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ABSTRACT

Substandard and falsified pharmaceuticals, prevalent in low- and middle-income countries, sub-
stantially increase levels of morbidity, mortality and drug resistance. Regulatory agencies combat
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this problem using post-market surveillance by collecting and testing samples where consumers

purchase products. Existing analysis tools for post-market surveillance data focus attention on the
locations of positive samples. This article looks to expand such analysis through underutilized sup-
ply-chain information to provide inference on sources of substandard and falsified products. We
first establish the presence of unidentifiability issues when integrating this supply-chain informa-
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tion with surveillance data. We then develop a Bayesian methodology for evaluating substandard
and falsified sources that extracts utility from supply-chain information and mitigates unidentifi-
ability while accounting for multiple sources of uncertainty. Using de-identified surveillance data,
we show the proposed methodology to be effective in providing valuable inference.

1. Introduction

Substandard and Falsified Pharmaceuticals (SFPs) are a press-
ing global health issue. Recent studies estimate that around
10% of medical products in low-and middle-income countries
are unsuitable for consumption; estimates indicate higher bur-
dens depending on the disease or assessment methodology
(Koczwara and Dressman, 2017; Ozawa et al., 2018; World
Health Organization (WHO), 2018). Mortality estimates assert
that SFPs lead to 450,000 preventable deaths every year
(Karunamoorthi, 2014). SFPs also contribute to the growing
worldwide threat of drug resistance (WHO, 2017a), as well as
diminished public confidence in health systems (Cockburn
etal., 2005).

1.1. Post-market surveillance

Medical products regulators ensure pharmaceutical quality
through different activities conducted throughout the manu-
facturing and distribution processes. Following data moni-
tored at United States Pharmacopeia, this article considers
Post-Market Surveillance (PMS) where regulators collect sam-
ples from consumer-facing outlets and test those samples for
compliance with registration specification (Nkansah et al.,
2017). The goal of PMS is estimation of SFP prevalence in
regulatory domains and identification of sources of either sub-
standard or falsified pharmaceuticals. Usual PMS in low- and
middle-income countries comprises of three stages. The
first stage selects a subset of locations that distribute

pharmaceuticals to consumers, and the second stage collects
and tests pharmaceuticals from these locations. The third
stage analyzes testing data and enforces corrective actions.
Corrective actions can include issuing warnings or recalls for
particular brands or supply-chain locations. Stretched regula-
tory budgets translate to limited PMS data: a single PMS activ-
ity may comprise a few hundred tests, used to evaluate an
entire pharmaceutical indication, e.g., antimalarials. Data con-
straints necessitate effective use of available metadata and
regulatory domain knowledge to better understand SFP
patterns.

Current methods for the analysis stage of PMS focus on estab-
lishing tolerance thresholds of SFP prevalence at sampled sup-
ply-chain locations. Supply-chain information is regularly stored
as part of PMS protocols. The MEDQUARG guidelines of
Newton et al. (2009), an industry standard for PMS, recommend
collection of various supply-chain features of the outlet location
and manufacturer of each sample. The Medicines Quality
Database (MQDB), featured in the case study of Section 6, cap-
tures PMS results submitted by dozens of participating national
medical products regulators in line with the MEDQUARG
guidelines (United States Pharmacopeial Convention (USP),
2021). Each MQDB record contains testing results and associ-
ated supply-chain metadata such as manufacturer, manufacturer
country, sampling location, and region of the sampling location.

Consideration of PMS within supply chains carries
unique properties in the field of network detection. SFP
sources can be situated at any location from manufacturer
to consumer; testing data from consumer-facing locations
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measure quality reflective of SFP sources throughout the
supply chain beyond tested locations. Thus, it is not clear
whether a detected SFP is due to the consumer-facing loca-
tion or an upstream supply-chain location. Additionally, the
supply-chain path of each sample is typically only partially
known: labels are not applied every time a sample traverses
the supply chain, and paths are only known probabilistically
in some cases. Different consumer-facing locations often
share manufacturers or other upstream supply-chain loca-
tions. Understanding these shared supply-chain connections
can help regulators identify SFP sources. In current practice,
PMS data may be analyzed by manufacturer or aggregation
of regional consumer-facing locations, but the information
contained in supply-chain connections is underutilized.

1.2. Supply-chain PMS

There is a need for PMS analysis methods that can infer the
origin of SFP generation by modeling the paths of SFPs
across separate supply-chain echelons. An echelon is a col-
lection of supply-chain locations that share a key attribute
or function, such as the collection of manufacturers or the
collection of outlets that sell products. SFP generation refers
to either the degradation of product quality or the infiltra-
tion of falsified products. The origin of an SFP is the loca-
tion where an SFP is generated. The origin can differ from
where the SFP is detected. For instance, pharmaceuticals can be
produced according to good manufacturing practices, but
stored at a distribution warehouse where temperatures exceed
allowable limits, causing degradation and resulting in substand-
ard products. Alternatively, an outlet can receive quality prod-
ucts, but sell a falsified substitute to the public while re-selling
the quality products elsewhere. This article explores if identifi-
cation of origins of SFP generation can be improved by incor-
porating supply-chain connections between consumer-facing
testing locations and one upstream echelon. We model only
one additional upstream echelon due to PMS data availability
common to low- and middle-income settings. While we model
two echelons of a larger, more complex supply chain, this work
is a step to expanding PMS capabilities through supply-chain
information, even when such information is limited.

In our analysis of consumer-facing testing locations and
an upstream echelon, we identify three types of uncertainty:
fundamental unidentifiability, testing accuracy, and
untracked supply-chain information. Uncertainty due to
fundamental unidentifiability results from only testing the
lower echelon of a supply chain. Confirmation of SFP gener-
ation at upstream locations is not possible without upstream
testing; thus the aim is to examine if SFPs were generated at
tested locations or further upstream, requiring additional
investigation. Uncertainty due to testing accuracy comes
from imperfect testing equipment, human error, and
inappropriate use of testing methods (Kovacs et al., 2014).
Testing accuracy is measured through sensitivity, which cap-
tures the ability to correctly detect SFPs, and specificity,
which captures the ability to correctly detect quality prod-
ucts. Uncertainty due to untracked supply-chain information
arises when the path traversed by a sample is only known

probabilistically. Under untracked information, rather than
knowing the exact supply-chain path a product takes to
reach the sampled location, there is a known probability dis-
tribution for a sample’s path across upper-echelon locations.
Our methodology accounts for these sources of uncertainty
using a Bayesian framework that synthesizes testing data
with available supply-chain information to infer SFP sources
and thus guide regulator decisions.

1.3. Contributions

1.3.1. Consideration of PMS in supply chains

This article builds on existing PMS practice through incorp-
oration of frequently available supply-chain information. We
use as an experiment the MQDB, which contains manufac-
turer labels as well as province and sub-region information
for the consumer-facing location of each test. Current prac-
tice does not synthesize PMS test results with supply-chain
information towards inference of SFP sources. Given that
SFPs are recognized as a supply-chain problem—as
described in Section 2—integrating readily available supply-
chain information with testing results is a novel advance in
PMS analysis.

1.3.2. Understanding unidentifiability

Whether SFP rates throughout a supply chain can be recov-
ered through PMS has not been explored. By integrating
testing data with supply-chain information, we establish
unidentifiability of SFP rates in supply chains. Establishing
unidentifiability is a key contribution: we show SFP rates
cannot be recovered through consideration of PMS testing
results alone. Understanding PMS results requires
approaches that mitigate this unidentifiability.

1.3.3. General algorithms for low- and middle-income
countries
Low- and middle-income countries require flexible analysis
methods. PMS data collection in these countries features
considerable heterogeneity in available metadata. PMS sam-
ples usually have a manufacturer label, and may also have a
label designating one or more intermediate distributors. The
sampling location carries additional regional designations
such as city or district. Crucially, any of these designations
may be critical to understanding SFP occurrence (Pisani
et al., 2019). Although frameworks such as MEDQUARG
for standardizing the collection of such metadata have been
proposed, data collection from country to country struggles
to attain such standards (Ozawa et al, 2018). Thus, general
approaches are needed that meet real-world data collection.
This article is organized as follows. Section 2 presents
related literature regarding PMS and network inference.
Section 3 describes supply-chain PMS and associated sources
of uncertainty. Section 4 demonstrates the unidentifiability
inherent in using PMS testing results. Section 5 introduces a
Bayesian method for inferring SFP sources. Section 6 illus-
trates an application of our method to PMS data from a low-
and middle-income country and demonstrates improvements



on current PMS practice. Section 7 discusses implementation
considerations and future directions.

2. PMS and network inference literature

This section reviews the state of the literature for PMS and
network inference in addressing the problem of identifying
SFPs in supply chains.

2.1. PMS and SFP detection

Two WHO reports from 2017 detailed the global impact of
SFPs and highlighted gaps in current monitoring and means
of strengthening SFP regulation, including PMS (WHO,
2017a; WHO, 2017b). Regulators in low- and middle-income
countries face a multitude of challenges: limited operational
budgets, overstretched regulatory frameworks, and a global
supply chain with little international regulatory coordin-
ation. Procurement streams for many countries involve a
web of manufacturers and intermediary suppliers with
numerous exchanges before reaching consumers (United
Nations Interregional Crime and Justice Research Institute
(UNICRI), 2012; USP, 2020). Limited PMS data combined
with many potential SFP causes means regulators require
more sophisticated analysis tools to better identify SFP
sources.

Studies of SFP prevalence span several countries and a
variety of pharmaceuticals. Koczwara and Dressman (2017)
analyzed 41 such SFP studies and noted significant differen-
ces in SFP prevalence based on sample source, country, and
therapeutic class. Ozawa et al. (2018) also described consid-
erable study heterogeneity in a survey of 265 SFP studies.

Current PMS methodologies rely on principles of risk-based
surveillance and/or lot-quality assurance sampling. Risk-based
surveillance involves applying regulatory resources as a function
of public-health risk and SFP risk. Nkansah et al. (2017) pro-
posed a risk-based PMS approach that maximizes resource util-
ization in low- and middle-income countries. Nkansah et al.
leveraged resource availability, assessments of SFP risk, and val-
uations of public-health importance in generating PMS policies.
Risk-based surveillance thus provides guidance on which phar-
maceuticals and outlets to sample; lot-quality assurance sam-
pling is a method that provides guidance on the sample sizes
required to draw conclusions from PMS data. Newton et al.
(2009) developed guidelines for PMS sampling using the lot-
quality-assurance-sampling principle of tolerance thresholds for
the proportion of pharmaceuticals or outlets of unsuitable qual-
ity in a particular region or country. The regulator sets an SFP
tolerance level for each region, and analysis of tested random
samples from different regions reveals if the SFP prevalence
level within a region exceeds this tolerance. Risk-based PMS
and lot-quality assurance sampling recognize the medicine-
specific and regional drivers of SFPs, but upstream supply-chain
effects or assessments are not yet fully integrated.

Studies have identified supply-chain factors that drive the
generation and distribution of SFPs. Analysis of falsified
products collected throughout sub-Saharan Africa in
Newton et al. (2011) suggested original manufacture in
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eastern Asia. Suleman et al (2014) analyzed the impact of
supply-chain echelon and other factors in Ethiopia and con-
cluded that the country of manufacturer is the most import-
ant indicator for SFPs. Pisani et al. (2019) illustrated how
different risks within a pharmaceutical market interact to
drive government, industry, counterfeiter and consumer
actions using qualitative data from China, Indonesia, Turkey
and Romania. Analyses in Pisani et al. (2019) include depic-
tions of how SFPs can be driven by supply-chain factors
both inside and outside a given country, with low- and mid-
dle-income countries facing more challenges regarding these
factors than high-income countries. The risk-based PMS
guidelines of Nkansah et al. (2017) acknowledge the effect
on SFP prevalence by upstream supply-chain locations in
risk calculations but do not use this in analysis of PMS test-
ing data.

With recent developments in technology for medical
products regulation, there are opportunities for new
approaches for PMS sampling and data analysis. Hamilton
et al. (2016) reviewed policies for combating SFPs under
testing uncertainty and called for a methodology that
accounts for testing accuracy. The growth of track-and-trace
technology, where bar-coded products are followed from
manufacturer to outlet, can provide important supply-chain
data to improve regulation (Rotunno et al, 2014; Pisani
et al., 2019). However, the implementation of full track-and-
trace systems is resource-intensive. Low-cost screening tools
that supplement expensive and centrally located laboratory
testing are well-suited to many low- and middle-income set-
tings despite their decreased accuracy. Chen et al. (2021)
demonstrated that low-cost screening tools have the poten-
tial to locate SFPs more cost-effectively than the exclusive
use of high-performance laboratory testing.

In summary, supply-chain effects on the occurrence of
SFPs are known to be crucial, but these effects are not yet
integrated into PMS methodology. Nkansah et al. (2017)
used assessments of SFP risk to better allocate limited PMS
resources to select consumer-facing sampling locations; we
leverage available supply-chain information to extract more
analytical power from limited PMS resources. Newton et al.
(2009) provided the sampling levels necessary to determine
if SFPs at tested sites exceeded designated threshold rates;
the method of this paper provides inference on the SFP rates
at tested locations as well as locations upstream in the sup-
ply chain.

2.2. Network inference

Studies of illicit supply chains span a variety of modeling
and solution approaches. Anzoom et al. (2022) reviewed
approaches to understanding and disrupting illicit systems.
Anzoom et al. (2022) classified studies as taking either a sup-
ply-chain view or a network view: a supply-chain view mod-
els production and distribution processes directly, whereas a
network view considers general associations among actors.
For instance, Basu (2014) described three supply-chain
phases of procurement, concealed transportation, and distri-
bution in the case of wildlife smuggling, whereas Schwartz
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and Rouselle (2009) proposed measuring nodes in criminal
networks according to the nodes’ resources and relationships
with other nodes. Our study considering two echelons of a
pharmaceutical supply chain falls within the supply-chain
view category; Anzoom ef al. (2022) noted that studies in
this category usually meet the context of a particular field
rather than generalize to all illicit systems. Bayesian
approaches have also been used for illicit network problems;
Anzoom, et al. (2022) noted Hussain and Arroyo (2008),
which identified principal nodes in criminal social networks,
and Triepels et al. (2018), which used shipping documents to
detect smuggling.

Our objective is to guide detection of SFP origins given
testing at downstream nodes. This setting belongs to the
family of network-inference problems where parameters are
determined using measurements from network-deployed
sensors at nodes or links. Nodes can create or store infor-
mation or products, and a link between two nodes is a pos-
sible avenue of traversal of information or products (Diestel,
2005).

Network-tomography methods infer unknown network
parameters through measurements taken at a subset of net-
work locations (Castro et al., 2004). Network tomography
emerged with the internet’s rise, as transfer delay could only
be measured at origins and destinations while delay at inter-
ior network links remained unknown. A frequently studied
model is z* = QO0, where z* is a vector of link-level meas-
urements of a phenomenon such as traffic flow or delay, 0
is a vector of parameters characterizing phenomena for
paths between pairs of nodes, and Q is an incidence matrix
tying links with paths. In such models, either Q or 0 is
unknown. Tomography approaches infer the unknown
parameters from data. The conditions under which network
parameters are identifiable under sufficient data are often of
interest, so that approaches can be developed that allow par-
ameter identification. For example, Tebaldi and West (1998)
considered the problem of inferring road traffic between
nodes using link measurements and employed a Bayesian
approach to rectify identifiability issues. Network tomog-
raphy infers the path-level parameters in 0, for example in
Chen et al. (2010), or the presence of links in Q, for
example in Ni et al. (2010).

Inference on quality rates in pharmaceutical supply chains
parallels prior work in network inference. However, to our
knowledge, the specific supply-chain structure of untested
nodes in a higher echelon that supply tested nodes in a lower
echelon cannot be recovered from the structures present in
the literature. A key difference in network inference under
PMS is that measurements are expensive, as emphasized by
the value of the risk-based approach in Nkansah et al. (2017).
PMS requires obtaining physical samples from pharmaceutical
vendors, while network tomography approaches, for instance,
can take network measurements every few minutes or seconds
(Cao et al., 2000). The strategies to discern parameters in net-
work-inference applications leverage techniques such as
Bayesian analysis, distributional assumptions, or problem-
specific characteristics such as user behavior or propagation
processes.

3. Modeling supply-chain PMS

This section describes PMS data collection and types of
associated uncertainty.

3.1. Pharmaceutical supply chains

The PMS activities we study entail the testing of products
sampled from outlets, which are locations where customers
purchase products (Nkansah et al. 2017). We consider the
echelon of outlets, plus one upstream echelon shared by out-
lets. The echelon of fest nodes, denoted by A = {1, ...,|Al},
is the set of nodes from which the regulator collects samples
for testing. A test node may be an individual seller of phar-
maceuticals, or an aggregation of such sellers; Newton et al.
(2009) considered such aggregates for analysis. Some ech-
elon from which test nodes source their products is referred
to as the echelon of supply nodes, denoted by B =
{1,...,|B|}. Designation of the upstream echelon is a model-
ing choice left to the regulator and often determined by the
metadata available. For instance, supply nodes may be
national importers who procure from international sources,
or collections of international manufacturers grouped by
country of operation. This flexibility generalizes to many
low- and middle-income settings, as discussed in Section 7.

Under these definitions, each product passes through
exactly one supply node and one test node before collection
by a regulator for testing, but products often have passed
through other echelons before and after the supply node
prior to reaching the test node. SFP generation at a node
may stem from factors merely associated with that node and
not because of intrinsic conditions at that node; for instance,
an outlet may consistently source from an intermediary
injecting falsified products, or a manufacturer may often use
a transport service with poor adherence to proper storage
conditions. This article’s approach provides inference on
where in the supply chain to further investigate.

3.2. PMS data collection

For sample i, regulators collect the product from a test node
for testing with a binary response: y; =1 represents SFP
detection and y; =0 represents no SFP detection. We
assume collected products are taken uniformly from across
all products at the test node, i.e., there is no bias in the SFP
probability of the collected product. This assumption is rea-
sonable as collection occurs before testing, and regulators
usually attempt to collect products covertly. Multiple sam-
ples can be collected from each test node. The test node g;
in A associated with sample i is known at the point of col-
lection, as the regulator visits the test node to collect the
sample. There are two cases for available supply-chain infor-
mation regarding supply nodes:

o Tracked: The supply-chain path for each sample is
known, meaning sample i includes the supply-node label
b; of B. For example, the tracked case applies if the



supply node is identified on packaging or invoices for
samples.

e Untracked: Instead of knowing the specific supply node-
test node path for each sample, the vector of sourcing
probabilities from all supply nodes, Q,, is known for
each test node a. For example, the untracked case applies
if the packaging of samples does not have a supply-node
label, but the regulator has access to historical procure-
ment records for test nodes. Untracked supply-chain
information constitutes the minimum degree of informa-
tion required to integrate testing data and supply-chain
information towards forming inferences.

Some supply chains may feature both tracked and
untracked elements; however, we generally consider supply
chains that are wholly tracked or untracked, and discuss
supply chains featuring both information types in Section 7.

An illustrative example in Figure 1 depicts a tracked sup-
ply chain with three test nodes and two supply nodes. A
supply node b-test node a path, also called an (a,b) arc, is
the product route from supply node b of B to test node a of
A. Fraction labels indicate the number of positive tests over
the total tests. A regulator only inspecting aggregate values
at the test-node echelon may conclude that Test Nodes 1
and 2 are significant sources of SFP generation, given their
positivity rates. However, products at these nodes only test
positive when sourced from Supply Node 1. Half of the
tested products from Supply Node 1 are SFPs, whereas no
SEPs are associated with Supply Node 2. If the test nodes
were truly generating SFPs, a more even distribution of dis-
covered SFPs across supply-node paths would be expected.
It instead seems more reasonable that SFPs stem from
upstream factors associated with Supply Node 1. This
example illustrates the importance of supply-chain informa-
tion for determining SFP sources.

3.3. Sources of uncertainty

We describe three key sources of uncertainty when inferring
SFP sources using PMS. Fundamental unidentifiability refers
to the inability to conclude the origin of an SFP upon its

Supply Node 1

3
3 0
6 I
positive tests Test
total samples Nooob!
3
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detection. Testing accuracy refers to the ability of testing
tools to correctly detect SFPs. Untracked sampling refers to
the case where the supply node associated with each test is
known probabilistically.

3.3.1. Fundamental unidentifiability

There is an inherent inability to identify the sources of SFPs
when sampling only at test nodes and not at supply nodes:
it cannot be stated with certainty that SFP generation did or
did not occur upstream in the supply chain.

3.3.2. Testing accuracy

Testing tools have an inherent sensitivity and specificity.
Sensitivity refers to the probability of a positive test result
given that the tested product is indeed an SFP, and specifi-
city refers to the probability of a negative test result given
that the tested product is not an SFP. Kovacs et al. (2014)
identified 42 SFP testing technologies and noted sensitivity
in the range of 78-100% and specificity in the range of
88-100%, although metrics for some technologies were not
reported and testing accuracy can depend on the type of
pharmaceutical being tested. The detected amount of SFPs
may increase or decrease from the amount that would be
detected with perfectly accurate testing tools, depending on
the testing accuracy as well as the SFP rates in the supply
chain.

3.3.3. Untracked samples

In the untracked setting, the supply node associated with a
sample is unknown. It is assumed instead that for each test
node, a distribution across supply nodes can be constructed
through historical procurement data or other means.
Modeling outlets as test nodes and intermediary distributors
as supply nodes, for example, testing data can be integrated
with outlet records of previous distributor transactions to
form untracked PMS data. The likelihood that test node a
in A procures from supply node b in B is called the sourc-
ing probability of test node a from supply node b, and is

captured by element Q,; in matrix Q € [0,1]|A|X‘B‘. Note Q

Upstream sourcing

Supply Node 2

Distribution

0

13
Test Test

Node 2 Node 3
6 0
18 15

Figure 1. Extending analysis of PMS test results by one additional upstream echelon. “Upstream sourcing” and “Distribution” signify supply-chain locations for

which information is not considered.
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resembles the path-link incidence matrices reviewed in
Section 2.2. The row vector corresponding to the set of
sourcing probabilities for test node a is Q,. Thus in the
untracked case, the sourcing probability vector Q, is known
for each test node a.

4, Problems in SFP inference

This section defines likelihood functions for PMS data and
establishes that tracked and untracked supply chains are
unidentifiable.

4.1. Tracked and untracked likelihoods

Binary data yi,...,y, are obtained for samples from test
nodes in 4 that are tested with a device with sensitivity s €
[0,1] and specificity r € [0, 1]. Each sample is collected uni-
formly from all products at the test node, and products at
test nodes are sourced from supply nodes according to
sourcing-probability matrix Q. Conditional on test node
random variable A; = a; for sample i, b; is a realization of
random variable B; which is independently sampled accord-
ing to the probabilities in row Q,. The overall set of testing
data is represented by d = (y,a,b) in the tracked case,
where y = {y1,...y,} is the set of testing results, a =
{a1,...,a,} is the set of test-node labels, and b = {by,...,b,}
is the set of supply-node labels. For the untracked case, d =

(»a Q).
(15 11.47) € (O 1)‘“4‘ and supply-node SFP rates are stored

in vector 0= (0;,....03) € (0, 1)‘6‘. A node’s SFP rate
denotes a constant proportion of products traversing the
node that become SFP. As nodes signify real-world loca-
tions, SFP rates of exactly zero or one are not considered: a
rate of zero implies a node incapable of error, whereas a
rate of one implies a node only distributing SFPs.

In multi-echelon supply chains, SFPs can be generated at
any echelon. In our modeling of two connected echelons,
when we say that products become SFP at either the test
node or the supply node, we mean that SFP generation
occurs at the test node, at an upstream location associated
with the supply node, or at the supply node itself.

The consolidated SFP rate of a sample denotes the prob-
ability that the sample is an SFP when accounting for SFP
rates at test nodes as well as supply nodes. It suffices to con-
sider only the test node-supply node paths where test nodes
have a non-zero probability of sourcing from the supply
node. Let £C Ax B be the set of (a,b) arcs where
Q. > 0. The consolidated SFP rate of a tracked sample col-
lected from an (a,b) arc in £ is

2, (1,0) = n, + (1 —1n,)0. (1)

The first term of (1) corresponds to the test-node SFP
rate and the second term corresponds to the supply-node
SFP rate, adjusted for the test-node rate. This adjustment is
necessary as an SFP cannot generate at both the test node
and the supply node; we assume once a pharmaceutical is
substandard or falsified, additional poor supply-chain

Test-node SFP rates are stored in vector 5 =

conditions do not make the pharmaceutical less suited for
consumption. Further, an SFP cannot be recovered into a
non-SFP. The consolidated SFP rate of an untracked sample
collected from test node a in A is

2(0,0) =Y Quzy(1.0) = o+ (1=14) > Qul -
beB beB
)

(Note > ,.5Qu =1 for all a.) In the untracked case,
each supply node-test node path is weighted according to
the sourcing probabilities.

The tracked and untracked contexts differ in the supply-
chain information available, yet the expressions of SFP prob-
ability are similar. To simplify notation we use supply-chain
trace k of K to denote the supply-chain information avail-
able at sample collection: k of I is an (a,b) arc in the
tracked case and test node a in the untracked case, where K
represents £ or A, respectively. The summary of the under-
lying SFP generation accordingly lies with vector z*(#, 0) of
length |K|, where element z;(n,0) of z*(n,0) refers to
z, (11, 0) for some (a,b) arc in the tracked case and z}(1, 0)
for some test node a in the untracked case. Similarly, supply-
chain trace k; associated with sample i refers to either arc
(a;, b;) in the tracked case or a; in the untracked case, and
random variable K; is (A;, B;) in the tracked case or A; in the
untracked case.

Given sensitivity s and specificity r, the probability of a
positive SFP  test is z(n,0) =sz5(n,0) + (1 —r)(1 —
Z;(n,0)) for each k of K. The random variable Y; of test i
with supply-chain trace K; =k; is one with probability
z,(n,0) and zero otherwise. The log-likelihood of (1,0)
under data d is

n

U(n,01d) =" [log[zi, (1, 0)]y: + log[1 — 2, (n, 0)] (1 — y1)]..

i=1
©)
The log-likelihood has a clearer form when summed over
supply-chain traces in K. Let Z, = {i € {1,...,n} : k; =k}
be the tests corresponding to k. The number of results for k
is nx = |Zk|, with mean positive test rate of z; = nikzielk Yi.
The log-likelihood in (3) is equivalently expressed using 7y
and zj as

¢(n, 01d) = > ni[log[z(n, 0))zx + log[1 — z(n, 0)](1 — Zx)].
kek

(4)

Thus, the z; and ny values across all k in K are sufficient
statistics for the supply-chain traces of the data, as the likeli-
hood can be expressed using these values without other data
elements. As a result, the likelihood can be computed using
a summary of PMS testing results. A usable PMS summary
requires the number of positives and negatives associated
with each supply-chain trace.

4.2. Unidentifiability

The tracked and untracked likelihoods are unidentifiable,
ie.,, for any set of SFP rates (1, ) there exists another set of



SFP rates (,0/) such that £(y,0'|d) = ((n,0|d).
Unidentifiability means data collection cannot uniquely
reveal SFP rates. Theorems 1 and 2 state that unidentifiabil-
ity is assured in the tracked and untracked cases for any set
of testing data. Proofs are in Appendix A.

Theorem 1 (Tracked unidentifiability).
Let (17,0) be any set of SFP rates and let d = (y,a,b) be a
set of tracked data. There exists (1',0') # (n,0) such that

(', 0'ld) = £(n,0|d).

Theorem 2 (Untracked unidentifiability).

Let (n,0) be any set of SFP rates and let d = (y,a,Q) be
a set of untracked data. There exists (',0') # (1,0) such
that

(', 0'|d) = £(n, 0)d).

Establishing unidentifiability in supply-chain PMS is a
core contribution. We show unidentifiability exists when
only considering two echelons of a supply chain; a corollary
is that consideration of additional echelons also implies
unidentifiability challenges. Thus, SFP rates cannot be recov-
ered through PMS as currently practiced. Unidentifiability
indicates a need for approaches that distinguish among mul-
tiple explanations for a set of data; Section 5 presents such
an approach.

5. SFP-inference resolution

Theorems 1 and 2 show that identification of unique SFP
rates explaining PMS data is not possible; yet, unidentifiabil-
ity does not eliminate prospects for inferring SFP sources.
This section presents a Bayesian approach to statistical infer-
ence of SFP rates that mitigates identifiability issues.

5.1. Bayesian mitigation of unidentifiability

Bayesian analysis combines observations and prior beliefs to
infer unknowns. Placing priors on (#,0) encodes beliefs
about SFP generation that distinguish candidate SFP rates
with similar likelihoods. For example, Tebaldi and West
(1998) employed a Bayesian approach to alleviate identifi-
ability issues for pair-wise traffic counts for nodes in a net-
work. Given different vectors of SFP rates with similar
likelihoods under a set of PMS data and supply-chain infor-
mation, prior expectations of the level and dispersal of SFPs
across the supply chain help discern plausible vectors of SFP
rates.

Let p(n,0) be a prior density on (1,0). Multiplying
p(n,0) with the likelihood under data d, exp (¢(n, 0|d)), is
then proportional to the posterior, i.e.,

p(n, 0]d) o< exp (£(n, 0]d))p(n, 0) (5)

Posterior concentration at a region of high SFP rates for
a particular node means that available information indicate
that node as a credible SFP source. Posterior concentration
at a region of low SFP rates indicates that node is not a
credible SFP source. Non-concentration of the posterior
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means data are insufficient to overcome sources of
uncertainty.

Sections 5.4 and 5.5 discuss prior formation and generat-
ing suitable posterior draws. Sections 5.2 and 5.3 first illus-

trate the application of inference in a PMS context.

5.2. Inference example

We revisit the example from Section 3.2 from a Bayesian
perspective. Suppose one believes that SFP rates at nodes are
independent and, although nodes could exhibit SFP rates
near 40%, most nodes will exhibit SFP rates below 20%. A
prior that meets this criterion on test-node SFP rates n =
(11, 1, 113) and supply-node SFP rates 0 = (0,,0,) is

e {-3lan+ 37} T o {- i 37}

be{1,2}

pn0) o ]

ae{1,2,3}
where g(x) = log (*;) is the logit function. Using the logit
transformation moves analysis to the real number line:
manipulation of the posterior on the real number line avoids
computational issues that arise as SFP rates approach zero
or one.

Combining the prior with the likelihood under the testing
data from Figure 1 yields the posterior. Figure 2 depicts the
5% and 95% quantiles for 1,000 posterior draws of (1,0).
The quantiles for the prior are included for reference. A
node associated with sufficiently high 5% quantiles indicates
a significant posterior probability that SFP generation is
linked with that node. For instance, Supply Node 1 likely
constitutes a high SFP risk. However, although 9 of 20 tests
associated with Supply Node 1 are SFPs (45%), the prior
and the chance that the test nodes are responsible for some
SFP generation mean that most weight for the interval for
Supply Node 1 falls below the raw percentage of 45%. A
high 95% quantile means that sufficient data may show the
associated node to be a large driver of SFPs. For example,
Test Node 2 has a 95% quantile near 30%: more data

Node 90% Intervals

50% 1 o

Interval value
w
(=]
3

10 4

I >
0% ~— T . T : T
- o - e ol =
o ) o o %) =]
= =] o o = "
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& = = = &
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Node Name

Figure 2. 5% and 95% quantiles for the posterior of example testing data in
Figure 1.
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collection may plausibly show that Test Node 2 is associated
with a higher SFP rate than Supply Node 1.

5.3. Interpreting posterior samples

Draws from the posterior are used to build credible regions for
the values of (1, 0) that generated the data d. Credible regions
signify a space of SFP rates with (1 — &) posterior probability,
for some desired o level. For example, the 5% and 95% quan-
tiles are used to build a 90% interval. Wide intervals for particu-
lar nodes indicate that data are insufficient to draw conclusions.
Drivers of inconclusive intervals include low sample size and the
uncertainty sources of Section 3.3.

Interval interpretation should consider at least three catego-
ries for the application of regulatory resources. Similar to the
thresholds of the lot-quality assurance sampling approach of
Newton et al. (2009) categorization of nodes along the lines of
“act,” “do not act,” and “gather more data before deciding,”
a.llows regulators to translate PMS results into the allocation of
intervention resources or further PMS activities. Categorization
aids efficient use of limited resources under uncertainty.

We suggest using acceptance thresholds to build categories
from posterior intervals. The first category includes nodes with
interval lower bounds above some lower threshold I, where I sig-
nifies an SFP rate that triggers the use of further intervention
resources. Data are sufficient to suggest that the SFP rates asso-
ciated with members of this first category are as high as [ If the
example in Figure 2 uses I = 5%, then Supply Node 1 is cate-
gorized as a high SFP risk. Designation of I by regulators should
consider the availability of intervention resources as well as what
SFP rates are unacceptable in their domains. For instance,
Newton et al. (2009) noted WHO guidelines for malaria pro-
grams that suggest a change in policy once treatment failure
exceeds 10%; similar treatment-specific rates may guide designa-
tion of / for different pharmaceuticals.

The second category includes nodes with interval lower
bounds below I, but upper bounds above an upper threshold u.
SEP rates for members of this category are potentially as high as
u, but more data are required to assert that SFP rates are not
below [ Thus, targeting further PMS sampling of these nodes
may be recommended. If the example in Figure 2 uses | = 5%
and u =20%, then Test Node 2 is a moderate SFP risk.
Designation of u by regulators should consider what additional
resources can be expended in investigating nodes with the
potential for high SFP rates: setting u too low means potentially
categorizing all nodes as moderate SFP risks.

The third category captures nodes associated with inter-
vals that have upper bounds below u and lower bounds
below I Nodes in this category are least likely to pose sig-
nificant SFP risk.

5.4. Prior formation

A variety of prior forms can be used with (5). Effective pri-
ors encode regulator expectations of SFP generation with
respect to size, variability, and dispersal pattern. Priors are
beneficial for mitigating unidentifiability when informed by
reliable regulatory domain knowledge.

Applications including the modeling of movie sales and
interventions against infections have employed density trans-
formations to enable application-specific analysis (Ainslie,
et al., 2005; Hui et al., 2020). Similarly, an effective strategy
here is developing priors on the real number line and trans-
forming the resulting posterior SFP rates to the (0, 1) inter-
val for analysis. Priors defined on the real number line also
favorably correspond with the SFP rates indicated by studies
in the literature: the resulting distributions have long tails,
which aligns with the heterogeneity of SFP generation noted
by WHO (2017b).

Consider an independent normal prior, expressed as

I}

s e 2P

acA

Parameter y signifies a prior belief of the standard SFP
rate at test nodes and supply nodes, and v corresponds to
SFP-rate spread. The standard parameter centers expecta-
tions of SFP prevalence throughout the supply chain. The
spread parameter reflects the anticipated variety across rates.
For example, a normal prior on the real number line with
y = —2 and v = 1 produces a distribution in the (0, 1) space
with respective 5%, 50% and 95% quantiles of 3%, 12%
and 41%.

For low 7y values, the independence within each prior
reflects an assumption that it is unlikely that many SFP
sources exist: one node carrying an SFP rate above y has
higher prior likelihood than many nodes carrying such SFP
rates. Using priors with lower spread parameters requires
more testing data to pull the posterior probability towards
regions favored by the likelihood.

Consider an independent Laplace prior, which carries a
similar shape to the normal:

ocHexp{ \gnu) vl}HeXp{ Ig(Ob)—vl}.

acA beB

For average and spread similar to the normal, an inde-
pendent Laplace concentrates nearer the average and has
heavier tails. A Laplace prior reflects an anticipation that
some nodes will have SFP rates far from the average; thus
the Laplace may better suit consideration of falsification,
where falsifiers exploit available, yet limited, entry points
(WHO, 2017b). A normal prior reflects an expectation that
rates will vary nearer the average; thus the normal may bet-
ter suit substandardization: production, transportation and
storage entail similar activities conducted by different actors.

5.5. Markov chain Monte Carlo sampling

To build the inference described in Section 5.3, samples
from the posterior are needed. The posterior in (5) does not
exhibit natural sampling, but tools such as Markov chain
Monte Carlo (MCMC) allow sampling from general posteri-
ors. Our study uses the No-U-Turn Sampler (NUTS) sam-
pler of Hoffman and Gelman (2014). This sampler uses
posterior gradient information; Supplementary Material I
contains applicable posterior derivatives. The NUTS sampler



requires a number of samples to warm start, as well as a
parameter, 0, that governs how the algorithm proposes sam-
ples. Our analysis uses ¢ of 0.4, which falls within the region
suggested by Hoffman and Gelman (2014) The analysis then
generates 5,000 warm-start draws and 1,000 draws for infer-
ence; more inference draws could be used, but 1,000 draws
appear sufficient for analysis (see Supplemental Material II).
Computation time is not a major restriction for analyzing
data common to many low- and middle-income settings.
Supplementary Material II describes drivers of computation
time. In general, more nodes increases the dimensionality of
(n,0) and slows down sampling. However, computation
time for a system with 100 nodes is seconds, and supply
chains in most cases will not feature more than a few hun-
dred nodes. Our code is publicly available on Github as
Python package logistigate (Wickett et al., 2021).

6. Case study

Several national regulatory agencies in low- and middle-
income countries provide data to United States
Pharmacopeia’s MQDB to strengthen global regulatory cap-
acity. We use a PMS data set from MQDB to show how
incorporating upstream information can add to the under-
standing of SFP sources. The case study demonstrates
unidentifiability in real PMS data and shows the value of
our Bayesian approach over current practice.

6.1. Case-study setting

The data consist of products collected and tested by a coun-
try’s pharmaceutical regulatory agency in 2010. The data are
anonymized to protect the country’s sources and mask the
outlets and manufacturers involved. A data record denotes
purchasing and testing information for a single form of a
pharmaceutical product as sold to consumers, e.g., a box of
12 tablets. A test result is either “Pass,” meaning compliance
with registration specification, or “Fail,” meaning non-com-
pliance. Each record is associated with multiple geographic
divisions. We consider the “District” and “Manufacturer”
levels of the supply chain, where District refers to the
second-largest geographic sub-division of the country. We
model Manufacturers as supply nodes and Districts as test
nodes.

The case-study data feature 25 Manufacturers and 23
Districts in 406 PMS records. These data contain 73 positive
tests, or an 18% SFP rate. An 18% SFP rate suggests signifi-
cant quality issues for the areas sampled by regulators; how-
ever, examination of the testing results by only supply-node
or test-node label reveals difficulties in defining SFP sources.
District 8 features seven SFPs of 12 associated tests (58%),
District 7 features 24 SFPs of 81 tests (30%), and District 16
features eight SFPs of 44 tests (18%). A natural regulatory
response would be to dedicate intervention resources to
these districts with SFP rates exceeding the national average
of 18%. At the same time, 8 of 21 samples from
Manufacturer 8 are SFPs (38%), 28 of 92 samples from
Manufacturer 5 are SFPs (30%), and 5 of 31 samples from
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Manufacturer 3 are SFPs (16%). Examining data by manu-
facturer, a justifiable regulatory response would be to dedi-
cate resources to investigating supply-chain
associated with these manufacturers.

factors

6.2. Limitations of current methods

Lot-quality assurance described in Newton et al. (2009) uses
standard 90% confidence intervals for proportions to deter-
mine if SFP prevalence for a node exceeds quality thresh-
olds, where the 90% interval for a given proportion z and
number of samples n; is given as z2*+1.645/z(1 —z)/n;.
The proportion z can relate to either a test node or a supply
node. For instance, the standard interval for Manufacturer
13 is (7%,22%) and the standard interval for District 5 is
(5%, 25%). The intervals for six districts and eight manufac-
turers exceed a threshold of I=5%. A typical regulator
response would be to allocate investigative and intervention
resources to these locations.

Additionally, a common requirement for the standard
interval is n;z > 5 and n;(1 — z) > 5 (Mann, 2010). In this
data set, the requirement is satisfied by only 5 of 25 manu-
facturers and 6 of 23 districts. Obtaining sufficient tests for
all test and supply nodes may be infeasible in many
resource-limited settings, as in our experiences at USP: regu-
lators must often allocate resources using insufficient num-
bers of tests. In contrast, our method does not have a
minimum to complete inference; Manufacturer 2, for
example, is featured on only one test.

6.3. Manufacturer-district analysis

The expectations grounding the prior in the Manufacturer-
District analysis follows past work in PMS. Previous studies,
such as those reviewed in Ozawa et al. (2018), typically
reported aggregated rates across countries, geographic
regions, or sub-divisions of the pharmaceutical market.
Research shows that although SFPs are a widespread global
problem, SFP generation is heterogeneous: much of the sup-
ply chain exhibits low rates while many SFPs derive from a
few supply-chain locations (UNICRI, 2012; WHO, 2017b).
Thus the prior for analysis employs an average SFP rate
anchored to what previous studies indicate and a spread suf-
ficiently high to capture anticipated heterogeneity. An inde-
pendent Laplace prior with average y = —2.5 and spread
parameter v = 1.3 produces an average of 15%, a median of
8%, and a 90% interval of [0.4%, 62%], meaning the prior
carries a long right tail covering high SFP-rate regions. In
fact, 70% of prior weight falls below an SFP rate of 14%.
The sensitivity analysis in Supplementary Material III indi-
cates that prior choice does not have an instrumental effect
on interval width; sufficient data seem to counterbalance the
prior designation.

The Manufacturer-District analysis assumes perfect testing
sensitivity and specificity to enable easier isolation of the
effects of fundamental unidentifiability and untracked set-
tings. As expected, sensitivity analysis shows that testing-tool
uncertainty generally has an inflationary effect on inference;
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Figure 3. Test-node and supply-node 90% intervals for MCMC samples generated using case-study data in the tracked setting. Intervals with lower bounds above
| = 5% are featured in solid lines on the left, intervals with lower bounds below / and upper bounds above u = 30% are featured in dashed lines in the middle,

and all other intervals are featured in dotted lines on the right.

this inflationary effect is larger for nodes for which there are
less data.

Figures 3 and 4 show 90% intervals for SFP rates corre-
sponding to Districts and Manufacturers, respectively, under
both tracked and untracked settings. (Figure 4 is in
Appendix B.) The figures use the classification scheme
described in Section 5.3 with I =5% and u = 30%. First,
consider the tracked setting. Our method’s credible intervals
are comparable in width with the standard intervals
described in Section 6.2; however, as SFP rates are not con-
sidered across the supply chain, the standard intervals are
shifted higher by 10 to 30%. Let the raw SFP rate of a given
node be the SFP rate of all tests associated with that node,
despite the upstream or downstream supply-chain factors
causing SFPs. Raw rates only apply to supply nodes in the
tracked case, as the supply node for each test is unknown in
the untracked case. The raw SFP rates for samples from
Manufacturers 10, 8, and 5 are 57%, 38%, and 34%,

respectively, and the raw rates associated with District 8 and
7 are respectively 58% and 30%. The raw SFP rates sit near
the interval upper bounds for each Manufacturer and
District; the interval upper bound for Manufacturer 5, for
instance, is 38%. The intervals skew lower than the raw rates
for all nodes. The posterior constituting these intervals is
accounting for a prior with a low average, in addition to the
possibility that SFPs are generated at either test nodes or
supply nodes. In addition, our method reflects uncertainty
from low levels of data. For instance, Manufacturer 2 has
only one associated (positive) test: the associated interval
spans most of (0%, 100%).

Direct consideration of supply-chain connections and
associated testing data lends credence to the inferences illus-
trated in the figures. All seven SFPs associated with District
8 are tied to Manufacturers with at least 15% raw SFP rates:
Manufacturers 3, 5, 8, 10 and 24. The data also feature four
non-SFPs for tests from the District 8-Manufacturer 13 arc,



which does not support District 8 as a major SFP source.
District 7, on the other hand, is associated with 19 tests fea-
turing Manufacturer 13, where eight of these tests are SFPs
(42%). The other 43 tests involving Manufacturer 13 feature
only one SFP; thus, District 7 is likely a significant SFP
source. The standard interval for Manufacturer 13 is
(7%, 22%), while our method’s interval for Manufacturer 13
is (0.1%, 9%). A regulator using the standard interval under
I =5% would find Manufacturer 13 to be associated with
significant SFP sources. Thus, we observe how the posterior
addresses the challenge of fundamental unidentifiability by
integrating testing data, supply-chain information, and prior
expectations to create credible intervals that regulators can
use to improve policy decisions.

The analysis also illustrates the importance of supply-chain
connections for forming inferences in the tracked setting:
without interconnected nodes, fundamental unidentifiability
renders too many SFP scenarios as plausible. Sourcing patterns
limit the number of scenarios that can credibly explain the
data. The interval associated with District 5 is an example of
the importance of sourcing patterns. Although testing at
District 5 yields five SFPs in 34 samples (15%), District 5 has
a narrower interval than the interval for District 17, which
yields no SFPs in nine samples. Inspection of the manufac-
turers associated with District 5 samples reveals that all five
SEPs are sourced from Manufacturer 5. The standard interval
for District 5 is (5%,25%), exceeding the lower threshold of
I = 5%, while our method’s credible interval for District 5 is
(2%, 9%). Instead of suspecting SFP generation at District 5,
supply-chain information allows us to infer the opposite:
District 5 is less likely an SFP source than another test node,
District 17, with no detected SFPs. A regulator using standard
intervals may invest intervention resources in District 5,
whereas incorporating supply-chain information avoids this
investment. Thus, the inferences resulting from our approach
can help regulators determine if data are sufficient to invest
limited regulatory resources.

For the wuntracked setting, the sourcing-probability
matrix, Q, is used as the supply-chain trace instead of the
supply-node labels. The estimated element of Q correspond-
ing to District a and Manufacturer b is formed by dividing
the number of observed samples from arc (a,b) by the total
number of samples collected from test node a. The resulting
matrix is sparse: test nodes only source from a subset of
supply nodes. Comparing the tracked and untracked inter-
vals, as shown in Figures 3 and 4, reveals the value of
tracked over untracked information. The intervals associated
with test nodes remain nearly identical, whereas the intervals
associated with supply nodes change considerably. This
effect is reasonable: we know test nodes exactly and supply
nodes only probabilistically. The untracked supply-node
intervals still indicate that upstream supply-chain factors are
associated with SFP generation, as shown by the many
Manufacturers classified as moderate risks. However, infer-
ring the most critical upstream direction from many options
is unclear. Untracked analysis for this case study thus carries
Type II risk, where potential upstream sources of SFP are
missed.
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In the untracked case, the structure of Q is an important
factor in the ability to overcome unidentifiability. In particu-
lar, untracked inference is hampered when test nodes pos-
sess similar sourcing patterns. For instance, 18 of 23
Districts had more than 10% of associated tests tied to
Manufacturer 5. SFPs associated with upstream supply-chain
factors become difficult to infer. Even if it is known that
upstream factors are principal SFP drivers, SFPs can just as
likely stem from a supply node with high market share and
a low SFP rate as from a supply node with low market share
and a high SFP rate. Accordingly, the ideal sourcing envir-
onment for successful untracked inference is an environ-
ment where each test node sources from a small subset of
supply nodes, with only a few shared supply nodes among
any subset of test nodes.

Another challenge to untracked inference is sufficiently
estimating the sourcing structure from past data. Estimating
Q from procurement or sourcing records carries variance
due to the sampling variance of the records. Supplementary
Material III examines inference sensitivity to the estimation
of Q using bootstrap sampling; use of different Q estimates
for this case study impacts the resulting inference for supply
nodes but not for test nodes. In sum, untracked settings
carry challenges for inferring upstream SFP sources, particu-
larly if information for estimating Q is too limited.

7. Conclusion and discussion

Regulators in low- and middle-income countries can benefit
from new tools and methods to maximize the power of sur-
veillance activities. This article characterizes the challenge of
identifying SFP sources under PMS and demonstrates how
the analytical capacity of PMS can be expanded by consider-
ation of supply-chain information. Our case study illustrates
how a Bayesian approach can be combined with domain
expertise through well-chosen priors to strengthen identifi-
cation of SFP sources. PMS data, including upstream sup-
ply-chain information, are already collected routinely; this
article provides a means of extracting more utility from this
regular activity.

In addition to limited budgets, the WHO has identified
poor international coordination as a significant challenge for
regulators in low- and middle-income countries (WHO,
2017b). Placing PMS in a supply-chain context opens ave-
nues for collaboration among regulators in different coun-
tries with overlapping supply chains. As scanning and
tracking technology becomes more widely available, the col-
lection of additional supply-chain information presents
more opportunities for identifying quality issues. Our ana-
lysis shows the value of additional supply-chain information.

7.1. Implementation guidelines

Implementation of the approach will be accompanied by
challenges. In addition to low overall numbers of tests, sup-
ply-chain information in current PMS collection records can
be limited, and this information is crucial to identifying sup-
ply chain-driven problems. Standard PMS may benefit from
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supplementing the data-collection checklist proposed by
Newton ef al. (2009), MEDQUARG, with key supply-chain
information such as importers, warehouses, and intermedia-
ries. Furthermore, proper accounting of the uncertainty
associated with a PMS test requires known sensitivity and
specificity with respect to the testing tool. Testing-tool
accuracy can vary by therapeutic indication, e.g., antimalar-
ial, or by technician experience, and thus sensitivity and spe-
cificity should be recorded for each test where possible. In
particular, false positives in low-SFP environments have the
potential to confuse analysis and lead to unproductive use of
resources.

The adaptable designation of nodes as individual loca-
tions or aggregates of such locations, as well as the designa-
tion of supply nodes as locations in any upstream echelon,
are features that allow generalization of our approach to
many low- and middle-income countries. The supply-chain
information available to regulators is often constrained; the
only requirements of our approach are standard test node
labels and information, even if partial, about some upstream
echelon. Additionally, the variety in SFP causes requires
adaptable methods. For instance, economic conditions in
one region may encourage a higher prevalence of falsified
products in that region, or choices by one plant manager
may result in a higher rate of substandard products. Our
approach allows for different analyses using individual sup-
ply-chain locations or aggregates of such locations to match
goals. The value of this adaptability is illustrated in our case
study, which infers notable aggregate District SFP rates as
well as SFP rates associated with individual Manufacturers.

Implementation may require customized deployments in
different settings. For instance, some settings may feature
tracked, as well as untracked, supply-chain information; for
example, scanning records may be available at every trans-
feral point for public-sector products, whereas only procure-
ment records are available for private-sector or non-profit,
non-governmental products. In this case, each test i has an
associated trace k; that is either tracked or untracked, and
the vector of sourcing probabilities for untracked samples is
available. Thus, the log-likelihood of (4),

n

((n,0/d) = [log[zi, (1, 0)]y: + log[1 — 2, (0, 0)] (1 — y1)],

i=1
can be constructed through the corresponding k; of each
test, and inference can be conducted as described in Section
5. Prior construction is another fundamental element of our
approach involving some ambiguity. Section 6.3 forms a
prior using studies from the global literature on SFPs; using
the global to characterize the local may be inadvisable in
some environments. Section 5 suggests independent priors
to capture the notion that SFP generation at one node does
not affect generation at other nodes. However, it is feasible
that changes in regulatory environments might stimulate
correlated SFP behavior across nodes: Eban (2019) discussed
“two-tracked” manufacturers with different supply lines for
high-income and low-income countries. Improved prior for-
mation that captures local features requires an interaction
between practitioners and statisticians.

In this work, the distinction between substandard and fal-
sified is not instrumental. “SFP” is broadly used to refer to
products unsuitable for consumption. We consider an envir-
onment where SFPs frequently occur, test results are cap-
tured by a binary variable, and the aim is to better
understand SFP sources. Although the WHO includes
unregistered products in its definition of poor quality
(WHO, 2018), our study concentrates on substandard and
falsified products—the principal focus of the literature on
poor-quality medical products. Substandard and falsified
products generally have different generation mechanisms
(WHO, 2017b); however, both substandard and falsified
products are problems rooted in supply-chain conditions
(Pisani et al., 2019). Usual PMS implementation seeks detec-
tion of all causes of poor quality simultaneously, and often
does not require different diagnostics for each cause.
Regulators can select the criteria with which tests are
marked as positive or negative. Depending on objectives and
detection tools, one may consider only substandard prod-
ucts, only falsified products, all SFPs, or even unregistered
products.

The approach of this article only considers binary pass-—
fail measurements, consistent with data in MQDB. Due to
the affordability and flexibility of screening tests, PMS data
can consist largely of pass—fail results. Regulators can con-
duct a single screening test with minimal training for less
than a dollar per test, while running high-powered testing
requires reference standards, training, and technology cost-
ing upwards of hundreds of thousands of dollars (Kovacs
et al, 2014; Chen et al, 2021). Further, pharmaceuticals
have different stability profiles. Products may fail testing for
any quality attribute, such as dissolution characteristics or
impurity prevalence; however, proportions of expected
Active Pharmaceutical Ingredients, or API, are the most
widely measured. API content can be measured through
common non-laboratory methods and provide important
information regarding SFP causes (WHO, 2017b). For
instance, large discrepancies with the declared content often
indicate falsified products. A testing failure due to detected
API content that is 4% outside the acceptable range implies
different causes than a failure with detected API content
that is 70% below the acceptable range. The first failure is
generally associated with substandard products, whereas the
second failure is expected with falsified products. Keeping
with the binary response variable, falsified and substandard
products could be categorized using different API thresh-
olds. However, full analysis of API requires modeling the
pharmaceutical-degradation process and integrating stability
behavior with supply-chain information. Moving to an infer-
ence model that treats API content as a continuous response
variable would be a valuable line of future research.

7.2. Broader objectives

This method can assist in the selection of testing method-
ology—assessing, for example, if it is better to run 1,000
tests with a spectrometer or 10,000 tests with thin-layer
chromotography. The consideration of costs versus accuracy



within an inferential context could be leveraged to explore
scenarios where an inexpensive, less accurate testing tool is
preferential to an expensive, highly accurate testing tool, as
explored in Chen et al. (2021).

The method can also inform the collection of additional
samples. If the interval for a particular test node is suffi-
ciently narrow, allocating samples to different test nodes
may be recommended. Alternatively, if more data are
desired regarding a particular supply node, sampling from a
test node with a narrow interval may be sensible if the sup-
ply node is often sourced by the test node. Integration of
statistical methods with regulatory insights and objectives
can inform an adaptive sampling framework that feeds test-
ing results into sample allocation decisions. Sequential ana-
lysis, which determines stopping rules for when data
sufficient for regulator objectives have been collected, and
Bayesian experiment design, which seeks to maximize the
inference utility through sampling choices, may be valuable
avenues. An adaptive sampling framework may also forgo
the assumption that elements such as (1,0) or Q are con-
stant, and signal when these elements have significantly
shifted. Understanding how PMS data may be analyzed is a
crucial step towards using available supply-chain informa-
tion to guide the choice of sampling locations.

Additional supply-chain echelons can be integrated into
the log-likelihood if supply-chain information from multiple
echelons is available. Consider a tracked case where each
test bears a label for a node from an additional echelon of
distributor nodes sitting between supply nodes and test
nodes. Let C be the set of distributor nodes with corre-
sponding SFP rates { = ({;,...,{ic)). The consolidated SFP
rate of a test from a supply node b-distributor node c-test
node a path is then

Z;cb(n’ C’ 0) =1, + (1 - Ua)zﬁb(i) 9) . (6)

Thus, the log-likelihood of (4) can be constructed by
using trace k; = (a;,¢;, b;) for each test i. The consolidated
SFP rate in the untracked case can be similarly formed.
Although tests with more than two labels are not explored
in this article, magnified unidentifiability issues should be
anticipated when considering more than two echelons, as
additional SFP rates are being inferred without additional
testing data. In a context where testing data are available
from multiple echelons, future work can ascertain the condi-
tions for identifiability or unidentifiability of SFP rates.

An additional managerial implication concerns the pooling
of quality-assurance resources internationally. The global nature
of pharmaceutical supply chains means SFPs may generate
between manufacture and domestic introduction. Integrating
information across borders provides the possibility for studying
complex, multi-tiered supply chains that feature many echelons
of interconnected nodes. Two countries with limited regulatory
resources can expand their inferential power by sharing testing
data and supply-chain information. Expanding the scope of our
approach may also entail an improved modeling of manufactur-
ing and black-market mechanisms, perhaps using insights from
work such as Pisani et al. (2019). Information such as economic
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indicators may be incorporated into prior construction to better
anticipate SFP generation.
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Appendices to Inferring sources of substandard and falsified products in pharmaceutical supply chains by
Wickett, Plumlee, Smilowitz, Phanouvong and Pribluda

Appendix A. Proofs

Proof of Theorem 1. For original SFP rates (1,0) in the tracked setting, we form (i7',0') # (3, 0) with an initial adjustment of the SFP rate at
one test node by some e. We use the original rate at this test node and ¢ to produce adjusted rates at all other nodes that result in (1, 0') with
the same likelihood as (7, 0).

Let (1, 0) be any set of SFP rates. Select test node @’ and € > 0. For each test node 4, set 17/, as

1- a
o= e, @)
and for each supply node b, set 6, as
0p(1 — 1y
0, - M ®)
—Na +e€

Inspection of (7) reveals that a sufficiently small € assures #/, > 0 for each a. For any ¢ > 0, inspection of (8) shows that 02, < 1, as SFP rates are
assumed to be between 0 and 1. Thus a sufficiently small € assures valid adjusted rates (17, 0') such that (i, 0') # (1,0).
Consider the tracked consolidated SFP rate under (1, #) for any (a,b) arc:

2y, (', 0") =, + (1 =)0,

l_nu l_na 95(1—}’[¢)+€
=n — 1— g
Mla 6lfna,Jr( ””Jrflfna,) 1—ny+e
1- - _ .
e I ((1 Ma)(1 = 1 +6)) 0p(1 —ny) + €
1—n, 1—n, 1—n,+e
0p(1 —1ny) —1,00(1 —ny) — +€—
I b(1 = 1) = Ma0(1 — 1) — €+ €N, + € —eng
1—n,
=1, + (1 - na)ob = ZZb(r]’O) .
Thus 2, (17, 0') = 2%, (n, 0) for all arcs and £(i, '|d) = £(n, 0|d). O

Proof of Theorem 2. For original SFP rates (1, 6) in a supply chain in the untracked setting, we form (if',6') # (1, 0) by adjusting the SFP rate
at one supply node by some e. The SFP rates at all test nodes are then adjusted by an amount proportional to the respective sourcing probability
of that supply node to produce (1/, ) with the same likelihood as (1, 6).

Let (1, 0) be any set of SFP rates. Select a supply node b and choose € > 0 such that Q,(6 — eye) > 0 for test node a, where Q,, is the row vec-
tor of sourcing probabilities in Q corresponding to a and e, is a vector of length || with a one at the bth element and a zero at all other ele-
ments. Such an € exists as all SFP-rates are non-zero. Set 0’ = 0 — e,e. For each a, set 1/, as

o na(l — Qae) + 6Qab
a = 1— Que + €Qah ' (9)

As the elements of each row Q, sum to one, it follows that Q,0 < 1. Additionally, since SFP rates and sourcing probabilities are all between
zero and one, it holds that 0 <#, <1 for any ¢ >0, and thus (¥, 0') are valid rates. As G/b =0, — e for some € >0, it follows

that (11, 0') # (n,0).
Consider the untracked consolidated SFP rate under (i, ¢') at any test node a:
(0 0) =y + (1=, ) Q0
_na(l_Qu9)+€Qab (1—%)(1—Qu9) _
B 1- an + €Qub * 1- an + €Qub Qu(g 656)
_ na(l — Que) + Qae — Qae(QaO - €Qah) - nu(QaG - EQab) + r’aQae(Que - 6Qah)
1- Qag + EQub
— Na + (1 — ’7u)Qa0 — Qae['/’a + (1 — ”u)QaH] + EQab[”a + (1 — nu)QaH]
1- Qae + EQub

=N+ (1= 1) Q0 = z;(n.0) -

Thus z5(1, 0') = z:(n, ) for all test nodes and £(y', 0'|d) = £(n, 0|d). O
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Appendix B. Figure for case study in the untracked setting
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Figure 4. Test-node and supply-node 90% intervals for MCMC samples generated using case-study data in the tracked setting. Intervals with lower bounds above

| = 5% are featured in solid lines on the left, intervals with lower bounds below / and upper bounds above u = 30% are featured in dashed lines in the middle,
and all other intervals are featured in dotted lines on the right.
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