
specificity with respect to the testing tool. Testing-tool
accuracy can vary by therapeutic indication, e.g., antimalar-
ial, or by technician experience, and thus sensitivity and spe-
cificity should be recorded for each test where possible. In
particular, false positives in low-SFP environments have the
potential to confuse analysis and lead to unproductive use of
resources.

The adaptable designation of nodes as individual loca-
tions or aggregates of such locations, as well as the designa-
tion of supply nodes as locations in any upstream echelon,
are features that allow generalization of our approach to
many low- and middle-income countries. The supply-chain
information available to regulators is often constrained; the
only requirements of our approach are standard test node
labels and information, even if partial, about some upstream
echelon. Additionally, the variety in SFP causes requires
adaptable methods. For instance, economic conditions in
one region may encourage a higher prevalence of falsified
products in that region, or choices by one plant manager
may result in a higher rate of substandard products. Our
approach allows for different analyses using individual sup-
ply-chain locations or aggregates of such locations to match
goals. The value of this adaptability is illustrated in our case
study, which infers notable aggregate District SFP rates as
well as SFP rates associated with individual Manufacturers.

Implementation may require customized deployments in
different settings. For instance, some settings may feature
tracked, as well as untracked, supply-chain information; for
example, scanning records may be available at every trans-
feral point for public-sector products, whereas only procure-
ment records are available for private-sector or non-profit,
non-governmental products. In this case, each test i has an
associated trace ki that is either tracked or untracked, and
the vector of sourcing probabilities for untracked samples is
available. Thus, the log-likelihood of (4),

‘ðg, hjdÞ ¼
X

n

i¼1

log zkiðg, hÞ
� �

yi þ log 1� zkiðg, hÞ
� �

ð1� yiÞ
� �

,

can be constructed through the corresponding ki of each
test, and inference can be conducted as described in Section
5. Prior construction is another fundamental element of our
approach involving some ambiguity. Section 6.3 forms a
prior using studies from the global literature on SFPs; using
the global to characterize the local may be inadvisable in
some environments. Section 5 suggests independent priors
to capture the notion that SFP generation at one node does
not affect generation at other nodes. However, it is feasible
that changes in regulatory environments might stimulate
correlated SFP behavior across nodes: Eban (2019) discussed
“two-tracked” manufacturers with different supply lines for
high-income and low-income countries. Improved prior for-
mation that captures local features requires an interaction
between practitioners and statisticians.

In this work, the distinction between substandard and fal-

sified is not instrumental. “SFP” is broadly used to refer to

products unsuitable for consumption. We consider an envir-

onment where SFPs frequently occur, test results are cap-

tured by a binary variable, and the aim is to better

understand SFP sources. Although the WHO includes

unregistered products in its definition of poor quality

(WHO, 2018), our study concentrates on substandard and

falsified products—the principal focus of the literature on

poor-quality medical products. Substandard and falsified

products generally have different generation mechanisms

(WHO, 2017b); however, both substandard and falsified

products are problems rooted in supply-chain conditions

(Pisani et al., 2019). Usual PMS implementation seeks detec-

tion of all causes of poor quality simultaneously, and often

does not require different diagnostics for each cause.

Regulators can select the criteria with which tests are

marked as positive or negative. Depending on objectives and

detection tools, one may consider only substandard prod-

ucts, only falsified products, all SFPs, or even unregistered

products.
The approach of this article only considers binary pass–

fail measurements, consistent with data in MQDB. Due to

the affordability and flexibility of screening tests, PMS data

can consist largely of pass–fail results. Regulators can con-

duct a single screening test with minimal training for less

than a dollar per test, while running high-powered testing

requires reference standards, training, and technology cost-

ing upwards of hundreds of thousands of dollars (Kovacs

et al., 2014; Chen et al., 2021). Further, pharmaceuticals

have different stability profiles. Products may fail testing for

any quality attribute, such as dissolution characteristics or

impurity prevalence; however, proportions of expected

Active Pharmaceutical Ingredients, or API, are the most

widely measured. API content can be measured through

common non-laboratory methods and provide important

information regarding SFP causes (WHO, 2017b). For

instance, large discrepancies with the declared content often

indicate falsified products. A testing failure due to detected

API content that is 4% outside the acceptable range implies

different causes than a failure with detected API content

that is 70% below the acceptable range. The first failure is

generally associated with substandard products, whereas the

second failure is expected with falsified products. Keeping

with the binary response variable, falsified and substandard

products could be categorized using different API thresh-

olds. However, full analysis of API requires modeling the

pharmaceutical-degradation process and integrating stability

behavior with supply-chain information. Moving to an infer-

ence model that treats API content as a continuous response

variable would be a valuable line of future research.

7.2. Broader objectives

This method can assist in the selection of testing method-

ology—assessing, for example, if it is better to run 1,000

tests with a spectrometer or 10,000 tests with thin-layer

chromotography. The consideration of costs versus accuracy
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within an inferential context could be leveraged to explore

scenarios where an inexpensive, less accurate testing tool is

preferential to an expensive, highly accurate testing tool, as

explored in Chen et al. (2021).
The method can also inform the collection of additional

samples. If the interval for a particular test node is suffi-

ciently narrow, allocating samples to different test nodes

may be recommended. Alternatively, if more data are

desired regarding a particular supply node, sampling from a

test node with a narrow interval may be sensible if the sup-

ply node is often sourced by the test node. Integration of

statistical methods with regulatory insights and objectives

can inform an adaptive sampling framework that feeds test-

ing results into sample allocation decisions. Sequential ana-

lysis, which determines stopping rules for when data

sufficient for regulator objectives have been collected, and

Bayesian experiment design, which seeks to maximize the

inference utility through sampling choices, may be valuable

avenues. An adaptive sampling framework may also forgo

the assumption that elements such as ðg, hÞ or Q are con-

stant, and signal when these elements have significantly

shifted. Understanding how PMS data may be analyzed is a

crucial step towards using available supply-chain informa-

tion to guide the choice of sampling locations.
Additional supply-chain echelons can be integrated into

the log-likelihood if supply-chain information from multiple

echelons is available. Consider a tracked case where each

test bears a label for a node from an additional echelon of

distributor nodes sitting between supply nodes and test

nodes. Let C be the set of distributor nodes with corre-

sponding SFP rates f ¼ ðf1, :::, fjCjÞ: The consolidated SFP

rate of a test from a supply node b-distributor node c-test

node a path is then

z?acbðg, f, hÞ ¼ ga þ ð1� gaÞz
?
cbðf, hÞ : (6)

Thus, the log-likelihood of (4) can be constructed by

using trace ki ¼ ðai, ci, biÞ for each test i. The consolidated

SFP rate in the untracked case can be similarly formed.

Although tests with more than two labels are not explored

in this article, magnified unidentifiability issues should be

anticipated when considering more than two echelons, as

additional SFP rates are being inferred without additional

testing data. In a context where testing data are available

from multiple echelons, future work can ascertain the condi-

tions for identifiability or unidentifiability of SFP rates.
An additional managerial implication concerns the pooling

of quality-assurance resources internationally. The global nature

of pharmaceutical supply chains means SFPs may generate

between manufacture and domestic introduction. Integrating

information across borders provides the possibility for studying

complex, multi-tiered supply chains that feature many echelons

of interconnected nodes. Two countries with limited regulatory

resources can expand their inferential power by sharing testing

data and supply-chain information. Expanding the scope of our

approach may also entail an improved modeling of manufactur-

ing and black-market mechanisms, perhaps using insights from

work such as Pisani et al. (2019). Information such as economic

indicators may be incorporated into prior construction to better

anticipate SFP generation.
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Appendices to Inferring sources of substandard and falsified products in pharmaceutical supply chains by
Wickett, Plumlee, Smilowitz, Phanouvong and Pribluda

Appendix A. Proofs

Proof of Theorem 1. For original SFP rates ðg, hÞ in the tracked setting, we form ðg0, h0Þ 6¼ ðg, hÞ with an initial adjustment of the SFP rate at

one test node by some �: We use the original rate at this test node and � to produce adjusted rates at all other nodes that result in ðg0, h0Þ with
the same likelihood as ðg, hÞ:

Let ðg, hÞ be any set of SFP rates. Select test node a0 and � > 0: For each test node a, set g0a as

g0a ¼ ga � �
1� ga
1� ga0

, (7)

and for each supply node b, set h0b as

h0b ¼
hbð1� ga0 Þ þ �

1� ga0 þ �
: (8)

Inspection of (7) reveals that a sufficiently small � assures g0a > 0 for each a. For any � > 0, inspection of (8) shows that h0b < 1, as SFP rates are

assumed to be between 0 and 1. Thus a sufficiently small � assures valid adjusted rates ðg0, h0Þ such that ðg0, h0Þ 6¼ ðg, hÞ:
Consider the tracked consolidated SFP rate under ðg0, h0Þ for any ða, bÞ arc:

z?abðg
0, h0Þ ¼ g0a þ ð1� g0aÞh

0
b

¼ ga � �
1� ga
1� ga0

þ 1� ga þ �
1� ga
1� ga0

� �

hbð1� ga0 Þ þ �

1� ga0 þ �

¼ ga � �
1� ga
1� ga0

þ
ð1� gaÞð1� ga0 þ �Þ

1� ga0

� �

hbð1� ga0 Þ þ �

1� ga0 þ �

¼ ga þ
hbð1� ga0 Þ � gahbð1� ga0 Þ � �þ �ga þ �� �ga

1� ga0

¼ ga þ ð1� gaÞhb ¼ z?abðg, hÞ :

Thus z?abðg
0, h0Þ ¼ z?abðg, hÞ for all arcs and ‘ðg0, h0jdÞ ¼ ‘ðg, hjdÞ: w

Proof of Theorem 2. For original SFP rates ðg, hÞ in a supply chain in the untracked setting, we form ðg0, h0Þ 6¼ ðg, hÞ by adjusting the SFP rate
at one supply node by some �: The SFP rates at all test nodes are then adjusted by an amount proportional to the respective sourcing probability

of that supply node to produce ðg0, h0Þ with the same likelihood as ðg, hÞ:
Let ðg, hÞ be any set of SFP rates. Select a supply node b and choose � > 0 such that Qaðh� eb�Þ > 0 for test node a, where Qa is the row vec-

tor of sourcing probabilities in Q corresponding to a and eb is a vector of length jBj with a one at the bth element and a zero at all other ele-

ments. Such an � exists as all SFP-rates are non-zero. Set h0 ¼ h� eb�: For each a, set g0a as

g0a ¼
gað1� QahÞ þ �Qab

1� Qahþ �Qab

: (9)

As the elements of each row Qa sum to one, it follows that Qah < 1: Additionally, since SFP rates and sourcing probabilities are all between

zero and one, it holds that 0 < g0a < 1 for any � > 0, and thus ðg0, h0Þ are valid rates. As h0b ¼ hb � � for some � > 0, it follows

that ðg0, h0Þ 6¼ ðg, hÞ:
Consider the untracked consolidated SFP rate under ðg0, h0Þ at any test node a:

z?aðg
0, h0Þ ¼ g0a þ ð1� g0aÞQah

0

¼
gað1� QahÞ þ �Qab

1� Qahþ �Qab

þ
ð1� gaÞð1� QahÞ

1� Qahþ �Qab

Qaðh� eb�Þ

¼
gað1� QahÞ þ Qah� QahðQah� �QabÞ � gaðQah� �QabÞ þ gaQahðQah� �QabÞ

1� Qahþ �Qab

¼
ga þ ð1� gaÞQah� Qah ga þ ð1� gaÞQah½ � þ �Qab ga þ ð1� gaÞQah½ �

1� Qahþ �Qab

¼ ga þ ð1� gaÞQah ¼ z?aðg, hÞ :

Thus z?aðg
0, h0Þ ¼ z?aðg, hÞ for all test nodes and ‘ðg0, h0jdÞ ¼ ‘ðg, hjdÞ: w
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Appendix B. Figure for case study in the untracked setting

Figure 4. Test-node and supply-node 90% intervals for MCMC samples generated using case-study data in the tracked setting. Intervals with lower bounds above
l ¼ 5% are featured in solid lines on the left, intervals with lower bounds below l and upper bounds above u ¼ 30% are featured in dashed lines in the middle,
and all other intervals are featured in dotted lines on the right.
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