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Abstract

We revisit the problem of constructing explicit pseudorandom generators that fool
with error ε degree-d polynomials in n variables over the field Fq, in the case of large q.
Previous constructions either have seed length ≥ 2d log q, and thus are only non-trivial
when d < log n, or else rely on a seminal reduction by Bogdanov (STOC 2005). This
reduction yields seed length not less than d4 log n + log q and requires fields of size
q ≥ d6/ε2; and explicit generators meeting such bounds are known.

Departing from Bogdanov’s reduction, we develop an algebraic analogue of the
Bogdanov-Viola paradigm (FOCS 2007, SICOMP 2010) of summing generators for
degree-one polynomials. Whereas previous analyses of the paradigm are restricted
to degree d < log n, we give a new analysis which handles large degrees. A main
new idea is to show that the construction preserves indecomposability of polynomials.
Apparently for the first time in the area, the proof uses invariant theory.

Our approach in particular yields several new pseudorandom generators. In partic-
ular, for large enough fields we obtain seed length O(d log n + log q) which is optimal
up to constant factors. We also construct generators for fields of size as small as O(d4).
Further reducing the field size requires a significant change in techniques: Most or all
generators for large-degree polynomials rely on Weil bounds; but such bounds are only
applicable when q > d4.

A pseudorandom generator for degree-d polynomials over the field Fq in n variables with error
ε is an explicit map P : S → Fnq that “ε-fools” any such polynomial g, that is, the distributions
g(U) and g(P (U)) have statistical distance (or error) at most ε. Here U denotes the uniform
distribution over the appropriate domain (Fnq in the first occurrence and S in the second).
The seed length of P is log2 |S|. The minimum possible seed length is Ω(d log(n/d) + log q+
log 1/ε), at least when d < n0.99 and q is prime [BV10, ABEK08]. Explicit constructions of
generators (i.e., upper bounds on the seed length) have been intensely studied for at least 30
years. Two main lines of work exist. The first applies to any field [NN93, AGHP92, LVW93,
Vio07, BV10, Lov09, Vio09]. The last paper gives seed length O(log n+ 2d log q/ε) · d which
is the best available for small fields such as F2. The corresponding generators are obtained
within the Bogdanov-Viola paradigm [BV10]: to fool polynomials of degree d, sum ` ≥ d
independent copies of generators for degree-one polynomials. While the parameters given by
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the analysis in [Vio09] are non-trivial only for d ≤ log n, it is unknown whether the paradigm
also works for larger degrees. If it did it would yield a breakthrough in complexity theory.
For example, it would imply generators for small constant-depth circuits with parity gates,
thanks to a well-known approximation due to Razborov [Raz87].

The second lines of works applies only to fields of large size q � d, but can handle much
larger degrees. Here Bogdanov’s seminal paper [Bog05] laid a paradigm that reduces con-
structing pseudorandom generators to constructing hitting-set generators for polynomials,
an easier task. Bogdanov’s paper was followed by a series of better and better constructions
of hitting-set generators by Lu [Lu12], Cohen and Ta-Shma [CT13], and Guruswami and
Xing [GX14]; see also [KS01] for earlier related work by Klivans and Spielman. Optimal
hitting-set constructions are now known; in combination with Bogdanov’s reduction they
yield the following pseudorandom generators.

Theorem 1. [[Bog05]+[GX14]+([Lu12] or [KS01])] There exist explicit pseudorandom gen-
erator that fool degree-d polynomials in n variables over Fq with seed length O(d4 log n+log q),
provided q ≥ O(d6/ε2).

The notation O(.) and Ω(.) denotes absolute constants. To connect with previous ex-
pressions for the seed length, note that adding a log 1/ε term to the seed length in Theorem
1 does not change it since q ≥ 1/ε.

The parameters in Theorem 1 are essentially the best one can achieve using the reduc-
tion in [Bog05], as we now explain. That reduction proceeds by showing that restricting a
polynomial g onto a “good” plane preserves its output distribution with high probability.
Once a good plane is found, one can then just pick a uniform element from the plane, which
only costs two field elements. To find a good plane, [Bog05] relies on results by Kaltofen
[Kal95] showing that (the coefficients of) planes that are bad for g are zeroes of a low-degree
polynomial Kg. One can then use a hitting set to find a good plane. A bottleneck in this
reduction is that the degree of Kg is at least d4. So one needs a hitting-set generator for
polynomials of degree at least d4, resulting in the d4 factor in the final seed length. The
same loss arises in earlier work dealing with polynomials over complex numbers, see [Kal95]
for discussion. Over fields of large characteristic the degree can be improved from O(d4) to
O(d2), which is known to be optimal, see [Lec07]. Thus, this approach does not yield seed
length less than d2 log n. For related reasons, the reduction in [Bog05] requires the field size
to be at least d6.

Constructions of pseudorandom generators in the two lines of research above have followed
different paradigms. By contrast, we shall prove that the [BV10] paradigm works also for
large-degree polynomials, at least as long as the field is large enough. This in particular
yields pseudorandom generators with improved parameters, stated next.

Theorem 2. There are explicit pseudorandom generators that fool with error ε degree-d
polynomials in n variables over Fq with seed length O(d ·m · log(dk + dm) + log q), provided
that q ≥ O(dk)4/ε2, for any integers m and k such that

(
m+k−2
m−1

)
≥ n.

In particular we can have either
(1) seed length O(d log(dn) + log q) provided that q ≥ O(d4n0.001)/ε2, or
(2) seed length O(d log n · log(d log n) + log q) provided that q ≥ O(d log n)4/ε2.
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Item (1) achieves optimal seed length up to constant factors, when d < n0.99. In particular
it improves on the Ω(d4 log n) seed lengths of previous constructions. The field size improves
on the Ω(d6/ε2) field size of previous constructions (Theorem 1) when say d > n0.001. This
item is obtained by suitably setting m = O(1) and k = nΩ(1).

Item (2) achieves optimal seed length up to the lower-order factor log(d log n). The field
size improves on previous constructions for d ≥ ω(log2 n). This item is obtained by setting
m = O(log n) and k = O(log n).

We also obtain pseudorandom generators with the same seed length as previous construc-
tions, but that only require q ≥ O(d4), see Theorem 21. This improves on the Ω(d6) field size
of previous constructions. Further reducing the field size will require a significant change in
techniques: Most or all generators for large-degree polynomials rely on Weil bounds, cf. Fact
15 or [Sch04, Page 92]; but such bounds are only applicable when q > d4.

Proof overview. A central concept in our proof, which was apparently not used before in
the pseudorandomness literature, is that of indecomposability.

Definition 3. A polynomial g over a field F is indecomposable if it cannot be written as
c ◦ h where c is a univariate polynomial of degree ≥ 2 and both c and h are over F.

Let g be a polynomial we aim to fool. We begin by writing g = c(h) where c is a univariate
polynomial of maximal degree. We observe that the polynomial h is indecomposable, for else
the degree of c is not maximal. A main technical contribution (discussed more below) is a
universal (i.e., independent from g) construction of polynomials f1, f2, . . . , fn that (i) are on
few variables, (ii) have low degree, and (iii) preserve indecomposability: if h(f1, f2, . . . , fn) is
decomposable, then so is h(x1, x2, . . . , xn). As observed above, the latter is not decomposable;
hence the former is not decomposable either. We then prove (Lemma 12 in Section 2) that the
output distribution of indecomposable polynomials is close to uniform. This proof combines
several results in algebraic geometry, including Weil’s bound and results about reducibility
of shifts of indecomposable polynomials.

Putting the above together we conclude that the fi fool g because

g(U) = c(h(U)) ≈ c(U) ≈ c(h(f1, f2, . . . , fn))(U) = g(f1, f2, . . . , fn)(U).

Hence we have reduced the problem of fooling g to that of fooling g composed with the
fi. The gain is that by (i) we have reduced the number of variables. The main cost is an
increase in degree, but this increase is small by (ii). Overall we obtain the following result,
which is a main technical contribution of this work.

Theorem 4. For every positive integers n, d, k and field Fq:
There is an explicit family of degree-k polynomials f1, f2, . . . , fn over Fq in (d+1)m vari-

ables such that for any polynomial g over Fq of degree d in n variables the statistical distance
between g(U) and g(f1, f2, . . . , fn)(U) is O(d2k2/

√
q), for any m and k as in Theorem 2.

If we plug uniform values for the variables of the fi we obtain pseudorandom generators
with seed length as in Theorem 2 except that the factor log(dk+ dm) is replaced with log q.
This is sufficient to prove the theorem when q is polynomial in dn. If q is larger, for example
q ≥ 2d, it is not sufficient, and we need to improve the dependence on q from multiplicative to
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additive. To achieve this we combine Theorem 4 with another pseudorandom generator which
we construct (Theorem 21). The latter generator combines Bogdanov’s template [Bog05]
discussed earlier with some of our proof ideas. Compared with [Bog05] and subsequent works,
this generator has two main differences. First, we give a variant of Bogdanov’s reduction
of pseudorandom to hitting-set generators, again relying on preserving indecomposability.
This allows us to improve the dependence on the field size. Note however that one can
already obtain non-trivial generators over fields of size O(d4) from Theorem 4 (suitably set
k = O(1) and m = nΩ(1)). Second, we need to hit polynomials whose degree is larger than
the number of variables, whereas in most previous work the degree is smaller. We note that
such a hitting set can be obtained by combining [Lu12, GX14].

The construction of the fi and its analysis using invariant theory. Let M1,M2, . . .
be an enumeration of distinct monomials of degree k in m variables (in some cases we need
some mild conditions on these monomials, discussed below). We take ` copies of the variables,

and define fi := M
[1]
i +M

[2]
i + . . .+M

[`]
i where M

[j]
i is the monomial Mi where the variables

are taken from copy j. Hence the construction is simple and very explicit.
The proof that the fi preserve indecomposability uses invariant theory, apparently for the

first time in this area, and proceeds as follows. Consider the polynomial G := g(f1, f2, . . . , fn).
First, note that G is invariant under permutation of the copies of variables (simply because
the fi are). Now assume that G can be decomposed as G = c(H) for some univariate polyno-
mial c. We show that H must be invariant as well. Next, we show that the fi are a basis for
the invariant polynomials; this allows us to write H = h(f1, f2, . . . , fs) for some low-degree
polynomial h, where note a priori s could be much larger than n. Hence we obtained

g(f1, f2, . . . , fn) = c(h(f1, f2, . . . , fs)).

Finally, we show that this implies s = n and g(x1, x2, . . . , xn) = c(h(x1, x2, . . . , xn)) as
desired.

Three results on preserving indecomposability. We give three formal versions of the
analysis in the previous paragraph.

The first version (Theorem 6 in Section 1) has the easiest proof, requires fields of charac-
teristic > dk, and takes ` > dk copies of variables. This version suffices to obtain generators
with seed length Õ(d log2 n) + O(log q) over such fields, where Õ(x) stands for x logO(1) x.
Using the construction recursively, one can improve the seed length to Õ(d log n) +O(log q),
thus matching Item (2) in Theorem 2 up to lower-order factors for large characteristic, and
in particular for prime fields. However these ideas do not suffice to obtain the optimal seed
length in Item (1), for example. For this first version we can take any distinct monomi-
als. This version also allows us to draw a close analogy with the Bogdanov-Viola paradigm
[BV10]: We note that one can replace the Mi with any set of polynomials Ni of the same
degree that fool degree-one polynomials. To verify this we can write the Ni as linear com-
binations of the Mi and use that the linear maps are full rank since the Ni fool degree-one
polynomials.

The second version (Theorem 16 in Section 4) has a slightly more complicated proof, but
requires only characteristic > d and more importantly takes only ` = d + 1 copies. This
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essentially matches the number ` = d of copies in [BV10, Vio09]. For this we need a certain
mild condition on the monomials. This version suffices to prove Theorem 2 for fields of
characteristic > d, and in particular for prime fields.

The third version (Theorem 27 in Section 7) is the most complicated but works over
any characteristic, and again takes only ` = d + 1 copies. Here we need to avoid obvious
counterexamples; for example over F2 we cannot take M1 = x2 because g = x is trivially
indecomposable but g(f1) = (x[1])2 + (x[2])2 + · · · + (x[`])2 = (x[1] + x[2] + · · · + x[`])2 is
decomposable. It turns out that it suffices to take any Mi that are indecomposable. This
version can be used to prove Theorem 4 as stated, for fields of any characteristic. Besides
this, the results in this section allow us to preserve indecomposability over any field, even
small. The only restriction on the field size then comes from Weil’s bound (cf. Fact 15).

Open problems. A natural goal is to reduce the field size in Item (1) in Theorem 2 to
O(d4). This would yield a single generator that improves on all those in this paper. The
current bounds on the field size arise from applying Weil’s bound to polynomials of degree
dk rather than d. However, these polynomials of degree dk have a special structure as they
arise from the composition of an arbitrary polynomial of degree d with the MΣ’s. It is
conceivable that Weil’s bound can be improved for such composed polynomials, perhaps to
obtain bounds similar to those for degree-d polynomials. We raise this as an open problem.

1 Preserving indecomposability

In this section we give a first construction of polynomials that preserve indecomposability.
We state the main theorem next after some notation. Then we proceed with the proof which
involves several intermediate claims.

Let Fq be a field of characteristic p and let R = Fq[x1, x2, . . . , xm] be the polynomial ring

in m variables. We define R⊗` = Fq[{x[i]
j }] as the polynomial ring in the variables x

[i]
j with

1 ≤ i ≤ ` and 1 ≤ j ≤ m. We can arrange the ` ·m variables in a matrix

X =


x

[1]
1 x

[1]
2 · · · x

[1]
m

x
[2]
1 x

[2]
2 · · · x

[2]
m

...
...

. . .
...

x
[`]
1 x

[`]
2 · · · x

[`]
m

 (1)

Definition 5. A monomial is a product of powers of variables (with leading coefficient
1). For a monomial M = M(x1, x2, . . . , xm) ∈ R = Fq[x1, x2, . . . , xm] we define M [i] =

M(x
[i]
1 , x

[i]
2 , . . . , x

[i]
m) and MΣ =

∑`
i=1 M

[i].

Theorem 6. Suppose that M1,M2, . . . ,Mr ∈ R are distinct non-constant monomials of
degree ≤ k, and let g(x1, x2, . . . , xr) be a non-constant polynomial of degree d. Let G :=
g(MΣ

1 ,M
Σ
2 , . . . ,M

Σ
r ) and assume that p ≥ dk + 1 and ` ≥ max{5, dk + 1}. If G is decom-

posable then g is decomposable.

We remark that ` = d does not suffice for example for d = 1 and k = 2: take M1 = x2
1.

5



The rest of this section is devoted to proving the theorem. We view the symmetric group
S` of permutations on ` elements as acting on R⊗` by σ(x

[i]
j ) = x

[σ(i)]
j for all i, j. So the

action of S` permutes the rows in X.

Definition 7. For a monomial M in R⊗`, the diversity of M is the smallest number d such
that the variables in M come from d rows in X. For a nonzero polynomial f ∈ R⊗`, the
diversity div(f) is the largest diversity over all monomials appearing in f .

For a subgroup G of S` and a polynomial g ∈ R⊗` we say that g is G-invariant if σg = g
for all σ ∈ G. Note that MΣ is invariant under the action of S` and that div(MΣ) = 1 when
M is not constant. In general we have the following proposition.

Proposition 8. Suppose that f ∈ R⊗` is an S`-invariant polynomial with div(f) = d and
p > d. Then f can be written as a polynomial of degree d in the MΣ’s.

Proof. The orbit sum of a monomial M := M
[1]
1 M

[2]
2 · · ·M

[`]
` where the Mi are in R is the

sum of all monomials in the S` orbit {M [π1]
1 M

[π2]
2 · · ·M [π`]

` : π ∈ S`} of M . We note that any
S`-invariant polynomial f can be written as a linear combination of orbit sums of monomials.
Using this fact we now prove the proposition by induction on d = div(f). If d = 1 then the
orbit sums above are orbit sums of monomials that only involve one set of variables, so they
are of the form MΣ.

Now suppose d > 1. Without loss of generality, we may assume that f does not have
monomials of diversity < d. Consider the orbit sum of a monomial M

[i1]
1 M

[i2]
2 · · ·M

[id]
d where

M1,M2, . . . ,Md ∈ Fq[x1, x2, . . . , xm] are non-constant monomials. If the Mi are all distinct,
then this orbit sum can be written as the sum∑

i1,i2,...,id

M
[i1]
1 M

[i2]
2 · · ·M

[id]
d (2)

over all (i1, i2, . . . , id) ∈ {1, 2, . . . , `}d with i1, i2, . . . , id distinct.
If however some of the Mj’s coincide, then in the sum (2) some of the monomials

M
[i1]
1 M

[i2]
2 · · ·M

[id]
d are summed more than once. (For example, if d = ` = 2 and M1 =

M2 = x1 then the orbit sum of M = M
[1]
1 M

[2]
2 has size 1, whereas in the sum above the same

monomial would appear twice.) In the worst case, when all Mj’s are the same, the same
monomial is summed d! times. This is not a problem, because the characteristic p of Fq is
> d, so we can still write the orbit sum as the sum (2) multiplied by a non-zero field element.

So we can write f as a linear combination of sums (2) (for various choices of the Mi).
Consider one such sum S. Note that the polynomial

S −MΣ
1 M

Σ
2 · · ·MΣ

d

has diversity < d. By the induction hypothesis, S − MΣ
1 M

Σ
2 · · ·MΣ

d can be written as a
polynomial of degree < d in the MΣ’s. So f can be written as a polynomial of degree d in
the MΣ’s.

Let A` be the alternating subgroup of S`.

Lemma 9. If a polynomial f ∈ R⊗` is A`-invariant and deg(f) ≤ `−2 then f is S`-invariant.
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Proof. First, assume that f is an A` orbit sum, i.e., there is a monomial N such that f is
the sum of all elements in the set {σ · N | σ ∈ A`}. Because deg(N) ≤ ` − 2, there exist
two rows in (1), say i and j, such that N does not contain any variables from those rows.
Then we have (i j) · N = N , and since f was already A`-invariant we conclude that f is
S`-invariant.

If f is arbitrary, we use the general fact that for any group G, if a polynomial is G-
invariant, then f can be written as the sum of orbit sums polynomials. Hence we can apply
the argument above to each orbit sum, and conclude the general case as well.

Lemma 10. If f ∈ R⊗` is S`-invariant, deg(f) ≤ `− 1, ` ≥ 5 and u ∈ R⊗` divides f , then
u is S`-invariant.

Proof. We can factor f = f1f2 · · · fs where f is irreducible. Factorization in the polynomial
ring into irreducible factor is unique up to permuting factors and multiplying factors with
nonzero constant scalars. From f = π(f) = π(f1)π(f2) · · · π(fs) follows that for every i there
exists a j and a nonzero constant c ∈ F×q = Fq − {0} such that π(fi) = cfj. In other words
π(Li) = Lj where Li is the span of fi. Let L = {L1, L2, . . . , Ls}. Note that the set L may
have less than s elements, because some factors may be the same up to a nonzero constant.
Then S` acts on L . Let Hi ⊆ S` be the stabilizer subgroup of Li, that is, π ∈ Hi if and only
if π(Li) = Li. By the orbit-stabilizer theorem, the index |S`|/|Hi| of Hi in S` equals the size
of the orbit of Li. The latter is ≤ |L| ≤ s. Moreover, s ≤ deg(f) ≤ `− 1, where the second
inequality is by assumption. Hence, the index of Hi is < `. It is known that the only proper
subgroup of S` of index < ` is A`, see e.g. [Cla84, p. 84]. So it follows that Hi = A` or S`.
This proves that π(Li) = Li for all π ∈ A`.

We now argue that in fact even π(fi) = fi for all i and all π ∈ A`. Fix i. From π(Li) = Li
for all π ∈ A` we know that for every π ∈ A` there exists a (unique) element χi(π) ∈ Fq−{0}
such that π(fi) = χi(π)fi. Notice that χi : A` → F×q is a group homomorphism. Let K
be its kernel. The kernel of any group homomorphism is a normal subgroup, so K is a
normal subgroup of A`. On the other hand, A` is simple for ` ≥ 5, that is, it has no
non-trivial normal subgroups. So either K = A` or K = {1}. We can exclude the latter
possibility because it would imply that A` is commutative, which is not true. (We would have
π · π′ = χ−1

i χi(π · π′) = χ−1
i (χi(π) · χi(π′)) = χ−1

i (χi(π
′) · χi(π)) = χ−1

i χi(π
′ · π) = π′ · πusing

that F×q is commutative.) Hence K = A` and π(fi) = χi(π)fi = fi for all π ∈ A`.
Therefore, f1, f2, . . . , fs are A`-invariant. If s = 1, then ft = f is S`-invariant. If s > 1,

then deg(fi) ≤ ` − 2 for all i, and fi is S`-invariant by lemma 9. Up to a constant, u is a
product of the fi’s, so u is S`-invariant.

Proposition 11. Suppose that M1,M2, . . . ,Mr ∈ Fq[x1, x2, . . . , xm] are distinct non-constant
monomials, g(x1, x2, . . . , xr) is a polynomial of degree d ≤ ` and p > d. If g(MΣ

1 ,M
Σ
2 , . . . ,M

Σ
r ) =

0, then g = 0.

Proof. Consider a monomial of maximal degree d in g, say xi1xi2 · · · xid with i1 ≤ i2 ≤
· · · ≤ id. Then the monomial M

[1]
i1
M

[2]
i2
· · ·M [d]

id
appears in MΣ

i1
MΣ

i2
· · ·MΣ

id
. Here we use

the assumption on the characteristic, needed for example if i1 = i2 = . . . = id. Also, if
j1 ≤ j2 ≤ · · · ≤ jd and (i1, i2, . . . , id) 6= (j1, j2, . . . , jd), then M

[1]
i1
M

[2]
i2
· · ·M [d]

id
does not appear

in MΣ
j1
MΣ

j2
· · ·MΣ

jd
. Also, M

[1]
i1
M

[2]
i2
· · ·M [d]

id
does not appear in MΣ

j1
MΣ

j2
· · ·MΣ

jd′
if d′ < d since

the latter has diversity ≤ d′ while the former has diversity d.
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This shows that the monomial M
[1]
i1
M

[2]
i2
· · ·M [d]

id
appears in g(MΣ

1 ,M
Σ
2 , . . . ,M

Σ
r ). In par-

ticular, g(MΣ
1 ,M

Σ
2 , . . . ,M

Σ
r ) 6= 0.

We can now prove the main theorem of this section.

Proof of Theorem 6. Suppose that G can be decomposed as G = c(H) for some H ∈ R⊗`
and univariate polynomial c ∈ Fq[x] of degree e ≥ 1. Note that G has degree ≤ dk. Let
α ∈ Fq be a root of c(x). Then x−α divides c(x), and so H −α divides c(H). Then H −α,
and hence H, is S`-invariant by Lemma 10, using that ` ≥ dk + 1. Note that if α ∈ Fq does
not lie in Fq, then we have to apply Lemma 10 after replacing Fq with a finite field extension
of Fq that contains α.

From the degree bounds on G = c(H) and c it follows that H has degree ≤ dk/e. In
particular, div(H) ≤ dk/e. By Proposition 8 we can write H as a polynomial of degree
≤ dk/e in all MΣ’s, say H = h(MΣ

1 ,M
Σ
2 , . . . ,M

Σ
s ) for some s. Note that s may be larger

than r.
If we set u(x1, x2, . . . , xs) = g(x1, x2, . . . , xr)− c(h(x1, x2, . . . , xs)), then we have

u(MΣ
1 ,M

Σ
2 , . . . ,M

Σ
s ) = 0.

Proposition 11 implies that u = 0. So g(x1, x2, . . . , xr) = c(h(x1, x2, . . . , xs)). So h(x1, x2, . . . , xs) =
h(x1, x2, . . . , xr) only depends on x1, x2, . . . , xr and the degree of h is ≤ d/e.

2 Indecomposability implies equidistribution

In this section we prove the following lemma.

Lemma 12. Let h be a polynomial of degree d in n variables over Fq. If h is indecomposable
then h(U) is O(d2/

√
q)-close to uniform over Fq.

For the proof we need several facts from the algebraic-geometry literature.

Fact 13. [Naj05] Let h be a polynomial of degree d in n variables over an algebraically-closed
field K. Suppose that h is indecomposable. Then the number of λ ∈ K such that h − λ is
reducible in K is at most d.

[Naj05] generalizes several previous works; we refer to [Naj05] for the history of this
type of results. Our polynomials are over Fq which is not algebraically closed. However the
following fact allows us to bypass this apparent obstacle. If K is a field the notation K
denotes its algebraic closure.

Fact 14. [BDN09, Theorem 4.2.] If a polynomial is indecomposable over Fq then it is also
indecomposable over Fq.

Finally, we use the following version of Weil’s bound.

Fact 15. [Bog05, Proposition 2.6] Let h be a non-constant polynomial of degree d in n
variables over Fq that cannot be reduced in Fq. Then |P[h(U) = 0] − 1/q| ≤ O(d2q−3/2),
assuming q > 5d4.
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Proof of Lemma 12. By Fact 14 h is also indecomposable over Fq. By Fact 13, h− λ is not
reducible in Fq except for at most d values of λ ∈ Fq. For each value λ for which it is not
reducible, Fact 15 yields |P[h(U) = λ] − 1/q| ≤ O(d2q−3/2). Note we can assume q > 5d4

for else the conclusion of the lemma holds. For any other value of λ, by Schwartz-Zippel,
|P[h(U) = λ]−1/q| ≤ d/q. Combining these facts, the statistical distance between h(U) and
uniform is at most O(d2/

√
q) + d2/q = O(d2/

√
q).

3 Toy pseudorandom generators with what we have so

far

In this section we derive “toy” pseudorandom generators with the results of the previous
two sections, over fields of characteristic > dk. Define fi := MΣ

i as in the introduc-
tion. The generator simply picks `m uniform values for the variables of the fi and outputs
(f1, f2, . . . , fn)(U). The analysis goes as follows. Let g be a polynomial of degree d that we
aim to fool. Let c be a univariate polynomial of maximal degree such that g(x1, x2, . . . , xn) =
c(h(x1, x2, . . . , xn)). In particular we have g(f1, f2, . . . , fn) = c(h(f1, f2, . . . , fn)). Note that
h has degree ≤ d and is indecomposable, for else the degree of c is not maximal. By The-
orem 6, h(f1, f2, . . . , fn) is indecomposable as well. By Lemma 12, h(f1, f2, . . . , fn)(U) is
O(d2k2/

√
q)-close to uniform, and the same bound holds for h(U).

Hence we obtained generators with seed length O(`m log q) = O(dkm log q) and error
O(dk)2/

√
q. Here we just need

(
m+k
m

)
≥ n. For example, we can pick m and k to be

O(log n). This gives seed length O(d log2 n log q). As mentioned earlier, one can improve the
seed length to O(d log n logO(1) log(dn)) by applying the construction recursively.

4 Improving bounds for indecomposability

In this section we improve the bounds in Theorem 6 to get the preservation of indecom-
posability for ` ≥ d + 1 instead of ` ≥ dk + 1. The factor-k loss in the previous argument
arises when bounding the diversity of H by the degree of H, where the latter is a priori as
large as dk/e, see the proof of Theorem 6. In this section we consider a more constrained
set Q of monomials, defined shortly. Using this, we can recoup a factor k when bounding
the diversity of a polynomial in terms of its degree, see Lemma 17.

We fix a positive integer k and let Q ⊆ R = Fq[x1, x2, . . . , xm] be the subring spanned by
all monomials of the form xa11 x

a2
2 · · · xamm ∈ R where a1 + a2 + · · ·+ am−1 = (k − 1)am. Note

that the degree of a polynomial in Q is kam which is always divisible by k. Let Q⊗` ⊂ R⊗`

be the subring spanned by all monomials M
[1]
1 M

[2]
2 · · ·M

[`]
` where M1,M2, . . . ,M` ∈ Q.

We modify Theorem 6 by only considering monomials MΣ where M is a monomial in the
subring Q ⊂ R rather than in R. By doing so, as we mentioned, we improve the parameters
as follows.

Theorem 16. Suppose that M1,M2, . . . ,Mr ∈ Q are distinct non-constant monomials of
degree k, and let g(x1, x2, . . . , xr) be a non-constant polynomial of degree d. Let G :=
g(MΣ

1 ,M
Σ
2 , . . . ,M

Σ
r ) and assume that p ≥ d + 1 and ` ≥ max{5, d + 1}. If G is decom-

posable then g is decomposable.

9



The rest of this section is devoted to the proof of this theorem. The proof follows the
same outline of the proof of the corresponding Theorem 6 in Section 1, but some of the steps
are more involved.

First, as mentioned above, we give a tighter connection between diversity and degree for
polynomials in Q⊗`.

Lemma 17. If f ∈ Q⊗` has degree ≤ dk, then div(f) ≤ d.

Proof. The polynomial f is by definition a linear combination of monomials of the form
M

[1]
1 M

[2]
2 · · ·M

[`]
` where Mi is a monomial in Q of total degree ≤ dk. If Mi 6= 1, then the

degree of Mi is at least k. So Mi 6= 1 for at most d distinct indices i. This proves that
div(f) ≤ d.

We also modify Proposition 8 as follows.

Proposition 18. Suppose that f ∈ Q⊗` is an S`-invariant polynomial with div(f) = d and
p > d. Then f can be written as a polynomial of degree d in the MΣ’s, where M ranges over
monomials in Q.

Proof. We follow the proof of Proposition 8 and note that all the monomials that appear
can be chosen in Q and Q⊗` instead of R and R⊗` respectively.

One difficulty that we face when generalizing the other statements in Section 1 such as
Lemma 10 is that of arguing that the polynomials we encounter lie in Q⊗` instead of R⊗`.
For this purpose it is convenient to introduce the ring homomorphism

Φ : R⊗` → R⊗`[t[1], . . . , t[`], (t[1])−1, . . . , (t[`])−1]

with Φ(x
[i]
j ) = t[i]x

[i]
j for j < m, Φ(x

[i]
m) = (t[i])1−kx

[i]
m and Φ(α) = α for α ∈ Fq. Note that

the image of Φ is a Laurent polynomial, that is, the exponents of the variables t[i] may be
negative. If we work over the algebraically closed field Fq, then Φ corresponds to an action

of the `-dimensional torus group T = (F×q )` on the ring R⊗`. This motivates the terminology
that follows.

A polynomial f ∈ R⊗` is T -invariant when Φ(f) = f , i.e., the variables t[i] cancel out.
Note that if M ∈ Q then M [i] is T -invariant. More generally, Q⊗` is the ring of all T -
invariants. A polynomial f ∈ R⊗` is called T -semi-invariant if Φ(f) = (

∏`
i=1(t[i])a

[i]
)f for

some a = (a[1], a[2], . . . , a[`]) ∈ Z`, called weight. The monomials in R⊗` are all T -semi-
invariant.

As in Lemma 10, we need to argue about factors of invariant polynomials. We begin
with the following lemma which will help us argue that these factors lie in Q⊗` (as opposed
to R⊗`).

Lemma 19. Suppose that u, f ∈ R⊗` and u divides f . If f is T -semi-invariant, then so is
u.

We shall only use this for T -invariant f , but the proof is the same.
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Proof. Note that f is T -semi-invariant if and only if Φ(f), as a Laurent polynomial in
t[1], . . . , t[`], consists of a single monomial. If f = uv then note Φ(f) = Φ(u)Φ(v). By
assumption, Φ(f) consists of a single monomial as a Laurent polynomial. Then the same is
also true for Φ(u) and Φ(v). Here we are using the general fact that if, say, Φ(u) has more
than one term, then the product Φ(u)Φ(v) has more than one term. To see this, consider
the lexicographic order on monomials, and note that the product of the smallest monomial
in Φ(u) with the smallest monomial in Φ(v) cannot be obtained by multiplying any other
two monomials, and the same holds for the product of the largest monomials. Hence the
product has at least two monomials.

We modify Lemma 10 to the following statement:

Lemma 20. If f ∈ Q⊗` is S`-invariant, deg(f) ≤ k`− 1, ` ≥ 5 and u ∈ R⊗` divides f , then
u lies in Q⊗` and is S`-invariant.

Proof. We modify the proof of Lemma 10. We started with a factorization f = f1f2 . . . fs
where f1, f2, . . . , fs are irreducible. Since f ∈ Q⊗` it is T -invariant, and therefore T -semi-
invariant. We defined Li = Fqfi and considered the action of S` on L = {L1, L2, . . . , Ls}.
As before Hi is the stabilizer of Li. By Lemma 19, f1, f2, . . . , fs are also semi-invariant. Let
us fix some j, and let (a[1], a[2], . . . , a[`]) be the weight of the semi-invariant fj.

We prove that a[i] ≥ 0 for all i. First recall that a monomial in Q is of the form
xa11 x

a2
2 · · · xamm with a1+a2+· · ·+am = kam. This means that the total degree of a polynomial

f ∈ Q in the variables x1, x2, . . . , xm is exactly k times the degree of f as a polynomial in the
variable xm with coefficients in Fq[x1, . . . , xm−1]. Similarly, if f ∈ Q⊗` then the total degree

deg(f) of f is k times the degree degm(f) of f in the variables x
[1]
m , x

[2]
m , . . . , x

[`]
m . Therefore

for f ∈ Q⊗` we have degm(f) = deg(f)/k < `.

Now suppose towards a contradiction that a[i] < 0 for some i. Then x
[i]
m must appear

in fj, so degm(fj) ≥ 1. The orbit of Lj has |S`|/|Hj| elements, which correspond to as
many irreducible factors of f that are distinct and have degree ≥ 1 with respect to degm.
This implies that |S`|/|Hj| ≤ degm(f) < `. As in the proof of Lemma 10, this implies that
Hj = A` or Hj = S`.

For a permutation σ, σ(fj) is semi-invariant. Its weight is σ(a) = (a[σ(1)], . . . , a[σ(`)]). For
σ ∈ Hj, σ(fj) and fj are the same up to a constant, so σ(a) = a for all σ ∈ Hj. If Hj = S`
then a[1] = a[2] = · · · = a[`] < 0. The same holds if Hj = A` for ` ≥ 3 as we can again map

i to any other value via σ ∈ A`. This implies that all the monomials in fj contain
∏m

i=1 x
[i]
m

and degm(fj) ≥ `, contradicting the bound above.
We proved that a[i] ≥ 0 for all i, so Φ(fj) lies in the polynomial ring R⊗`[t[1], . . . , t[`]] for

all j. From
∏s

j=1 Φ(fj) = Φ(f) = f ∈ R⊗` it follows that Φ(fj) ∈ R⊗` for all j. This implies

that fj ∈ Q⊗` for all j.
There remains to argue that the fj are S`-invariant. As in the proof of Lemma 10,

σ(Li) = Li for all σ ∈ A` implies that σ(fi) = fi for all σ ∈ A` . Hence, the fi are
A`-invariant.

If s = 1, then f = f1 is S`-invariant. Otherwise, degm(fj) ≤ ` − 2. Since fj ∈ Q⊗` we
get deg(fj) = k degm(fj) ≤ (` − 2)k. By Lemma 17, div(fj) ≤ ` − 2. Using Lemma 9 we
conclude that fj is S`-invariant.
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Proof of Theorem 16. Suppose that G can be decomposed as G = c(H) for some H ∈ R⊗`
and univariate polynomial c ∈ Fq[x] of degree e ≥ 1. We claim that in fact H ∈ Q⊗`. To
verify this, note that from G = c(H) it follows Φ(G) = c(Φ(H)). Since Φ(G) is T -invariant,
i.e., constant in the variables t[1], t[2], . . . , t[`], so is Φ(H) and H ∈ Q⊗`.

Note that G has degree ≤ dk. Let α ∈ Fq be a root of c(x). Then x−α divides c(x), and
so H−α divides c(H). Because deg(H−α) ≤ dk < k`, H−α lies in Q⊗` and is S`-invariant
by Lemma 20. (Possibly, we may have to replace Fq by a finite field extension.) It follows
that H ∈ Q⊗` and is S`-invariant.

From the degree bounds on G = c(H) and c it follows that H has degree ≤ dk/e. By
Lemma 17, we get div(H) ≤ d/e < `. By Proposition 18 we can write H as a polynomial
of degree ≤ d/e in all MΣ’s with M ∈ Q, say H = h(MΣ

1 ,M
Σ
2 , . . . ,M

Σ
r , . . . ,M

Σ
s ). If we set

u(x1, x2, . . . , xs) = g(x1, x2, . . . , x`)− c(h(x1, x2, . . . , xs)), then we have

u(MΣ
1 ,M

Σ
2 , . . . ,M

Σ
s ) = 0.

and the degree of u is ≤ d. Proposition 11 implies that u = 0. So g(x1, x2, . . . , xr) =
c(h(x1, x2, . . . , xs)). So h(x1, x2, . . . , xs) = h(x1, x2, . . . , xr) only depends on x1, x2, . . . , xr
and the degree of h is ≤ d/e.

5 Bogdanov-style generators

In this section we prove the following theorem.

Theorem 21. There are explicit pseudorandom generators that fool with error ε degree-d
polynomials in n variables over Fq, provided q ≥ O(d4/ε2), with seed length either

(1) O(n log(d+ n) + log q) or
(2) O(d4 log n+ log q).

First we refine Bogdanov’s reduction of pseudorandom generators to hitting-set genera-
tors. An explicit map H : S → Fnq is a δ-hitting-set generator for degree-d polynomials in n
variables over Fq if for any such polynomial f , if f 6= 0 then P[f(H(U)) = 0] ≤ δ. The seed
length of H is log2 |S|.

We obtain the following refinement of Bogdanov’s reduction:

Lemma 22. Suppose there exists a δ-hitting-set generator with seed length s for polynomials
of degree 3d4 in 2n variables over Fq. Then there exists a pseudorandom generator for
polynomials of degree d in n variables over Fq with seed length 2s+ 2 log q and error O(δ +
d2/
√
q).

[Bog05, Theorem 3.1] proves the same but with error O(
√
δd+ d2/

√
q + d6/q). To prove

Lemma 22 first we use the following result to relate indecomposability and irreducibility.

Fact 23. [CN10, Lemma 7] Let f ∈ F[x1, x2, . . . , xn] be a non-constant polynomial. Then f
is indecomposable over F iff f − y is irreducible in F(y)[x1, x2, . . . , xn].

Here F(y) is the algebraic closure of the function field F(y), where y is a variable.
We also need the following fact, mentioned already in [Bog05] when E = F.
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Fact 24. Let F ⊆ E be a field extension. Let H be a δ-hitting-set generator for degree-d
polynomials over F. Then H is also a δ-hitting-set generator for polynomials over E.

This fact follows because E is a vector space over F.

Proof of Lemma 22. Let g be a polynomial that we aim to fool. As in Section 3, write
g = c(h) where c is a univariate polynomial of maximal degree, and h is indecomposable. It
suffices to preserve the output distribution of h, which by Lemma 12 is close to uniform. We
relate indecomposability to irreducibility via Fact 23, inspired by the proof of Theorem 8 in
[CN10], then reason as in [Bog05], using Theorem 5 in [Kal95].

By Fact 14, h is indecomposable over Fq as well. Hence we can apply Fact 23 to conclude

that h − y is irreducible in E[x1, x2, . . . , xn] where E := Fq(y). We now use Theorem 5 in
[Kal95] over the field E. For v1..n ∈ En and w2..n, z2..n ∈ En−1 define the following bivariate
restriction of h:

h|v,w,z[s, t] := h(s+ v1, w2s+ z2t+ v2 . . . , wns+ znt+ vn).

Theorem 5 in [Kal95] shows that h|v,w,z is absolutely irreducible except when v, w are zeroes
of a polynomial of degree O(d2) over E, or z is the zero of a polynomial of degree O(d4) over
E (where the latter polynomial may depend on the first).

For our generator, we pick (v, w) with a δ-hitting-set generator for polynomials of degree
O(d2) and z with an independent δ-hitting-set generator with error ε for polynomials of
degree O(d4). For the variables s and t we plug uniform values in Fq.

By Fact 24, these hitting-set generators are also δ-hitting-set generators polynomials over
E. Hence, h|v,w,z is absolutely irreducible over E[s, t] with probability ≥ 1−O(δ). Then from
Fact 23 we obtain that h|v,w,z is indecomposable with at least the same probability over the
choice of v, w, z from the hitting-set generators. Whenever it is indecomposable, by Lemma
12 its output distribution is O(d2)/

√
q-close to uniform.

To prove Theorem 21 there remains to construct δ-hitting-set generators. Such for poly-
nomials of degree d in n variables are known with optimal seed length O(d log n + log 1/δ),
provided q ≥ O(d/δ) [GX14]. In particular, for polynomials of degree d4 in O(n) variables we
can set δ := εd2/

√
q and have seed length O(d4 log n+ log q), provided q ≥ O(d4/(εd2/

√
q)).

The last provision is equivalent to q ≥ O(d4/ε2), which we can always assume for else the
theorem is trivial. This gives Item (2) in Theorem 21.

Over fields of characteristic ≥ O(d2) the d4 factor can be improved to d2 using Corollary
8 in [Lec07] – and that is the best possible, see Corollary 7 and the surrounding discussion
in the same paper.

For Item (1) in Theorem 21 we need a different hitting-set generator, stated next.

Lemma 25. [Implicit in [Lu12, GX14]] There is an explicit δ-hitting-set generator with seed
length O(n log(n+ d) + log 1/δ) for polynomials of degree d in n variables over Fq, provided
q ≥ O(d/δ).

This should be compared to the Schwartz-Zippel lemma, which yields a δ-hitting-set
generator with seed length n log(d/δ) provided q ≥ d/δ. As the above lemma is not stated
in those works we quickly sketch how it follows from [Lu12, GX14]. Lu [Lu12] (Theorem 1)
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gives a δ-hitting-set generator for polynomials with s terms with seed length O(log(sd/δ))
provided q ≥ d1.01/δ. (Lu’s proof focuses on constant δ, but as noted there and in [GX14]
one can also obtain the stated parameters.) A degree-d polynomial in n variables has s ≤(
n+d
n

)
monomials. Hence we obtain seed length O(n log(n + d) + log 1/δ). Guruswami and

Xing [GX14] use multiplication-friendly codes to bring down the bound on the field size to
q ≥ O(d/δ).

To prove Item (1) in Theorem 21, use the δ-hitting-set generator in Lemma 25 for poly-
nomials of degree d4 in O(n) variables, setting δ := εd2/

√
q.

6 Proof of main results for fields of characteristic > d

In this section we prove our main results, Theorem 2 and Theorem 4, in the case of fields of
characteristic > d (for example, prime fields). The proofs over arbitrary characteristic are
the same except that we use Theorem 27 of Section 7 instead of Theorem 16.

Proof of Theorem 4. Let Q and M1,M2, . . . be as in Theorem 16. The number of distinct
monomials in Q is at least the number of positive integers a1, a2, . . . , am−1 with sum equal to
k − 1 (corresponding to the setting am = 1 in Section 4). This number is

(
m−1+k−1
m−1

)
, which

is ≥ n by assumption. Define fi := MΣ
i . The analysis is the same as in Section 3.

Proof of Theorem 2. From Theorem 4 we reduce our task to that of fooling polynomials with
degree d′ := dk in n′ := `m = (d + 1)m variables, up to an error O(d′2/

√
q). This error is

≤ ε by our assumption that q ≥ O(dk)4/ε2 .
Item (1) in Theorem 21 shows how to fool such polynomials with seed length O(n′ log(d′+

n′)+log q) and error β, provided q ≥ O(d′4/β2). This allows us to set β := O(d′2/
√
q) and the

provision is true. Again by our assumption that q ≥ O(dk)4/ε2, we have β = O(ε). Hence the
combined error from the two steps is O(ε). The final seed length is O(dm log(dk+dm)+log q),
as desired.

7 Preserving indecomposability over any characteristic

In this section we show how to preserve indecomposability over fields of arbitrary charac-
teristic. The problem in small characteristic is that the MΣ’s where M is a monomial no
longer span the invariant ring (R⊗`)S` . This is even a problem when m = 1. For example,
if q is a power of 2, then (x2

1)Σ = (xΣ
1 )2 and the second elementary symmetric polynomial∑

1≤i<j≤` x
[i]
1 x

[j]
1 does not lie in the ring generated by (xj1)Σ, j = 1, 2, 3, . . . . The solution is

to avoid using MΣ’s for which M is a power of another monomial of smaller degree.
The main results in this section are the following theorems, which can be used as a

replacements to Theorem 6 and Theorem 16 :

Theorem 26. Suppose that M1,M2, . . . ,Mr ∈ R are distinct non-constant, indecomposable
monomials of degree ≤ k, and let g(x1, x2, . . . , xr) be a non-constant polynomial of degree d.
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Let G := g(MΣ
1 ,M

Σ
2 , . . . ,M

Σ
r ) and assume that ` ≥ max{5, dk + 1}. If G is decomposable

then g is decomposable.

Theorem 27. Suppose that M1,M2, . . . ,Mr ∈ Q are distinct non-constant monomials of
degree k, and let g(x1, x2, . . . , xr) be a non-constant polynomial of degree d. Let G :=
g(MΣ

1 ,M
Σ
2 , . . . ,M

Σ
r ) and assume that ` ≥ max{5, d + 1}. If G is decomposable then g is

decomposable.

The rest of this section is devoted to proving these theorems.

7.1 A first basis

In this subsection we obtain a first basis for (R⊗`)S` . This is not the basis we will ultimately
use. We start with some notation.

Let N = {0, 1, 2, 3, . . . }, m be a positive integer andR = Nm\{0}. Suppose (v1, v2, . . . , vm) ∈
R and k = gcd(v1, v2, . . . , vm). If k = 1 then we call v indivisible. We can always write
v = kw where w ∈ R is indivisible. Let Ri ⊆ R be the set of indivisible vectors. We also
define

Q = {(v1, v2, . . . , vm) ∈ R | v1 + v2 + · · ·+ vm−1 + (1− k)vm = 0}.
A basis of R = Fq[x1, x2, . . . , xm] is {1} ∪ {xv | v ∈ R} and a basis of the subring Q is
{1} ∪ {xv | v ∈ Q}.

For a set X, let Mj(X) be the set of all multisets that contain ≤ j elements of X, and
let M(X) =

⋃∞
i=0 Mj(X) be the set of all finite multisets of elements of X. If V and W

are multisets, then we write V qW for their disjoint union. If k is a positive integer and
V = {v1, v2, . . . , vn} then we define kV = {kv1, kv2, . . . , kvn} and

V k =
k∐
i=1

V = {v1, . . . , v1︸ ︷︷ ︸
k

, v2, . . . , v2︸ ︷︷ ︸
k

, . . . , vn, . . . , vn︸ ︷︷ ︸
k

}

is the disjoint union of k copies of V . We also use the convention 0V = V 0 = ∅.
Recall that the symmetric group S` acts on R⊗` and we will study the invariant ring

(R⊗`)S` and polynomials that span the invariant ring as an Fq-vector space.

Definition 28. If V = {v1, v2, . . . , vr} ∈ M(R) then we define the invariant xV ∈ (R⊗`)S`

as the sum of all monomials of the form
r∏
j=1

(xvj)[ij ],

where i1, i2, . . . , ir ∈ {1, 2, . . . , `} are distinct, each monomial is only summed once. In
particular, x∅ = 1.

Note that in the case r = 1 this definition becomes x{v} =
∑

i∈{1,2,...,`}(x
v)[i]. This is the

same as MΣ in the previous sections, if M = xv. Also note that if

V = {v1, v1, . . . , v1︸ ︷︷ ︸
k1

, v2, v2, . . . , v2︸ ︷︷ ︸
k2

, . . . , vs, vs, . . . , vs︸ ︷︷ ︸
ks

} =
s∐
i=1

{vi}ki
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where v1, v2, . . . , vs are distinct, and r = k1 + k2 + · · ·+ ks is the number of elements of the
multiset V , then xV is the sum of exactly(

`

`− r, k1, k2, . . . , ks

)
=

`!

(`− r)!k1!k2! · · · ks!
distinct monomials, each having coefficient 1.

Example 29. If ` = 3, m = 2, V = {(1, 0), (1, 0)} and W = {(1, 0), (0, 1)}, then we have

xV = x
[1]
1 x

[2]
1 + x

[1]
1 x

[3]
1 + x

[2]
1 x

[3]
1

and
xW = x

[1]
1 x

[2]
2 + x

[1]
1 x

[3]
2 + x

[2]
1 x

[1]
2 + x

[2]
1 x

[3]
2 + x

[3]
1 x

[1]
2 + x

[3]
1 x

[2]
2 .

Proposition 30. A basis of the invariant ring (R⊗`)S` as an Fq-vector space is given by all
monomial sums xV , V ∈M`(R). A basis of the invariant ring (Q⊗`)S` as an Fq-vector space
is given by all monomial sums xV , V ∈M`(Q).

Proof. Suppose f ∈ (R⊗`)S` . As in the proof of Proposition 8, f is an Fq-linear combination
of orbit sums of monomials. But orbit sums of monomials are exactly the polynomials of
the form xV with V ∈ M`(R). If V 6= W then xV and xW have no monomial in common,
so the xV with V ∈M`(R) form a basis.

If f ∈ (Q⊗`)S` then the monomials that appear in f lie in Q⊗`. Orbits of such monomials
are of the form xV , V ∈M`(Q).

A main problem with this basis is that it is not clear how to prove the corresponding
of Proposition 11. In the next subsections we construct a different basis and prove such a
result (Theorem 11).

7.2 A partial ordering on monomial sums

We will need a partial ordering on the basis elements xV , V ∈M`(R) in Proposition 30. We
will do this by defining a partial ordering on M(R). For this we also need an ordering on
partitions.

A partition of a nonnegative integer k is a tuple λ = (λ1, λ2, . . . , λr) of positive integers
with λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1 and |λ| :=

∑r
i=1 λi = k. The set of all partitions of k is denoted

by Pk and P =
⋃∞
k=0 Pk is the set of all partitions. If λ is a partition, its conjugate partition

λ′ is obtained by transposing the Ferrers (or Young) diagram of λ. Since transposing twice
gives us back the original diagram, we have λ′′ = λ. Alternatively, if λ = (λ1, λ2, . . . , λr)
is a partition, then we can define the conjugate partition λ′ as λ′ = (λ′1, λ

′
2, . . . , λ

′
s), where

s = λ1, and λ′j is the largest i for which λi ≥ j. There is a dominance ordering E on Pk.
If λ = (λ1, λ2, . . . , λr) and µ = (µ1, µ2, . . . , µs) are partitions of k, then λ E µ if and only if
r ≥ s and

∑t
i=1 λi ≤

∑t
i=1 µi for t = 1, 2, . . . , s.

Suppose that V = {v1, v2, . . . , vs} ∈ M(R). For a positive integer k we already defined
kV and V k. We generalize this to the case where k is a partition instead of a positive integer.
For a partition λ = (λ1, λ2, . . . , λr), we define

λV =
r∐
i=1

λiV = {λ1v1, λ1v2, . . . , λ1vs, λ2v1, λ2v2, . . . , λ2vs, . . . , λrv1, λrv2, . . . , λrvs}.
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For the empty partition (), we define ()V = ∅. Note that λ(µv) = µ(λv) if µ is another
partition. We also define right multiplication of V with a partition λ by V λ := λ′V . So for
example, if k is a positive integer then we get

{v}(k) = (k)′{v} = (1, 1, . . . , 1︸ ︷︷ ︸
k

){v} = {v, v, . . . , v︸ ︷︷ ︸
k

} = {v}k.

In the following definition � is a priori a preordering on M(R), but we will prove that it
is an ordering.

Definition 31. Let � be the preorder on M(R) generated by the following relations:
(I) For v ∈ R and W ∈M(R) we have

W � {v} qW.

(II) For v ∈ R, W ∈M(R) and partitions λ, µ with λE µ we have

λ{v} qW � µ{v} qW.

(III) For linearly independent v1, v2 ∈ R and W ∈M(R) we have

{v1 + v2} qW � {v1, v2} qW.

Note that the � deals differently with dependent and independent vectors. For example,
let W = ∅ and v1 = av, v2 = bv for a vector v and integers a, b. Let λ := (a, b) and µ := (a+b)
be partitions. We have λ E µ. Also, λ{v} = {v1, v2} and µ{v} = {v1 + v2}. Hence in this
case by (II) we have {v1, v2} � {v1 + v2}. While if v1, v2 are linearly independent, then
{v1 + v2} � {v1, v2} by (III).

Proposition 32. The preorder � is a partial ordering on M(R), i.e., if V � W and W � V
then V = W .

Proof. Suppose that V1, V2, . . . , Vk ∈M(R) satisfy

V1 � V2 � · · · � Vk � Vk+1 := V1

where for each i with 1 ≤ i ≤ k, Vi � Vi+1 follows from (I), (II) or (III) in Defini-
tion 31. We have to prove that V1 = V2 = · · ·Vk. We prove this by induction on s =
min{|V1|, |V2|, . . . , |Vk|}.

If s = 0, then Vi = ∅ for some i. Now if W � ∅ then W = ∅. So Vj = ∅ for all j and in
particular, V1 = V2 = · · · = Vk.

Suppose that V1, V2, . . . , Vk are nonempty and s > 0. For W ∈ M(R), let cone(W ) be
the convex cone in Rm spanned by the elements of W . It follows from the definition that if
W1 � W2, then cone(W1) ⊆ cone(W2). So we get

cone(V1) ⊆ cone(V2) ⊆ · · · ⊆ cone(Vk) ⊆ cone(V1),

and it follows that
cone(V1) = cone(V2) = · · · = cone(Vk).
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Let us call this cone C. We choose an extremal ray γ of C and let w ∈ R be the indivisible
vector that spans γ. We write Vi = λ(i){w}qZi where λ(i) is some partition and Zi consists
of elements in Vi that do not lie in the ray γ.

We claim that λ(i) E λ(i+1) for all i. If Vi � Vi+1 because of (I), then Vi+1 contains one
additional vector, say v. If this vector v does not lie in the ray γ then λ(i) = λ(i+1). If v
does lie in γ, then v = tw for some positive integer t, and λ(i+1) is obtained from λ(i) by
inserting t. In particular, we have a strict inequality λ(i) C λ(i+1). If Vi � Vi+1 because of
(II), then it follows from the definition that λ(i) � λ(i+1). If Vi � Vi+1 because of (III), then
we have Vi = {v1, v2} qW � {v1 + v2} qW for some W ∈ M(R), where v1, v2 are linearly
dependent. Now v1 + v2 cannot lie in any extremal ray, so it does not lie in γ, and at most
one of the vectors v1, v2 will lie in γ. Similarly as in the case (I), we have λ(i) E λ(i+1) and
the inequality is strict when v1 or v2 lies in γ. Since

λ(1) E λ(2) E · · ·E λ(k) E λ(1)

we get
λ(1) = λ(2) = · · · = λ(k)

From this we see that Vi+1 is obtained from Vi by adding a vector not in γ in case (I),
replacing some vectors not in γ by other vectors not in γ in case (II), or replacing a vector
not in γ by two other vectors not in γ in case (3). It follows that

Z1 � Z2 � · · · � Zk � Z1.

Since |Zi| < |Vi| for all i, we have min{|Z1|, |Z2|, . . . , |Zk|} < min{|V1|, |V2|, . . . , |Vk|}. By
induction, we have Z1 = Z2 = · · · = Zk and therefore V1 = V2 = · · · = Vk.

7.3 Another basis

By Proposition 30, (R⊗`)S` is spanned by all xV with V ∈ M`(R). For V with more than
` elements we use the convention that xV = 0. This basis has a partial ordering, defined
by xV � xW if and only if V � W . We will study the multiplication in the invariant ring
(R⊗`)S` in terms of this basis.

Suppose U = {u1, u2, . . . , un} is a multiset, then we define stab(U) as the cardinality
of the stabilizer of (u1, u2, . . . , un) for the action of Sn on n-tuples. So if v1, v2, . . . , vr are
distinct, and U is the set that contains vi with multiplicity ki then stab(U) = k1!k2! · · · kr!.

Definition 33. If V,W ∈M(R) then a partial matching of V , W is a multiset

U = {(v1, w1), (v2, w2), . . . , (vn, wn)}

such that V consists of all nonzero elements of the multiset {v1, v2, . . . , vn} and W consists
of all nonzero elements of the multiset {w1, w2, . . . , wn} and (0, 0) is not an element of U .
We define ΣU = {v1 + w1, v2 + w2, . . . , vn + wn} ∈M(R).

Example 34. If m = 1 and V = {1, 1, 2} and W = {3, 4} then the possible partial matchings
U are

{(1, 0), (1, 0), (2, 0), (0, 3), (0, 4)}, {(1, 3), (1, 0), (2, 0), (0, 4)}, {((1, 4), (1, 0), (2, 0), (0, 3)},
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{(2, 3), (1, 0), (1, 0), (0, 4)}, {(2, 4), (1, 0), (1, 0), (0, 3)},

{(1, 3), (1, 4), (2, 0)}, {(1, 3), (2, 4), (1, 0)}, {(1, 4), (2, 3), (1, 0)},

and ΣU is equal to

{1, 1, 2, 3, 4}, {4, 1, 2, 4}, {5, 1, 2, 3}, {5, 1, 1, 4}, {6, 1, 1, 3}, {4, 5, 2}, {4, 6, 1}, {5, 5, 1}

respectively.

Proposition 35. If V,W ∈M(R) then we have

xV xW =
∑
U

stab(ΣU)

stab(U)
xΣU (3)

where the sum is over all partial matchings U of V and W .

Proof. Suppose that V = {v1, v2, . . . , vr}, W = {w1, w2, . . . , ws}. It suffices to prove (3) over
Z rather than over Fq. From the definition, we have

stab(V )xV =
∑

i1,i2,...,ir

r∏
α=1

(xvα)[iα]

where the sum is over all i1, i2, . . . , ir ∈ {1, 2, . . . , `} that are distinct. We have

stab(V ) stab(W )xV xW =
∑

i1,i2,...,ir

∑
j1,j2,...,js

(
r∏

α=1

(xvα)[iα]

)(
s∏

β=1

(xwβ)[jβ ]

)
.

Whenever iα = jβ, then the product of (xvα)[iα](xwβ)[jβ ] gives a term (xvα+wβ)[iα]. A
partial matching U comes from matching some of the indices in {i1, i2, . . . , ir} with in-
dices in {j1, j2, . . . , js}. Because some of the vi’s may be the same, there may be sev-
eral matchings of the indices that correspond to the matching U , namely there are exactly
stab(V ) stab(W )/ stab(U) matchings of indices that correspond to the matching U and each
of those result in a monomial sum stab(ΣU)xΣU . This yields

stab(V ) stab(W )xV xW =
∑
U

stab(V ) stab(W ) stab(ΣU)

stab(U)
xΣU

Dividing by stab(V ) stab(W ) gives the desired result.

Example 36. We go back to Example 34. We have

x{1,1,2}x{3,4} = x{1,1,2,3,4}+2x{1,2,4,4}+x{1,2,3,5}+x{1,1,4,5}+x{1,1,3,6}+x{2,4,5}+x{1,4,6}+2x{1,5,5}.

The coefficient of x{1,5,5} is 2, because there is only 1 partial matching U with ΣU = {1, 5, 5},
namely U = {(1, 4), (2, 3), (1, 0)}, and stab(ΣU)/ stab(U) = 2/1 = 2.

Theorem 37. The invariant ring (R⊗`)S` is generated by all invariants of the form x{v}j

where v ∈ Ri, and 1 ≤ j ≤ `. Also, (Q⊗`)S` is generated by all x{v}j with v ∈ Qi.
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Before we prove the theorem, we will need some other results.

Lemma 38. Suppose v ∈ Ri and λ = (λ1, λ2, . . . , λr) is a partition with r ≤ `, and λ′ =
(λ′1, λ

′
2, . . . , λ

′
s). Then

x{v}λ
′
1x{v}λ

′
2 · · ·x{v}λ′s

is the sum of xλ{v} and other polynomials of the form xµ{v} with µC λ.

Proof. Suppose λ = (λ1, λ2, . . . , λr) is a partition, k is positive integer, and v ∈ Ri. If U is
a partial matching of {v}k = {v, v, . . . , v} and λ{v}, then ΣU = µ{v} where µ is obtained
from λ by increasing exactly k of the λi’s. Here we use the convention that λi = 0 for
i > r and we can also increase a 0 to 1. There is a unique maximal µ we can get with
the dominance ordering, namely if we increase the first k λi’s then we get the maximum
µ = (λ1 + 1, λ2 + 1, . . . , λk + 1, λk+1, λk+2, . . . ). In terms of conjugate partitions, µ′ is
obtained from λ′ by inserting k. If λi 6= λj, then we have µi 6= µj. This implies that
stab(µ{v}) = stab(Σµ{v}). So xµ{v} appears with coefficient 1 in the product x{v}kxλ{v}

and all the other xU that appear satisfy U ≺ µ{v}.
From this it follows by induction on s that the largest term xU that appears in

x{v}λ
′
1x{v}λ

′
2 · · ·x{v}λ′s

is x{v}(λ
′
1,...,λ

′
s) = x{v}λ

′
= xλ{v} and this term appears with coefficient 1.

Lemma 39. Suppose that v1, v2, . . . , vr ∈ Ri are distinct (and therefore pairwise linearly
independent), and λ(1), . . . , λ(r) are partitions such that

∑r
i=1(λ(i))′1 ≤ `. If V =

∐r
i=1 λ

(i)vi
then

xλ
(1){v1}xλ

(2){v2} · · ·xλ(r){vr}

is the sum of xV and other terms xU with U ≺ V .

Proof. Suppose that λ = (λ1, λ2, . . . , λr) is a partition, W ∈ M`−r(R), and v ∈ Ri is such
that v and w are linearly independent for all w ∈ W . Let Z = λ{v}qW . If U is any nontrivial
contraction of λ{v} and W then U ≺ Z, because U is obtained from Z by replacing linearly
independent vectors in U by their sum. If U is the trivial contraction, then ΣU = Z. Since
λ{v} and W are disjoint, we have stab(U) = stab(ΣU). So xZ appears in the product with
coefficient 1.

Now the lemma follows by induction on r.

Proposition 40. Suppose that V =
∐r

i=1{vi}λ(i) where v1, v2, . . . , vr ∈ Ri are distinct,

λ(i) = (λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
ki

) for i = 1, 2, . . . , r, and
∑r

i=1 λ
(i)
1 ≤ `. Then

gV :=
r∏
i=1

ki∏
j=1

x{vi}λ
(i)
j

is the sum of xV and other terms xW with W ≺ V .
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Proof. By Lemma 38 (where v = vi and λ = (λ(i))′) we see that

ki∏
j=1

x{vi}λ
(i)
j

is the sum of x(λ(i))′{vi} = x{vi}λ
(i)

and other terms xµ{vi} with µ{vi} ≺ {vi}λ(i). Now the
Proposition follows from Lemma 39.

Theorem 41. The polynomials gV in Proposition 40 with V ∈M`(R) are a basis for (R⊗`)S`

as an Fq-vector space. The polynomials gV with V ∈M`(Q) form a basis for (Q⊗`)S`.

Proof. Every V ∈ M`(R) can uniquely be written in the form V =
∐r

i=1{vi}λ(i) where

v1, v2, . . . , vr ∈ Ri are distinct, and
∑r

i=1 λ
(i)
1 ≤ `. Now gV is the sum of xV and other terms

xW with W ≺ V . We claim that xV can be uniquely expressed as an Fq-linear combination
of the gW ’s. Suppose towards a contradiction that xV is not in the span of the gW ’s. Assume
that V is minimal with respect to the ordering �. Since gV − xV is a combination of xW

with W ≺ V , we know by the minimality of V that gV − xV is an Fq-linear combination of
gW ’s. Therefore, xV is a linear combination of gW ’s, which is a contradiction.

We claim that gV ’s are free module generators. Suppose towards a contradiction that

r∑
i=1

cig
Vi = 0.

with r ≥ 1 and c1, c2, . . . , cr nonzero. For some i, Vi is a maximal element in {V1, V2, . . . , Vr},
i.e., there is no j with Vi ≺ Vj. Now xVi appears in gVi but not in gVj for j 6= i. This implies
ci = 0, which is a contradiction.

The proof of the second statement in the Theorem is the same. We start with V ∈M`(R)
(instead of V ∈ M`(R)) and note that the vectors v1, v2, . . . , vr in the proof lie in Qi, and
the W that appears lies in M`(Q).

Proof of Theorem 37. This follows from Theorem 41.

To have finer control when composing polynomials it is useful to assign weights to the
variables xi, which are just positive integers ci. Then the weighted degree of a monomial
xd11 x

d2
2 · · · xdrr with respect to the ci is defined as

∑r
i=1 cidi.

Theorem 42. Suppose that v1, v2, . . . , vr ∈ Ri are distinct, c1, c2, . . . , cr are positive integers,
g ∈ Fq[x1, x2, . . . , xr] is a polynomial. Assign weight ci to the variable xi. If g has weighted
degree ≤ ` and g(x{v1}c1 ,x{v2}c2 , . . . ,x{vr}cr) = 0. Then g = 0.

Proof. If xd11 x
d2
2 · · · xdrr is a monomial of degree

∑r
i=1 cidi ≤ `, then

∏r
i=1(x{vi}ci)di is equal

to gV where V =
∐r

i=1 di{vi}ci ∈M(R). Note that the number of elements of V is equal to∑r
i=1 ci min{di, 1} ≤

∑r
i=1 cidi ≤ `. So all the monomials in x{v1}c1 , . . . ,x{vr}cr that appear

in g(x{v1}c1 ,x{v2}c2 , . . . ,x{vr}cr) are linearly independent by Theorem 41.

Using the above theorem we can finally prove Theorem 26.
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Proof of Theorem 26. We follow the proof of Theorem 6 and modify it where necessary. We
can write MΣ

i = x{vi} for some vectors v1, v2, . . . , vr ∈ Ri. We get G = c(H) for some
H ∈ (R⊗`)S` , where Mj has degree ≤ k, G has degree ≤ kd < `, c has degree e and H has
degree ≤ kd/e. By Theorem 37, we can write H as a polynomial in the generators x{v}j with
1 ≤ j ≤ `:

H = h(x{v1},x{v2}, . . . ,x{vr},x{vr+1}cr+1 , . . . ,x{vs}cs)

for some polynomial h(x1, x2, . . . , xs). If we give the variables x1, x2, . . . , xr weight 1, and the
variable xj weight cj for j = r+1, r+2, . . . , s then the weighted degree of h is ≤ kd/e < `/e.
We set u(x1, x2, . . . , xs) = g(x1, x2, . . . , xr)− c(h(x1, x2, . . . , xs)), then we have

u(x{v1},x{v2}, . . . ,x{vr},x{vr+1}cr+1 , . . . ,x{vs}cs) = 0.

Theorem 42 implies that u = 0. So g(x1, x2, . . . , xr) = c(h(x1, x2, . . . , xs)). So h(x1, x2, . . . , xs) =
h(x1, x2, . . . , xr) only depends on x1, x2, . . . , xr and the degree of h is ≤ d/e.

Proof of Theorem 27. First note that the monomials are indecomposable since a monomial
in Q of degree k has degree 1 in the variable xm. We follow the proof of Theorem 16 and
modify it where necessary. We can write MΣ

i = x{vi} for some vectors v1, v2, . . . , vr ∈ Qi.
We get G = c(H) for some H ∈ (Q⊗`)S` , where Mj has degree k, G has degree ≤ kd < `, c
has degree e and H has degree ≤ kd/e.

By Theorem 37, we can write H as a polynomial in the generators x{v}j with 1 ≤ j ≤ `
and v ∈ Q:

H = h(x{v1},x{v2}, . . . ,x{vr},x{vr+1}cr+1 , . . . ,x{vs}cs)

for some polynomial h(x1, x2, . . . , xs) and v1, v2, . . . , vs ∈ Q. We give the variables x1, x2, . . . , xr
weight 1, and the variable xj weight cj for j = r + 1, r + 2, . . . , s. The monomial x{vi} has
weight k for i = 1, 2, . . . , r and the monomial x{vi}ci has weight kci for i = r+ 1, r+ 2, . . . , s.
It follows that the degree of h is ≤ d/e < `/e. We set u(x1, x2, . . . , xs) = g(x1, x2, . . . , xr)−
c(h(x1, x2, . . . , xs)), then we have

u(x{v1},x{v2}, . . . ,x{vr},x{vr+1}cr+1 , . . . ,x{vs}cs) = 0.

Theorem 42 implies that u = 0. So g(x1, x2, . . . , xr) = c(h(x1, x2, . . . , xs)). So h(x1, x2, . . . , xs) =
h(x1, x2, . . . , xr) only depends on x1, x2, . . . , xr and the degree of h is ≤ d/e.
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[CN10] G. Chèze and S. Najib. Indecomposability of polynomials via Jacobian matrix.
J. Algebra, 324(1):1–11, 2010.

[CT13] Gil Cohen and Amnon Ta-Shma. Pseudorandom generators for low degree poly-
nomials from algebraic geometry codes. Electron. Colloquium Comput. Complex.,
page 155, 2013.

[GX14] Venkatesan Guruswami and Chaoping Xing. Hitting sets for low-degree polyno-
mials with optimal density. In IEEE Conf. on Computational Complexity (CCC),
pages 161–168. IEEE Computer Society, 2014.

[Kal95] Erich Kaltofen. Effective noether irreducibility forms and applications. J. Com-
put. Syst. Sci., 50(2):274–295, 1995.

[KS01] Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing
of multivariate polynomials. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis
Yannakakis, editors, ACM Symp. on the Theory of Computing (STOC), pages
216–223. ACM, 2001.
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