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We introduce a ring of Z-valued functions on a complete 
fan Δ called Grothendieck weights to describe the ordinary 
operational K-theory of the associated toric variety X. These 
functions satisfy a K-theoretic analogue of the balancing 
condition for Minkowski weights, which is induced by a 
presentation of the Grothendieck group of X. We explicitly 
give a combinatorial presentation in low dimensions, and 
relate Grothendieck weights to other fan-based invariants such 
as piecewise exponential functions and Minkowski weights. 
As an application, we give an example of a projective toric 
surface X such that the forgetful map K◦

T (X) → K◦(X) is 
not surjective.
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1. Introduction

It is a natural problem to describe geometric and topological invariants of a toric 
variety X using polyhedral combinatorics of the associated fan Δ. The focus of this 
document is the operational K-theory ring opK◦(X), introduced by Anderson and Payne 
in [2]. Like other operational theories, opK◦(X) can be obtained from a bivariant theory 
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in the sense of [10], and consequently has properties that make it tractable to describe on 
singular varieties. Other operational theories such as the ordinary and torus-equivariant 
Chow rings A∗(X) and A∗

T (X), the torus-equivariant K-theory opK◦
T (X), and torus-

equivariant cobordism have already been described on singular toric varieties [2,13,16], 
but so far, there is no such description for opK◦(X). Our aim is to address this when X
is complete.

Our approach to describing opK◦(X) is inspired by work of Fulton and Sturmfels on 
A∗(X) for complete toric varieties. In [12], they define Minkowski weights MW∗(Δ) as 
a group of Z-valued functions on Δ (viewed as a set of cones) whose values on different 
cones must satisfy some identities known as a balancing condition. Then, they show that 
(1) there is a natural isomorphism of groups between MW∗(Δ) and A∗(X), and (2) there 
is a description of the product on A∗(X) in terms of Minkowski weights.

In contrast, we define a group GW(Δ) of Z-valued functions on Δ which is tauto-
logically isomorphic to opK◦(X). We call the elements of GW(Δ) Grothendieck weights 
because they can be naturally identified with linear forms on the Grothendieck group 
of coherent sheaves K◦(X). Some of main results in this paper describe the balancing 
condition that elements of GW(Δ) satisfy. The following theorem, which follows from 
results in Section 3, characterizes Grothendieck weights in dimensions � 3.

First, some notation: we denote the cones in Δ of dimension k by Δ(k). Since Δ is a 
poset of polyhedral cones, we denote containment with ≺, and for cones α ≺ β such that 
dim(α) + 1 = dim(β), we let vβ,α denote the primitive lattice point of β in the quotient 
space by the span of α, and write vρ for vρ,{0} (see Subsection 1.3).

Theorem 1.1. Let X be a complete toric variety of dimension n � 3. A function g : Δ →
Z on the fan of X is a Grothendieck weight if and only if it is

1. constant on maximal cones, and
2. for σ any maximal cone and ρ ∈ Δ(n − 2),

∑
β∈Δ(n−1),

β�ρ

(g(β) − g(σ))vβ,ρ = 0,

when dim(X) � 2, and
3. for σ any maximal cone,

∑
ρ∈Δ(1)

⎛
⎜⎜⎝g(ρ) −

∑
α∈Δ(2),

α�ρ

g(α)
2

⎞
⎟⎟⎠ vρ = g(σ)

⎛
⎜⎜⎝ ∑

ρ∈Δ(1)

(1 −
∑

α∈Δ(2),
α�ρ

1
2)vρ

⎞
⎟⎟⎠ ,

when dim(X) = 3.
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Finding a simple combinatorial balancing condition for Grothendieck weights in higher 
dimensions is still an open problem, but we provide partial results and a possible way to 
approach the problem in Section 4. See for example Theorem 4.14, which gives a method 
to characterize Grothendieck weights on complete simplicial toric varieties by calculating 
Todd classes.

Another notable result is the following theorem derived from Example 6.8. It appears 
in the text as Corollary 6.9.

Theorem 1.2. There is a projective toric surface X such that the forgetful maps 
opK◦

T (X) → opK◦(X) and K◦
T (X) → K◦(X) are not surjective.

In [1, Theorem 1.7], the authors demonstrate that there is a nonsimplicial toric 3-
fold X such that the image of opK◦

T (X)Q is a proper linear subspace of opK◦(X)Q, 
and from there establish the nonsurjectivity of opK◦

T (X) → opK◦(X) and K◦
T (X) →

K◦(X). However, the authors deduce this as a corollary of the operational Riemann-
Roch theorem that they establish. This approach cannot work to show non-surjectivity 
if the image of opK◦

T (X) has finite index inside opK◦(X), like when X is simplicial (e.g. 
our Example 6.8).

Another reason to study opK◦(X) is related to tropical geometry. Minkowski weights, 
which inspired Grothendieck weights, are well-known in the context of tropical geometry, 
where they appear as a special case of weighted balanced polyhedral complexes. If one 
desires a K-theoretic analogue to the methods of tropical geometry, it is our belief that 
a first step would be to determine the K-theoretic analogue of Minkowski weights and 
the corresponding balancing condition (in the sense of our Theorem 1.1). In another 
direction, presentations of opK◦(X) have a direct interpretation in terms of Ehrhart 
theory, see Proposition 2.12.

Now, we address in more detail the other results in this document. After proving the 
characterization of Grothendieck weights in low dimensions in Theorem 1.1, we move to 
higher dimensions in Section 4. There, the problem becomes more difficult, because our 
approach to characterizing Grothendieck weights relies on finding expressions for Todd 
classes of simplicial toric varieties in terms of T -invariant subvarieties. Though there 
is an extensive literature on finding such expressions [3,4,15,17,18], the coefficients of 
such an expression depend on various choices made in rewriting self-intersections of toric 
divisors Di in terms of square-free monomials.

We continue our study of Grothendieck weights by addressing how to compute the 
product on GW(Δ) induced by opK◦(X). By [2, Proposition 6.4], any element of K◦(X×
X) has an expression of the form 

∑
α,β∈Δ mα,β [OV (α)×V (β)], where V (α) and V (β) are 

as defined in Subsection 1.3. Then, Theorem 5.3 reduces the problem of calculating 
products of Grothendieck weights to calculating coefficients mα,β for classes of the form 
δ∗[OV (γ)], δ being the diagonal. In the context of Chow groups and Minkowski weights, 
an elegant method to calculate such coefficients was provided in [12, Theorem 4.2], via 
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the displacement rule. In K-theory we explain one approach to doing this in subsection 
5.6.

After our results on the internal structure of GW(Δ), we describe maps between 
Grothendieck weights and other fan-based invariants in Section 6. There is a map from 
Minkowski weights to GW(Δ) that corresponds to the operational Riemann-Roch trans-
formation of [1]. We relate this map to appropriate expressions for Todd classes. There 
is also a forgetful map that opK◦(X) receives from opK◦

T (X). Since opK◦
T (X) is isomor-

phic to the ring of piecewise exponential functions on Δ, there is a map from piecewise 
exponential functions on Δ to GW(Δ), which we give a formula for in Theorem 6.7. Our 
approach here follows the work of Katz and Payne in [14].

When X is smooth, opK◦(X) agrees with several other Grothendieck rings such as the 
ring of vector bundles K◦(X) (see [2, Section 4]). Then, other descriptions of opK◦(X)
are applicable. For instance, Vezzosi and Vistoli showed in [20] that the ring of T -
equivariant vector bundles K◦

T (X) and also higher K-groups are isomorphic to certain 
Stanley-Reisner rings. The non-equivariant ring K◦(X) is then isomorphic to a quotient 
of a Stanley-Reisner ring. To calculate the isomorphism from this quotient description 
of K◦(X) to GW(Δ), one can choose a representative in K◦

T (X) of a class in K◦(X), 
and compute its localization to obtain a piecewise exponential function. Then, the map 
to GW(Δ) can be computed via Theorem 6.7.

1.3. Notation and conventions

We establish notation and conventions. We work in the category of separated schemes 
of finite type over a fixed base field k, unless stated otherwise. A variety is reduced and 
irreducible. For toric varieties, as much as possible we follow the conventions of [6] and 
[8]. Let T be a split algebraic torus over k. A toric variety refers to a normal k-variety 
with a T -action and a dense orbit. By modding out by a generic stabilizer, we can assume 
that T embeds as the dense orbit.

Let M = Homalg.gp.(T, k∗) be the character lattice of T , and N = Homalg.gp.(k∗, T )
the cocharacter lattice. There is the natural perfect pairing 〈 , 〉 : M × N →
Homalg.gp.(k∗, k∗) ∼= Z given by composition of maps. We let MR and NR denote M⊗ZR

and N ⊗Z R respectively.
If X is a toric variety, there is a corresponding polyhedral fan Δ, which is a finite set 

of strongly convex rational polyhedral cones in NR (see e.g. [8, Chapter 1]) satisfying 
the two additional conditions that (1) if β is a face of α and α ∈ Δ, then β ∈ Δ, and 
(2) if α and β are in Δ, then the intersection α ∩ β is a face of both α and β. If α is a 
face of β, we write α ≺ β. Let Δ(k) denote the set of k-dimensional cones in Δ. We use 
ρ exclusively for 1-dimensional cones (rays) and σ exclusively for n-dimensional cones.

For a cone α, let α∨ be the cone of linear forms in MR which are non-negative on α. If 
α ∈ Δ, then there is a T -invariant affine open set Uα in X which is naturally isomorphic 
to Speck[α∨ ∩ M ]. Inside Uα, there is a unique closed orbit Oα. Let V (α) denote the 
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closure of Oα in X. There is an order-reversing bijection between the orbit closures V (α)
in X and the cones α in Δ.

The subvariety V (α) is also a toric variety: Let TOα
be the stabilizer of Oα. Then, 

the quotient torus Tα = T/TOα
includes into V (α) as the dense orbit. Let α⊥ be the 

subspace of MR that vanishes on α. The character lattice for Tα is Mα = M ∩ α⊥. Let 
Nα be the Z-span of lattice points in α, and let Nα = N/Nα be the quotient. Then the 
perfect pairing 〈 , 〉 between M and N descends to one between Mα and Nα, which we 
also refer to by 〈 , 〉. When α ≺ β, the image of β in (Nα)R is a cone which we denote 
by β. If β is a ray, we denote the generator of the semigroup Nα ∩ β by vβ,α, or vβ if 
α = {0}.

2. K-theory and GW(Δ)

We start this section by introducing the basic objects K◦(X), K◦(X), opK◦(X), and 
GW(Δ), and later relate GW(Δ) to Ehrhart theory in Proposition 2.12.

2.1. The group K◦(X) and the ring K◦(X)

Let X be a k-scheme. The group K◦(X) is generated by isomorphism classes of co-
herent sheaves on X, modulo relations [F ] = [E ] + [G ] for exact sequences 0 → E →
F → G → 0. When X is a smooth algebraic variety, there is a product given by 
[E ][F ] =

∑
i(−1)i[T oriOX

(E , F )], but when X is singular the sum is no longer neces-
sarily finite. For a proper morphism f : Y → X and G a coherent sheaf on Y , there is 
a pushforward f∗[G ] =

∑
i(−1)i[Rif∗G ]. A special instance of this when X is a point, 

in which case f∗[G ] is the Euler characteristic χ(X, G ) =
∑

i(−1)idimkH
i(X, G ). For a 

flat morphism f : Y → X and F coherent on X, there is a pullback f∗[F ] = [f∗F ].
We denote by K◦(X) the Grothendieck group of vector bundles. Defined analogously 

to K◦(X), K◦(X) is a ring with respect to tensor product of vector bundles. For arbitrary 
morphisms f : Y → X, there is a pull-back f∗[E] = [f∗E].

If X is smooth, then K◦(X) and K◦(X) are isomorphic as groups (see, e.g. [21, 
Chapter II, Theorem 8.2]), but if X is singular this may not be true. For example, it 
is an easy exercise that if X is the rational nodal curve over C, its Picard group is 
uncountable. The same is then true for K◦(X), which has a surjection onto Pic(X) via 
the map given by determinant bundles, e.g. [21, Chapter I]. On the other hand, one can 
use the localization sequence for K◦ to show that K◦(X) is finitely generated: Let p ∈ X

be the singular point. We have the right-exact sequence

K◦(p) → K◦(X) → K◦(X � {p}) → 0.

Since X � {p} ∼= C∗, K◦(X) is an extension of finitely generated abelian groups, and 
thus finitely generated itself.
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2.2. The operational K-theory ring opK◦(X), and GW(Δ)

An element c in opK◦(X) is a collection (cf ) of endomorphisms of K◦(Y ) for each 
f : Y → X. The collection (cf ) must be compatible, in the sense that the maps must 
commute with proper pushforwards, flat pullbacks, and Gysin homomorphisms. Addition 
and multiplication are defined coordinate-wise, meaning

(cf ) + (df ) = (cf + df ), and

(cf ) · (df ) = (cf ◦ df ).

For further details, we refer the reader to [2, Section 4]. The product is commutative if 
X is toric, or more generally if it admits a resolution of singularities (via the Kimura 
sequence [2, Proposition 5.4]). Since we will assume X is complete, we have access to 
the following special case of [2, Proposition 5.4]:

Theorem 2.3. Let X be a complete toric variety. The natural map from opK◦(X) to 
K◦(X)∨ sending (cf ) to χ(cId(−)) is an isomorphism of abelian groups.

We make the following definition:

Definition 2.4. Let Δ be a complete fan. Define the group of Grothendieck weights on Δ, 
denoted by GW(Δ), to be the image of K◦(X)∨ in (ZΔ)∨ under the map

f �→
(
eα �→ f([OV (α)])

)
.

For a proper toric morphism φ : X(Δ) → X(Σ), there is a corresponding pullback 
φ∗ : GW(Σ) → GW(Δ).

In other words, elements of GW(Δ) are obtained from elements of K◦(X)∨ by record-
ing the value of a linear form on the classes [OV (α)]. Since these classes generate K◦(X), 
the next proposition follows from the previous theorem.

Proposition 2.5. Let X be a complete toric variety and Δ the associated fan. Then, the 
natural maps in the sequence

opK◦(X) → K◦(X)∨ → GW(Δ),

are isomorphisms of abelian groups.

Now, we would like to focus on the following question:

Question 2.6. How can we characterize which functions on Δ are Grothendieck weights? 
Is there a balancing condition as in the case of Minkowski weights?
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To address this, we first make the following definition:

Definition 2.7. Let RelK◦(X) be the kernel of the map ZΔ → K◦(X) that sends eα to 
[OV (α)], and RelK◦(X)Q the same kernel over Q.

By dualizing the exact sequence

0 → RelK◦(X) → ZΔ → K◦(X) → 0,

we obtain

0 → K◦(X)∨ → (ZΔ)∨ → HomZ(RelK◦(X),Z) → 0. (∗)

So, Grothendieck weights are the Z-valued functions on Δ that satisfy identities coming 
from RelK◦(X).

Remark 2.8. Our focus in Sections 3 and 4 will be to produce a list of conditions that 
one can check to verify whether a function g : Δ → Z is a Grothendieck weight. By the 
above exact sequence (∗), one can produce such a list by picking a generating set for 
RelK◦(X). Each element will have the form 

∑
α aαeα. Each of the corresponding sums ∑

α aαg(α) vanish if and only if g is a Grothendieck weight.
Conveniently, GW(Δ) naturally includes as a subring into rational Grothendieck 

weights, denoted by GW(Δ)Q, since it is torsion-free. Rational Grothendieck weights 
are characterized by vanishing on RelK◦(X)Q , so we can characterize g ∈ GW(Δ) as a 
function g : Δ → Z whose rational extension vanishes on RelK◦(X)Q . Generating sets for 
RelK◦(X)Q are easier to calculate due to the Riemann-Roch theorem.

Before we finish this section, we note two basic facts about Grothendieck weights. 
First, we thank an anonymous reviewer for pointing out the following:

Proposition 2.9. The ring of Grothendieck weights on Δ is independent of the field of the 
associated toric variety.

Proof. When Δ is a smooth fan this follows from any of the myriad descriptions of 
opK◦(X) ∼= K◦(X) which demonstrate its field independence (e.g. K◦(X) is a non-
equivariant quotient of either piecewise exponential functions or a Stanley-Reisner ring 
over the integers).

For Δ a general fan, we use induction on dimension. For Δ a complete fan of dimension 
� 1, Δ is smooth. If Δ is higher dimensional, let Δ′ be a resolution, and let π : X ′ → X

be the associated birational toric morphism. Let pi : Ei ↪→ X ′ be the components of the 
exceptional locus, and πi : Ei → Si the corresponding maps to their images. The Ei and 
Si are toric varieties whose fans depend only on Δ′ and Δ.
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The Kimura sequence [2, Proposition 5.4] states that the sequence

0 → opK◦(X) → opK◦(X ′)
⊕

⊕iopK◦(Si) → ⊕iopK◦(Ei),

is exact. This implies that GW(Δ) includes into GW(Δ′) as a subring, and g ∈ GW(Δ)
is equivalent to a Grothendieck weight g′ on Δ′ and weights gi on the fans of the Si, such 
that π∗

i gi = p∗i (g′). Since X ′ is smooth and Ei and Si have lower dimension, Grothendieck 
weights on these fans are independent of the field, so those on Δ are as well. �

Here is a fact which we will not use later, but which allows one to think about 
Grothendieck weights on general fans in terms of Grothendieck weights on smooth fans.

Proposition 2.10. Let Δ be a complete fan and Δ′ a refinement. Then a function g : Δ →
Z is a Grothendieck weight if and only if the function g′ on Δ′, determined by

g′(α′) = g(α)

for α the smallest cone on Δ containing α′, is a Grothendieck weight on Δ′.

Proof. Let X ′ and X be the toric varieties corresponding to Δ′ and Δ, and π : X ′ →
the toric birational morphism that corresponds to the refinement. If α is the smallest 
cone in Δ that contains α′, then π(V (α′)) = V (α), and standard results on vanishing of 
higher cohomology imply that π∗([OV (α′)]) = [OV (α)].

Grothendieck weights correspond to elements of K◦(X)∨ via the map g �→ φg deter-
mined by φg([OV (α)]) = g(α). So, if g is a Grothendieck weight on Δ, g′ will be the 
Grothendieck weight on Δ′ that corresponds to the linear form φg ◦ π∗ : K◦(X ′) → Z.

Let g be a function such that g′ is a Grothendieck weight. As in the previous propo-
sition, we induct on dimension. Once again, let pi : Ei ↪→ X ′ be the components of 
the exceptional locus, and let πi : Ei → Si be the maps to their images in X. By the 
induction hypothesis, the weight p∗i g′ on the fan of Ei descends to a Grothendieck weight 
gi on the fan of Si. Since we have a Grothendieck weight g′ on Δ′, and weights gi on the 
fans of the Si such that π∗

i gi = p∗i (g′), the Kimura sequence [2, Proposition 5.4] implies 
that g′ is the image of a Grothendieck weight under π∗. The only possible preimage of 
g′ is g, so g is a Grothendieck weight. �
2.11. Characterizing RelK◦(X)Q via Ehrhart polynomials

The goal of this subsection is to characterize RelK◦(X)Q in terms of polytopes when 
X is a projective simplicial toric variety. As before, let Δ be the fan of X. Let P be a 
lattice polytope in MR whose inward normal fan is Δ. For each α ∈ Δ(k), there is a 
corresponding face Fα of P , which has codimension k and is also a lattice polytope.

The Ehrhart polynomial of P , denoted by EhrP (t), is the polynomial determined by 
EhrP (t) = |tP ∩M | for t a non-negative integer. Let
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φP : QΔ → Q[t]

send the tuple (aα) indexed by Δ to 
∑

α∈Δ aα EhrFα
(t). The following proposition shows 

that RelK◦(X)Q is equal to a submodule of QΔ defined independently of K-theory.

Proposition 2.12. Let X be a projective simplicial toric variety, and Δ the corresponding 
fan. Then

RelK◦(X)Q =
⋂

P with
normal fan Δ

ker(φP ).

Proof. For the “⊂” direction we use some results on vanishing of higher cohomology for 
nef line bundles on toric varieties (e.g. [6, Theorem 9.2.3]). Suppose 

∑
α∈Δ aα[OV (α)] = 0

in K◦(X)Q. For P any lattice polytope with normal fan Δ, let DP denote the associated 
ample divisor. For each t0 � 0, we also have the nef divisor Dt0P . Then, recalling that χ
is the Euler characteristic we have

0 = χ([O(Dt0P )] · (
∑
α∈Δ

aα[OV (α)])) =
∑
α∈Δ

aαχ([O(Dt0P )|V (α)]). (†)

We would like to show that χ([O(Dt0P )|V (α)]) = EhrFα
(t0) so that we can further 

rewrite the sum on the right. By definition, EhrFα
(t0) = |t0Fα∩M |, so we need to verify 

that χ([O(Dt0P )|V (α)]) = |t0Fα ∩M |.
Since O(Dt0P ) is nef, its restriction to V (α) is as well. By the vanishing of higher 

sheaf cohomology groups, χ([O(Dt0P )|V (α)]) = dimkH
i(V (α), O(Dt0P )|V (α).

To calculate dimkH
i(V (α), O(Dt0P )|V (α), we first translate t0P so that t0Fα is con-

tained inside Mα = α⊥. This corresponds to replacing Dt0P by a linearly equivalent 
divisor that doesn’t vanish or have poles containing V (α), so the dimension of H0

will not change. Now, the invertible sheaf O(Dt0P ) on X is generated on the affine 
open Uβ by the rational function corresponding to any m ∈ t0Fβ , and its restric-
tion to V (α) is generated on the affine opens Uβ ∩ V (α) by the rational function 
corresponding to any m ∈ t0(Fβ ∩ Fα). The global sections H0(V (α), O(Dt0P )|V (α)
will then have a basis given by the rational functions corresponding to m ∈ t0Fα, so 
|t0Fα ∩M | = dimkH

i(V (α), O(Dt0P )|V (α).
So χ([O(Dt0P )|V (α)]) = |t0Fα ∩M | = EhrFα

(t0). Substituting this into (†) we obtain 
that

0 =
∑
α∈Δ

aα EhrFα
(t0),

for t0 � 0. Since the polynomial 
∑

α∈Δ aα EhrFα
(t) has infinitely many zeros, it follows 

that 0 =
∑

α∈Δ aα EhrFα
(t). This establishes the “⊂” direction.

Now, we show the other direction. Suppose that a tuple (aα) satisfies the identity ∑
α∈Δ aα EhrFα

(t) = 0, for any P with normal fan Δ. This implies that
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0 =
∑
α∈Δ

aαχ(O(DP )|V (α)) = χ

((∑
α∈Δ

aα[OV (α)]
)

· [O(DP )]
)
.

Then, the result follows directly from the next lemma if we replace the term “x” with 
“
∑

α∈Δ aα[OV (α)]”. �
Lemma 2.13. Suppose X is a projective simplicial toric variety and Δ the corresponding 
fan. If for x ∈ K◦(X), we have χ(x · [O(DP )]) = 0 for all P with normal fan Δ, then 
x = 0 in K◦(X)Q.

Proof. Let τX : K◦(X) → A∗(X)Q be the Riemann-Roch transformation, which is an 
isomorphism over Q. Also, let “deg” be the projection map from A∗(X) to A0(X). By 
the Riemann-Roch theorem [9, Theorem 18.3],

χ(x · [O(DP )]) = deg(ch(O(DP )) ∩ τX(x)).

So, if we assume the hypothesis of the lemma, we have that for each P with normal 
fan Δ,

0 = deg(ch(O(DP )) ∩ τX(x)). (‡)

We would like to show that this implies that τX(x) = 0.
On a complete toric variety A∗(X) ∼= A∗(X)∨ via the map c → deg(c ∩ −), by [11, 

Theorem 3]. By [12, Theorem 4.1], A∗(X)Q is generated as a vector space by 1 and 
classes of the form ch(O(DP )), so we obtain that τX(x) = 0. �

We also have the following corollary which follows from the same vanishing theorem 
as used in the “⊂” direction of Proposition 2.12, replacing the ample line bundle O(DP )
on a projective toric variety with the trivial line bundle on an arbitrary complete toric 
variety.

Corollary 2.14. Let X be a complete toric variety, Δ the associated fan, and 
∑

α aαeα
an element of RelK◦(X). Then 0 = χ(

∑
α aα[OV (α)]) =

∑
α aα.

3. Grothendieck weights in low codimensions

The goal of this section is to prove some identities (with rational coefficients) that a 
Z-valued function on a complete fan will satisfy, if it is a Grothendieck weight. These 
properties will be enough to characterize Grothendieck weights on fans up to dimension 3. 
Our method will be to show that certain elements are in RelK◦(X)Q (see also Remark 2.8).

The end of this section is a proof of Theorem 1.1, which characterizes low-dimensional 
Grothendieck weights in a more elementary manner than Theorem 4.14 in the next 
section. We do not require that the fan is simplicial in this section.
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3.1. Preparatory results

Let us fix that X is a complete toric variety of dimension n, and Δ is the corresponding 
complete fan. Fundamental to our approach to finding elements of RelK◦(X)Q is the 
Riemann-Roch transformation τX . Recall that it is a map τX : K◦(X) → A∗(X)Q, 
which becomes an isomorphism after tensoring with Q. For a vector bundle E, there is 
an equality τX([E]) = ch(E) · td(X), where ch is the Chern character homomorphism 
ch : K◦(X) → A∗(X)Q and td(X) = τX(OX) ∈ K◦(X)Q is the Todd class. For details 
regarding the Todd class td(X) for singular varieties and this version of the Riemann-
Roch transformation, see [9, Chapter 18].

We also define RelA∗(X)Q :

Definition 3.2. Let RelA∗(X)Q be the kernel of the map QΔ → A∗(X)Q that sends eα to 
[V (α)].

Here is the basic strategy. If we choose a suitable lift τ† of τX to an endomorphism of 
QΔ, we obtain an isomorphism of exact sequences:

0 RelK◦(X)Q QΔ K◦(X)Q 0

0 RelA∗(X)Q QΔ A∗(X)Q 0.

τ† τX

If we can explicitly describe the lift τ† and a set of generators {ri}i∈I ⊂ RelA∗(X)Q , then 
{τ−1

† (ri)}i∈I will generate RelK◦(X)Q .
In the next proposition, we reproduce [12, Proposition 2.1(b)], which provides an 

explicit list of generators for RelA∗(X) (and by extension, RelA∗(X)Q). Recall from sub-
section 1.3 that if β contains α as a face of codimension 1, then vβ,α is the generator of 
the semigroup β ∩Nα.

Proposition 3.3. The space RelA∗(X) splits as a direct sum ⊕i RelAi(X), where RelAi(X)
is generated by terms rα,u that have the form

rα,u =
∑

β∈Δ(n−i),
β�α

〈u, vβ,α〉eβ ,

as α varies among cones of dimension n − i − 1 and u varies in Mα.

Then, for instance, RelAn(X) is trivial. To execute the strategy outlined above, we 
require the following lemmas.

Lemma 3.4. Let X be a complete toric variety, Δ the associated fan, and α an element 
of Δ(k). Let τX be the Riemann-Roch transformation. Then in A∗(X)Q, we have
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τX([OV (α)]) = [V (α)] +

⎛
⎜⎜⎝ ∑

β∈Δ(k+1),
β�α

1
2 [V (β)]

⎞
⎟⎟⎠ + c,

where c ∈ (A0(X) ⊕ . . .⊕An−k−2(X))Q.

Proof. If f is a proper morphism, we use f∗ for the pushforward in both A∗ and K◦. Let 
i : V (α) ↪→ X be the inclusion and π : Y → V (α) be a toric resolution. By [9, Theorem 
18.3 (1)], f∗ ◦ τX = τY ◦ f∗ when f : X → Y is proper, so taking f = i yields

τX([OV (α)]) = i∗(τV (α)([OV (α)])).

Since [OV (α)] = π∗([OY ]), we obtain that

i∗(τV (α)([OV (α)])) = i∗π∗(τY ([OY ])).

The toric variety Y is smooth and complete, so we can use the following well-known 
formula for the Todd class (e.g. [6, Theorem 13.1.6]). Let Σ be the fan of Y . Then

τY ([OY ]) =
∏

ρ∈Σ(1)

(
[V (ρ)]

1 − e−[V (ρ)]

)
.

Expanding the product, we obtain

τY ([OY ]) = 1 +

⎛
⎝ ∑

ρ∈Σ(1)

1
2 [V (ρ)]

⎞
⎠ + c,

where c represents classes of lower dimension.
If ρ ∈ Σ(1) is in the fan of V (α), π maps V (ρ) birationally onto its image. If not, 

π(V (ρ)) has lower dimension that V (ρ). Thus, applying π∗ we get

π∗τY ([OY ]) = 1 +

⎛
⎜⎜⎝ ∑

β∈Δ(k+1),
β�α

1
2 [V (β)]

⎞
⎟⎟⎠ + c′.

Applying i∗ to both sides, we obtain the lemma. �
3.5. Properties of Grothendieck weights

We will now carry out the strategy outlined in the previous subsection (see also Re-
mark 2.8). Namely, we prove that for g ∈ GW(Δ), the integers g(α) must satisfy certain 
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identities with coefficients in Q, by showing that certain elements are in RelK◦(X)Q or 
RelK◦(X). See also Remark 2.8.

Let X be a complete toric variety of dimension n, and let Δ be the corresponding 
complete fan. As before, τX refers to the Riemann-Roch transformation. Let us fix

τ† : QΔ → QΔ (§)

to be any lift of τX which maps eα to eα +
(∑

β∈Δ(dim(α)+1),
β�α

1
2eβ

)
+ c, where c is in 

the span of eγ for γ containing α as a face of codimension � 2. Such a lift exists by 
Lemma 3.4. Then, τ† is an isomorphism mapping RelK◦(X)Q to RelA∗(X)Q .

Proposition 3.6. If g : Δ → Z is a Grothendieck weight, it is constant on maximal cones.

Proof. Let σ, σ′ ∈ Δ be maximal cones. Since for any two points p, p′ on P 1, [Op] = [Op′ ], 
and any two T -fixed points in X are connected by a chain of P 1 - for instance, by T -
invariant curves, we have that [OV (σ)] = [OV (σ′)]. So eσ − eσ′ is in RelK◦(X). �

The second proposition is about the values of a Grothendieck weight on cones of 
codimension � 1.

Proposition 3.7. If g : Δ → Z is a Grothendieck weight, σ ∈ Δ(n) any maximal cone, 
and α ∈ Δ(n − 2), then

∑
β∈Δ(n−1),

β�α

(g(β) − g(σ))vβ,α = 0.

Proof. Recall from (3.2) and (3.3) the definition of RelAi(X)Q . By Proposition 3.3, the 
space RelA1(X)Q contains

∑
β∈Δ(n−1),

β�α

〈u, vβ,α〉eβ ,

for each u in Mα.
Applying the τ−1

† chosen in (§), we see that RelK◦(X)Q contains

∑
β∈Δ(n−1),

β�α

〈u, vβ,α〉(eβ − 1
2eσ1 −

1
2eσ2),

for σ1, σ2 the two maximal cones that contain β.
Since eσ − eσi

is in RelK◦(X)Q by the proof of the previous proposition, it follows that ∑
β∈Δ(n−1),〈u, vβ,α〉(eβ − eσ) is also contained in RelK◦(X)Q . Thus
β�α
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∑
β∈Δ(n−1),

β�α

〈u, vβ,α〉(g(β) − g(σ)) = 0,

for each u ∈ Mα. �
The third proposition, in the same pattern, is about the values of a Grothendieck 

weight on cones of codimension � 2.

Proposition 3.8. If g : Δ → Z is a Grothendieck weight, σ ∈ Δ(n) any maximal cone, 
and α ∈ Δ(n − 3), then

∑
β∈Δ(n−2),

β�α

⎛
⎜⎜⎝g(β) −

∑
γ∈Δ(n−1),

γ�β

g(γ)
2

⎞
⎟⎟⎠ vβ,α = g(σ)

⎛
⎜⎜⎝ ∑

β∈Δ(n−2),
β�α

(1 −
∑

γ∈Δ(n−1),
γ�β

1
2)vβ,α

⎞
⎟⎟⎠ .

Proof. Citing Proposition 3.3 again, we know that for each u ∈ Mα the element
∑

β∈Δ(n−2),
β�α

〈u, vβ,α〉eβ ,

is in RelA2(X)Q . Its inverse image in RelK◦(X)Q , with respect to τ† as chosen in (§), has 
the form

∑
β∈Δ(n−2),

β�α

〈u, vβ,α〉

⎛
⎜⎜⎝eβ −

⎛
⎜⎜⎝ ∑

γ∈Δ(n−1),
γ�β

1
2eγ

⎞
⎟⎟⎠
⎞
⎟⎟⎠ +

∑
σ′ maximal

aσ′eσ′ ,

for some coefficients aσ′ .
By adding multiplies of eσ − eσ′ , the following element is also in RelK◦(X)Q :

∑
β∈Δ(n−2),

β�α

〈u, vβ,α〉

⎛
⎜⎜⎝eβ −

⎛
⎜⎜⎝ ∑

γ∈Δ(n−1),
γ�β

1
2eγ

⎞
⎟⎟⎠
⎞
⎟⎟⎠ +

( ∑
σ′ maximal

aσ′

)
eσ.

Then, Lemma 2.14 implies that

∑
β∈Δ(n−2),

β�α

〈u, vβ,α〉

⎛
⎜⎜⎝1 −

⎛
⎜⎜⎝ ∑

γ∈Δ(n−1),
γ�β

1
2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ = −

( ∑
σ′ maximal

aσ′

)
.

Thus, a Grothendieck weight g must satisfy
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∑
β∈Δ(n−2),

β�α

〈u, vβ,α〉

⎛
⎜⎜⎝g(β) −

⎛
⎜⎜⎝ ∑

γ∈Δ(n−1),
γ�β

1
2g(γ)

⎞
⎟⎟⎠
⎞
⎟⎟⎠

= g(σ)
∑

β∈Δ(n−2),
β�α

〈u, vβ,α〉

⎛
⎜⎜⎝1 −

⎛
⎜⎜⎝ ∑

γ∈Δ(n−1),
γ�β

1
2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ ,

for each u ∈ Mα.
This final equality says that two different elements of Nα have the same value when 

paired with every u ∈ Mα. Since Mα = N∨
α , the two elements of Nα must be equal. This 

proves the proposition. �
3.9. Proof of Theorem 1.1

Proof. For X of dimension � 3, RelA∗(X)Q
∼= RelA0(X)Q ⊕ RelA1(X)Q ⊕ RelA2(X)Q , where 

the last two factors may be trivial. Thus, the inverse images of the generators of these 
factors with respect to τ† generate RelK◦(X)Q . By Remark 2.8, Grothendieck weights are 
the functions on Δ which send such expressions to 0. �
4. Grothendieck weights on simplicial fans

Theorem 1.1 characterized Grothendieck weights in low dimensions by explicitly pro-
ducing generators for RelK◦(X)Q . In this section, we would like to do the same for higher 
dimensional toric varieties. Ideally, we would like to address the following question:

Question 4.1. Given X a complete toric variety of arbitrary dimension, how can we 
calculate explicit generating sets for RelK◦(X)Q?

For the sake of explicitness, we restrict to simplicial fans. Our basic strategy is the 
same as before: if τ† is a lift of the Riemann-Roch transformation τX , then we obtain an 
isomorphism of exact sequences

0 RelK◦(X)Q QΔ K◦(X)Q 0

0 RelA∗(X)Q QΔ A∗(X)Q 0,

τ† τX

and we can obtain a set of generators of RelK◦(X)Q as the inverse images (with respect 
to τ†) of generators of RelA∗(X)Q . Recall that we already know explicit generators for 
RelA∗(X)Q by [12, Proposition 2.1(b)], which was reproduced earlier as Proposition 3.3.
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4.2. Choosing τ†

In the previous section, we did not need to fully calculate a lift τ†, but because we 
are now considering X of arbitrary dimension, we change our approach and focus on the 
following question.

Question 4.3. What is an optimal τ† that lifts τX? How can we calculate it?

To calculate a suitable τ†, we must choose an expression for τX(V (α)) for each α ∈ Δ
in terms of [V (β)], β � α. Finding such expressions is known as Danilov’s problem, see 
[7, Section 11], and [3,15,17,18]. To find such expressions, we follow a strategy from 
[18], which is to rewrite an expression for the Todd class as a polynomial in T -invariant 
divisors using [18, Theorem 3].

Because we use it heavily in this section, we start by introducing [18, Theorem 3]. 
First, we define the multiplicity of a simplicial cone: If α is a k-dimensional cone in N with 
k extremal rays generated by v1, . . . , vk, and Nα = N ∩Q ·α, then the multiplicity of α is 
mult(α) = [Nα : Zv1 + . . .+Zvk]. If α ≺ β, let the relative multiplicity multα(β) denote 
the multiplicity of the image β in the quotient Nα. Then e.g. mult(α) = mult{0}(α). 
Geometrically, multα(β) is the Hilbert-Samuel mutliplicity of Uβ ∩ V (α) along V (β).

In [18], Pommersheim and Thomas define rational numbers tαρ for each cone α and 
ray ρ such that ρ ⊂ α, which depend on the choice of a generic complete flag F• in NQ. 
These rational numbers are used to rewrite non-squarefree monomials in toric divisors 
as a linear combination of the classes of T -invariant subvarieties.

Definition 4.4. Let F• be a complete flag in NQ, so Fi is an i-dimensional subspace of 
NQ. Given α ∈ Δ(k), and i from 1 to k, let vρi

be the primitive element of the ray ρi in α. 
We impose that F• is generic, in the sense that Fn−k+1∩ (Q ·α) is always 1-dimensional, 
so it determines a vector (unique up to a common scaling):

0 �=
k∑

i=1
tαρi

vρi
∈ Fn−k+1 ∩ (Q · α).

We impose further that for a generic F• all such tαρ are non-zero.

The scalar for the tαρ will not matter because they will only appear in expressions 
which are ratios of homogeneous polynomials of the same degree.

Now, let S be a subset of Δ(1). For ρ ∈ S, let aρ be a positive integer, and let l denote 
the sum 

∑
ρ∈S aρ. Then, a restatement of [18, Theorem 3] is:

Theorem 4.5. Let X be a simplicial toric variety with fan Δ. Then

∏
ρ∈S

[V (ρ)]aρ =
∑

α∈Δ(l),

[V (α)]
mult(α)

∏
ρ⊂α tαρ

∏
ρ∈S

(tαρ )aρ ,
α contains all ρ∈S
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in An−l(X)Q.

This allows us to give an explicit formula for certain types of products as linear 
combinations of subvarieties:

Lemma 4.6. Let X be a simplicial toric variety with fan Δ, and for each ρ ∈ Δ(1), let 
fρ(t) ∈ Q[[t]] be a series. Then in the A∗(X)Q we have an identity

∏
ρ∈Δ(1)

fρ([V (ρ)]) =
∑
α∈Δ

(∏
ρ⊂α

fρ(tαρ )
tαρ

)
[0]

⎛
⎝∏

ρ
⊂α

fρ(0)

⎞
⎠ [V (α)]

mult(α) .

Proof. Let us write

fρ(t) =
∑
i�0

aρi t
i,

so by expanding the product and applying Theorem 4.5, we get
∏

ρ∈Δ(1)

fρ([V (ρ)]) =
∑

(iρ)∈ZΔ(1)
�0

∏
ρ∈Δ(1)

aρiρ [V (ρ)]iρ ,

=
∑

(iρ)∈ZΔ(1)
�0

∑
α∈Δ(

∑
ρ iρ),

α⊂ρ for all ρ
satisfying iρ>0

[V (α)]
mult(α)

∏
ρ⊂α tαρ

∏
ρ∈Δ(1)

aρiρ

∏
ρ⊂α

(tαρ )iρ ,

=
∑

(iρ)∈ZΔ(1)
�0

∑
α∈Δ(

∑
ρ iρ),

α⊂ρ for all ρ
satisfying iρ>0

[V (α)]
mult(α)

∏
ρ∈Δ(1)

aρiρ

∏
ρ⊂α

(tαρ )iρ−1.

Inside both summations, the index iρ is zero if ρ �⊂ α, so we can split the product ∏
ρ∈Δ(1) a

ρ
iρ

into 
∏

ρ⊂α aρiρ
∏

ρ
⊂α fρ(0). Switching the summations and rearranging, we 
get that the above can be further rewritten as

∑
α∈Δ

[V (α)]
mult(α)

∏
ρ
⊂α

fρ(0)
∑

(iρ)∈ZΔ(1)
�0 ,∑

iρ=dim(α),
α⊂ρ for all ρ
satisfying iρ>0

∏
ρ⊂α

aρiρ(t
α
ρ )iρ−1.

The inner sum is equal to 
(∏

ρ⊂α

fρ(tαρ )
tαρ

)
[0]

, which proves the corollary. �
The next proposition relates products of divisors in X with products of divisors in 

V (α). For α ∈ Δ and a generic flag F• in N , the images F1 ⊂ . . . ⊂ Fn−dim(α) form a 
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generic flag in Nα. Thus, for β a cone containing α and ρ a ray in β not contained in 
α, this choice of generic flag produces numbers tβρ which we can use to rewrite products 
of divisors in V (α). Like the numbers tβρ , the numbers tβρ are defined up to a scalar 
which will not matter because they will only appear in expressions which are ratios of 
homogeneous polynomials of the same degree.

Proposition 4.7. Let α ≺ β be simplicial cones in a fan Δ. If ρ is a ray in β that is not 
contained in α, then tβρ = mult(α+ρ)

mult(α) tβρ .

Proof. Recall that vρ is the generator of the semigroup of lattice points in the ray ρ. Let 
dim(α) = k. Up to a scalar, the unique vector in Fn−k+1 ∩ (Q · β) is the image of the 
unique vector in Fn−k+1 ∩ (Q · β), which has the formula

∑
ρ⊂β

tβρvρ =
∑
ρ⊂β,
ρ
⊂α

tβρvρ.

The image vρ of vρ does not necessarily generate the semigroup of lattice points in ρ. In 
other words, vρ = bρvρ for bρ a positive integer. In fact, bρ is the index [Zvρ : Zvρ].

Let πα : N → Nα be the quotient map, and let α+ ρ be the cone generated by α and 
ρ. Recall that Nα is the kernel of πα (from subsection 1.3). Then π−1

α (Zvρ) = Nα+ρ, 
and π−1

α (Zvρ) = Nα + Zvρ. Thus bρ = [Zvρ : Zvρ] = [Nα+ρ : Nα + Zvρ].
To compute [Nα+ρ : Nα +Zvρ], let us first decompose mult(α+ ρ) as a product. Let 

ρ1, . . . , ρk be the rays of α.

mult(α + ρ) = [Nα+ρ : Zvρ1 + . . . + Zvρk
+ Zvρ]

= [Nα+ρ : Nα + Zvρ][Nα + Zvρ : Zvρ1 + . . . + Zvρk
+ Zvρ].

But [Nα + Zvρ : Zvρ1 + . . . + Zvρk
+ Zvρ] = [Nα : Zvρ1 + . . . + Zvρk

] = mult(α). So 
bρ = [Nα+ρ : Nα + Zvρ] = mult(α+ρ)

mult(α) .
Thus, we have

∑
ρ⊂β,
ρ
⊂α

tβρvρ =
∑
ρ⊂β,
ρ
⊂α

tβρ
mult(α + ρ)

mult(α) vρ

is the unique vector in Fn−k+1 ∩ (Q · β). By Definition 4.4, tβρ is the coefficient of vρ, 
which is tβρ

mult(α+ρ)
mult(α) . �

Now, we restrict to working over C temporarily. We use the two previous propositions 
and a Theorem from [4] to choose a map τ† that lifts τX .

For each cone α ∈ Δ, Brion and Vergne defined the finite subgroup Gα ⊂ (C∗)dim(α)

to be the kernel of the map (C∗)dim(α) → T given by
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(cρ)ρ �→
∏
ρ⊂α

vρ(cρ).

For nested cones α ≺ β, let Gα
β be the analogous subgroup defined with respect to β in 

the fan of V (α). Explicitly:

Definition 4.8. Let Gα
β be the kernel of the map (C∗)dim(β)−dim(α) → Tα given by

(cρ)ρ⊂β,
ρ
⊂α

�→
∏
ρ⊂β,
ρ
⊂α

vρ(cρ).

Let k be the number of rays in the quotient fan Δα, and let GΔα
to be the union 

inside (C∗)k over all β containing α. For a ray ρ in β not contained in α, we denote by 
aαρ the character Gα

β → C∗ given by projection.

Treating ti as a variable with degree 1, we will refer to the degree 0 coefficient of a 
formal Laurent series ψ(t1, . . . , tk) by ψ(t1, . . . , tk)[0]. For example, if

ψ =
(

1
1 − e−t1

)(
1

1 − e−t2

)
=

(
1
t1

+ 1
2 + t1

12 + O(t21)
)(

1
t2

+ 1
2 + t2

12 + O(t22)
)
,

then

ψ[0] = 1
4 + 1

12

(
t1
t2

+ t2
t1

)
.

Proposition 4.9. Let X be a complete simplicial toric variety over C. Then, we have the 
following formula for the Riemann-Roch transformation:

τX([OV (α)]) =
∑
β�α

∑
g∈Gα

β

⎛
⎜⎜⎜⎜⎝

∏
ρ∈Δ(1),
ρ⊂β,
ρ
⊂α

1
1 − aαρ (g)e−mult(α+ρ)tβρ

⎞
⎟⎟⎟⎟⎠

[0]

mult(α)[V (β)]
mult(β)

∏
ρ⊂β,
ρ
⊂α

mult(α)
mult(α+ρ)

Proof. Let Δα be the fan of V (α) in (Nα)R. The main theorem in [4, Section 4.2] gives 
the following formula for the Todd class:

τV (α)([OV (α)]) =
∑

g∈GΔα

∏
ρ∈Δα(1)

[V (ρ)]
1 − aαρ (g)e−[V (ρ)] .

Let i : V (α) ↪→ X be the inclusion map. Then in A∗(X)Q, we have

τX([OV (α)]) =
∑

i∗
∏ [V (ρ)]

1 − aαρ (g)e−[V (ρ)] .

g∈GΔα ρ∈Δα(1)
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Applying Lemma 4.6, and rewriting, we have:

∑
g∈GΔα

i∗
∏

ρ∈Δα(1)

[V (ρ)]
1 − aαρ (g)e−[V (ρ)]

=
∑

g∈GΔα

i∗
∑
β�α

⎛
⎜⎜⎝ ∏

ρ∈Δα(1),
ρ⊂β

1
1 − aαρ (g)e−tβρ

⎞
⎟⎟⎠

[0]

⎛
⎜⎜⎝ ∏

ρ∈Δα(1),
ρ
⊂β

lim
t→0

t

1 − aαρ (g)e−t

⎞
⎟⎟⎠ [V (β)]

multα(β) ,

=
∑

g∈GΔα

∑
β�α

⎛
⎜⎜⎜⎜⎝

∏
ρ∈Δ(1),
ρ⊂β,
ρ
⊂α

1

1 − aαρ (g)e−
mult(α+ρ)
mult(α) tβρ

⎞
⎟⎟⎟⎟⎠

[0]

×

⎛
⎜⎜⎜⎜⎝

∏
ρ∈Δ(1),
ρ
⊂β,

α+ρ∈Δ

lim
t→0

t

1 − aαρ (g)e−t

⎞
⎟⎟⎟⎟⎠

mult(α)[V (β)]
mult(β)

∏
ρ⊂β,
ρ
⊂α

mult(α)
mult(α+ρ)

,

where in the last line we applied the formula for tβ
β

from Proposition 4.7 and the formula 
for multα(β) from the appendix.

However, the term 

⎛
⎜⎝∏

ρ∈Δ(1),
ρ
⊂β,

α+ρ∈Δ

limt→0
t

1−aα
ρ (g)e−t

⎞
⎟⎠ is 1 if aαρ (g) = 1 for all ρ indexing 

the product, or 0 otherwise. The condition that aαρ (g) = 1 for all ρ is equivalent to the 
condition that g ∈ Gα

β . Thus, we obtain that

∑
g∈GΔα

∑
β�α

⎛
⎜⎜⎜⎜⎝

∏
ρ∈Δ(1),
ρ⊂β,
ρ
⊂α

1

1 − aαρ (g)e−
mult(α+ρ)
mult(α) tβρ

⎞
⎟⎟⎟⎟⎠

[0]

×

⎛
⎜⎜⎜⎜⎝

∏
ρ∈Δ(1),
ρ
⊂β,

lim
t→0

t

1 − aαρ (g)e−t

⎞
⎟⎟⎟⎟⎠

mult(α)[V (β)]
mult(β)

∏
ρ⊂β,
ρ
⊂α

mult(α)
mult(α+ρ)
α+ρ∈Δ



A. Shah / Journal of Algebra 611 (2022) 175–210 195
=
∑
β�α

∑
g∈Gα

β

⎛
⎜⎜⎜⎜⎝

∏
ρ∈Δ(1),
ρ⊂β,
ρ
⊂α

1

1 − aαρ (g)e−
mult(α+ρ)
mult(α) tβρ

⎞
⎟⎟⎟⎟⎠

[0]

mult(α)[V (β)]
mult(β)

∏
ρ⊂β,
ρ
⊂α

mult(α)
mult(α+ρ)

.

Due to the “degree 0” imposition, the mult(α) factors in the exponents e−
mult(α+ρ)
mult(α) tβρ

cancel, which proves the proposition. �
Here is the relevant consequence.

Corollary 4.10. Let X be a complete simplicial toric variety over C. Let τ† : QΔ → QΔ

send eα to 
∑

β�α

∑
g∈Gα

β

(∏
ρ⊂β,
ρ
⊂α

mult(α+ρ)/mult(α)

1−aα
ρ (g)e−mult(α+ρ)tβρ

)
[0]

mult(α)
mult(β)eβ. Then RelK◦(X)Q =

τ−1
† (RelA∗(X)Q).

Example 4.11. We use this proposition to calculate the τ† given by a particular choice of 
flag. Let X be the twisted projective space P (1, 1, 2, 3). Recall that the fan of X has rays 
ρ1 = (1, 0, 0), ρ2 = (0, 1, 0), ρ3 = (0, 0, 1), and ρ4 = (−1, −2, −3). The maximal cones are 
those generated by 3-element subsets of {ρ1, ρ2, ρ3, ρ4}. If we choose the flag in Q3 given 
by

{0} � span{(a, b, c)} � span{(a, b, c), (d, e, f)} � Q3,

where a, b, c, d, e, f are some numbers so that (d, e, f) is not a multiple of (a, b, c), then 
the tαρ are those written in Table 1.

Then, one can write the Todd class of each subvariety in a uniform way with rational 
functions in tσρ as coefficients. For the flag specified by (a, b, c) = (2, 3, 5), (d, e, f) =
(3, 5, 7), we get the lift τ† seen in Table 2.

Definition 4.12. Let μα(β) be the (β, α) entry of the matrix corresponding to τ† as defined 
in Corollary 4.10, with respect to the basis eα, α ∈ Δ.

The map τ† : QΔ → QΔ is lower triangular with ones on the diagonal, so it is 
invertible. Let να(β) be the (β, α) entry of the matrix corresponding to τ−1

† , with respect 
to the basis eα, α ∈ Δ. Then, we can write

τ−1
X ([V (α)]) =

∑
α≺β

να(β)[OV (β)].

Example 4.13. For α ∈ Δ, we have να(α) = 1, and for Δ smooth and tαρ defined as in 
4.4, we have
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Table 1
The tαρ of Example 4.11.

Cone (α) Ray (ρ) tαρ

σ123 ρ1 a
ρ2 b
ρ3 c

σ124 ρ1 a − c/3
ρ2 b − 2c/3
ρ4 −c/3

σ134 ρ1 a − b/2
ρ3 c − 3b/2
ρ4 −b/2

σ234 ρ2 b − 2a
ρ3 c − 3a
ρ4 −a

α12 ρ1 af − cd
ρ2 bf − ce

α13 ρ1 ae − bd
ρ3 ce − bf

α14 ρ1 3(ae − bd) + 2(cd − af) + (bf − ce)
ρ4 bf − ce

α23 ρ2 ae − bd
ρ3 af − cd

α24 ρ2 −(3(ae − bd) + 2(cd − af) + (bf − ce))
ρ4 af − cd

α34 ρ3 3(ae − bd) + 2(cd − af) + (bf − ce)
ρ4 ae − bd

ρ ρ 1

Table 2
The τ† matrix of Example 4.11.

[V (−)]�
[OV (−)] X ρ1 ρ2 ρ3 ρ4 α12 α13 α14 α23 α24 α34 σ123 σ124 σ134 σ234

X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ρ1 1/2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
ρ2 1/2 0 1 0 0 0 0 0 0 0 0 0 0 0 0
ρ3 1/2 0 0 1 0 0 0 0 0 0 0 0 0 0 0
ρ4 1/2 0 0 0 1 0 0 0 0 0 0 0 0 0 0
α12 29/48 1/2 1/2 0 0 1 0 0 0 0 0 0 0 0 0
α13 29/48 1/2 0 1/2 0 0 1 0 0 0 0 0 0 0 0
α14 -5/48 1/2 0 0 1/2 0 0 1 0 0 0 0 0 0 0
α23 1/12 0 1/2 1/2 0 0 0 0 1 0 0 0 0 0 0
α24 5/12 0 1/2 0 1/2 0 0 0 0 1 0 0 0 0 0
α34 5/12 0 0 1/2 1/2 0 0 0 0 0 1 0 0 0 0
σ123 31/72 79/180 59/120 31/72 0 1/2 1/2 0 1/2 0 0 1 0 0 0
σ124 1/8 9/20 1/20 0 1/4 1/2 0 1/2 0 1/2 0 0 1 0 0
σ134 1/36 1/9 0 1/9 1/3 0 1/2 1/2 0 0 1/2 0 0 1 0
σ234 5/12 0 11/24 11/24 5/12 0 0 0 1/2 1/2 1/2 0 0 0 1

να(β) =
∑

α0ňα1ň...ňαk,
α0=α,αk=β

(−1)k

⎛
⎜⎜⎝

k∏
l=1

⎛
⎜⎜⎝ ∏

ρ⊂αl,
ρ
⊂αl−1

1
1 − e−t

αl
ρ

⎞
⎟⎟⎠

[0]

⎞
⎟⎟⎠ .

Now, let τ† be as chosen in Corollary 4.10, and the να(β) as defined above. Then, we 
have the following theorem. Recall that vβ,α was defined in subsection 1.3.
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Theorem 4.14. Let Δ be a complete simplicial fan. Then a function g : Δ → Z is a 
Grothendieck weight if and only if it satisfies

∑
β�α,

dim(β)=dim(α)+1

〈u, vβ,α〉
∑
γ�β

νβ(γ)g(γ) = 0,

for each α ∈ Δ and u ∈ Mα.

Before the proof, we recall that by Proposition 2.9, GW(Δ) is independent of the 
group field, so even though we have defined τ† using formulas for the Todd class over C, 
this theorem describes opK◦ of the associated toric variety over any field.

Proof. By Proposition 3.3, the elements

rα,u =
∑
β�α,

dim(β)=dim(α)+1

〈u, vβ,α〉eβ ,

generate RelA∗(X), so the elements τ−1
† (rα,u) generate RelK◦(X)Q . By Definition 4.12,

τ−1
†

⎛
⎜⎜⎝ ∑

β�α,
dim(β)=dim(α)+1

〈u, vβ,α〉eβ

⎞
⎟⎟⎠ =

∑
β�α,

dim(β)=dim(α)+1

〈u, vβ,α〉
∑
γ�β

νβ(γ)eγ .

Since these elements generate RelK◦(X)Q , the group K◦(X)∨ can be identified with linear 
forms on ZΔ which send such expressions to 0. Grothendieck weights are then (recall 
Remark 2.8) characterized as the functions g : Δ → Z satisfying

∑
β�α,

dim(β)=dim(α)+1

〈u, vβ,α〉
∑
γ�β

νβ(γ)g(γ) = 0. �

Remark 4.15. Theorem 4.14 in some sense overlaps with Theorem 1.1 in the case that X
is simplicial and has dimension � 3, since one can use the τ† from Corollary 4.10 in the 
course of proving Theorem 1.1, but we used the more elementary Lemma 3.4 in Section 3
for simplicity.

We considered using different sets of generators for the Grothendieck group in our 
definition of Grothendieck weights, e.g. ideal sheaves or canonical sheaves of invariant 
subvarieties. However, the problem of combinatorially describing the relations between 
these classes seems equally difficult.
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5. Products

If X is a complete toric variety and Δ the associated fan, the natural isomorphism of 
groups between opK◦(X) and GW(Δ) induces a product on Grothendieck weights, which 
is compatible with the product on K◦(X)∨ induced by the diagonal map by Theorem 5.3. 
We prove some propositions in this section about how to compute it. Since opK◦(X) and 
GW(Δ) are manifestly torsion-free, we can compute products after extending coefficients 
to Q, and the calculations will be valid in the original rings.

First, we will need the following special case of [2, Proposition 6.4].

Proposition 5.1. Let X be a toric variety, and Y arbitrary. Then, the natural map 
K◦(X) ⊗K◦(Y ) → K◦(X × Y ) is an isomorphism.

We will need the following lemma. Recall that an operational class c = (cf ) ∈
opK◦(X) is a tuple of endomorphisms of K◦(Y ) for each f : Y → X. To avoid no-
tational overload, if f = IdX is the identity map on X, we write cId instead of cIdX

for 
the corresponding endomorphism of K◦(X).

Lemma 5.2. Let X be a toric variety, φ : Y → X be arbitrary, γφ : Y → X×Y the graph 
of φ, z ∈ K◦(Y ), and c ∈ opK◦(X).

Let us identify (γφ)∗(z) ∈ K◦(X × Y ) with the corresponding element 
∑

i ui ⊗ vi ∈
K◦(X) ⊗K◦(Y ). Then, we have an equality in K◦(Y ):

(φ∗c)Id(z) =
∑

χ(cId(ui))vi.

Proof. To prove the equality, let π1 and π2 be the projections from X × Y to X and Y
respectively. Then, π2◦γφ = idY and π1◦γφ = φ. Operational classes satisfy a projection 
formula, so we have

(φ∗c)Id(z) = (idY )∗((φ∗c)Id(z)) = (π2∗γφ∗)((γ∗
φπ

∗
1c)Id(z)) = (π2)∗((π∗

1c)Id(γφ)∗(z)).

Now, replacing (γφ)∗(z) with 
∑

i ui ⊗ vi ∈ K◦(X) ⊗K◦(Y ) gives us

(π2)∗((π∗
1c)Id(γφ)∗(z)) =

∑
i

(π2)∗((π∗
1c)Id(ui ⊗ vi)).

So, the claim follows if we can show

(π2)∗((π∗
1c)Id(u⊗ v)) = χ(cId(u))v,

for u ∈ K◦(X), v ∈ K◦(Y ). It is enough to consider to the case that v = [i∗OY ′ ] is the 
pushforward of the structure sheaf of a closed subvariety i : Y ′ ↪→ Y , since such classes 
generate K◦(Y ).
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Recall that π1 : X × Y → X is the projection. Let π′
1 be the projection X × Y ′ → X. 

Now consider the following commuting square:

X × Y ′ X × Y

X X

π′
1

Id×i

π1

=

Then,

u⊗ v = u⊗ [i∗OY ′ ] = (Id× i)∗(π′
1)∗(u),

so

(π∗
1c)Id(u⊗ v) = (π∗

1c)Id((Id× i)∗(π′
1)∗(u)).

By definition of the pullback of operational classes, [2, Section 4.1], (π∗
1c)Id = cπ1 , so

(π∗
1c)Id((Id× i)∗(π′

1)∗(u)) = cπ1((Id× i)∗(π′
1)∗(u)).

Since Id × i is proper, cπ1 ◦ (Id × i)∗ = (Id × i)∗ ◦ cπ1◦(Id×i). Also π1 ◦ (Id × i) = π′
1, so

cπ1((Id× i)∗(π′
1)∗(u)) = (Id× i)∗(cπ′

1
((π′

1)∗(u)).

Since π′
1 is flat, cπ′

1
((π′

1)∗(u)) = (π′
1)∗(cId(u)), the latter being equal to cId(u) ⊗ [OY ′ ]. 

Thus

(Id× i)∗(cπ′
1
((π′

1)∗(u)) = (Id× i)∗(cId(u) ⊗ [OY ′ ]) = cId(u) ⊗ [i∗OY ′ ] = cId(u) ⊗ v.

Applying (π2)∗ finally shows that (π2)∗((π∗
1c)Id(u ⊗v)) = (π2)∗(cId(u) ⊗v) = χ(cId(u))v, 

which proves the claim. �
This allows us to show the following fact about products of classes in operational 

K-theory. It is a K-theoretic analogue of [11, Theorem 4].

Theorem 5.3. Let X be a complete toric variety. Let δ : X → X × X be the diagonal 
map, and let us have classes z ∈ K◦(X) and c, d ∈ opK◦(X). Given an expression 
δ∗(z) =

∑
i miui ⊗ vi, with mi ∈ Q, the product c · d evaluated on z satisfies

χ ((c · d)Id(z)) =
∑
i

miχ (cId(ui))χ (dId(vi)) .

Proof. Recall (from subsection 2.2) that the product in operational K-theory is defined 
by point-wise composition and is commutative, so (c · d)Id = (d · c) = dId ◦ cId. Then, 
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we use the previous lemma, with Id : X → X in place of φ : Y → X, so the graph γId
is the diagonal map δ : X → X ×X.

The previous lemma implies that

cId(z) =
∑
i

miχ(cId(ui))vi,

so

(c · d)Id(z) = dId(cId(z)) =
∑
i

miχ(cId(ui))χ(dId(vi)). �

Remark 5.4. In fact, the proposition and proof are valid for any variety which is linear 
in the sense of [19].

The following corollary is a direct consequence of Theorem 5.3. We will use the corol-
lary in the next subsection to give a formula for the product of Grothendieck weights 
induced by opK◦(X).

Corollary 5.5. Let X be a complete toric variety with fan Δ, and let f and g be 
Grothendieck weights on Δ. Let δ : X → X × X be the diagonal map. Given an ex-
pression δ∗([OV (α)]) =

∑
β,γ cβ,γ [OV (β)] ⊗ [OV (γ)] with cβ,γ ∈ Q, we have

(f · g)(α) =
∑
β,γ

cβ,γf(β)g(γ).

5.6. Decomposing diagonals and product formulas

By using Corollary 5.5, we can compute products of Grothendieck weights if we are 
able to provide suitable expressions for δ∗([OV (α)]). Outside of the smooth case where one 
can use Poincaré duality, we do not know an easy way to do this. Since we have already 
addressed how to explicitly describe the Riemann-Roch transformation for a complete 
simplicial complex toric variety in Section 4, we apply it to finding an expression for 
δ∗([OV (α)]) in terms of [OV (β)] ⊗ [OV (γ)]. We recall that by Proposition 2.9, the ring 
GW(Δ) is independent of the underlying field, so we can use an expression for δ∗([OV (α)])
over the complex numbers to calculate products of operational classes of complete toric 
varieties over arbitrary fields.

Let Δ be a complete simplicial fan, and suppose that f and g in GW(Δ) are given. 
Their product may be calculated explicitly via the formula in the next theorem. To 
undertake the calculation we choose a generic vector v ∈ N . Then for three cones α, β, 
and γ satisfying α ⊂ β ∩ γ, we define mα

β,γ in the same manner as [12], by

mα
β,γ =

{
[N : Z · β + Z · γ] if β ∩ (γ + v) �= ∅,
0 otherwise.
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Though it is suppressed in the notation, we emphasize that mα
β,γ depends on the choice 

of v.

Theorem 5.7. Let f, g : Δ → Z be Grothendieck weights on a complete simplicial fan Δ. 
Let τ† be a lift of the Riemann-Roch map on the associated toric variety over C, which 
induces μα(β), να(β) as in Definition 4.12.

Then, the product h = f · g is equal to

h(α) =
∑
β�α

μα(β)
∑

γ,ε�β,
codim(γ)+codim(ε)

=codim(β)

mβ
γ,ε

∑
ζ�γ,
η�ε

νγ(ζ)νε(η)f(ζ)g(η).

We point out that h(α) is indeed an integer. Grothendieck weights over the integers 
include into Grothendieck weights over the rationals as a subring, so the product f · g is 
unambiguously a weight over the integers, even if we use rational numbers to compute 
it.

Proof. Recall that δ : X → X ×X is the diagonal map. Then, we have

δ∗([OV (α)]) = δ∗(τ−1
X (τX([OV (α)])))

= τ−1
X×X

⎛
⎝∑

β�α

μα(β)(δ∗([V (β)]))

⎞
⎠ .

By [12, Theorem 4.2], we may use the mβ
γ,ε determined by the generic vector v to de-

compose each δ∗([V (β)]), obtaining

τ−1
X×X

⎛
⎝∑

β�α

μα(β)δ∗([V (β)])

⎞
⎠

=τ−1
X×X

⎛
⎜⎜⎜⎜⎜⎝
∑
β�α

μα(β)
∑

γ,ε�β,
codim(γ)+codim(ε)

=codim(β)

mβ
γ,ε[V (γ) × V (ε)]

⎞
⎟⎟⎟⎟⎟⎠

=
∑
β�α

μα(β)
∑

γ,ε�β,
codim(γ)+codim(ε)

=codim(β)

mβ
γ,ετ

−1
X×X([V (γ) × V (ε)]).

But then,

τ−1
X×X([V (γ) × V (ε)]) =τ−1

X ([V (γ)]) ⊗ τ−1
X ([V (ε)])
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Fig. 1. Two Grothendieck weights on the fan Δ of X.

=
∑
ζ�γ,
η�ε

νγ(ζ)νε(η)[OV (ζ)] ⊗ [OV (η)].

So, by Corollary 5.5 the theorem follows. �
We can use Theorem 5.7 to show the following basic observations about the structure 

of GW(Δ).

Proposition 5.8. Let Δ be a complete fan, and Σ a sub-fan. The set of Grothendieck 
weights on Δ that vanish on the complement of Σ forms an ideal in GW(Δ).

Proof. Let f, g : Δ → Z be weights such that f vanishes on the cones of Δ. We first 
assume that Δ is simplicial. There are some coefficients C such that

(f · g)(α) =
∑
β�α

∑
γ,ε�β,

codim(γ)+codim(ε)
=codim(β)

∑
ζ�γ,
η�ε

Cα,β,γ,ε,
ζ,η

f(ζ)g(η).

If α is not in Σ, then since α ≺ ζ and Σ is a fan, ζ is not in Σ. Thus f(ζ) is 0 for each 
term in the sum.

Now, let Δ be an arbitrary complete fan. Let Δ′ be a simplicial refinement and Σ′

the compatible refinement of Σ. Then the pull-back of f · g on Δ′ vanishes on the cones 
in Σ′, so f · g vanishes on Σ. �
Corollary 5.9. For a complete fan Δ, the ring GW(Δ) is filtered by ideals Ik consisting 
of weights that vanish on cones of codimension less than k.

Example 5.10. We calculate the product of Grothendieck weights on a singular toric 
surface. Let X be the complete toric surface with rays ρ1 = R�0 · 〈0, 1〉, ρ2 = R�0 ·
〈1, 0〉, ρ3 = R�0 · 〈0, −1〉, and ρ4 = R�0 · 〈−2, 3〉. The first weight has value d on all 
maximal cones, and the second has value w. To calculate the product, we need a τ† that 
lifts the Riemann-Roch transformation τX1 . A τ† as described in Section 4 depends on 
choosing a complete flag. In two dimensions, this is merely the data of a vector, so we 
pick the vector (1, 1). The resulting Riemann-Roch lift is shown in Fig. 2.

We must also select a displacement vector v which specifies the values of mα
β,γ . If we 

choose e.g. v = (5, 1), then m0
ρ ,ρ = 2, m0

ρ ,ρ = m0
0,σ = m0

σ ,0 = mρ1
ρ ,σ = mρ1

σ ,ρ =

1 4 2 3 34 12 1 14 12 1
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
1
2 1 0 0 0 0 0 0 0
1
2 0 1 0 0 0 0 0 0
1
2 0 0 1 0 0 0 0 0
1
2 0 0 0 1 0 0 0 0
5
12

1
2 0 0 1

2 1 0 0 0
1
12

1
2

1
2 0 0 0 1 0 0

7
15 0 1

2
1
2 0 0 0 1 0

1
30 0 0 1

2
1
2 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Fig. 2. The matrix for a lift of the Riemann-Roch transformation on the Hirzebruch surface.

Fig. 3. The product of the two weights in Fig. 1.

mρ2
ρ2,σ23

= mρ2
σ12,ρ2

= mρ3
ρ3,σ34

= mρ3
σ23,ρ3

= mρ4
ρ4,σ34

= mρ4
σ14,ρ4

= 1, and the other mα
β,γ are 

zero. The resulting weight is in Fig. 3, with a value of aw − 2bw − 8cw + 9dw + dx +
2cy − 2dy + 2bz + 6cz − 8dz on the origin.

6. Maps to Grothendieck weights

For a complete fan Δ, there are a few other rings which have geometric origins. The 
two which we will discuss are the Minkowski weights MW∗(Δ) introduced in [12], and 
the ring of piecewise exponential functions PExp(Δ) introduced in [4]. Both of these 
rings have maps to GW(Δ) which correspond to maps of operational theories. We give 
formulas for these maps and explore some consequences. In the first subsection, we 
restrict to complete simplicial toric varieties over C, but return to arbitrary complete 
toric varieties afterwards, in Subsection 6.6.

6.1. Minkowski weights and GW(Δ)

Let Δ be a complete fan of dimension n. Recall that for α ∈ Δ(k) and β ∈ Δ(k + 1), 
β � α, the generator of the semigroup β ∩ N(α) is denoted by vβ,α. The group of 
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codimension-i Minkowski weights MWi(Δ) is the set of functions f on Δ(n − i) that 
satisfy ∑

β∈Δ(n−i),
β�α

〈u, vβ,α〉f(β) = 0,

for each α ∈ Δ(n − i − 1) and u ∈ M(α). Fulton and Sturmfels introduced these weights 
in [12] because MWi(Δ) is naturally isomorphic to Ai(X)∨ and the Chow cohomology 
group Ai(X) (compare with Proposition 3.3).

Proposition 6.2. Let X be a complete simplicial toric variety over C. Let T : MW∗(Δ) →
GW(Δ)Q be the map induced from the isomorphism τX : K◦(X)Q → A∗(X)Q. Then 
T (f) = g ∈ GW(Δ)Q has the formula

g(α) =
∑
α≺β

μα(β)f(β),

with μα(β) as given in Definition 4.12.

This directly follows from the formula the Riemann-Roch transformation τX :
K◦(X) → A∗(X)Q given in Corollary 4.10. The map T can also be identified with 
the inverse of the operational Riemann-Roch map of [1].

Remark 6.3. It is possible to use the previous proposition to algorithmically calculate 
the inverse image under T of a Grothendieck weight. Let g ∈ GW(Δ) be a Grothendieck 
weight, and suppose that g ∈ Ik. The balancing conditions of Theorem 4.14 combined 
with Proposition 2.10 imply that g|Δ(n−k) is a Minkowski weight. Then, g−T (g|Δ(n−k))
is an element of GW(Δ)Q, and is in (Ik+1)Q. One may repeat this process to obtain that 
g−T (g|Δ(n−k)) −T ((g−T (g|Δ(n−k)))|Δ(n−k−1)) ∈ (Ik+1)Q, and so on. After n −k iterates, 
we obtain an identity of the form g−T (g|Δ(n−k)) −T ((g−T (g|Δ(n−k)))|Δ(n−k−1)) −. . . =
0. Applying T−1 produces a formula for T−1(g).

Definition 6.4. For f ∈ MWk(Δ) we say that an element g ∈ GW(Δ) lifts f if g ∈ Ik
and g|Δ(n−k) = f .

Suppose that f ∈ MWk(Δ). Then for example, T (f) will be contained in (Ik)Q and 
will satisfy T (f)|Δ(n−k) = f , but will not generally be an element of GW(Δ).

Our next proposition is a sufficient condition for existence of lifts. We no longer need to 
work over C and let the base field k be arbitary. Let Fi be the i-th piece of the dimension 
filtration on the Grothendieck group, meaning that it is generated by coherent sheaves 
with support of dimension at most i.

Proposition 6.5. Let X be a complete toric variety. Suppose Fk is saturated as a subgroup 
of K◦(X). Then every f ∈ MWk(Δ) has a lift in GW(Δ).
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Proof. We have the exact sequence

0 → Fk/Fk−1 → K◦(X)/Fk−1 → K◦(X)/Fk → 0.

The long exact sequence obtained after applying (−)∨ = HomZ(−, Z) is:

0 (K◦(X)/Fk)∨ (K◦(X)/Fk−1)∨ (Fk/Fk−1)∨

Ext1Z(K◦(X)/Fk,Z) Ext1Z(K◦(X)/Fk−1,Z) Ext1Z(Fk/Fk−1,Z).

Let us consider the first few terms. (K◦(X)/Fk−1)∨ may be naturally identified with 
the ideal Ik of Grothendieck weights which vanish on cones of codimension less than k, 
as defined in Corollary 5.9. On the other hand, Fk/Fk−1 is the k-th piece of graded K-
theory. The map Ak(X) → Fk/Fk−1 sending [V ] to [OV ] is surjective by dévissage, and 
has torsion kernel since it is an isomorphism after tensoring with Q (see [9, Chapter 18]). 
Thus, (Fk/Fk−1)∨ ∼= MW k(Δ), and the first few terms in the exact sequence become:

0 → Ik+1 → Ik → MWk(Δ) → . . . .

Suppose that a Minkowski weight f ∈ MWk(Δ) does not have a lift. Then, Ik cannot 
surject onto MWk(Δ). Thus, the group Ext1Z(K◦(X)/Fk, Z) cannot be trivial. But this 
group is isomorphic to the torsion subgroup of K◦(X)/Fk, which is trivial if and only if 
Fk is saturated as a subgroup of K◦(X). �
6.6. Piecewise exponential functions and GW(Δ)

Let the base field k be arbitary. Let R(T ) be the group algebra Z[em|m ∈ M ]. It is a 
basic fact that KT

◦ (pt) = R(T ). The ring of piecewise exponential functions PExp(Δ) is 
the ring of continuous functions on Δ that are given on each cone α ∈ Δ by an element 
of R(T ). Anderson and Payne showed that for any fan Δ and associated toric variety 
X over k, this ring is naturally isomorphic to opK◦

T (X). If Δ is complete, PExp(Δ) has 
a map to GW(Δ) induced by the forgetful map opK◦

T (X) → opK◦(X), which we now 
describe.

We require K-theoretic equivariant multiplicities εKp (V (α)), for p ∈ XT . These have 
been recently introduced in [1]. They satisfy the identity

∑
p∈XT

εp(V (α))[ip∗(Op)] = [OV (α)],

for ip : p ↪→ X the inclusion.
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Theorem 6.7. Let X be a complete toric variety. There is a commuting square

opK◦
T (X(Δ)) PExp(Δ)

opK◦(X(Δ)) GW(Δ)

∼=

forgetful forgetful
∼=

in which the forgetful map from PExp(Δ) to GW(Δ) sends a piecewise-exponential func-
tion φ to the limit of the function

α →
∑

σ∈Δ(n)

εKV (σ)(V (α))φ|σ,

as the argument of φ approaches 0 ∈ N .

Proof. If φ is a piecewise exponential function, then via the isomorphism in [2, Theorem 
6.1], φ corresponds to a R(T )-linear function φlin : KT

◦ (X) → R(T ). The function φlin

can be written explicitly via the projection formula:

φlin([OV (α)]) = φlin(
∑

p∈XT

εKp (V (α))[ip∗(Op)]),

= i∗XT φlin(
∑

p∈XT

εKp (V (α))[Op]),

=
∑

p∈XT

εKp (V (α))i∗pφlin([Op]) =
∑

p∈XT

εKp (V (α))φ|σp
,

where σp is the maximal cone corresponding to p.
The forgetful map from opK◦

T (X) to opK◦(X) is induced by the projection X ×
T → X, so it is the pullback from opK◦

T (X) to opK◦
T (X × T ) ∼= opK◦(X). Via the 

identification of opK◦
T (X) with R(T )-linear maps from KT

◦ (X) to R(T ), and opK◦(X)
with K◦(X)∨, the forgetful map sends φlin : KT

◦ (X) → R(T ) to the linear function on 
K◦(X) sending [OV (α)] to the equivalence class in Z of φ([OV (α)]) (see the appendix of 
[1] for more details). This is the same as taking the limit as the argument of φ approaches 
0 ∈ N . �
Example 6.8. This example and the following corollary are analogous to [14, Example 
4.1 and Theorem 1.5]. Let X be the toric variety whose fan Δ is the complete fan in 
N = Z2 with rays (±1, ±1). In this case, a generating set for PExp(Δ) over R(T ) is 
given by the functions in Fig. 4.

Let φ be the piecewise exponential function on the top right of Fig. 4, and let g be its 
image in GW(Δ) under the forgetful map. Since the equivariant multiplicity of a point 
is just 1, the value of g on any maximal cone is just the value of φ at 0, which is 0.
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Fig. 4. Generators for the ring of piecewise exponential functions on a toric surface.

Let ρ be the ray generated by (1, 1). Then V (ρ) is a P 1, and at the fixed point 
corresponding to the maximal cone σ generated by (1, 1) and (1, −1) the character on 
the tangent space is y − x, so the equivariant multiplicity εv(σ)(V (ρ)) is 1

1−ex−y , by [1, 
Proposition 6.3]. Let σ′ be the maximal cone generated by (1, 1) and (−1, 1). At V (σ′)
in V (ρ), the character is x − y, and so εV (σ′)(V (ρ)) = 1

1−ey−x . The value of g on ρ is 
then the limit of 0

1−ey−x + 1−ex−y

1−ex−y as x and y approach 0, which is 1. Similarly, one gets 
that the value of g on the ray generated by (1, −1) is −1. The balancing conditions for 
Grothendieck weights determine the values on the other rays.

Now, we calculate g({0}). Since X is singular at each fixed point, we can compute 
the equivariant multiplicity at the fixed point V (σ) by resolving, e.g. by adding the ray 
(1, 0), and then summing over the new fixed points which map to V (σ). One gets

εV (σ)(X) = 1
(1 − ey)(1 − ex−y) + 1

(1 − e−y)(1 − ex+y) = 1 + ex

(1 − ex+y)(1 − ex−y) .

Let the cone generated by (−1, −1), (1, −1) be σ′′, and let the cone generated by (−1, 1)
and (−1, −1) be σ′′′. Then

εV (σ′′)(X) = 1 + e−y

(1 − ex−y)(1 − e−x−y) ,

εV (σ′′′)(X) = 1 + e−x

(1 − e−x−y)(1 − ey−x) .

So, g(α) is the limit of

(1 − ex−y)(1 + ex)
(1 − ex+y))(1 − ex−y) + (1 − e2x)(1 + e−y)

(1 − ex−y)(1 − e−x−y) + (1 − ex+y)(1 + e−x)
(1 − e−x−y)(1 − ey−x) ,

as the parameters x and y approach 0, which is 2.
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Fig. 5. Images of the piecewise exponential functions in Fig. 4.

This example shows the following (compare with [14, Theorem 1.5] and [1, Theorem 
1.7]):

Corollary 6.9. There is a projective toric surface with a vector bundle which cannot be 
resolved by a finite sequence of vector bundles that admit a T -equivariant structure.

Proof. In Example 6.8, X is a complete toric surface, so it is projective. The Z-linear 
span of the Grothendieck weights in Fig. 5 does not include the Grothendieck weight 
with 1 at the origin and 0 elsewhere, so PExp(Δ) does not surject onto GW(Δ). Thus, 
the forgetful map from opK◦

T (X) to opK◦(X) is not surjective. Since vector bundles 
induce linear forms on coherent sheaves by tensor product followed by pushforward to a 
point, there is a commutative square:

K◦
T (X) opK◦

T (X)

K◦(X) opK◦(X)

.

Combining [2, Proposition 7.4] and [5, Proposition 5.6] shows that the bottom map is 
surjective. Comparing the two ways of traversing the diagram, one sees that the map 
K◦

T (X) → K◦(X) cannot be surjective. This proves the corollary. �
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Appendix A. Multiplicities of cones

Given simplicial cones α ≺ β, let multα(β) denote the multiplicity of β in Nα. If 
α = {0}, then multα(β) = mult(β) is the usual multiplicity of β. The following lemma 
describes relative multiplicities of simplicial cones in terms of usual multiplicities. Let α
have rays ρ1, . . . , ρk, and β have rays ρ1, . . . , ρk, ρk+1, . . . , ρl:

Lemma A.1. multα(β) = mult(β)
mult(α)

∏l
i=k+1

mult(α)
mult(α+ρi) .

Proof. To simplify notation, we assume that β is a maximal cone. For vi ∈ N , let 
〈v1, . . . , vl〉 denote the sublattice of N generated by v1, . . . , vl. We have the following 
diagram of exact sequences:

0 〈vρ1 , . . . , vρl
〉 N N/〈vρ1 , . . . , vρl

〉 0

0 〈vρk+1 , . . . , vρl
〉 Nα Nα/〈vρk+1 , . . . , vρl

〉 0,

where the top and bottom quotient groups on the right have cardinality mult(β) and 
multα(β) respectively. We add the kernels and cokernels to the diagram:

0 〈vρ1 , . . . , vρk
〉 Nα A

0 〈vρ1 , . . . , vρl
〉 N N/〈vρ1 , . . . , vρl

〉 0

0 〈vρk+1 , . . . , vρl
〉 Nα Nα/〈vρk+1 , . . . , vρl

〉 0

B 0 0 0.

By the snake lemma, the sequence of kernels leading to cokernels is exact. The cok-
ernel of the map 〈vρ1 , . . . , vρk

〉 → Nα has cardinality mult(α), so |A| = mult(α)|B|. 
Thus mult(β) = multα(β)|A| = multα(β) mult(α)|B|. The cardinality of B on the other 
hand is also easy to determine: the image of 〈vρ1 , . . . , vρl

〉 in 〈vρk+1 , . . . , vρl
〉 is just 

〈vρk+1 , . . . , vρl
〉. If vρ = bρvρ, the cardinality of the cokernel (i.e. B) is 

∏l
i=k+1 bρi

. But 
in the proof of Proposition 4.7, we saw bρ = mult(α+ρ) , which proves the claim. �
mult(α)
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