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1. Introduction

It is a natural problem to describe geometric and topological invariants of a toric

variety X using polyhedral combinatorics of the associated fan A. The focus of this

document is the operational K-theory ring opK°(X), introduced by Anderson and Payne

in [2]. Like other operational theories, op/K°(X) can be obtained from a bivariant theory
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in the sense of [10], and consequently has properties that make it tractable to describe on
singular varieties. Other operational theories such as the ordinary and torus-equivariant
Chow rings A*(X) and A%(X), the torus-equivariant K-theory opK3.(X), and torus-
equivariant cobordism have already been described on singular toric varieties [2,13,16],
but so far, there is no such description for opK°(X). Our aim is to address this when X
is complete.

Our approach to describing opK°(X) is inspired by work of Fulton and Sturmfels on
A*(X) for complete toric varieties. In [12], they define Minkowski weights MW™(A) as
a group of Z-valued functions on A (viewed as a set of cones) whose values on different
cones must satisfy some identities known as a balancing condition. Then, they show that
(1) there is a natural isomorphism of groups between MW*(A) and A*(X), and (2) there
is a description of the product on A*(X) in terms of Minkowski weights.

In contrast, we define a group GW(A) of Z-valued functions on A which is tauto-
logically isomorphic to opK°(X). We call the elements of GW(A) Grothendieck weights
because they can be naturally identified with linear forms on the Grothendieck group
of coherent sheaves K,(X). Some of main results in this paper describe the balancing
condition that elements of GW(A) satisfy. The following theorem, which follows from
results in Section 3, characterizes Grothendieck weights in dimensions < 3.

First, some notation: we denote the cones in A of dimension k by A(k). Since A is a
poset of polyhedral cones, we denote containment with <, and for cones o < 8 such that
dim(a) + 1 = dim(B), we let vg o denote the primitive lattice point of 3 in the quotient
space by the span of «, and write v, for v, o} (see Subsection 1.3).

Theorem 1.1. Let X be a complete toric variety of dimension n < 3. A function g : A —
Z on the fan of X is a Grothendieck weight if and only if it is

1. constant on maximal cones, and
2. for o any mazximal cone and p € A(n — 2),

> (9(8) = 9(0))vg, =0,
BEA(n—1),
B=p

when dim(X) > 2, and
3. for o any mazximal cone,

pPEA(L) ae%_(Z), pPEA(L) a€A(2),

when dim(X) = 3.
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Finding a simple combinatorial balancing condition for Grothendieck weights in higher
dimensions is still an open problem, but we provide partial results and a possible way to
approach the problem in Section 4. See for example Theorem 4.14, which gives a method
to characterize Grothendieck weights on complete simplicial toric varieties by calculating
Todd classes.

Another notable result is the following theorem derived from Example 6.8. It appears
in the text as Corollary 6.9.

Theorem 1.2. There is a projective toric surface X such that the forgetful maps
opK2(X) — opK°(X) and K%(X) — K°(X) are not surjective.

In [1, Theorem 1.7], the authors demonstrate that there is a nonsimplicial toric 3-
fold X such that the image of opKP(X)q is a proper linear subspace of opK°(X)g,
and from there establish the nonsurjectivity of opK$(X) — opK°(X) and K2(X) —
K°(X). However, the authors deduce this as a corollary of the operational Riemann-
Roch theorem that they establish. This approach cannot work to show non-surjectivity
if the image of opK%(X) has finite index inside op K °(X), like when X is simplicial (e.g.
our Example 6.8).

Another reason to study opK°(X) is related to tropical geometry. Minkowski weights,
which inspired Grothendieck weights, are well-known in the context of tropical geometry,
where they appear as a special case of weighted balanced polyhedral complexes. If one
desires a K-theoretic analogue to the methods of tropical geometry, it is our belief that
a first step would be to determine the K-theoretic analogue of Minkowski weights and
the corresponding balancing condition (in the sense of our Theorem 1.1). In another
direction, presentations of opK°(X) have a direct interpretation in terms of Ehrhart
theory, see Proposition 2.12.

Now, we address in more detail the other results in this document. After proving the
characterization of Grothendieck weights in low dimensions in Theorem 1.1, we move to
higher dimensions in Section 4. There, the problem becomes more difficult, because our
approach to characterizing Grothendieck weights relies on finding expressions for Todd
classes of simplicial toric varieties in terms of T-invariant subvarieties. Though there
is an extensive literature on finding such expressions [3,4,15,17,18], the coefficients of
such an expression depend on various choices made in rewriting self-intersections of toric
divisors D; in terms of square-free monomials.

We continue our study of Grothendieck weights by addressing how to compute the
product on GW(A) induced by opK°(X). By [2, Proposition 6.4], any element of K, (X x
X)) has an expression of the form >° 5. Ma s[Ov(a)xv (s, Where V(a) and V() are
as defined in Subsection 1.3. Then, Theorem 5.3 reduces the problem of calculating
products of Grothendieck weights to calculating coeflicients m, g for classes of the form
04[OV ()], 0 being the diagonal. In the context of Chow groups and Minkowski weights,
an elegant method to calculate such coefficients was provided in [12, Theorem 4.2], via
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the displacement rule. In K-theory we explain one approach to doing this in subsection
5.6.

After our results on the internal structure of GW(A), we describe maps between
Grothendieck weights and other fan-based invariants in Section 6. There is a map from
Minkowski weights to GW(A) that corresponds to the operational Riemann-Roch trans-
formation of [1]. We relate this map to appropriate expressions for Todd classes. There
is also a forgetful map that opK°(X) receives from opK2(X). Since opK?2(X) is isomor-
phic to the ring of piecewise exponential functions on A, there is a map from piecewise
exponential functions on A to GW(A), which we give a formula for in Theorem 6.7. Our
approach here follows the work of Katz and Payne in [14].

When X is smooth, opK°(X) agrees with several other Grothendieck rings such as the
ring of vector bundles K°(X) (see [2, Section 4]). Then, other descriptions of opK°(X)
are applicable. For instance, Vezzosi and Vistoli showed in [20] that the ring of T-
equivariant vector bundles K2(X) and also higher K-groups are isomorphic to certain
Stanley-Reisner rings. The non-equivariant ring K°(X) is then isomorphic to a quotient
of a Stanley-Reisner ring. To calculate the isomorphism from this quotient description
of K°(X) to GW(A), one can choose a representative in K3.(X) of a class in K°(X),
and compute its localization to obtain a piecewise exponential function. Then, the map
to GW(A) can be computed via Theorem 6.7.

1.8. Notation and conventions

We establish notation and conventions. We work in the category of separated schemes
of finite type over a fixed base field k, unless stated otherwise. A variety is reduced and
irreducible. For toric varieties, as much as possible we follow the conventions of [6] and
[8]. Let T be a split algebraic torus over k. A toric variety refers to a normal k-variety
with a T-action and a dense orbit. By modding out by a generic stabilizer, we can assume
that T embeds as the dense orbit.

Let M = Homygg gp. (T, k*) be the character lattice of T, and N = Homyg;g.4p. (k*,T')
the cocharacter lattice. There is the natural perfect pairing (,) : M x N —
Homygg gp. (k*, k*) = Z given by composition of maps. We let Mg and N denote M ®@zR
and N ®z R respectively.

If X is a toric variety, there is a corresponding polyhedral fan A, which is a finite set
of strongly convex rational polyhedral cones in Ng (see e.g. [8, Chapter 1]) satisfying
the two additional conditions that (1) if 5 is a face of @ and o € A, then § € A, and
(2) if @ and B are in A, then the intersection awN f is a face of both o and . If « is a
face of 8, we write aw < . Let A(k) denote the set of k-dimensional cones in A. We use
p exclusively for 1-dimensional cones (rays) and o exclusively for n-dimensional cones.

For a cone a, let o be the cone of linear forms in Mg which are non-negative on a. If
a € A, then there is a T-invariant affine open set U, in X which is naturally isomorphic
to Speck[a” N M]. Inside U,, there is a unique closed orbit O,. Let V(«) denote the
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closure of O, in X. There is an order-reversing bijection between the orbit closures V(«)
in X and the cones a in A.

The subvariety V() is also a toric variety: Let Tp_ be the stabilizer of O,. Then,
the quotient torus T, = T/Tp, includes into V(a) as the dense orbit. Let a be the
subspace of Mg that vanishes on «. The character lattice for T, is M, = M Na*. Let
N@ be the Z-span of lattice points in «, and let N, = N/N® be the quotient. Then the
perfect pairing ( , ) between M and N descends to one between M, and N,,, which we
also refer to by ( , ). When « < 3, the image of 8 in (N, )R is a cone which we denote
by . If 3 is a ray, we denote the generator of the semigroup N, N by Vg,q, OF vg if

a={0}.
2. K-theory and GW(A)

We start this section by introducing the basic objects K, (X), K°(X), opK°(X), and
GW(A), and later relate GW(A) to Ehrhart theory in Proposition 2.12.

2.1. The group K.(X) and the ring K°(X)

Let X be a k-scheme. The group K,(X) is generated by isomorphism classes of co-
herent sheaves on X, modulo relations [#] = [&] 4 [¢] for exact sequences 0 — & —
F — 4 — 0. When X is a smooth algebraic variety, there is a product given by
[E][7] = X, (=1)[Torly (&,.%)], but when X is singular the sum is no longer neces-
sarily finite. For a proper morphism f : Y — X and ¢ a coherent sheaf on Y, there is
a pushforward f.[¥] = > .(—1)'[R'f.¥4]. A special instance of this when X is a point,
in which case f.[¢] is the Euler characteristic x(X,¥) = >_,(—1)"dimyH*(X,¥). For a
flat morphism f:Y — X and % coherent on X, there is a pullback f*[.#] = [f*Z].

We denote by K°(X) the Grothendieck group of vector bundles. Defined analogously
to Ko (X), K°(X) is a ring with respect to tensor product of vector bundles. For arbitrary
morphisms f: Y — X there is a pull-back f*[E] = [f*E].

If X is smooth, then K°(X) and K,(X) are isomorphic as groups (see, e.g. [21,
Chapter II, Theorem 8.2]), but if X is singular this may not be true. For example, it
is an easy exercise that if X is the rational nodal curve over C, its Picard group is
uncountable. The same is then true for K°(X), which has a surjection onto Pic(X) via
the map given by determinant bundles, e.g. [21, Chapter I]. On the other hand, one can
use the localization sequence for K, to show that K,(X) is finitely generated: Let p € X
be the singular point. We have the right-exact sequence

Ks(p) = Ko(X) = Ko (X ~ {p}) — 0.

Since X \ {p} = C*, K,(X) is an extension of finitely generated abelian groups, and
thus finitely generated itself.
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2.2. The operational K -theory ring opK°(X), and GW(A)

An element ¢ in opK°(X) is a collection (cf) of endomorphisms of K,(Y") for each
f:Y — X. The collection (cf) must be compatible, in the sense that the maps must
commute with proper pushforwards, flat pullbacks, and Gysin homomorphisms. Addition
and multiplication are defined coordinate-wise, meaning

(cf) + (df) = (cy +dy), and
(cr) - (df) = (cfody).

For further details, we refer the reader to [2, Section 4]. The product is commutative if
X is toric, or more generally if it admits a resolution of singularities (via the Kimura
sequence [2, Proposition 5.4]). Since we will assume X is complete, we have access to
the following special case of [2, Proposition 5.4]:

Theorem 2.3. Let X be a complete toric variety. The natural map from opK°(X) to
Ko(X)Y sending (cy) to x(cra(—)) is an isomorphism of abelian groups.

We make the following definition:

Definition 2.4. Let A be a complete fan. Define the group of Grothendieck weights on A,
denoted by GW(A), to be the image of K,(X)Y in (Z*)" under the map

fre(ea= f10v))-

For a proper toric morphism ¢ : X(A) — X(X), there is a corresponding pullback
o* : GW(X) - GW(A).

In other words, elements of GW(A) are obtained from elements of K,(X)Y by record-
ing the value of a linear form on the classes [0y (4)]. Since these classes generate K, (X),
the next proposition follows from the previous theorem.

Proposition 2.5. Let X be a complete toric variety and A the associated fan. Then, the
natural maps in the sequence

opK°(X) = Ko(X)Y = GW(A),
are isomorphisms of abelian groups.
Now, we would like to focus on the following question:

Question 2.6. How can we characterize which functions on A are Grothendieck weights?
Is there a balancing condition as in the case of Minkowski weights?
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To address this, we first make the following definition:

Definition 2.7. Let Rely, (x) be the kernel of the map Z» — K,(X) that sends e, to
[0v ()], and Relg, (x), the same kernel over Q.

By dualizing the exact sequence
0 — Relg, (x) = Z° — Ko(X) — 0,
we obtain
0 — Ko(X)¥ — (Z*)" — Homg(Relg, (x), Z) — 0. (%)

So, Grothendieck weights are the Z-valued functions on A that satisfy identities coming
from RGIKO (X)-

Remark 2.8. Our focus in Sections 3 and 4 will be to produce a list of conditions that
one can check to verify whether a function g : A — Z is a Grothendieck weight. By the
above exact sequence (x), one can produce such a list by picking a generating set for
Relg, (x). Each element will have the form ) aqes. Each of the corresponding sums
> o @ag(c) vanish if and only if g is a Grothendieck weight.

Conveniently, GW(A) naturally includes as a subring into rational Grothendieck
weights, denoted by GW(A)q, since it is torsion-free. Rational Grothendieck weights
are characterized by vanishing on Relg, (x),, so we can characterize g € GW(A) as a
function g : A — Z whose rational extension vanishes on Relg, (x), - Generating sets for
Relg, (x), are easier to calculate due to the Riemann-Roch theorem.

Before we finish this section, we note two basic facts about Grothendieck weights.
First, we thank an anonymous reviewer for pointing out the following:

Proposition 2.9. The ring of Grothendieck weights on A is independent of the field of the
associated toric variety.

Proof. When A is a smooth fan this follows from any of the myriad descriptions of
opK°(X) 2 K°(X) which demonstrate its field independence (e.g. K°(X) is a non-
equivariant quotient of either piecewise exponential functions or a Stanley-Reisner ring
over the integers).

For A a general fan, we use induction on dimension. For A a complete fan of dimension
< 1, A is smooth. If A is higher dimensional, let A’ be a resolution, and let 7 : X’ — X
be the associated birational toric morphism. Let p; : E; < X’ be the components of the
exceptional locus, and 7; : E; — S; the corresponding maps to their images. The E; and
S, are toric varieties whose fans depend only on A’ and A.
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The Kimura sequence [2, Proposition 5.4] states that the sequence
0 — opK°(X) — opK°(X") @ ®;0pK°(S;) — ®;0pK°(E;),

is exact. This implies that GW(A) includes into GW(A') as a subring, and g € GW(A)
is equivalent to a Grothendieck weight ¢’ on A’ and weights g; on the fans of the S;, such
that 7} g; = p}(¢’). Since X’ is smooth and F; and S; have lower dimension, Grothendieck
weights on these fans are independent of the field, so those on A are as well. O

Here is a fact which we will not use later, but which allows one to think about
Grothendieck weights on general fans in terms of Grothendieck weights on smooth fans.

Proposition 2.10. Let A be a complete fan and A" a refinement. Then a function g : A —
7 is a Grothendieck weight if and only if the function ¢’ on A’, determined by

for a the smallest cone on A containing o, is a Grothendieck weight on A'.

Proof. Let X’ and X be the toric varieties corresponding to A’ and A, and 7 : X' —
the toric birational morphism that corresponds to the refinement. If « is the smallest
cone in A that contains o/, then 7(V (o)) = V(«), and standard results on vanishing of
higher cohomology imply that 7. ([Oy (o)) = [Ov(a)]-

Grothendieck weights correspond to elements of K,(X)Y via the map g — ¢, deter-
mined by ¢4([Ov(a)]) = g(a). So, if g is a Grothendieck weight on A, g" will be the
Grothendieck weight on A’ that corresponds to the linear form ¢, o 7, : Ko(X') — Z.

Let g be a function such that ¢’ is a Grothendieck weight. As in the previous propo-
sition, we induct on dimension. Once again, let p; : E; < X' be the components of
the exceptional locus, and let m; : E; — S; be the maps to their images in X. By the
induction hypothesis, the weight pfg’ on the fan of E; descends to a Grothendieck weight
g; on the fan of S;. Since we have a Grothendieck weight ¢’ on A’, and weights ¢; on the
fans of the S; such that 77g; = pf(¢'), the Kimura sequence [2, Proposition 5.4] implies
that ¢’ is the image of a Grothendieck weight under 7*. The only possible preimage of
g’ is g, so g is a Grothendieck weight. O

2.11. Characterizing Relk, (x), via Ehrhart polynomials

The goal of this subsection is to characterize Relg,(x), in terms of polytopes when
X is a projective simplicial toric variety. As before, let A be the fan of X. Let P be a
lattice polytope in My whose inward normal fan is A. For each a € A(k), there is a
corresponding face F,, of P, which has codimension k and is also a lattice polytope.

The Ehrhart polynomial of P, denoted by Ehrp(t), is the polynomial determined by
Ehrp(t) = |tP N M| for t a non-negative integer. Let
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¢p: Q% — Q[f]

send the tuple (a,) indexed by A to Y A
that Relk, (x), is equal to a submodule of Q? defined independently of K-theory.

aq Ehrp, (t). The following proposition shows

Proposition 2.12. Let X be a projective simplicial toric variety, and A the corresponding
fan. Then

Rely, (x)q = (| ker(¢p).
P with

normal fan A
Proof. For the “C” direction we use some results on vanishing of higher cohomology for
nef line bundles on toric varieties (e.g. [6, Theorem 9.2.3]). Suppose » | c A @a[Ov(a)] =0
in Ko(X)g. For P any lattice polytope with normal fan A, let Dp denote the associated
ample divisor. For each ¢y > 0, we also have the nef divisor D, p. Then, recalling that x
is the Euler characteristic we have

0=x([0(Deor)] - (Y aalOvi)) = Y aax([0(Deyp)lva))- ()

a€A aEA

We would like to show that x ([0 (D p)|v(a)]) = Ehrg, (to) so that we can further
rewrite the sum on the right. By definition, Ehrg_(t9) = [toFa N M|, so we need to verify
that x([0(Ds,p)|v(a)]) = [toFa N M].

Since O(Dy,p) is nef, its restriction to V(«) is as well. By the vanishing of higher
sheaf cohomology groups, x([€(Dy,p)|v(a)]) = dimH*(V (), O(Diyp)|v(a)-

To calculate dimy H*(V («), O(Dyyp)|v(a), we first translate toP so that toF, is con-
tained inside M, = at. This corresponds to replacing D p by a linearly equivalent
divisor that doesn’t vanish or have poles containing V(«), so the dimension of HY
will not change. Now, the invertible sheaf &(D;,p) on X is generated on the affine
open Ug by the rational function corresponding to any m € tyoFj3, and its restric-
tion to V(a) is generated on the affine opens Uz N V() by the rational function
corresponding to any m € to(Fg N Fy,). The global sections H(V(a), O(Dyyp)|v(a)
will then have a basis given by the rational functions corresponding to m € tgF,, so
ltoFo N M| = dimg H (V (), O(Diyp)|v(a)-

So x([O(Dyyp)|v(a)]) = [toFa N M| = Ehrg, (to). Substituting this into () we obtain
that

0= Z QA EhI‘Fa (to)7
aEA

for to > 0. Since the polynomial }° A aq Ehrg, (t) has infinitely many zeros, it follows
that 0 = > . A aq Ehrp, (t). This establishes the “C” direction.

Now, we show the other direction. Suppose that a tuple (a,) satisfies the identity
Y aca o Ehrg, (t) = 0, for any P with normal fan A. This implies that
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0= aax(0(Dp)lv(a) = ((Z aa[ﬁV(aﬂ> '[ﬁ(DP)]> :

acA acA

Then, the result follows directly from the next lemma if we replace the term “z” with
LaeatalOv@]™ O

Lemma 2.13. Suppose X is a projective simplicial toric variety and A the corresponding
fan. If for x € Ko(X), we have x(x - [0(Dp)]) = 0 for all P with normal fan A, then
=01 K.(X)g

Proof. Let 7y : Ko(X) — A.(X)g be the Riemann-Roch transformation, which is an
isomorphism over Q. Also, let “deg” be the projection map from A.(X) to Ao(X). By
the Riemann-Roch theorem [9, Theorem 18.3],

x(@ - [0(Dp)]) = deg(ch(0(Dp)) N 7x ().

So, if we assume the hypothesis of the lemma, we have that for each P with normal
fan A,

0 = deg(ch(0(Dp)) N Tx(x)). (1)

We would like to show that this implies that 7x (z) = 0.

On a complete toric variety A*(X) = A,(X)V via the map ¢ — deg(cN —), by [11,
Theorem 3]. By [12, Theorem 4.1], A*(X)g is generated as a vector space by 1 and
classes of the form ch(&(Dp)), so we obtain that 7x(z) =0. O

We also have the following corollary which follows from the same vanishing theorem
as used in the “C” direction of Proposition 2.12, replacing the ample line bundle &(Dp)
on a projective toric variety with the trivial line bundle on an arbitrary complete toric
variety.

Corollary 2.14. Let X be a complete toric variety, A the associated fan, and ) aqeq
an element of Relg_ (x). Then 0= x(>_, aalOv(a)]) = 2 4 Ga-

3. Grothendieck weights in low codimensions

The goal of this section is to prove some identities (with rational coefficients) that a
Z-valued function on a complete fan will satisfy, if it is a Grothendieck weight. These
properties will be enough to characterize Grothendieck weights on fans up to dimension 3.
Our method will be to show that certain elements are in Relg, (x),, (see also Remark 2.8).

The end of this section is a proof of Theorem 1.1, which characterizes low-dimensional
Grothendieck weights in a more elementary manner than Theorem 4.14 in the next
section. We do not require that the fan is simplicial in this section.
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3.1. Preparatory results

Let us fix that X is a complete toric variety of dimension n, and A is the corresponding
complete fan. Fundamental to our approach to finding elements of Relg,(x), is the
Riemann-Roch transformation 7x. Recall that it is a map 7x : K.(X) — A.(X)o,
which becomes an isomorphism after tensoring with Q. For a vector bundle F, there is
an equality 7x([E]) = ch(E) - td(X), where ch is the Chern character homomorphism
ch: K°(X) - A*(X)g and td(X) = 7x(Ox) € Ko(X)g is the Todd class. For details
regarding the Todd class td(X) for singular varieties and this version of the Riemann-
Roch transformation, see [9, Chapter 18].

We also define Rely, (x)q:

Definition 3.2. Let Rely, (x), be the kernel of the map QA — A.(X)g that sends e, to

[V(a)].

Here is the basic strategy. If we choose a suitable lift 71 of 7x to an endomorphism of
Q4, we obtain an isomorphism of exact sequences:

0 — Relg,(x), — Q4 — Ko(X)g —— 0

l ff yx

0—— RelA*(X)Q QA A*(X)Q — 0.

If we can explicitly describe the lift 7 and a set of generators {r;}ic; C Rely, (x),, then
{T{l(ri)}iel will generate Relg, (x)q,

In the next proposition, we reproduce [12, Proposition 2.1(b)], which provides an
explicit list of generators for Rely, (x) (and by extension, Rely, X)@). Recall from sub-
section 1.3 that if 8 contains « as a face of codimension 1, then vg , is the generator of
the semigroup 3N N,.

Proposition 3.3. The space Rely, (x) splits as a direct sum ©; Rely,(x), where Rely, (x)
is generated by terms rq. . that have the form

row= Y. (vga)es
BEA(n—1i),
B

as « varies among cones of dimension n —i — 1 and u varies in M,.

Then, for instance, Rely, (x) is trivial. To execute the strategy outlined above, we
require the following lemmas.

Lemma 3.4. Let X be a complete toric variety, A the associated fan, and « an element
of A(k). Let Tx be the Riemann-Roch transformation. Then in A.(X)g, we have
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x([Ovl) =Vl + | Y SV +e

BEA(k+1),
Ba

where c € (Ag(X)® ... Ap_k—2(X))o-

Proof. If f is a proper morphism, we use f, for the pushforward in both A, and K,. Let
i:V(a) = X be the inclusion and 7 : Y — V(«) be a toric resolution. By [9, Theorem
18.3 (1)], fx o7x =7y o fx when f: X — Y is proper, so taking f =14 yields

TX(WV(a)]) = i*(TV(a)([ﬁV(a)]))'

Since [0y (a)] = m+([Oy]), we obtain that

i (v () ([Ov()]) = dem (1y ([O7])).

The toric variety Y is smooth and complete, so we can use the following well-known
formula for the Todd class (e.g. [6, Theorem 13.1.6]). Let ¥ be the fan of Y. Then

v
wv(lov)) = ] (%)
pPEX(1)

Expanding the product, we obtain

vov) =1+ 3 1| +e
pEX(1)

where ¢ represents classes of lower dimension.
If p € ¥(1) is in the fan of V(«), m maps V(p) birationally onto its image. If not,
m(V(p)) has lower dimension that V(p). Thus, applying 7. we get

rv(o)=1+| Y S|+

BEA(k+1),
Bra

Applying i, to both sides, we obtain the lemma. O
3.5. Properties of Grothendieck weights

We will now carry out the strategy outlined in the previous subsection (see also Re-
mark 2.8). Namely, we prove that for g € GW(A), the integers g(a) must satisfy certain
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identities with coefficients in Q, by showing that certain elements are in Relg,(x), or
Relg, (x)- See also Remark 2.8.

Let X be a complete toric variety of dimension n, and let A be the corresponding
complete fan. As before, 7x refers to the Riemann-Roch transformation. Let us fix

Q% —» Q% (§)

to be any lift of 7x which maps e, to e, + (ZBGA(dim(a)+1)7 %e;;) + ¢, where c is in
a
the span of e, for v containing o as a face of codimension > 2. Such a lift exists by

Lemma 3.4. Then, 7; is an isomorphism mapping Relg, (x), to Rela, (x)q-
Proposition 3.6. If g : A — Z is a Grothendieck weight, it is constant on maximal cones.

Proof. Let 0,0’ € A be maximal cones. Since for any two points p,p’ on P!, [,] = [0,/],
and any two T-fixed points in X are connected by a chain of P! - for instance, by T-
invariant curves, we have that [0y ()] = [0y (o/)]. So €5 — €, is in Relg, (x). O

The second proposition is about the values of a Grothendieck weight on cones of
codimension < 1.

Proposition 3.7. If g : A — Z is a Grothendieck weight, o € A(n) any mazximal cone,
and o € A(n — 2), then

> (9(B) = 9(0)vsa = 0.
peA(n—1),
Bra
Proof. Recall from (3.2) and (3.3) the definition of Rely, (x),. By Proposition 3.3, the
space Rely, (x), contains

Z <u’vﬁﬁa>eﬂ’

BeA(n-1),
B
for each u in M,,.
Applying the T]Tl chosen in (§), we see that Relg,_(x), contains

1 1
> (uvpad(es - 3601~ 5602),

BEA(n—1),
Ba

for o1, 09 the two maximal cones that contain f.
Since e; — e,

k3

is in Relg, (x), by the proof of the previous proposition, it follows that

> Bea(n—1),(U Vs.a)(es — €5) is also contained in Relg, (x), - Thus
B
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> (wvga)(9(B) - glo) =0,
56%(:&—1),

for each u € M,. O

The third proposition, in the same pattern, is about the values of a Grothendieck
weight on cones of codimension < 2.

Proposition 3.8. If g : A — Z is a Grothendieck weight, o € A(n) any mazximal cone,
and o € A(n — 3), then

> - ¥ Do X o0 X D

BeEA(n—2), YEA(n—1), BeEA(n—2), YEA(n—1),
B=a ] Ba y-B

Proof. Citing Proposition 3.3 again, we know that for each u € M, the element

Z <U7U5,Ot>eﬁ7

BEA(n—2),
B«

is in Relya, (x) - Its inverse image in Relg, (x),, with respect to 7y as chosen in (§), has
the form

Z (u,v8,0) | €8 — Z %ev + Z Qg€

BEA(n—2), yEA(n—1), o’/ maximal
Br-a v-B

for some coefficients a,.

By adding multiplies of e, — €/, the following element is also in Relg, (x),:

1
Z (u,v8,0) | €3 — Z 267 + ( Z a0/> €o-
BEA(n—2), yEA(n—1), o’/ maximal

Bra -8

Then, Lemma 2.14 implies that

1
> o] X g 2w
BEA(n—2), YEA(n—1), o’ maximal

B« Y-8

Thus, a Grothendieck weight g must satisfy
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> e o) | X 390

BEA(n—2), yEA(n—1),
Bra V=B

—gl0) Y wwa|1-| X S]]

BEA(n—2), yEA(n—1),
Bro y=B

for each u € M,.

This final equality says that two different elements of N, have the same value when
paired with every u € M,,. Since M, = N, the two elements of N, must be equal. This
proves the proposition. O

3.9. Proof of Theorem 1.1

Proof. For X of dimension < 3, Rela, (x), = Rela,(x), ® Rela, (x), © Rela,(x)q, where
the last two factors may be trivial. Thus, the inverse images of the generators of these
factors with respect to 7y generate Relk, (x),- By Remark 2.8, Grothendieck weights are
the functions on A which send such expressions to 0. O

4. Grothendieck weights on simplicial fans

Theorem 1.1 characterized Grothendieck weights in low dimensions by explicitly pro-
ducing generators for Relg, (x)q,- In this section, we would like to do the same for higher
dimensional toric varieties. Ideally, we would like to address the following question:

Question 4.1. Given X a complete toric variety of arbitrary dimension, how can we
calculate explicit generating sets for Relg, (x),?

For the sake of explicitness, we restrict to simplicial fans. Our basic strategy is the

same as before: if 7 is a lift of the Riemann-Roch transformation 7x, then we obtain an
isomorphism of exact sequences

0 — Relg,(x)y — Q% —— Ko(X)g —— 0

| D

0—— RelA*(X)@ QA A*(X)Q — 0,

and we can obtain a set of generators of Relg, (x), as the inverse images (with respect
to 1) of generators of Rely, (x),- Recall that we already know explicit generators for
Rely, (x), by [12, Proposition 2.1(b)], which was reproduced earlier as Proposition 3.3.
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4.2. Choosing T4

In the previous section, we did not need to fully calculate a lift 74, but because we
are now considering X of arbitrary dimension, we change our approach and focus on the
following question.

Question 4.3. What is an optimal 74 that lifts 7x? How can we calculate it?

To calculate a suitable 74, we must choose an expression for 7x (V(a)) for each a € A
in terms of [V(8)], 8 > «. Finding such expressions is known as Danilov’s problem, see
[7, Section 11], and [3,15,17,18]. To find such expressions, we follow a strategy from
[18], which is to rewrite an expression for the Todd class as a polynomial in T-invariant
divisors using [18, Theorem 3].

Because we use it heavily in this section, we start by introducing [18, Theorem 3].
First, we define the multiplicity of a simplicial cone: If « is a k-dimensional cone in N with
k extremal rays generated by vy, ..., v;, and N* = NNQ -, then the multiplicity of « is
mult(a) = [N%: Zvy + ...+ Zvg]. If a < B, let the relative multiplicity mult, () denote
the multiplicity of the image § in the quotient N,. Then e.g. mult(a) = mult oy ().
Geometrically, mult, (8) is the Hilbert-Samuel mutliplicity of Ug NV («) along V(3).

In [18], Pommersheim and Thomas define rational numbers ¢ for each cone a and
ray p such that p C o, which depend on the choice of a generic complete flag F, in Ng.
These rational numbers are used to rewrite non-squarefree monomials in toric divisors
as a linear combination of the classes of T-invariant subvarieties.

Definition 4.4. Let F, be a complete flag in Ng, so F; is an i-dimensional subspace of
Ng. Given a € A(k), and i from 1 to k, let v, be the primitive element of the ray p; in a.
We impose that F, is generic, in the sense that F,,_+1 N (Q - ) is always 1-dimensional,
so it determines a vector (unique up to a common scaling):

k

0 # Ztg‘ivpi € Fnk1N(Q-a).

i=1

We impose further that for a generic Fy all such ¢ are non-zero.

The scalar for the ¢ will not matter because they will only appear in expressions
which are ratios of homogeneous polynomials of the same degree.
Now, let S be a subset of A(1). For p € S, let a, be a positive integer, and let [ denote

the sum ) _¢a,. Then, a restatement of [18, Theorem 3] is:

p€eS
Theorem 4.5. Let X be a simplicial toric variety with fan A. Then

Iver= T i L6

pES acA(l), pCa’P pes
« contains all peS
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m An,l (X)Q .

This allows us to give an explicit formula for certain types of products as linear
combinations of subvarieties:

Lemma 4.6. Let X be a simplicial toric variety with fan A, and for each p € A(1), let
fo(t) € Q[[t]] be a series. Then in the A.(X)q we have an identity

I1 fp([V(p)])=Z<H M) T1 5,00 | L2
PEA(L) a€A \pCa s 0] \rZa mult (o)

Proof. Let us write

:Zafti,

i>0

so by expanding the product and applying Theorem 4.5, we get

II rwven= > 1[I « W~

pEA(L) (ip)ezgél) pEA(1)
V()] ani
- Z Z mult(a) H H 1p H (tp) 7y
(ip)€ZSY €AY, ip), pcalp pEA(1)  pCa

aCp for all P
satisfying i,>0

R Yo | Y (G

(ip)€ ZA(l) aGA(Z ip), pCa
aCp for all o
satisfying i,>0

Inside both summations, the index i, is zero if p ¢ «, so we can split the product

HpeA(l) afp into [],c, afp oo fp(0). Switching the summations and rearranging, we

get that the above can be further rewritten as

a .
IEETRR I EZUNED DI | CA
mult(a) ,
acA pZ o (1p)€ZA(1), pCa
Zzp_dlm(a)
aCp for all p
satisfying i,>0

Fo(t3)
pCa  tg

The inner sum is equal to (H )[ g which proves the corollary. O
0

The next proposition relates products of divisors in X with products of divisors in
V(). For a € A and a generic flag Fy in N, the images Fi C ... C F,_dim(a) form a



192 A. Shah / Journal of Algebra 611 (2022) 175-210

generic flag in N,. Thus, for 8 a cone containing o and p a ray in 3 not contained in
«, this choice of generic flag produces numbers tg which we can use to rewrite products

of divisors in V(). Like the numbers tﬁ , the numbers tg are defined up to a scalar
which will not matter because they will only appear in expressions which are ratios of
homogeneous polynomials of the same degree.

Proposition 4.7. Let o < 8 be simplicial cones in a fan A. If p is a ray in [ that is not
mult(a+p) 8.

contained in o, then tg = “mult(a) e

Proof. Recall that v, is the generator of the semigroup of lattice points in the ray p. Let
dim(a) = k. Up to a scalar, the unique vector in F,, 1 N (Q - B) is the image of the
unique vector in Fy,_xy1 N (Q - B), which has the formula

thvp > th,

pCpB pCB,
pZa
The image v, of v, does not necessarily generate the semigroup of lattice points in p. In
other words, 7, = b,v; for b, a positive integer. In fact, b, is the index [Zv; : Z7,].
Let mo, : N = N, be the quotient map, and let a 4 p be the cone generated by a and
p. Recall that N is the kernel of 7, (from subsection 1.3). Then 7, '(Zv;) = N7,
and 7, (Zv,) = N* + Zv,. Thus b, = [Zv; : Zv,] = [N*TP : N® + Zv,).
To compute [N*TP : N® + Zv,], let us first decompose mult(a + p) as a product. Let
p1,---, Pk be the rays of a.

mult(a + p) = [N*TP: Zv,, + ...+ Zv,, + Zv,)
=[NP N* + Zv,|[N* + Zv, : Zvp, + ... + Zv,, + Zv,).

But [N® + Zv, : Zv,, + ...+ Zv,, + Zv,) = [N® : Zv,, + ... + Zv,, ] = mult(a). So
by = [NF0 2 N® + Zu,] = tlets)
Thus, we have

5 Bmult(a—i—p) -
Zt U= Z £ mult(a) vp

pCB, pCB,
pZa pZa

is the unique vector in Fy, 411 N (Q - B). By Definition 4.4, tg is the coefficient of vj,
tﬁ mult(a+p) O

which is ult(a)

Now, we restrict to working over C temporarily. We use the two previous propositions
and a Theorem from [4] to choose a map 7+ that lifts 7x.

For each cone o € A, Brion and Vergne defined the finite subgroup G, C (C*)dix(e)
to be the kernel of the map (C*)4™(®) — T given by
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(cp)p = H v,(cp).
pCa

For nested cones a < 8, let G be the analogous subgroup defined with respect to B in
the fan of V(«). Explicitly:

Definition 4.8. Let G be the kernel of the map (C*)dim(B)=dim(e) _ T given by

(¢p)pcp, + | I vp(cp).
PEA pcg,
pZa

Let k be the number of rays in the quotient fan A,, and let Ga_ to be the union
inside (C*)* over all 3 containing . For a ray p in 3 not contained in «, we denote by
ay; the character G — C* given by projection.

Treating t; as a variable with degree 1, we will refer to the degree 0 coefficient of a
formal Laurent series v(t1,...,tx) by ©(t1,...,tx)o. For example, if

() (1) (o d o) (4 o)

then
11 (b
z/’[0}_4+12< +t1>‘

Proposition 4.9. Let X be a complete simplicial toric variety over C. Then, we have the

following formula for the Riemann-Roch transformation:

1 mult () [V (5)]
ﬁV(a Z Z H (g)e_ mult(a—i—p)tﬁ _mult(a)

BageGy | peA(n), 1 —ag mult (3 )HpC& mult(a+p)
pCB,
pZa [0]

Proof. Let A, be the fan of V(«) in (N,)r. The main theorem in [4, Section 4.2] gives
the following formula for the Todd class:

V(p
vloved = > II 5 aé(g()e)] Vel

9€Ga, pEAG (1)

Let i : V(a) < X be the inclusion map. Then in A.(X)g, we have

) %4
w(Ovl) = D i ] 11— %E(g()pe)] Vel
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Applying Lemma 4.6, and rewriting, we have:

, 1 . t V(B)]

o2 | I — Il =

96Ga.  Bra | peann), 1 —ag(gle penn), ° 1—aj(g)e multq (6)”
pCB [0] pZ B

1
> |1

gEGA, Bra | peA(), 1-— az‘(g)e mult (o)
pCpB,
o (0]

mult(a)[V(5)]

mult(a) ’
mult(3) Hpc[ﬁ mult toSJr)p)

t
X H lim
—q® —t
peA(l),t_ml ag(g)e
aﬁ-peA

where in the last line we applied the formula for tg from Proposition 4.7 and the formula
for mult, (8) from the appendix.

However, the term | [],ca(r), lim:—o W is 1if af(g) = 1 for all p indexing
p

PLB,
a+pEA

the product, or 0 otherwise. The condition that af (g) = 1 for all p is equivalent to the
condition that g € Gg. Thus, we obtain that

1
> > | 10 Ty

9€Ga,, Bra | pen@), 1 — ag(g)e ralt (o)
pCh,
pZ o -

mult(a)[V(5)]

X H lim
— q« —t 1t(a)
peA(1)7t—>01 ag(g)e mult (S )Hpcﬁ, (et
pLB,
a+pEA
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1 mult(a)[V (5
:Z Z H muli(atp) B (el (m?l]lt “mult(a)

prageqy | pea(n), 1 —ag(g)e =i mult(4 )Hpcﬂv mult(a+p)
pCB,
pee (0]
_m\llt((y+p)tﬁ

Due to the “degree 0”7 imposition, the mult(a) factors in the exponents e mult(@)
cancel, which proves the proposition. 0O

Here is the relevant consequence.

Corollary 4.10. Let X be a complete simplicial toric variety over C. Let 7; : Q2 - Q2

mult(a mult(a mult(a
send e, to Z,B>a deG% (HZ% ; t(a+p)/ mult( )ﬁ){ | mulzgﬁgef" Then Relg, (x), =
0

7(12‘(g)€7 mult(a+p)ty

TTil(RelA*(X)Q),

Example 4.11. We use this proposition to calculate the 71 given by a particular choice of
flag. Let X be the twisted projective space P(1, 1,2, 3). Recall that the fan of X has rays
p1=(1,0,0),p2 = (0,1,0), ps = (0,0,1), and ps = (—1,—2, —3). The maximal cones are
those generated by 3-element subsets of {p1, p2, p3, p4}. If we choose the flag in Q3 given
by

{0} € span{(a, b, ¢)} C span{(a,b,¢), (d.e, f)} S Q°,

where a,b, ¢, d, e, f are some numbers so that (d, e, f) is not a multiple of (a, b, ¢), then
the ¢ are those written in Table 1.

Then, one can write the Todd class of each subvariety in a uniform way with rational
functions in 7 as coefficients. For the flag specified by (a,b,c) = (2,3,5), (d,e, f) =
(3,5,7), we get the lift 7 seen in Table 2.

Definition 4.12. Let 1, (/3) be the (8, o) entry of the matrix corresponding to 74 as defined
in Corollary 4.10, with respect to the basis ey, a € A.

The map 71 : Q& — Q? is lower triangular with ones on the diagonal, so it is
invertible. Let v, () be the (3, &) entry of the matrix corresponding to T 1 with respect
to the basis e,,« € A. Then, we can write

= (V(@)) =Y va(B)[Ovs)

a<p

Example 4.13. For o € A, we have v,(a) = 1, and for A smooth and ¢7 defined as in
4.4, we have
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Table 1
The ¢ of Example 4.11.

Cone (o) Ray (p) t&

0123 P1 a
P2 b
P3 c
0124 p1 a—c/3
p2 b—2c/3
P4 —c/3
0134 P1 a—>b/2
p3 c—3b/2
P4 —b/2
0234 P2 b—2a
03 c— 3a
P4 —a
aiz P1 af —cd
P2 bf — ce
Qi3 P1 ae — bd
p3 ce —bf
o4 P1 3(ae — bd) 4+ 2(cd — af) + (bf — ce)
pa bf — ce
Q23 P2 ae — bd
3 af —cd
g P2 —(3(ae — bd) + 2(cd — af) + (bf — ce))
pa af —cd
o34 p3 3(ae — bd) + 2(cd — af) + (bf — ce)
P4 ae — bd
P P 1

Table 2
The 7 matrix of Example 4.11.

ool x P1 P2

P3 P4 12 13 Q14 Q23 Qg Q34 0123 0124 0134 0234
X 1 0 0 0 0 o o 0o 0 O o0 o0 0 0 0
o /2 1 0 0 0 0o 0o 0o 0 0 o0 0 0 0 0
o2 /2 0 1 0 0 o 0o 0o 0 0 0 0 0 0 0
03 /2 0 0 1 0 0o 0o 0o 0 0 0 0 0 0 0
o4 /2 0 0 0 1 o o 0o 0 0 o0 o0 0 0 0
a1s 20/48 1/2 1/2 0 0 1 0o 0 0 0 0 0 0 0 0
ars 20/48 1/2 0 1/2 0 o 1 0o 0 0 0 o0 0 0 0
Qs -5/48 1/2 0 0 /2 o0 0 1 0 0 0 0O 0 0 0
caa /12 0 1/2 /2 0 o o o 1 0 0 0 0 0 0
Qo 5/12 0 1/2 0 /2 o0 0 0o 0 1 0 0 0 0 0
s 5/12 0 0 1/2 1/2 o 0 0 O 0 1 0 0 0 0
o123 31/72 79/180 59/120 31/72 0 1/2 1/2 0 1/2 0 0 1 0 0 0
o124 1/8  9/20 1/20 0 1/4 1/2 0 1/2 0 1/2 0 0 1 0 0
o134 1/36  1/9 0 /9 1/3 0o 1/2 1/2 0 0 1/2 0 0 1 0
Oa3a 5/12 0 11/24 11/24 5/12 0 0 0 1/2 1/2 1/2 0 0 0 1
k i 1
v = > EO"TI 10 [y
Qo<1 £...<ak, =1 | pCay, +—€ °
o=, =0 pZ a1 [0]

Now, let 7+ be as chosen in Corollary 4.10, and the v, () as defined above. Then, we
have the following theorem. Recall that vg , was defined in subsection 1.3.
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Theorem 4.14. Let A be a complete simplicial fan. Then a function g : A — Z is a
Grothendieck weight if and only if it satisfies

> (wvga) > vs(v)g(y) =0,

Bra, v-B
dim(B)=dim(a)+1

for each o € A and u € M,.

Before the proof, we recall that by Proposition 2.9, GW(A) is independent of the
group field, so even though we have defined 7 using formulas for the Todd class over C,
this theorem describes opK° of the associated toric variety over any field.

Proof. By Proposition 3.3, the elements

a,u = » VB, )
Tou > (u,v8,a)€8

Bra,
dim(B)=dim(a)+1

generate Rely, (x), so the elements T;l(rcw) generate Relg, (x),- By Definition 4.12,

7']?1 Z (u,vg,00€3 | = Z (U, v8,q) Z vg(7y)es.

B-a, B>a, Y-8
dim(B)=dim(a)+1 dim(B)=dim(a)+1

Since these elements generate Relk, (x),, , the group Ko (X )V can be identified with linear
forms on Z“ which send such expressions to 0. Grothendieck weights are then (recall
Remark 2.8) characterized as the functions g : A — Z satisfying

> (0, v5.0) Y _vp(y)g(y) =0. O

Ba, v
dim(8)=dim(a)+1

Remark 4.15. Theorem 4.14 in some sense overlaps with Theorem 1.1 in the case that X
is simplicial and has dimension < 3, since one can use the 7; from Corollary 4.10 in the
course of proving Theorem 1.1, but we used the more elementary Lemma 3.4 in Section 3
for simplicity.

We considered using different sets of generators for the Grothendieck group in our
definition of Grothendieck weights, e.g. ideal sheaves or canonical sheaves of invariant

subvarieties. However, the problem of combinatorially describing the relations between
these classes seems equally difficult.
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5. Products

If X is a complete toric variety and A the associated fan, the natural isomorphism of
groups between opK°(X) and GW(A) induces a product on Grothendieck weights, which
is compatible with the product on K,(X)" induced by the diagonal map by Theorem 5.3.
We prove some propositions in this section about how to compute it. Since opK°(X) and
GW(A) are manifestly torsion-free, we can compute products after extending coefficients
to Q, and the calculations will be valid in the original rings.

First, we will need the following special case of [2, Proposition 6.4].

Proposition 5.1. Let X be a toric variety, and Y arbitrary. Then, the natural map
K.(X)® Ko(Y) = Ko(X xXY) is an isomorphism.

We will need the following lemma. Recall that an operational class ¢ = (¢f) €
opK°(X) is a tuple of endomorphisms of K,(Y) for each f : ¥ — X. To avoid no-
tational overload, if f = Idx is the identity map on X, we write cr4 instead of crq, for
the corresponding endomorphism of K, (X).

Lemma 5.2. Let X be a toric variety, ¢ : Y — X be arbitrary, v4 : Y — X XY the graph
of ¢, z € Ko(Y), and ¢ € opK°(X).

Let us identify (74)«(2) € Ko(X X Y) with the corresponding element ). u; ® v; €
Ko(X)® Ko(Y). Then, we have an equality in Ko(Y):

(6" )1a(z) = > x(cra(ui))vs.

Proof. To prove the equality, let 71 and w2 be the projections from X x Y to X and Y
respectively. Then, my0v4 = idy and m 04 = ¢. Operational classes satisfy a projection
formula, so we have

(97c)1a(2) = (idy )« ((97¢)1a(2)) = (2279 ) (V57T ) 14(2)) = (m2)« (7€) 1a(79) (2))-

Now, replacing (v¢)«(2) with >, u; ® v; € Ko(X) ® Ko(Y') gives us

(m2) (O ra(6)<(2)) = Y _(m2)((rFe)ralus @ vy)).

i
So, the claim follows if we can show
(m2)« (71 ¢)1a(u ® v)) = x(cra(u))v,

for u € Ko(X),v € Ko(Y). It is enough to consider to the case that v = [i,Oy] is the
pushforward of the structure sheaf of a closed subvariety ¢ : Y’ < Y, since such classes
generate Ko(Y).
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Recall that 7 : X x Y — X is the projection. Let 7} be the projection X x Y’ — X.
Now consider the following commuting square:

X xy 1 x vy

Lok
X

X -
Then,
u®v=u®[i,0y] = (Id x i).(m)" (u),
SO
(r10)1a(u® v) = (r]c)ra((Id x i)+ (m1)" (u)).
By definition of the pullback of operational classes, [2, Section 4.1], (75¢)rq = ¢r,, SO
(m1e)ra((Td x i) (m1)" (u)) = e, (Id X i)s(71)" (u)).
Since Id x i is proper, ¢r, o (Id x i), = (Id X i)« © Cx,o(1dxs)- Also my o (Id x i) = 7, so
Cry (Td X 0)o (1) " () = (Id X i)+ (ca; ((71)" (w)).

Since 7} is flat, ¢/ ((7])*(u)) = (7])*(cra(w)), the latter being equal to crq(u) ® [Oy/].
Thus

(Td x i)u(cx; ((71)"(u)) = (Id X i)+ (cra(u) @ [Oy]) = cra(u) @ [ixOy] = cra(u) @ v.

Applying (72), finally shows that (m2).((75¢)ra(u®v)) = (m2)«(cra(uw) @v) = x(cra(u))v,
which proves the claim. O

This allows us to show the following fact about products of classes in operational
K-theory. It is a K-theoretic analogue of [11, Theorem 4].

Theorem 5.3. Let X be a complete toric variety. Let § : X — X x X be the diagonal
map, and let us have classes z € Ko(X) and ¢,d € opK°(X). Given an expression
0.(2) = >, miu; @ vy, with m; € Q, the product ¢ - d evaluated on z satisfies

X ((c-d)ra(2)) = Z miX (cra(ui)) x (dra(vi)) -

Proof. Recall (from subsection 2.2) that the product in operational K-theory is defined
by point-wise composition and is commutative, so (¢-d)rg = (d-¢) = dyq o crq. Then,
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we use the previous lemma, with Id : X — X in place of ¢ : Y — X, so the graph ~;4
is the diagonal map § : X — X x X.
The previous lemma implies that

cra(z) = ZmiX(CId(Ui))Ui7

K3

(c-d)1a(z) = dra(cra(z)) = ZmiX(CId(ui))X(dld(Ui))- O

Remark 5.4. In fact, the proposition and proof are valid for any variety which is linear
in the sense of [19].

The following corollary is a direct consequence of Theorem 5.3. We will use the corol-
lary in the next subsection to give a formula for the product of Grothendieck weights
induced by opK°(X).

Corollary 5.5. Let X be a complete toric variety with fan A, and let f and g be
Grothendieck weights on A. Let 6 : X — X x X be the diagonal map. Given an ex-

pression 6, ([Ov(w)]) = 5., c84[Ov(s)] ® [Ov (1] with cg € Q, we have

(f-9)(@) = carf(B)g()-
By

5.6. Decomposing diagonals and product formulas

By using Corollary 5.5, we can compute products of Grothendieck weights if we are
able to provide suitable expressions for . ([0 (4)]). Outside of the smooth case where one
can use Poincaré duality, we do not know an easy way to do this. Since we have already
addressed how to explicitly describe the Riemann-Roch transformation for a complete
simplicial complex toric variety in Section 4, we apply it to finding an expression for
0+([Ov(ay]) in terms of [Oy(g)] @ [Oy(4)]. We recall that by Proposition 2.9, the ring
GW(A) is independent of the underlying field, so we can use an expression for 6, ([Oy (a)])
over the complex numbers to calculate products of operational classes of complete toric
varieties over arbitrary fields.

Let A be a complete simplicial fan, and suppose that f and g in GW(A) are given.
Their product may be calculated explicitly via the formula in the next theorem. To
undertake the calculation we choose a generic vector v € N. Then for three cones «, (3,
and v satisfying « C # N+, we define m§ _ in the same manner as [12], by

Y

o IN:Z-B+Z-~] BN (y+v)#0,
Mgy = 0 .
otherwise.
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Though it is suppressed in the notation, we emphasize that mj . depends on the choice
of v.

Theorem 5.7. Let f,g: A — Z be Grothendieck weights on a complete simplicial fan A.
Let 14 be a lift of the Riemann-Roch map on the associated toric variety over C, which
induces o (B),va(8) as in Definition 4.12.

Then, the product h = f - g is equal to

h(a) =" a(B) > mE > v (Qve(n) F(C)g(n).

B« v,e-, =,
codim(7y)+codim(e) n-e
=codim(3)

We point out that h(«) is indeed an integer. Grothendieck weights over the integers
include into Grothendieck weights over the rationals as a subring, so the product f- g is
unambiguously a weight over the integers, even if we use rational numbers to compute
it.

Proof. Recall that § : X — X x X is the diagonal map. Then, we have

0+ ([Ov(a)]) = 0:(rx " (Tx ([Ov(@)]))

=iy [ 2 ma(B)G(V D)

B«

By [12, Theorem 4.2], we may use the m?/,e determined by the generic vector v to de-
compose each 0,([V(8)]), obtaining

Tikx | D (B8 (V(B))

Bra

=txex | DomaB) Y mE [V(y) x V(e)]

Bra v,€- 8,
codim(vy)+codim(e)
=codim(3)
=Y mB) Y mhax(V() x V(o).
Ba V.60,
codim(vy)+codim(e)
=codim(3)

But then,

Tux (V) x V(D) =rx (V) @ 75 (V ()
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c b
<72~,3> d
o) 2c—d
b+ 3c—3d Y+ 3z —3w

Fig. 1. Two Grothendieck weights on the fan A of X.

_ZV’Y MOv)] @ [Ov ]

Sl
n=e

So, by Corollary 5.5 the theorem follows. 0O

We can use Theorem 5.7 to show the following basic observations about the structure

of GW(A).

Proposition 5.8. Let A be a complete fan, and ¥ a sub-fan. The set of Grothendieck
weights on A that vanish on the complement of ¥ forms an ideal in GW(A).

Proof. Let f,g : A — Z be weights such that f vanishes on the cones of A. We first
assume that A is simplicial. There are some coefficients C such that

= > anmef )g(n).

B« v,e>-0, ¢,
codim(~y)+codim(e) M-€
=codim(f3)

If « is not in X, then since @ < ¢ and ¥ is a fan, ¢ is not in X. Thus f(¢) is 0 for each
term in the sum.

Now, let A be an arbitrary complete fan. Let A’ be a simplicial refinement and ¥’
the compatible refinement of ¥. Then the pull-back of f - g on A’ vanishes on the cones
in ¥, so f-g vanishes on . O

Corollary 5.9. For a complete fan A, the ring GW(A) is filtered by ideals I}, consisting
of weights that vanish on cones of codimension less than k.

Example 5.10. We calculate the product of Grothendieck weights on a singular toric
surface. Let X be the complete toric surface with rays p1 = Rxg - (0,1),p2 = Ry -
(1,0),p3 = Rsg - (0,—1), and ps = R>g - (—2,3). The first weight has value d on all
maximal cones, and the second has value w. To calculate the product, we need a 7y that
lifts the Riemann-Roch transformation 7x,. A 7} as described in Section 4 depends on
choosing a complete flag. In two dimensions, this is merely the data of a vector, so we
pick the vector (1,1). The resulting Riemann-Roch lift is shown in Fig. 2

We must also select a displacement vector v which specifies the values of mg .. If we

0 0 —m0 — mpP1 — mP1 —
P1,P4 =2, mpz ps = M0,050 = Mo15,0 = Mpro1s = Moo =

choose e.g. v = (5,1), then m/
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1 00 0O0O0GO0GOO
1.0 000000
! 01000000
' 090100000
' 90010000
%%90%1000
2 g 000100
¥0§%00010
% 0 0 5 & 00 01

Fig. 2. The matrix for a lift of the Riemann-Roch transformation on the Hirzebruch surface.

cw + dz — dw bw + dy — dw

dw

————>2cw + 2dz — 3dw

bw + dy + 3(cw + dz) — Tdw

Fig. 3. The product of the two weights in Fig. 1.

P2 — P2 P3 — P3 Pa — P4 — a
mp27023 - m0127p2 pP3,034 mdzsms P4,034 m0147P4 - 1’ and the other mﬁ,"/ are

zero. The resulting weight is in Fig. 3, with a value of aw — 2bw — 8cw + 9dw + dx +
2cy — 2dy + 2bz + 6¢z — 8dz on the origin.

6. Maps to Grothendieck weights

For a complete fan A, there are a few other rings which have geometric origins. The
two which we will discuss are the Minkowski weights MW*(A) introduced in [12], and
the ring of piecewise exponential functions PExp(A) introduced in [4]. Both of these
rings have maps to GW(A) which correspond to maps of operational theories. We give
formulas for these maps and explore some consequences. In the first subsection, we
restrict to complete simplicial toric varieties over C, but return to arbitrary complete
toric varieties afterwards, in Subsection 6.6.

6.1. Minkowski weights and GW(A)

Let A be a complete fan of dimension n. Recall that for o € A(k) and 8 € A(k + 1),
B = a, the generator of the semigroup 8 N N(a) is denoted by v8,o. The group of
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codimension-i Minkowski weights MW*(A) is the set of functions f on A(n — i) that
satisfy

Z <U7Uﬁ,o¢>f(ﬂ) = Oa

peA(n—i),
B
for each a € A(n—i—1) and u € M(«). Fulton and Sturmfels introduced these weights
in [12] because MW*(A) is naturally isomorphic to 4;(X)Y and the Chow cohomology
group A*(X) (compare with Proposition 3.3).

Proposition 6.2. Let X be a complete simplicial toric variety over C. Let T : MW*(A) —
GW(A)g be the map induced from the isomorphism T7x : Ko(X)g — A«(X)g. Then
T(f) =g € GW(A)q has the formula

9(@) = > nal(B)f(B),

a<p

with po(B) as given in Definition /.12.

This directly follows from the formula the Riemann-Roch transformation 7x
Ko.(X) — A.(X)g given in Corollary 4.10. The map T can also be identified with
the inverse of the operational Riemann-Roch map of [1].

Remark 6.3. It is possible to use the previous proposition to algorithmically calculate
the inverse image under T of a Grothendieck weight. Let g € GW(A) be a Grothendieck
weight, and suppose that g € I. The balancing conditions of Theorem 4.14 combined
with Proposition 2.10 imply that g|a(,—k) is @ Minkowski weight. Then, g —T'(g|a(n—))
is an element of GW(A)g, and is in (I4+1)g. One may repeat this process to obtain that
9=T(glam-1)—T((g=T(9glam—k)))|am-k-1)) € (Ik4+1)q, and so on. After n—k iterates,
we obtain an identity of the form g —T'(g|am—r)) =T ((9—=T(glam-r)))|A@m—k-1)) =+ =
0. Applying T—! produces a formula for T7*(g).

Definition 6.4. For f € MW¥(A) we say that an element g € GW(A) lifts f if g € I,
and glam—r) = f-

Suppose that f € MW*(A). Then for example, T'(f) will be contained in (I;)g and
will satisfy T'(f)|am—k) = f, but will not generally be an element of GW(A).

Our next proposition is a sufficient condition for existence of lifts. We no longer need to
work over C and let the base field k be arbitary. Let F; be the i-th piece of the dimension
filtration on the Grothendieck group, meaning that it is generated by coherent sheaves
with support of dimension at most .

Proposition 6.5. Let X be a complete toric variety. Suppose Fy, is saturated as a subgroup
of Ko(X). Then every f € MW*(A) has a lift in GW(A).
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Proof. We have the exact sequence
0— Fy/Fr-1 — Ko(X)/Fr—1 — Ko(X)/Fy, — 0.
The long exact sequence obtained after applying (—)¥ = Homg(—,Z) is:

00— (Ko(X)/Fp)Y ————— (Ko(X)/Fy—1)Y —————— (Fp/Fr-1)"

Exty (Ko(X)/Fy,Z) — Bxty(Ko(X)/Fy_1,Z) — Exty(Fy/Fi_1,Z).

Let us consider the first few terms. (Ko(X)/Fr—1)Y may be naturally identified with
the ideal I} of Grothendieck weights which vanish on cones of codimension less than k,
as defined in Corollary 5.9. On the other hand, Fj/Fj_1 is the k-th piece of graded K-
theory. The map Ay(X) — Fi/Fi_1 sending [V] to [Ov] is surjective by dévissage, and
has torsion kernel since it is an isomorphism after tensoring with Q (see [9, Chapter 18]).
Thus, (Fy/Fr_1)Y = MW¥(A), and the first few terms in the exact sequence become:

0= I — I, = MWF(A) — ...

Suppose that a Minkowski weight f € MW*(A) does not have a lift. Then, I}, cannot
surject onto MW*(A). Thus, the group Exty (K, (X)/Fy,Z) cannot be trivial. But this
group is isomorphic to the torsion subgroup of Ko(X)/F}, which is trivial if and only if
F}, is saturated as a subgroup of K,(X). O

6.6. Piecewise exponential functions and GW(A)

Let the base field k be arbitary. Let R(T") be the group algebra Z[e™|m € M]. It is a
basic fact that KT (pt) = R(T). The ring of piecewise exponential functions PExp(A) is
the ring of continuous functions on A that are given on each cone oo € A by an element
of R(T). Anderson and Payne showed that for any fan A and associated toric variety
X over k, this ring is naturally isomorphic to opK2(X). If A is complete, PExp(A) has
a map to GW(A) induced by the forgetful map opK%(X) — opK°(X), which we now
describe.

We require K-theoretic equivariant multiplicities €& (V (a)), for p € XT. These have

P
been recently introduced in [1]. They satisfy the identity

> V() [ip(0,)] = [Ov(a)),

peXT

for i, : p — X the inclusion.
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Theorem 6.7. Let X be a complete toric variety. There is a commuting square

(X(A)) —— PExp(A)
lforget ful lforget ful

opK°(X(A)) —— GW(A)

opKr

in which the forgetful map from PExp(A) to GW(A) sends a piecewise-exponential func-
tion ¢ to the limit of the function

a—= Y V()

oc€A(n)

as the argument of ¢ approaches 0 € N.
Proof. If ¢ is a piecewise exponential function, then via the isomorphism in [2, Theorem

6.1], ¢ corresponds to a R(T)-linear function ¢y, : KI'(X) — R(T). The function ¢;;,
can be written explicitly via the projection formula:

Guin([Ov()]) = duin( D e (V(@))[ipe(0,)]),

peXT
= iy Prin( Z e (V(e)[Op)),
peXT
= > WV @izgun(Gp)) = D e (V(@)lo,
peXT peXT

where o), is the maximal cone corresponding to p.

The forgetful map from opK3.(X) to opK°(X) is induced by the projection X x
T — X, so it is the pullback from opK3%(X) to opK5(X x T) = opK°(X). Via the
identification of opK$(X) with R(T)-linear maps from KZ'(X) to R(T), and opK°(X)
with K,(X)V, the forgetful map sends ¢y, : KI'(X) — R(T) to the linear function on
K, (X) sending [0y (4)] to the equivalence class in Z of ¢([0y(4)]) (see the appendix of
[1] for more details). This is the same as taking the limit as the argument of ¢ approaches
0eN. O

Example 6.8. This example and the following corollary are analogous to [14, Example
4.1 and Theorem 1.5]. Let X be the toric variety whose fan A is the complete fan in
N = Z? with rays (41,41). In this case, a generating set for PExp(A) over R(T) is
given by the functions in Fig. 4.

Let ¢ be the piecewise exponential function on the top right of Fig. 4, and let g be its
image in GW(A) under the forgetful map. Since the equivariant multiplicity of a point
is just 1, the value of g on any maximal cone is just the value of ¢ at 0, which is 0.
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1 0
1><1 1- e”y><1 — ety
1 1—e?
0 0
(1 —e™¥)(e” — ><O 1-— e”“»’><0
0 1— eoto

Fig. 4. Generators for the ring of piecewise exponential functions on a toric surface.

Let p be the ray generated by (1,1). Then V(p) is a P!, and at the fixed point
corresponding to the maximal cone o generated by (1,1) and (1, —1) the character on
the tangent space is y — z, so the equivariant multiplicity €,(,)(V(p)) is ===, by [1,

Proposition 6.3]. Let ¢’ be the maximal cone generated by (1,1) and (—1,1). At V(o’)
1

T—ev—7"

in V(p), the character is x — y, and so ey, (V(p)) = The value of g on p is

then the limit of 1_6% + t:::z as x and y approach 0, which is 1. Similarly, one gets
that the value of g on the ray generated by (1,—1) is —1. The balancing conditions for
Grothendieck weights determine the values on the other rays.

Now, we calculate g({0}). Since X is singular at each fixed point, we can compute
the equivariant multiplicity at the fixed point V(o) by resolving, e.g. by adding the ray

(1,0), and then summing over the new fixed points which map to V(o). One gets

1 1 1+e”
VoX) = Ty i e T A e — e (1 e - )

Let the cone generated by (—1,—1), (1, —1) be ¢”, and let the cone generated by (—1,1)
and (—1,—1) be ¢’’. Then

1+e™¥
eV(U”)(X) = (1 — €I_y)(1 — e_w_y)a
1+e™”
v (X) = (1—e2¥)(1—e¥®)
So, g(«) is the limit of
(1—eY)(1+¢€") (1—e**)(1+eY) (1—e"t) (14 e %)

Q—e))(i—ev)  (I-ev)(l-erv) (l-erv)Il-e )

as the parameters x and y approach 0, which is 2.
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1 1 -1 0 1

1 0 0

1 1 0 -1

1
X

1
0 0 0 1 0 0
0>2<0 0 0
0 0 0 0

Fig. 5. Images of the piecewise exponential functions in Fig. 4.

This example shows the following (compare with [14, Theorem 1.5] and [1, Theorem
1.7)):

Corollary 6.9. There is a projective toric surface with a vector bundle which cannot be
resolved by a finite sequence of vector bundles that admit a T-equivariant structure.

Proof. In Example 6.8, X is a complete toric surface, so it is projective. The Z-linear
span of the Grothendieck weights in Fig. 5 does not include the Grothendieck weight
with 1 at the origin and 0 elsewhere, so PExp(A) does not surject onto GW(A). Thus,
the forgetful map from opK3.(X) to opK°(X) is not surjective. Since vector bundles
induce linear forms on coherent sheaves by tensor product followed by pushforward to a
point, there is a commutative square:

Kp(X) —— opKp(X)

| l

K°(X) —— opK°(X)

Combining [2, Proposition 7.4] and [5, Proposition 5.6] shows that the bottom map is
surjective. Comparing the two ways of traversing the diagram, one sees that the map
K3(X) — K°(X) cannot be surjective. This proves the corollary. O
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Appendix A. Multiplicities of cones

Given simplicial cones o < 3, let mult,(8) denote the multiplicity of 3 in N,. If
a = {0}, then mult, (8) = mult(8) is the usual multiplicity of 3. The following lemma
describes relative multiplicities of simplicial cones in terms of usual multiplicities. Let «

have rays p1,..., pr, and 8 have rays p1,..., Pk, Pk+1; - - - Pi

_ mult(8) 71! mult(a)
Lemma A.1. mult,(8) = Tty Llimk+1 maltator -
Proof. To simplify notation, we assume that § is a maximal cone. For v; € N, let
(v1,...,v;) denote the sublattice of N generated by vi,...,v;. We have the following
diagram of exact sequences:

0 —— (Vpy,--0rUp,) ZI N/(pys-eesvp) —— 0
0 —_— <’Um7...,’0p7> —_— Na —_— Na/<vm,...,vp7> —_— 07

where the top and bottom quotient groups on the right have cardinality mult(8) and
mult,, (5) respectively. We add the kernels and cokernels to the diagram:

0 —— (Vpys---50p,) N A
00— (Wpys-.050p,) N N/ (pys-30p) —— 0

|

.,’Up—l> — Ny —— Na/<7}m7-~-7vﬁ> —0

|

—

0 —— <’Um,

T : —

By the snake lemma, the sequence of kernels leading to cokernels is exact. The cok-
ernel of the map (v,,,...,v,,) — N® has cardinality mult(a), so |A| = mult(a)|B].
Thus mult(5) = mult, (5)| 4| = mult, (8) mult(a)|B|. The cardinality of B on the other
hand is also easy to determine: the image of (v,,,...,v),) in (vsg,...,vp) is just

(Tpezr>-+ 1 0p). If T, = bpvg, the cardinality of the cokernel (i.e. B) is Hi:k_H b,,. But
mult(a+p)
mult(a)

in the proof of Proposition 4.7, we saw b, = , which proves the claim. O
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