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We compute the Euler characteristic of the structure sheaf of the Brill–Noether locus

of linear series with special vanishing at up to two marked points. When the Brill–

Noether number ρ is zero, we recover the Castelnuovo formula for the number of

special linear series on a general curve; when ρ = 1, we recover the formulas

of Eisenbud-Harris, Pirola, and Chan–Martín–Pflueger–Teixidor for the arithmetic

genus of a Brill–Noether curve of special divisors. These computations are obtained

as applications of a new determinantal formula for the K-theory class of certain

degeneracy loci. Our degeneracy locus formula also specializes to new determinantal

expressions for the double Grothendieck polynomials corresponding to 321-avoiding

permutations and gives double versions of the flagged skew Grothendieck polynomials

recently introduced by Matsumura. Our result extends the formula of Billey–Jockusch–

Stanley expressing Schubert polynomials for 321-avoiding permutations as generating

functions for flagged skew tableaux.

Introduction

Given a smooth projective curve C of genus g over an algebraically closed field, the

classical Brill–Noether theorem describes the locus of special line bundles

Wr
d(C) =

{
L ∈ Picd(C) | h0(C, L) ≥ r + 1

}
.
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12654 D. Anderson et al.

A parameter count—reviewed at the end of this introduction—estimates the dimension

of Wr
d(C) as ρ = ρ(g, r, d) := g − (r + 1)(g − d + r), and the Brill–Noether theorem states

that when C has general moduli, the locus Wr
d(C) is in fact nonempty of dimension ρ

whenever ρ ≥ 0. A connection with degeneracy loci for maps of vector bundles was

implicit in the original work by Brill and Noether and was brought into focus by Kleiman

and Laksov in one of the several modern proofs of the theorem given in the 1970s.

In this article, we prove two main theorems. The first gives a formula for

the holomorphic Euler characteristic (i.e., the arithmetic genus) of the Brill–Noether

locus—and in fact, for the generalized Brill–Noether loci parametrizing linear series

having specific vanishing profiles at one or two points. Our results extend the

classical computation by Castelnuovo, who studied the zero-dimensional case ρ =
0; Eisenbud–Harris [15] and Pirola [37], who studied the case ρ = 1; and Chan–

Martín–Pflueger–Teixidor [11], whose remarkable computation uses the combinatorics

of tableaux and the geometry of limit linear series to treat the case when the

two-pointed locus is one dimensional. As a by-product of our formulas, we obtain

a new proof of an existence criterion for special linear series, originally due to

Osserman.

Our genus formulas are deduced from the 2nd main theorem of the article: a new

determinantal formula for the K-theory class of a certain type of degeneracy loci. These

loci arise naturally not only from the Brill–Noether problem but also in combinatorics—

they are built from a class of permutations called 321-avoiding permutations. As

another application of our degeneracy locus formula, we find new determinantal

formulas for families of polynomials occurring in algebraic combinatorics known as

the double Schubert and double Grothendieck polynomials. These results extend recent

work of Matsumura [35], Hudson–Matsumura [30], and Hudson–Ikeda–Matsumura–

Naruse [28, 29].

Another goal of this work is to highlight the connection between recent devel-

opments in Schubert calculus and the geometry of curves. The results of this paper

expand on the fruitful interactions that led to the growth of both subjects, as discussed

extensively in [1]. On one hand, an approach to linear series via degeneracy loci unifies,

and perhaps simplifies, several results in Brill–Noether theory—for example, one may

compute the Euler characteristic of a one-pointed Brill–Noether locus by applying the

determinantal formula of [28]. On the other hand, constructions arising in the study

of linear series led us to the geometric proof of the general determinantal formula

presented in Section 2. It seems natural to expect that further progress can be made

in both subjects by exploiting this bridge.
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Brill–Noether Loci and Determinantal Formula 12655

We now turn to more precise statements of the main results. The locus Wr
d(C)

of special line bundles on a smooth curve C has a canonical desingularization by the

variety of linear series Gr
d(C), which parametrizes pairs " = (L, V) with L ∈ Picd(C) and

V ⊆ H0(C, L) an (r + 1)-dimensional subspace. For a given linear series " and a point

P ∈ C, the vanishing sequence of " at P is the sequence

a"(P) =
(
0 ≤ a"

0(P) < a"
1(P) < · · · < a"

r(P) ≤ d
)

of distinct orders of vanishing of sections in V at P.

The two-pointed Brill–Noether locus is defined as follows. Fix two points P and

Q on a smooth curve C. Given sequences of integers

a = (0 ≤ a0 < a1 < · · · < ar ≤ d) and

b = (0 ≤ b0 < b1 < · · · < br ≤ d),

we wish to parametrize linear series " of projective dimension r and degree d on C with

a"(P) dominating a , and a"(Q) dominating b . That is,

Ga ,b
d (C, P, Q) :=

{
" ∈ Gr

d(C) | a"
i (P) ≥ ai and a"

i (Q) ≥ bi for all 0 ≤ i ≤ r
}

.

We will require the following nontrivial fact about curves as input. The two-pointed

Brill–Noether theorem says that for a general two-pointed curve (C, P, Q) of genus g,

the Brill–Noether locus Ga ,b
d (C, P, Q) is either empty or has dimension equal to the two-

pointed Brill–Noether number:

ρ := ρ(g, r, d, a , b ) = g −
r∑

i=0

(g − d + ai + br−i).

This was first proved by Eisenbud and Harris [15, Section 1] using limit linear series

and a construction on a singular curve. More recently, explicit examples of smooth two-

pointed curves satisfying the two-pointed Brill–Noether theorem in any genus have been

constructed, by studying curves on decomposable elliptic ruled surfaces [22, Section 2].

In contrast to the situation with Gr
d(C), the condition ρ ≥ 0 is not sufficient to guarantee

that the pointed locus Ga ,b
d (C, P, Q) is nonempty. A numerical criterion for nonemptiness

was given by Osserman [36] and also follows from our results, see Proposition 5.2.

Our 1st main theorem computes the holomorphic (sheaf) Euler characteristic of

the locus Ga ,b
d (C, P, Q) when this has expected dimension ρ. To state it, we need some
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12656 D. Anderson et al.

more notation. Given sequences a and b as above, we define two partitions λ and µ by

setting

λi = n + ar+1−i − (r + 1 − i), and

µi = n − bi−1 + i − 1 − g + d − r

for 1 ≤ i ≤ r + 1, where n is a fixed, sufficiently large nonnegative integer.

Partitions are commonly represented as Young diagrams, so λ is a collection

of boxes with λi boxes in the i-th row. When µi ≤ λi for all i, one has µ ⊆ λ, and one

represents the sequence λi − µi as a skew Young diagram λ/µ (the complement of µ in

λ). Borrowing this notation, we will write |l/m| = ∑r+1
i=1 (li − mi) for any sequences of

integers l and m of length r + 1, regardless of whether li − mi ≥ 0.

Theorem A. Let (C, P, Q) be a smooth two-pointed curve of genus g. If G := Ga ,b
d (C, P, Q)

has dimension equal to ρ, then its Euler characteristic is

χ(OG) =
∑

l,m

(r+1∏

i=1

(
µi

µi − mi

)( −λi

li − λi

))

g!

∣∣∣∣∣
1

(li − mj + j − i)!

∣∣∣∣∣
1≤i,j≤r+1

(1)

the sum being taken over all nonnegative integer sequences l and m such that mi ≤ µi

and li ≥ λi for all i, and such that |l/m| = |λ/µ| + ρ.

The proof is given in Section 5. In the statement, the binomial coefficients for a

negative integer −s are given by
(−s

k

)
= −s(−s−1)···(−s−k+1)

k! = (−1)k(s+k−1
k

)
, for k ≥ 0. Also,

the sequences l and m need not be partitions, and even when they are, l/m need not

be a skew Young diagram—indeed, λ/µ itself may not be skew. However, with a more

detailed combinatorial analysis, one can rewrite the formula so that terms where l and

m are partitions are the only ones, which contribute to the sum—see Theorem C.

We now turn to the degeneracy locus formulas. Hudson–Ikeda–Matsumura–

Naruse gave a determinantal formula for the K-theory class of the structure sheaf of

a Schubert variety in a Grassmann bundle [28], and this formula may be applied to

obtain the one-pointed case of Theorem A. The formula of [28] was subsequently refined

in [3] and [30], but the loci considered by these authors are not sufficient to compute

the class of a two-pointed Brill–Noether variety—so we require a new determinantal

formula in K-theory, which is of independent interest. A special case of our formula is

related algebraically to a formula of Matsumura [35].
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Brill–Noether Loci and Determinantal Formula 12657

Here is the general setup. Given decreasing sequences of integers p and q ,

consider vector bundles

Ept
↪→ · · · ↪→ Ep1

ϕ−→ Fq1
! · · · ! Fqt

on a nonsingular variety X, with the ranks indicated by subscripts. The degeneracy

locus is

Wp ,q =
{
x ∈ X | dim ker

(
Epj

→ Fqi

)
≥ 1 + i − j for all i, j

}
.

From the data p , q , we define partitions λ and µ by

λi = qi − t + i, µj = pj − (t + 1 − j).

These partitions are related to the ones associated to the Brill–Noether loci; see the

discussion at the end of this introduction for a special case and Section 3 for more

detail.

In order for the rank conditions defining Wp,q to be feasible and nontrivial,

one should require λi ≥ µi, so that λ/µ forms a skew Young diagram. The expected

codimension of the locus Wp,q equals |λ/µ|.
We compute the class of Wp ,q as a variation of a skew Schur determinant. Given

partitions λ = (λ1 ≥ · · · ≥ λt) and µ = (µ1 ≥ · · · ≥ µt), and doubly indexed series

c(i, j) = ∑
m≥0 cm(i, j), for 1 ≤ i, j ≤ t, let us define the determinant

'λ/µ(c; β) :=

∣∣∣∣∣∣

∑

k≥0

(
λi − µj + k − 1

k

)
βkcλi−µj+j−i+k(i, j)

∣∣∣∣∣∣
1≤i,j≤t

.

The notation for the entries of this determinant can be condensed by using the operator

T, which raises the index of c(i, j), so Tk · cm(i, j) = cm+k(i, j). Then

'λ/µ(c; β) =
∣∣∣(1 − βT)−λi+µj cλi−µj+j−i(i, j)

∣∣∣
1≤i,j≤t

.

When β = 0 and c(i, j) = ∏n
k=1(1 − xk)−1 for all i, j, this is the classical Jacobi–Trudi

formula for the skew Schur function sλ/µ(x).

Theorem B. Assume that λi − µi ≥ 0 for all i and that W := Wp ,q has codimension

|λ/µ|. The class of W in the Grothendieck group of coherent sheaves K◦(X) is

[OW ] = 'λ/µ(c; −1) · [OX ],
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12658 D. Anderson et al.

where c(i, j) = cK(Fqi
− Epj

) is the K-theoretic Chern class.

This is proved in Section 2, as part (ii) of Theorem 2.1. Part (i) of Theorem 2.1

provides a more general statement needed for the proof of Theorem A. In fact, all the

formulas we prove take place in the connective K-theory of X, a module over Z[β], which

interpolates K-theory (at β = −1) and Chow groups (at β = 0). So our formulas also

specialize directly to cohomology. Moreover, in Theorem 2.1, we remove the assumption

that X is smooth, allowing rational singularities.

There is a general correspondence between degeneracy loci and permutations,

as explained in [23], for example. Our loci Wp ,q are exactly those corresponding to

321-avoiding permutations, that is, permutations with no decreasing subsequence of

length three. Under this correspondence, the formulas for general degeneracy loci are

related to the (double) Schubert polynomials and Grothendieck polynomials of Lascoux

and Schützenberger. Our K-theoretic results therefore give new determinantal formulas

for the double Grothendieck polynomials of 321-avoiding permutations, extending

work by Matsumura [35]. Specializing to cohomology, we recover formulas of Billey–

Jockusch–Stanley [7] and Chen–Li–Louck [10], giving new proofs via geometry. The

details, including the correspondence between (p , q) and 321-avoiding permutations,

are described in Section 6.

In Section 5, we explain how our results can be phrased in terms of the

combinatorics of tableaux. A row semi-standard Young tableau on a skew diagram

λ/µ is a filling of the boxes of λ/µ whose entries are strictly increasing along rows and

weakly decreasing down columns. A strict Young tableau is a filling whose entries are

strictly increasing across each row and down each column. A standard Young tableau

is a strict Young tableau using the numbers 1, . . . , |λ/µ|.
The number of standard Young tableaux on a skew shape λ/µ is denoted by f λ/µ.

We will use αλ/µ to denote the number of row semi-standard Young tableaux on λ/µ

whose entries in row i are in {1, . . . , λi} and ζ λ/µ for the number of strict Young tableaux

whose entries in row i are in {1, . . . , λi − 1}.

Theorem C. If dim Ga ,b
d (C, P, Q) = ρ, then the Euler characteristic is

χ
(
OGa ,b

d (C,P,Q)

)
=

∑

λ+,µ−
(−1)|λ

+/λ| · αµ/µ− · ζ λ+/λ · f λ+/µ−

where the sum is over partitions µ− ⊆ µ and λ+ ⊇ λ of length r + 1 such that |λ+/µ−| =
|λ/µ| + ρ.
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Brill–Noether Loci and Determinantal Formula 12659

Special cases of Theorem C include Castelnuovo’s formula and the Eisenbud–

Harris–Pirola formula. Its proof is given in Section 6, along with a discussion of

other special cases and further connections to the combinatorics of tableaux. We

also establish the one-pointed case of a conjecture of Chan and Pflueger, expressing

χ
(
OGa

d(C,P)

)
as an enumeration of set-valued tableaux. (Chan and Pflueger have now

proved their conjecture in the general two-pointed case, expressing χ
(
OGa ,b

d (C,P,Q)

)
as

an enumeration of set-valued skew tableaux in [12].)

To conclude this introduction, we briefly sketch the argument for the classical

case of our main theorem, describing the Euler characteristic of the locus Wr
d(C) ⊆

Picd(C). The construction of Wr
d(C) as a degeneracy locus is standard; see [31], [1, Section

VII], or [24, (14.4.5)].

Fix a point P on a smooth curve C, and let L be a Poincaré bundle on C × Picd(C),

normalized so that L|{P}×Picd(C)
is trivial. Choose a nonnegative integer n large enough

so that all divisors of degree n + d are non-special; any nonnegative n ≥ 2g − 1 − d will

do. Writing π1 and π2 for the projections from C × Picd(C) to C and Picd(C), respectively,

let E = π2∗(L ⊗ π∗
1OC(nP)) and F = π2∗(L ⊗ π∗

1OnP). Then the exact sequence on C

0 → OC → OC(nP) → OnP → 0

transforms via π2∗(L ⊗ π∗
1 (·)) into an exact sequence

0 → π2∗L → E ϕ−→ F

on Picd(C). The Brill–Noether variety Wr
d(C) is thereby identified with the locus in

Picd(C) where dim ker(ϕ) ≥ r + 1.

Since L(nP) is non-special for all L in Picd(C), Riemann–Roch shows that the

sheaf E is locally free of rank equal to h0(C, L(nP)); that is,

rk(E) = n + d − g + 1.

The sheaf F is also locally free, of rank

rk(F) = n,

and, in fact, F has a filtration F = Fn ! Fn−1 ! · · · ! F1 = OC with Ker(Fi ! Fi−1)

trivial for all i—to see this, apply π2∗(L ⊗ π∗
1 (·)) to the exact sequence

0 → OP → OnP → O(n−1)P → 0
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12660 D. Anderson et al.

and use that π2∗(L ⊗ π∗
1 (OP)) = OC, from the normalization of L. This means the Chern

classes of F are trivial, so c(F − E) = c(−E).

The Brill–Noether dimension estimate comes from a basic fact about matrices:

the locus of q × p matrices having kernel of dimension at least t has codimension

t(q − p + t) inside the affine space of all matrices. (Take t = r + 1, p = n + d − g + 1, and

q = n to get the Brill–Noether number.) Applying the K-theoretic Giambelli formula of

[3] yields

[OWr
d(C)] =

∣∣∣∣∣∣

∑

k≥0

(
g − d + r + k − 1

k

)
(−1)kcg−d+r+j−i+k(−E)

∣∣∣∣∣∣
1≤i,j≤r+1

in K(Picd(C)), whenever dim Wr
d(C) = ρ(g, r, d). The Euler characteristic formula is then

deduced from Hirzebruch–Riemann–Roch and some linear algebra (see Section 5).

1 Background and Preliminaries

We begin by reviewing some of the basic facts we will need in proving Theorem B.

1.1 Connective K-theory

Our main theorem about degeneracy loci gives formulas in the connective K-homology of

an algebraic variety X. Foundational facts about this theory can be found in [9, 14], and

briefer digests are in [28], [29], and [3, Appendix A]. The main features we will require

are the following:

(a) The connective K-homology CK∗(X) is a graded module over Z[β], with

deg β = 1.

(b) There are Chern classes operators for vector bundles; for a vector bundle E

on X, if α ∈ CK∗(X), then ck(E) · α ∈ CK∗−k(X).

(c) Specializing β = 0 and β = −1 induces natural isomorphisms

CK∗(X)/(β = 0) ∼= A∗(X) and CK∗(X)/(β = −1) ∼= K◦(X)

with Chow homology and the Grothendieck group of coherent sheaves,

respectively.

(d) There are fundamental classes [Z] ∈ CK∗(X) for closed subvarieties Z ⊆ X,

specializing to [Z] ∈ A∗(X) and [OZ] ∈ K◦(X).
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Brill–Noether Loci and Determinantal Formula 12661

A degeneracy locus inherits its scheme structure by pullback from a universal

degeneracy locus. In exploiting this, the key statement we need is this (cf. [21, Lemma,

p. 108] and [14, Theorem 7.4]):

Lemma 1.1. Let f be a morphism from a pure-dimensional Cohen–Macaulay scheme

X to a nonsingular variety Z. Suppose Y ⊆ Z is a Cohen–Macaulay subscheme of pure

codimension d. Then W = f −1Y has codimension ≤ d. If W has pure codimension d in

X, then it is Cohen–Macaulay and [W] = f ∗[Y] in CK∗(X).

Proof. Everything except the last statement is contained in [21, Lemma, p. 108], and

the equality [W] = f ∗[Y] is also proved there for cohomology (or Chow) classes. So it

suffices to prove this equality for K-theory, which we do by a slight refinement of the

standard argument for cohomology. Let ,f ⊆ X × Z be the graph of f , so W is identified

with ,f ∩ (X × Y) via the 1st projection.

If dim Z = m, then the graph ,f ⊆ X × Z is locally cut out by a regular sequence

z1, . . . , zm; that is, the Koszul complex K•(z) is exact and resolves O,f
. Indeed, there is

an exact sequence

0 ← O,f
← T ← ∧2 T ← · · · ← ∧m T ← 0,

where T = pr∗
2 T∨

Z is the cotangent bundle of Z, pulled back to X × Z.

Since X × Y is Cohen–Macaulay and W ∼= ,f ∩ (X × Y) has codimension d + m in

X × Z, the restrictions z1, . . . , zm to X × Y also form a regular sequence. This means the

Koszul complex K•(z) = K•(z)⊗OX×Y is also exact, so by restricting the above resolution

to X via the graph morphism, we obtain an exact sequence

0 ← OW ← T ⊗ OX ← ∧2 T ⊗ OX ← · · · ← ∧m T ⊗ OX ← 0.

Since f ∗[OY ] = ∑
i(−1)i [TorZ

i (OX , OY)] by definition, we see that f ∗[OY ] = [OX ⊗OZ
OY ]

= [OW ], since exactness of the above sequence shows that the higher Tor terms

vanish. "

Remark 1.2. In [28], formulas are proved in connective K-cohomology CK∗(X), under

the hypothesis that X is smooth. The relationship with our more general setup is

best described in the framework of the operational cohomology theory associated to

a (generalized oriented Borel–Moore) homology theory [5, 26]. One can define CK∗ to be

the operational cohomology ring associated to the homology theory CK∗, so that CK∗(X)

is defined for any scheme. This is a graded algebra over Z[β], where now β has degree
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12662 D. Anderson et al.

−1, and CK∗(X) is a module for CK∗(X), with c ∈ CKi(X) acting as a homomorphism

CK∗(X) → CK∗−i(X).

Specializing at β = 0 and β = −1 produces natural isomorphims

CK∗(X)/(β = 0) ∼= A∗(X) and CK∗(X)/(β = −1) ∼= opK◦(X),

where A∗(X) is the Fulton–MacPherson operational Chow ring, and opK◦(X) is the

operational K-theory developed in [5]. When X is smooth, Poincaré isomorphisms show

that the operational CK∗(X) agrees with the connective K-cohomology used in [28] and

that CK∗(X) ∼= CKdim X−∗(X).

Remark 1.3. Higher connective K-groups are defined and studied in [9] and [14]. The

two versions coincide in the part corresponding to the Grothendieck group K◦, but

they diverge in general. Both work in the category of quasi-projective schemes. For

an explanation of how to extend results to general schemes, see [4]. In particular, one

can construct Chern classes using the projective bundle formula and Grothendieck’s

method, as in [9] (and [3]).

1.2 The degeneracy loci Wp ,q and -p ,q

Now we turn to the degeneracy locus setup. We have a sequence of vector bundles

Ept
↪→ · · · ↪→ Ep1

= E
ϕ−→ F = Fq1

! · · · ! Fqt

on a (now possibly singular) variety X, where subscripts indicate rank, so that

0 < pt < · · · < p1 and q1 > · · · > qt > 0.

It will be convenient to assume that the flag Ept
↪→ · · · ↪→ Ep1

extends to a full flag

E1 ↪→ · · · ↪→ Ep1
of sub-bundles of E defined on X, and similarly, the flag Fq1

! · · · ! Fqt

extends to a full flag Fq1
! · · · ! F1 of quotients of F defined on X. This is harmless, as

there exists always a full flag extending a given partial flag, possibly after replacing X

with X ′ such that X ′ ↪→ X is a tower of projective bundles, so that CK∗(X) ↪→ CK∗(X
′).

Let V := E ⊕ F. The vector bundle V includes isomorphic copies of the sub-

bundles E• via the graph Eϕ of ϕ:

Ept
⊂ · · · ⊂ Ep1

= Eϕ ⊆ V,

and it also comes with natural projections V ! Fqi
for all i.
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Brill–Noether Loci and Determinantal Formula 12663

Our degeneracy loci lie in X, and in a Grassmann bundle over X:

(2)

The locus Wp,q ⊆ X is defined by the conditions

dim ker
(
Epj

→ Fqi

)
≥ 1 + i − j for all i, j,

where here we usually assume

qi ≥ pi − 1 for all i. ( ∗ )

(Evidently, it suffices to require these conditions only for j ≤ i. Later we will see that

the ones for j = i are enough.)

To define the locus -p ,q ⊆ Gr(t, V), let S ⊆ V be the tautological rank t

sub-bundle on Gr(t, V). (Here V should be understood as π∗V—following a common

abuse, we omit notation for such pullbacks.) Using the inclusions and projections

Epj
↪→ V ! Fqi

described above, -p ,q ⊆ Gr(t, V) is defined by the conditions

dim
(
S ∩ Epj

)
≥ t + 1 − j and dim ker

(
S → Fqi

)
≥ i for all 1 ≤ i, j ≤ t. (3)

No restrictions on p and q are needed here. Note that -p ,q ′ ⊆ -p ,q if q′
i ≥ qi for all i.

(And likewise, -p ′,q ⊆ -p,q if p′
j ≤ pj for all j.) From the definition, the fiber of -p ,q → X

over any point x ∈ X is an intersection of two Schubert varieties in the Grassmannian

Gr(t, V|x).

1.3 321-avoiding permutations

In analyzing the relationship between -p ,q and Wp,q , we will need some combinatorics

of permutations and Schubert varieties. For any permutation v, there is a rank function

rv(a, b) := #{i ≤ a | v(i) > b}.
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12664 D. Anderson et al.

These define Schubert varieties in the flag variety (or a degeneracy locus on any variety

with flagged vector bundles), by imposing conditions

dim ker
(
Ea → Fb

)
≥ rv(a, b) for all (a, b).

The Bruhat order on permutations describes containment of Schubert varieties; equiv-

alently, given two permutations u and v, one has u ≤ v if and only if ru(a, b) ≤ rv(a, b)

for all (a, b).

In fact, the above conditions are redundant, and one can find a much shorter

list of conditions. Suppose one has a collection of pairs S = {(ai, bi)}i and corresponding

integers ki such that the set of permutations u satisfying ru(a, b) ≥ ki has a unique min-

imum v in Bruhat order. Then the Schubert variety (or degeneracy locus) corresponding

to v is determined (scheme-theoretically) by the conditions

dim ker
(
Eai

→ Fbi

)
≥ ki for (ai, bi) in S.

One choice of S is given by Fulton’s essential set for the permutation v [23,

Lemma 3.10]. For the permutations arising in our situation, we will use a different

choice.

For any p , q , we define an associated permutation w by setting

w(pi) := max{qi + 1, pi} for 1 ≤ i ≤ t,

and then filling in the remaining entries minimally with unused numbers in increasing

order. For example, if p = (5, 4, 1) and q = (5, 2, 1), then

w = 2 1 3 4 6 5. (4)

Given p , q , let us also define a sequence q ′ by

q′
i = max{qi, pi − 1}.

The associated permutations for p , q and for p , q ′ are the same, but note that w(pi) =
q′

i + 1 for all i. The new pair p , q ′ satisfies (∗) by definition.

In fact, the permutation w is a 321-avoiding permutation (i.e., there are no a <

b < c such that w(c) > w(b) > w(a)), and all 321-avoiding permutations arise this way

for some p , q , since any such permutation is a shuffle of two increasing subsequences

(see e.g., [16]). More precisely, w is obtained by shuffling (q′
t + 1, . . . , q′

1 + 1) with the
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Brill–Noether Loci and Determinantal Formula 12665

sequence of left-over numbers. We have w(pi) = q′
i + 1 ≥ pi for all i and w(p) ≤ p for all

p not among the pi. It follows that

rw(pi, q′
i) = 1 and rw(pi+1, q′

i) = 0, (5)

which will be useful later, in the proof of Proposition 2.5.

From the construction, one sees that w may also be characterized as the (unique)

minimal element among all u such that ru(pi, q′
i) ≥ 1, for p , q ′ as above.

Lemma 1.4. The permutation w is the unique minimal one in Bruhat order such that

#{p ≤ pi | w(p) > qi} ≥ 1 for all i.

Its length is equal to
∑t

i=1(q′
i − pi + 1).

The length of w is defined to be #{a < b | w(a) > w(b)}; it is the codimension

of the corresponding Schubert variety in the flag variety. The lemma implies that the

conditions specified by p , q are equivalent to those given by p , q ′, that is, Wp ,q = Wp ,q ′ .

Its proof is fairly straightforward, since the condition is trivial whenever qi ≤ pi − 1.

It follows that among the conditions

dim ker
(
Epj

→ Fqi

)
≥ 1 + i − j

defining Wp,q , those with i = j are sufficient.

1.4 Schubert varieties in flag bundles

Next we consider a special case of the degeneracy locus problem (which turns out to be

the universal situation). We have a variety Y, with a vector bundle VY of rank p1 + q1

and quotient bundles VY ! Fqi
of ranks qi. Let X = Fl(p , VY) → Y be the flag bundle,

and let E• be the tautological flag of sub-bundles. As usual, we suppress notation for

pullbacks, writing V = VY and F• for the corresponding bundles on X.

In this setting, the diagram (2) takes the form

(6)
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12666 D. Anderson et al.

The degeneracy locus Wp,q is a Schubert variety in the flag bundle X, so it corresponds

to a permutation; in fact, this is the permutation w of Lemma 1.4.

Proposition 1.5. Assume the above situation, so X = Fl(p , VY). Given p , q , let q ′ be

defined as before, that is, q′
i = max{qi, pi − 1}. Then π̂(!p ,q ) = Wp ,q ′ = Wp,q .

Proof. The statement is local, so in proving it we may reduce to the case where Y is a

point. In this case, X = Fl(p , V) is a partial flag variety, and -p ,q ⊆ Fl(p , V)×Gr(t, V). Let

π : Fl(p , V) × Gr(t, V) → Fl(p , V) and φ : Fl(p , V) × Gr(t, V) → Gr(t, V) be the projections.

The conditions (3) defining -p ,q imply that after forgetting the t-dimensional

subspace S ⊆ V, one has

dim ker
(
Epj

→ Fqi

)
≥ 1 + i − j for all i, j. (7)

By Lemma 1.4, these conditions with i = j imply the rank conditions given by the

permutation w associated to p , q , and thus define the Schubert variety Wp,q ′ ⊆ Fl(p , V).

So it follows that π(-p ,q ) ⊆ Wp ,q ′ .

On the other hand, the projection π : -p ,q → Wp,q ′ is B-equivariant, for the

standard action on Fl(p , V) × Gr(t, V) of a Borel subgroup B ⊆ GL(V) fixing the flag

F•. To show that π is surjective, it suffices to show that the fiber is nonempty over a

general flag A• in Wp,q ′ , i.e., a flag A• such that

Ki,i := ker
(
Api

→ Fq′
i

)
satisfies dim Ki,i = 1 for all i,

and

Ki+1,i := ker
(
Api+1

→ Fq′
i

)
= 0 for all i.

The dimensions here follow from (5). We see that the vector spaces Ki,i give independent

lines, since Ki+1,i = 0 means Ki,i ∩ Api+1
= 0. So

S = K1,1 ⊕ K2,2 ⊕ · · · ⊕ Kt,t ⊆ Ap1

has dimension t, and S ∩ Apj
= Kj,j ⊕ · · · ⊕ Kt,t has dimension t + 1 − j. Since there is a

surjection Fq′
i
! Fqi

, one sees ker(S → Fqi
) contains K1,1 ⊕ · · · ⊕ Ki,i, and therefore has

dimension at least i. We conclude that π(-p ,q ) = Wp,q ′ . "

Next we turn to the singularities and dimensions of our degeneracy loci. At this

point, it will help to use partition notation. As in the introduction, we define partitions
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Brill–Noether Loci and Determinantal Formula 12667

λ and µ by

λi = qi − t + i and µj = pj − (t + 1 − j).

The condition (∗) is equivalent to requiring that λi ≥ µi for all i, i.e., λ/µ is a skew shape.

We use the notation λ′ to denote the partition given by λ′
i = q′

i − t + i.

Proposition 1.6. Assuming X = Fl(p , VY), the locus !p ,q is reduced (or is Cohen–

Macaulay, or has rational singularities) if Y is reduced (resp., is Cohen–Macaulay, has

rational singularities). The same is true of Wp,q ′ .

The dimensions of these loci are dim !p,q = dim X − |λ| + |µ| and dim Wp,q ′ =
dim X − |λ′/µ|.

Proof. Again the statements are local on Y (and preserved by products), so we will

assume Y is a point and show that the varieties in question have rational singularities

(which implies Cohen–Macaulay and reduced). Since Wp,q ′ is a Schubert variety, it has

rational singularities; its codimension is the length of w, which was calculated in

Lemma 1.4 and is equal to |λ′/µ|. We focus on -p ,q , using a description which will be

useful later.

Recall that φ : Fl(p , V) × Gr(t, V) → Gr(t, V) is the 2nd projection. Then

-p ,q = -′ ∩ φ−1-λ,

where

-λ :=
{
S | dim ker

(
S → Fqi

)
≥ i for all i

}
⊆ Gr(t, V), and

-′ :=
{
(A•, S) | dim

(
S ∩ Apj

)
≥ t + 1 − j for all j

}
⊆ Fl(p , V) × Gr(t, V).

Restricting the projections π and φ to -′ produces flat morphisms (which we will denote

by the same letter). In fact, they are locally trivial fiber bundles, and we can describe

their fibers explicitly.

The fiber of the 1st projection π : -′ → Fl(p , V) over a flag A• is a Schubert

variety -ν(A•) ⊆ Gr(t, V). Here ν = µ∨ is the complementary partition to µ inside the

t × (p1 + q1 − t) rectangle; specifically, νj = p1 + q1 − t − pt+1−j + j. It follows that

dim -′ = dim Fl(p , V) + |µ|,
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12668 D. Anderson et al.

which we will use again in the proof of Theorem 2.1.

The fiber of the 2nd projection φ : -′ → Gr(t, V) is a Schubert variety in Fl(p , V).

Its corresponding permutation is the inverse of the Grassmannian permutation for the

partition ν. In particular, intersecting with φ−1-λ, the morphism

φ : -p ,q → -λ

is again flat, and both the base and fibers have rational singularities. By [17, Théorème

5], we conclude that -p ,q has rational singularities. The formula for dim -p ,q also

follows. "

We conclude this section with the following statement:

Proposition 1.7. Assume X = Fl(p , VY). Given p , q , let q ′ be defined as

q′
i = max{qi, pi − 1}. When restricted to !p,q ′ ⊆ !p,q , the map π̂ : !p ,q ′ → Wp,q ′ is

birational.

Proof. As the statement is local on Y, we can reduce to the case where Y is a point.

The argument in the proof of Proposition 2.5 to construct an element S in the fiber of

π : -p ,q → Wp,q ′ over a generic point A• of Wp ,q ′ shows that ker(S → Fq′
i
) = K1,1⊕· · ·⊕Ki,i,

so S ∈ -p ,q ′ is uniquely determined. It follows that π : -p ,q ′ → Wp ,q ′ is generically

bijective.

Being a Schubert variety, Wp,q ′ ⊆ Fl(p , V) is the closure of a Schubert cell

W◦, which in turn is a principal homogeneous space for a certain subgroup of B. By

Proposition 1.6, -p,q ′ is reduced. Since π is B-equivariant, it follows that the restriction

π−1(W◦) → W◦ is an isomorphism. "

2 A Determinantal Formula in K-theory

Now we can state and prove the main theorem. Given doubly indexed series c(i, j) =
∑

m≥0 cm(i, j) for 1 ≤ i, j ≤ t, we define the determinant

'λ/µ(c; β) =
∣∣∣(1 − βT)−λi+µj cλi−µj+j−i(i, j)

∣∣∣
1≤i,j≤t

=

∣∣∣∣∣∣

∑

k≥0

(
λi − µj + k − 1

k

)
βkcλi−µj+j−i+k(i, j)

∣∣∣∣∣∣
1≤i,j≤t

(8)
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Brill–Noether Loci and Determinantal Formula 12669

as in the introduction. In the statement of the theorem, we return to the general setting,

no longer requiring X to be a flag bundle.

Theorem 2.1. Let X be a variety with rational singularities, and let c(i, j) = cK(Fqi
−Epj

)

be the K-theoretic Chern classes.

(i) The locus -p ,q ⊆ Gr(t, V) has codim-p,q ≤ |λ/µ| + t(p1 + q1 − t). If equality

holds, then -p ,q is Cohen–Macaulay, and

π∗[-p ,q ] = 'λ/µ(c; β) · [X] in CK∗(X).

(ii) Assume λi ≥ µi for all i. Then Wp ,q ⊆ X has codimWp,q ≤ |λ/µ|. If equality

holds, then Wp,q is Cohen–Macaulay, and

[Wp ,q ] = 'λ/µ(c; β) · [X] in CK∗(X).

The statement in (ii) specializes to Theorem B from the introduction.

In the course of the proof, we require some formulas from [3]. The first is the

determinantal formula for a Grassmannian degeneracy locus. (This appeared originally

in [28], in a slightly different form.) Let -λ be a Grassmannian degeneracy locus, defined

by conditions dim ker(Et → Fqi
) ≥ i for all i, where λi = qi − t + i as above. Then

[-λ] =
∣∣∣(1 − βT)−λicλi+j−i

(
Fqi

− Et

)∣∣∣
1≤i,j≤t

. (9)

Next, the formal determinantal identity used in proving the “general case” of [3, Theorem

1] shows that

∣∣∣(1 − βT)−λicλi+j−i

(
Fqi

− Et

)
|1≤i,j≤t = |(1 − βT)−λicλi+j−i

(
Fqi

− Et+1−j

)∣∣∣
1≤i,j≤t

. (10)

Finally, suppose we have a tower of projective bundles

P
(
Ep1

/St−1

)
π̃ (t)

−−→ · · · π̃ (3)

−−→ P
(
Ept−1

/S1

)
π̃ (2)

−−→ P
(
Ept

)
π̃ (1)

−−→ X, (11)

where Sj+1/Sj ⊂ Ept−j
/Sj is the tautological line bundle on the projective bundle

P(Ept−j
/Sj) (suppressing notation for pullbacks of bundles under the natural projections
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12670 D. Anderson et al.

π̃ (i), as usual). Then

π̃
(j)
∗

(
(1 − βT)−mcm

(
F − St+1−j

))
= (1 − βT)−m+pj−(t+1−j)cm−pj+t+1−j

(
F − Epj

)
(12)

for any bundle F on X and all m. (This is [3, Equation (5)].)

In broad strokes, the idea of the proof is simple. As before, we first treat the

case where X = Fl(p , V) is a flag bundle. There we use the description of -p ,q as an

intersection -′ ∩ φ−1-λ, together with a resolution of -′ and the determinantal formula

(9) to produce the desired formula. This case is universal, and we deduce the general

case by pullback, using Lemma 1.1.

Now we turn to the details.

Proof of Theorem 2.1. As before, we first suppose X = Fl(p , VY) → Y is a flag bundle

over a variety Y with rational singularities, so Gr(t, V) = Fl(p , VY) ×Y Gr(t, VY). In this

case, we have already seen in Proposition 1.6 that the degeneracy loci have the expected

codimensions:

codim -p ,q = |λ/µ| + t(p1 + q1 − t)

and (when the pair p , q satisfies (∗))

codim Wp,q = |λ/µ|

in Gr(t, V) and X, respectively. In Proposition 1.6, we also saw that -p ,q and Wp ,q have

rational singularities; hence, they are in particular Cohen–Macaulay.

Recall from the proof of Proposition 1.6 that -p ,q = -′ ∩ φ−1-λ, and this

intersection is proper: the codimensions of -′ and φ−1-λ add to that of -p,q . In

particular, [-p,q ] = [-′] · φ∗[-λ].

The locus -′ admits a desingularization by the variety -̃′ parametrizing flags of

sub-bundles S1 ⊂ S2 ⊂ · · · ⊂ St such that rank(Sj) = j and St+1−j ⊆ Epj
. In the tower of

projective bundles (11), this is -̃′ = P(Ep1
/St−1). The rank t bundle St ⊆ Ep1

⊂ V on -̃′

defines a map

f : -̃′ → -′ ⊆ Gr(t, V), (S1 ⊂ S2 ⊂ · · · ⊂ St) 3→ St,

which is a desingularization. (This is one of the standard desingularizations of Grass-

mannian Schubert varieties, going back to Kempf and Laksov.) Write π ′ : -̃′ → X for the

composition π ′ = π ◦ f .
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Brill–Noether Loci and Determinantal Formula 12671

Since -′ has rational singularities, f∗[-̃′] = [-′]. By the projection formula, we

obtain

f∗f ∗[-λ] = [-′] · φ∗[-λ] = [-p,q ].

Now we can compute the pushforward as

π∗[-p,q ] = π∗f∗f ∗φ∗[-λ] = π ′
∗f ∗φ∗[-λ].

The formula (9) for [-λ] is preserved under pullback, and we can rewrite it using the

identity (10):

f ∗φ∗[-λ] =
∣∣∣(1 − βT)−λicλi+j−i

(
Fqi

− S
)∣∣∣

1≤i,j≤t

=
∣∣∣(1 − βT)−λicλi+j−i

(
Fqi

− St+1−j

)∣∣∣
1≤i,j≤t

.

Finally, applying (12) to the entries of the determinant gives

π∗[-p ,q ] = π ′
∗

(∣∣∣(1 − βT)−λicλi+j−i

(
Fqi

− St+1−j

)∣∣∣
1≤i,j≤t

)

=
∣∣∣(1 − βT)−λi+pj−(t+1−j)cλi−pj+(t+1−j)+j−i

(
Fqi

− Epj

)∣∣∣
1≤i,j≤t

=
∣∣∣(1 − βT)−λi+µj cλi−µj+j−i

(
Fqi

− Epj

)∣∣∣
1≤i,j≤t

,

so we have the asserted formula for this locus. When p , q satisfy (∗), that is, qi ≥ pi − 1

for all i, then by Proposition 1.7 the map π : -p ,q → Wp,q is birational. Since both loci

have rational singularities, it follows that π∗[-p,q ] = [Wp ,q ], and the theorem is proved

in this case.

Now we turn to the general situation where X is an arbitrary variety with

rational singularities. We have the vector bundle V = Ep1
⊕ Fq1

on X, as usual, and

we form the flag bundle Fl = Fl(p , V) → X and Grassmann bundle Gr = Gr(t, V) → X.

On Fl, we have the tautological flag

U• : Upt
⊂ · · · ⊂ Up1

⊂ V

and the flag E• on X determines a section σ : X → Fl such that σ ∗(U•) = E•. The universal

loci

Wp,q ⊆ Fl and !p ,q ⊆ Fl ×X Gr
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12672 D. Anderson et al.

Fig. 1. The universal loci Wp ,q and !p ,q .

are defined by the same conditions defining Wp,q and -p ,q , respectively, using U• in

place of E•. The situation and notation are summarized in Figure 1.

The just-proved case of the theorem applies to these universal loci; in particular,

they have rational singularities (so they are Cohen–Macaulay) and we have the asserted

formulas for π̂∗[!p ,q ] and [Wp ,q ]. By construction, we have

Wp ,q = σ−1(Wp ,q ) and -p,q = σ̂−1(!p ,q ).

Since the loci !p ,q and Wp,q are Cohen–Macaulay, we may apply Lemma 1.1 to deduce

the general statement of the theorem. "

Remark 2.2. In fact, one can further relax the hypothesis on X, requiring only that it

be Cohen–Macaulay. Instead of using the flag bundle Fl as in the proof of Theorem 2.1,

after possibly replacing X by X ′ for an affine bundle X ′ → X, one can assume that the

vector bundles E• and F• are pulled back from a product of f lag varieties

Z = Fl(p , CN) × Fl(CN , q)

for some sufficiently large N; here Fl(CN , q) is the flag variety parametrizing quotients

of CN . (See e.g. [25].) The loci Wp ,q and -p ,q are then pulled back from Z and a Grassmann

bundle over Z, respectively. Since Z is nonsingular, the formula on Z is then given by

Theorem 2.1, so we can deduce it on X via pullback, using Lemma 1.1 as in the proof of

Theorem 2.1 (we require X to be Cohen–Macaulay to apply Lemma 1.1).

In the rest of the paper, we will discuss some applications of the degeneracy

locus formula. One of them is a direct generalization of Kleiman and Laksov’s proof of
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Brill–Noether Loci and Determinantal Formula 12673

the existence theorem [31]: by standard intersection theory, one can deduce a criterion

for non-emptiness of a degeneracy locus from a formula for its class.

Corollary 2.3. Let p , q , and q ′ be as above, so the pair p , q ′ satisfies (∗), and let λ′/µ

be the skew diagram corresponding to p , q ′. If 'λ′/µ(c; 0) · [X] 4= 0 in A∗(X), then Wp ,q ′ is

nonempty, and so -p ,q is also nonempty.

The converse holds when X is projective: if codimWp ,q ′ ≥ |λ′/µ| and Wp,q ′ (or

equivalently, -p ,q ) is nonempty, then codimWp ,q ′ = |λ′/µ| and 'λ′/µ(c; 0) · [X] is nonzero

in A∗(X).

3 Varieties of Linear Series as Degeneracy Loci

We apply here Theorem 2.1 to the study of the Brill–Noether theory of a smooth

algebraic curve C of genus g. We start by describing the degeneracy locus structure

of two-pointed Brill–Noether varieties. Given a linear series " = (L, V) in Gr
d(C) and a

point P ∈ C, the definition of the vanishing sequence

a"(P) = (0 ≤ a"
0(P) < · · · < a"

r(P) ≤ d)

from the introduction can be equivalently phrased by saying that a"(P) is the maximal

sequence verifying the condition

dim
(
V ∩ H0

(
C, L

(
−a"

r+1−i(P) · P
)))

≥ i for 1 ≤ i ≤ r + 1.

Fixing two points P and Q in C and two sequences a and b , the variety of linear series

Ga ,b
d (C, P, Q) is therefore defined by the conditions

dim
(
V ∩ H0 (

C, L
(
−ar+1−iP

)))
≥ i

and dim
(
V ∩ H0 (

C, L
(
−br+1−iQ

)))
≥ i for all 1 ≤ i ≤ r + 1. (13)

We will construct Ga ,b
d (C, P, Q) as a degeneracy locus of type -p ,q inside a certain

Grassmann bundle π : Gr → Picd(C), with indices p and q determined below.

The construction generalizes the description of Wr
d(C) reviewed in the introduc-

tion. As before, choose n ≥ 0 large enough so that line bundles of degree d + n − br are

non-special, that is, n ≥ 2g − 1 − d + br. Fix a Poincaré line bundle L on C × Picd(C),

normalized so that L|{P}×Picd(C)
is trivial. Let π1 and π2 be the projections from C×Picd(C)
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12674 D. Anderson et al.

to C and Picd(C), and set

Ej := (π2)∗
(
L ⊗ π∗

1OC

(
nP − bj−1Q

))
and

Fi := (π2)∗
(
L ⊗ π∗

1O(n+ar+1−i)P

)

for 1 ≤ i, j ≤ r + 1. The sheaf Ej is a vector bundle of rank

pj := rk
(
Ej

)
= n + d − bj−1 + 1 − g,

and Fi is a vector bundle of rank

qi := rk
(
Fi

)
= n + ar+1−i.

One thus obtains a sequence

Er+1 ↪→ Er ↪→ · · · ↪→ E1 =: E ϕ−→ F := F1 ! F2 ! · · · ! Fr+1

of vector bundles over Picd(C).

Define V := E ⊕ F , with natural maps V ! Fi, and with Ej ↪→ V included via the

graph of ϕ. Consider the Grassmann bundle

π : Gr(r + 1, V) → Picd(C),

and let S be the tautological rank r+1 sub-bundle on Gr(r+1, V). The locus in Gr(r+1, V)

defined by the conditions

dim
(
S ∩ E1

)
≥ r + 1 and dim ker

(
S → Fi

)
≥ i for all i,

coincides with the locus of linear series (L, V) ∈ Gr
d(C) such that

dim
(
V ∩ H0 (

C, L
(
−ar+1−iP − b0Q

)))
≥ i for all i.

Imposing the additional conditions

dim
(
S ∩ Ej

)
≥ r + 2 − j for all j,

as in (3), one obtains the locus of linear series also satisfying

dim
(
V ∩ H0

(
C, L

(
−a0P − bj−1Q

)))
≥ r + 2 − j for all j,

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
2
/1

6
/1

2
6
5
3
/6

2
5
3
7
6
8
 b

y
 O

h
io

 S
ta

te
 U

n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 0

7
 A

p
ril 2

0
2
3



Brill–Noether Loci and Determinantal Formula 12675

hence satisfying (13). Thus, Ga ,b
d (C, P, Q) can be identified with the degeneracy locus

-p ,q ⊆ Gr(r + 1, V).

We now study the image of Ga ,b
d (C, P, Q) in Picd(C) via the map π . Let

Wa ,b
d (C, P, Q) be the degeneracy locus Wp ,q in Picd(C) as in Section 3, that is,

Wa ,b
d (C, P, Q) :=

{
L ∈ Picd(C) | dim ker

(
Ej → Fi

)
≥ 1 + i − j

}
.

Equivalently, Wa ,b
d (C, P, Q) is the locus of line bundles L ∈ Picd(C) such that

h0
(
C, L

(
−ar+1−iP − bj−1Q

))
≥ 1 + i − j for all i, j.

Recall the definition of the two partitions λ and µ associated to the data g, d, a , b :

λi := n + ar+1−i − (r + 1 − i)

µi := n − bi−1 + i − 1 − g + d − r
for 1 ≤ i ≤ r + 1.

From Proposition 1.7, when λ/µ is a skew shape, one has π(Ga ,b
d (C, P, Q)) = Wa ,b

d (C, P, Q),

and in this case π : Ga ,b
d (C, P, Q) → Wa ,b

d (C, P, Q) is birational. In general, let a ′ be the

sequence defined as

a′
i := ai + max{0, d − g − ai − br−i} for all i.

The diagram λ′/µ is a skew shape by construction, where

λ′
i = n + a′

r+1−i − (r + 1 − i) for all i.

If λ/µ is already a skew shape, then a ′ = a and λ′ = λ. We have the following diagram

fitting into the framework studied in Section 3, so we can apply Theorem 2.1.

Since the vector bundles Fi have trivial Chern classes and therefore the K-

theoretic Chern classes c(i, j) = cK(Fi − Ej) are equal to cK(−E j), the determinantal
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12676 D. Anderson et al.

formula in (8) gives

'λ/µ(c; β) =
∣∣∣(1 − βT)−λi+µj cK

λi−µj+j−i

(
−E j

)∣∣∣
1≤i,j≤r+1

=

∣∣∣∣∣∣

∑

k≥0

(
λi − µj + k − 1

k

)
βkcK

λi−µj+j−i+k(−E j)

∣∣∣∣∣∣
1≤i,j≤r+1

.
(14)

Recall that the expected dimension of the pointed Brill–Noether locus Ga ,b
d (C, P, Q) is

ρ(g, r, d, a , b ) = g −
r∑

i=0

(g − d + ai + br−i) = g − |λ/µ|.

Assume that Ga ,b
d (C, P, Q) has dimension equal to ρ. Then by Theorem 2.1 it is Cohen–

Macaulay and

π∗
[
Ga ,b

d (C, P, Q)
]

= 'λ/µ(c; β) in CK∗(Picd(C)). (15)

Similarly, assume λ/µ is a skew shape. If Wa ,b
d (C, P, Q) has dimension equal to

ρ, then it is Cohen–Macaulay, and has class given by (14) in CK∗(Picd(C)).

The determinant in (14) will be further manipulated in Section 5. We conclude

this section with the following statement:

Proposition 3.1. Let (C, P, Q) be any smooth two-pointed curve of genus g. If both

Ga ,b
d (C, P, Q) and Wa ′,b

d (C, P, Q) have the expected codimension, then they are Cohen–

Macaulay and

π∗
[
Ga ,b

d (C, P, Q)
]

= (−β)|a
′|−|a|'λ′/µ(c; β)

= (−β)|a
′|−|a|

[
Wa ′,b

d (C, P, Q)
]

in CK∗(Picd(C)).

Proof. For the 1st equality, we start by observing that for partitions λ and µ, the

determinant |cK
λi−µj+j−i| vanishes, unless λ/µ is a skew shape. Indeed, if λk < µk for

some k, then the matrix is singular, since it has 0 in position (i, j), for all i ≥ k ≥ j.

Using (15), the entries of the determinants 'λ/µ(c; β) and 'λ′/µ(c; β) from (14) differ in

those bottom rows i where λi < µi. For 'λ′/µ(c; β), such rows have entries equal to 1 in

position (i, i), and 0 in position (i, j), for j < i. For 'λ/µ(c; β), expanding by linearity in

these bottom rows, one has vanishing contributions by the above observation, unless

for each such row i, one considers the term with k = −λi +µi. It follows that the nonzero

contribution to the left-hand side is given by the determinant with entries equal to
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Brill–Noether Loci and Determinantal Formula 12677

(−β)−λi+µi in position (i, i), and 0 in position (i, j), for j < i. The 1st equality follows

since −λi + µi = a′
i − ai, for each i such that λi < µi. The 2nd equality follows from

Theorem 2.1 and the fact that λ′/µ is a skew shape. "

Remark 3.2. When b = (0, . . . , r), the two-pointed Brill–Noether varieties specialize

to the one-pointed Brill–Noether varieties Ga
d(C, P) and Wa

d(C, P), which parametrize

respectively linear series and line bundles on C with imposed vanishing sequence a

at a single point P. In this case, the role of the flag of sub-bundles of E is redundant in

the above construction, as it is enough to consider maps from E to the flag of quotients

of F . With this description in place, the degeneracy locus formula from [28] suffices to

compute the K-theory class π∗[Ga
d(C, P)]. Explicit computations in the one-pointed case

will be given in Sections 5.2 and 5.3.

4 Euler Characteristics

Our next goal is to give a formula for the Euler characteristic of the two-pointed Brill–

Noether loci Ga ,b
d (C, P, Q). In order to simplify the determinantal formula (14) for the

K-classes of varieties of linear series, we prove some general lemmas on K-theoretic

Chern classes and apply them to the bundles Ei in Section 3.

Throughout this section, we specialize at β = −1, and take all Chow and

numerical groups with coefficients in Q.

Lemma 4.1. Suppose a rank-r vector bundle E has ch(E)i = 0 for i > 1. Then

ch(cK
i (E)) = ci(E).

That is, if the Chern character of E is ch(E) = r + c1(E), then K-theory Chern

classes agree with cohomology Chern classes under the Chern character isomorphism.

Proof. First recall that the Chern class of a line bundle has Chern character

ch(cK
1 (L)) = 1−e−c1(L), where ex is the formal power series

∑
k≥0

xk

k! . Now let L1, . . . , Lr be

the K-theoretic Chern roots of E, i.e., line bundle classes so that cK(E) = cK(L1) · · · cK(Lr).

Then

ch
(
cK

i (E)
)

= ch
(
ei

(
cK

1 (L1), . . . , cK
1 (Lr)

))

= ei

(
ch

(
cK

1 (L1)
)
, . . . , ch

(
cK

1 (Lr)
))

= ei

(
1 − e−c1(L1), . . . , 1 − e−c1(Lr)

)
,
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12678 D. Anderson et al.

where ei(x1, . . . , xr) is the i-th elementary symmetric polynomial. The lowest-degree term

in the last line is equal to ci(E). The higher-degree terms vanish, thanks to the hypothesis

ch(E)i = 0, for i > 1, and Lemma 5.2. "

Given formal variables x1, . . . , xn, let ei(x1, . . . , xn) be the i-th elementary sym-

metric polynomial, and let pi(x1, . . . , xn) := xi
1 +· · ·+xi

n be the i-th power sum symmetric

polynomial.

Lemma 4.2. Consider the ideal I := (p2, . . . , pn) + (x1, . . . , xn)n+1 in Q!x1, . . . , xn". For

1 ≤ i ≤ n, one has

ei
(
1 − e−x1 , . . . , 1 − e−xn

)
≡ ei

(
x1, . . . , xn

)
modulo I.

Proof. Write ei := ei(x1, . . . , xn) and ei := ei(1 − e−x1 , . . . , 1 − e−xn), and similarly, write

pi := pi(x1, . . . , xn) and pi := pi(1 − e−x1 , . . . , 1 − e−xn). Since

p1

(
1 − e−x1 , . . . , 1 − e−xn

)
=

∑

k≥1

(−1)k−1 pk

k!

and pk ∈ (x1, . . . , xn)n+1 for k > n, we have p1 ≡ p1 modulo I. It follows from Newton’s

identities that

ei ≡ pi
1

i!
mod (p2, . . . , pn) and ei ≡ pi

1
i!

mod (p2, . . . , pn)

for 1 ≤ i ≤ n. Since p2, . . . , pn ∈ I, we conclude that ei ≡ pi
1

i!
≡ pi

1
i!

≡ ei mod I, for

each i. "

Let (C, P, Q) be a smooth two-pointed curve of genus g, and consider the

vector bundles Ei from Section 3. Lemma 5.1 applies to these bundles. Indeed, modulo

numerical (or homological) equivalence, the Chern classes of −Ei are

cj
(
−Ei

)
= θ j

j!
,

where θ is the cohomology class of the theta divisor. (The proof given in [1, Section VII] is

for singular cohomology, but it works as well in numerical or homological equivalence.)

Equivalently, ch(−Ei) = rank(−Ei) + θ . We therefore have

ch
(
cK

j
(
−Ei

))
= θ j

j!
. (16)
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Brill–Noether Loci and Determinantal Formula 12679

Now we can compute the Euler characteristic of the loci Ga ,b
d (C, P, Q) via

Hirzebruch–Riemann–Roch. The Todd class of Picd(C) is trivial, so

χ
(
OGa ,b

d (C,P,Q)

)
=

∫

Picd(C)
ch

(
π∗

[
OGa ,b

d (C,P,Q)

])
.

Combining (15) and (16) with the specialization of (14) at β = −1, the Euler characteristic

is

χ
(
OGa ,b

d (C,P,Q)

)
=

∫

Picd(C)

∣∣∣(1 + T)−g+d−ar+1−i−bj−1+j−icg−d+ar+1−i+bj−1

∣∣∣
1≤i,j≤r+1

. (17)

From the Poincaré formula
∫

θg = g!, it follows that the Euler characteristic is g! times

the coefficient of θg in the expansion of the determinant. The next step is to analyze this

expansion.

Let ρ := ρ(g, r, d, a , b ), and recall that

λi − µj + j − i = g − d + ar+1−i + bj−1.

If we expand the operators (1 + T)−λi+µj in powers of T, the constant term is the

cohomology class

∣∣∣cλi−µj+j−i

∣∣∣
1≤i,j≤r+1

, (18)

and is a multiple of θg−ρ (possibly zero). The determinant in (17) is obtained by applying

the operator (1 + T)µj to the j-th column of the matrix in (18) and the operator (1 +
T)−λi to its i-th row. With binomial coefficients for negative integers −s given by

(−s
k

)
=

−s(−s−1)···(−s−k+1)
k! , for k ≥ 0, for k ≥ 0, we have by linearity:

∑

|l/m|=|λ/µ|+ρ

(r+1∏

i=1

(
µi

µi − mi

)( −λi

li − λi

)) ∣∣∣Tli−λi+µj−mjcλi−µj+j−i

∣∣∣
1≤i,j≤r+1

,

the sum being over all sequences l and m with li ≥ λi and mi ≤ µi. (Here l and m are not

required to be partitions, but we still use the notation |l/m| = ∑
(li − mi).)

This proves Theorem A. More precisely, we have proved the following:
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12680 D. Anderson et al.

Theorem 4.3. Let (C, P, Q) be any smooth two-pointed curve of genus g. If Ga ,b
d (C, P, Q)

has dimension equal to ρ, then the Euler characteristic χ(OGa ,b
d (C,P,Q)

) equals

∑

|l/m|=|λ/µ|+ρ

g!

(r+1∏

i=1

(
µi

µi − mi

)( −λi

li − λi

)) ∣∣∣∣∣
1

(li − mj + j − i)!

∣∣∣∣∣
1≤i,j≤r+1

.

Assume furthermore that λi ≥ µi for all i. If Wa ,b
d (C, P, Q) has dimension equal to ρ, then

χ
(
OWa ,b

d (C,P,Q)

)
= χ

(
OGa ,b

d (C,P,Q)

)
.

5 Determinantal and Tableau Formulas

In this section, we will give a simplified expression for the Euler characteristic of

the loci Ga ,b
d (C, P, Q), expressing it as a weighted enumeration of standard Young

tableaux, by performing a combinatorial analysis of the sum. Along the way, we find a

nonemptiness criterion for these loci, stated in Proposition 5.2. Then we examine several

special cases of particular interest.

We use the convention that a partition λ corresponds to the shape with λi boxes

in the i-th row, where rows are indexed from top to bottom. There is a containment of

shapes µ ⊆ λ when two partitions λ and µ satisfy λi ≥ µi for all i. The skew Young

diagram λ/µ is represented as the complement of µ in λ. A standard Young tableau on

a skew shape λ/µ is a filling of the boxes of λ/µ by numbers 1, . . . , |λ/µ| such that the

entries in each row and in each column are strictly increasing. The number of standard

Young tableaux on λ/µ is commonly denoted by f λ/µ and is given by the determinantal

formula

f λ/µ = |λ/µ|!
∣∣∣∣∣

1
(λi − µj + j − i)!

∣∣∣∣∣
1≤i,j≤r+1

(19)

(see [2]). For example, for λ = (3, 1), µ = (1, 0), one has

λ/µ = and f λ/µ = 3!

∣∣∣∣∣∣∣

1
2!

1
4!

0 1

∣∣∣∣∣∣∣
= 3.

We extend the above notation to arbitrary sequences l = (l1, . . . , lr+1) and m =
(m1, . . . , mr+1) of nonnegative integers, writing l/m for a “generalized skew diagram”—

note that we allow the differences li −mi to be negative. Extending the notation for skew
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Brill–Noether Loci and Determinantal Formula 12681

shapes, we will write

|l/m| :=
r+1∑

i=1

(li − mi)

and

f l/m := |l/m|!
∣∣∣∣∣

1
(li − mj + j − i)!

∣∣∣∣∣
1≤i,j≤r+1

. (20)

There are two basic facts underpinning our arguments in this section:

Fact 1. Suppose λ and µ are partitions of length r + 1. Then

f λ/µ = |λ/µ|!
∣∣∣∣∣

1
(λi − µj + j − i)!

∣∣∣∣∣
1≤i,j≤r+1

is nonzero if and only if λi ≥ µi for all i. (Here one should read reciprocals of

factorials of negative integers as 0.)

Fact 2. Suppose λ = (λ1, . . . , λr+1) is a partition, and l = (l1, . . . , lr+1) is any sequence of

nonnegative integers such that li ≥ λi for all i. If the sequence (l1 − 1, . . . , lr+1 −
(r + 1)) consists of distinct integers, and w is the permutation, which sorts

them into decreasing order, then the sequence λ+
i = lw(i) −w(i)+ i is a partition

with λ+
i ≥ λi for all i.

Proof of Theorem C. We can rewrite the formula of Theorem 4.3 as

χ
(
OGa ,b

d (C,P,Q)

)
=

∑

|l/m|=|λ/µ|+ρ

(r+1∏

i=1

(
µi

µi − mi

)( −λi

li − λi

))

f l/m

=
∑

|l/m|=|λ/µ|+ρ

(r+1∏

i=1

(
µi

µi − mi

)(
li − 1
li − λi

))

(−1)|l/λ|f l/m, (21)

since |λ/µ| + ρ = g. (Recall that the sums are over sequences l and m such that li ≥ λi

and mi ≤ µi for all i.)

When the determinant

1
|l/m|! f l/m =

∣∣∣∣∣
1

(li − mj + j − i)!

∣∣∣∣∣
1≤i<j≤r+1
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12682 D. Anderson et al.

is nonzero, there is a unique permutation w ∈ Sr+1 acting on the columns of the matrix,

which sorts the entries across rows into decreasing order; equivalently,

µ−
j := mw(j) + j − w(j) (22)

defines a partition µ− ⊆ µ, using a variation of Fact 2. Then f l/m = (−1)sgn(w) f l/µ−
, and

collecting terms gives

χ
(
OGa ,b

d (C,P,Q)

)
=

∑

µ−⊆µ

αµ/µ−
(r+1∏

i=1

(
li − 1
li − λi

))

(−1)|l/λ|f l/µ−
, (23)

where the sum is over partitions µ− ⊆ µ and sequences l = (l1, . . . , lr+1) of nonnegative

integers such that li ≥ λi for all i, |µ/µ−| + |l/λ| = ρ, and

αµ/µ−
:=

∑

w∈Sr+1

(−1)sgn(w)




r+1∏

j=1

(
µw(j)

µw(j) − µ−
j + j − w(j)

)



=
∣∣∣∣∣

(
µi

µi − µ−
j + j − i

)∣∣∣∣∣
1≤i,j≤r+1

. (24)

Similarly, using Fact 2 again, when the determinant

1
|l/µ−|! f l/µ− =

∣∣∣∣∣
1

(li − µ−
j + j − i)!

∣∣∣∣∣
1≤i<j≤r+1

is nonzero, there is a unique permutation w ∈ Sr+1 acting on the rows, which sorts the

entries into decreasing order down columns. Equivalently,

λ+
i := lw(i) − w(i) + i, for 1 ≤ i ≤ r + 1, (25)

defines a partition λ+ ⊇ λ. Then f l/µ− = (−1)sgn(w) f λ+/µ−
. Collecting terms gives

(r+1∏

i=1

(
li − 1
li − λi

))

f l/µ− =
∑

λ+⊇λ

ζ λ+/λ · f λ+/µ−
, (26)
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Brill–Noether Loci and Determinantal Formula 12683

where the sum is over partitions λ+ of length r + 1 (so λ+/µ− is a skew diagram) such

that |λ+/λ| = |l/λ|, and

ζ λ+/λ :=
∑

w∈Sr+1

(−1)sgn(w)

(r+1∏

i=1

(
λ+

i + w(i) − i − 1

λ+
i − λw(i) + w(i) − i

))

=
∣∣∣∣∣

(
λ+

i + j − i − 1

λ+
i − λj + j − i

)∣∣∣∣∣
1≤i,j≤r+1

. (27)

The binomial determinants αµ/µ−
and ζ λ+/λ enumerate tableaux, by the method

of Gessel–Viennot. A (column) semi-standard Young tableau on a given shape is a filling

of the boxes by positive integers such that the entries are weakly increasing across each

row and strictly increasing down each column. A filling is a row semi-standard Young

tableau if the transpose condition holds: the entries are strictly increasing across each

row and weakly increasing down each column. A strict Young tableau is a filling whose

entries are strictly increasing across each row and down each column.

By [27, Theorem 14], the determinant αµ/µ−
is equal to the number of row semi-

standard Young tableaux on µ/µ− whose entries in row i are between 1 and µi, inclusive,

and the determinant ζ λ+/λ is equal to the number of semi-standard Young tableaux on

λ+/λ whose entries in row i are between −λi and −1, inclusive. Such tableaux are in

bijection with strict Young tableaux on λ+/λ whose entries in row i are between 1 and

λ+
i − 1: given a semi-standard tableau on λ+/λ with i-th row entries in {−λi, . . . , −1}, add

to each entry the index of its column to obtain a strict tableau with i-th row entries in

{1, . . . , λ+
i − 1}. Combining equations (23) and (26) concludes the proof of Theorem C. "

Next we will prove a nonemptiness criterion for the variety Ga ,b
d (C, P, Q), using

Corollary 2.3. By setting β = 0 in (15), and passing to numerical equivalence, we obtain

a variation on the formula for the cohomology class of Wr
d(C):

Proposition 5.1. Let (C, P, Q) be a smooth two-pointed curve of genus g. If λi ≥ µi for

all i and Wa ,b
d (C, P, Q) has dimension equal to ρ, then its numerical class is

[
Wa ,b

d (C, P, Q)
]

=
∣∣∣∣∣

1
(ar−i + bj + g − d)!

∣∣∣∣∣
0≤i,j≤r

θg−ρ .

If Ga ,b
d (C, P, Q) has dimension equal to ρ, then π∗[Ga ,b

d (C, P, Q)] equals

[Wa ,b
d (C, P, Q)] when λ/µ is a skew diagram and vanishes otherwise.
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12684 D. Anderson et al.

In comparing with (15), note the shift of indexing of the matrix, and recall

that the definitions of λ and µ imply λi − µj + j − i = ar+1−i + bj−1 + g − d. The

vanishing statement follows algebraically from Fact 1, or geometrically from the fact

that dim π(Ga ,b
d (C, P, Q)) < dim(Ga ,b

d (C, P, Q)), unless λ/µ is a skew diagram; see also the

specialization of Proposition 3.1 at β = 0.

Now we can state the nonemptiness criterion.

Proposition 5.2. Let (C, P, Q) be a smooth two-pointed curve of genus g. If

ρ′ := g −
r∑

i=0

max{0, ai + br−i + g − d} ≥ 0, (28)

then the locus of special linear series Ga ,b
d (C, P, Q) is non-empty.

This was first proved by Osserman, using degeneration techniques [36]. When

b = (0, 1, . . . , r), it recovers the statement for the one-pointed case in [15, Proposition

1.2].

Proof. The nonemptiness of Ga ,b
d (C, P, Q) is equivalent to the nonemptiness of its image

W = Wa ′,b
d (C, P, Q) in Picd(C). By Corollary 2.3, W is nonempty when the class 'λ′/µ(c; 0)

is nonzero. By Proposition 6.1, this class is numerically equivalent to

∣∣∣∣∣
1

(a′
r−i + bj + g − d)!

∣∣∣∣∣
0≤i,j≤r

θg−ρ′
, (29)

where, as before, a ′ is the sequence defined by

a′
i := ai + max{0, d − g − ai − br−i}.

This means ρ′ = ρ(g, r, d, a ′, b ).

Associating partitions λ′ and µ to the data g, d, a ′, b as usual, the definition of a ′

guarantees that λ′
i ≥ µi for all i. It follows that the determinantal coefficient is nonzero

(see Fact 1), so the expression (29) is nonzero if and only if ρ′ ≥ 0. This is equivalent to

the condition in (28).
"

Now we turn to some special cases.
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Brill–Noether Loci and Determinantal Formula 12685

5.1 The curve case

Let us write λ + εi for the diagram obtained by adding one box to the right of the i-th

row of λ, and µ − εi for the diagram obtained by subtracting one box from the i-th row

of µ. (This means the diagram λ/(µ − εi) is obtained by adding one box to the left of the

i-th row of λ/µ.)

Now assume ρ(g, r, d, a , b ) = 1. The reformulation in (21) of Theorem A reduces

to

χ
(
OGa ,b

d (C,P,Q)

)
=

r+1∑

i=1

µi f λ/(µ−εi) −
r+1∑

i=1

λi f (λ+εi)/µ.

By Fact 1, f λ/(µ−εi) vanishes when λ/(µ− εi) is not a skew diagram, and f (λ+εi)/µ vanishes

when (λ + εi)/µ is not a skew diagram. Using the identity

(r + 1)(|λ/µ| + 1)f λ/µ =
r+1∑

i=1

(λi + r + 2 − i)f (λ+εi)/µ −
r+1∑

i=1

(µi + r + 1 − i)f λ/(µ−εi),

for the number of standard skew Young tableaux, we recover [11, Theorem 1.2].

5.2 The one-pointed case

When b = (0, . . . , r), the locus Ga ,b
d (C, P, Q) is identical to the one-pointed locus

Ga
d(C, P) :=

{
" ∈ Gr

d(C) | a"(P) ≥ a
}

.

On the other hand, when the points P and Q collide together on the curve C, the locus

Ga ,b
d (C, P, Q) specializes to the locus of linear series (L, V) ∈ Gr

d(C) such that

dim
(
V ∩ H0(

L
(
−

(
ai + br−j

)
P
)))

≥ 1 + j − i.

Fix l such that li ≥ λi and |l/λ| = ρ. By an application of the Vandermonde identity,

∣∣∣∣∣
θ li+j−i

(
li + j − i

)
!

∣∣∣∣∣
1≤i,j≤r+1

= g!

∏
1≤i<j≤r+1

(
li − lj + j − i

)

∏r+1
i=1

(
li + r + 1 − i

)
!

,
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12686 D. Anderson et al.

so Theorem A reduces to

χ
(
OGa

d(C,P)

)
=

∑

|l/λ|=ρ

( −λ1

l1 − λ1

)
· · ·

( −λr+1

lr+1 − λr+1

)
× g!

∏
1≤i<j≤r+1

(
li − lj + j − i

)

∏r+1
i=1

(
li + r + 1 − i

)
!

.

When in addition ρ(g, r, d, a , b ) = 1, this sum becomes

χ
(
OGa

d(C,P)

)
= −g!

r∑

k=0

(g − d + r + ak − k)

∏
0≤i<j≤r

(
aj − ai + δk

j − δk
i

)

∏r
i=0

(
g − d + r + ai + δk

i

)
!

,

where δ is the Kronecker delta.

5.3 Set-valued tableaux and the one-pointed case

In the one-pointed case, we can re-write the Euler characteristic in terms of numbers

of certain tableaux. A set-valued tableau on a shape λ is a labeling of the boxes of λ

by finite non-empty subsets of N such that the maximum element of the label of any

box (i, j) is at most the minimum element of the label at (i, j + 1), and smaller than the

minimum element of the label at (i + 1, j) (see [8]). Given a nonnegative integer ρ, a ρ-

standard set-valued tab-leau on λ is a set-valued tableau on λ such that the labels of

the boxes of λ are subsets of {1, . . . , |λ|+ρ} and each of 1, . . . , |λ|+ρ appears exactly once.

(See Section 7 for more about set-valued tableaux and the connection with Grothendieck

polynomials.)

Chan and Pflueger conjectured a formula expressing the Euler characteristic of a

two-pointed Brill–Noether locus via set-valued tableaux on a skew shape. The following

establishes the one-pointed version of their conjecture. (Chan and Pflueger have now

proved their conjecture using different methods in [12].)

Corollary 5.3. Suppose dim Ga
d(C, P) = ρ, and let λ be the partition corresponding to a .

Then

χ
(
OGa

d(C,P)

)
= (−1)ρ · #{ρ -standard set-valued tableaux on λ}.

This is zero if and only if Wa
d(C, P) = Picd(C).
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Brill–Noether Loci and Determinantal Formula 12687

Proof. In the one-pointed case, Theorem C becomes

χ
(
OGa

d(C,P)

)
= (−1)ρ

∑

|λ+/λ|=ρ

ζ λ+/λ · f λ+
,

so we must identify the sum on the RHS with the number of ρ-standard set-valued

tableaux on λ.

For any partition ν, it follows from a theorem of Lenart [34, Theorem 2.2] that

(The result of Lenart has now been extended to skew shapes in [12, Theorem 6.8]. By

means of this extension, the argument in the proof of Corollary 6.3 can be applied to

prove the two-pointed version of the statement.)

#{ρ -standard set-valued tableaux on ν} =
∑

|ν+/ν|=ρ

gν+/νf ν+
,

where gν+/ν is the number of strict Young tableaux on ν+/ν whose entries in row i are

between 1 and i − 1, inclusive, and f ν+
is the number of standard Young tableaux on ν+.

(To deduce this from Lenart’s theorem, which writes the Grothendieck polynomial for ν

as a sum of Schur polynomials, compare the coefficient of the monomial x1 · · · x|ν|+ρ on

each side of his formula.)

Our claim follows by taking ν to be the conjugate partition λ′, that is, the diagram

obtained by reflecting across the diagonal, so that rows and columns are interchanged.

It is easy to see that ρ-standard set valued tableaux on λ and ν are in bijection. Similarly,

standard Young tableaux on λ+ and ν+ = (λ+)′ are also in bijection, so f λ+ = f ν+
. Finally,

ζ λ+/λ = gν+/ν , for ν = λ′ and ν+ = (λ+)′, because sending a tableau T to its conjugate T ′

defines a bijection from strict tableaux on λ+/λ with i-th row entries in {1, . . . , λ+
i − 1}

to strict tableaux on ν+/ν with i-th row entries in {1, . . . , i − 1}. "

5.4 The classical case

Here there are no point conditions, and in the formulas one can take µ = ∅, and let

λ = (g − d + r)r+1 be the rectangular shape. Any partition λ+ ⊇ λ of length r + 1 can be

written as λ+γ , for some partition γ of length r+1. The determinant ζ λ+/λ can therefore

be written as

ζ λ+/λ =
∣∣∣∣
(g − d + r + γi + j − i − 1)γi+j−i

(γi + j − i)!

∣∣∣∣
1≤i,j≤r+1

,
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12688 D. Anderson et al.

where (n)k = n(n−1) · · · (n+1−k) is the falling factorial. Manipulating the matrix leads

to a factorization of this determinant as

∣∣∣∣
1

(γi + j − i)!

∣∣∣∣
1≤i,j≤r+1

·
r+1∏

i=1

(g − d + r + γi − i)γi
.

Applying this simplification to Theorem C, we obtain the following:

Corollary 5.4. If dim Gr
d(C) = ρ(g, r, d) ≤ g, then

χ
(
OGr

d(C)

)
= χ

(
OWr

d(C)

)

= (−1)ρ

ρ!

∑

|γ |=ρ

f γ ·
r+1∏

i=1

(g − d + r + γi − i)γi
· f λ+γ

where the sum is over partitions γ = (γ1 ≥ · · · ≥ γr+1 ≥ 0) and λ + γ is the partition

(g − d + r + γ1, . . . , g − d + r + γr+1).

In low dimensions, the Euler characteristic can be written in a fairly simple

closed form.

When ρ(g, r, d) = 0, the formula in Corollary 5.4 recovers Castelnuovo’s count

for the number of line bundles of degree d with r + 1 sections:

Nr
g,d := χ

(
OGr

d(C)

)
= g!

r∏

i=0

i!
(g − d + r + i)!

.

When ρ(g, r, d) = 1, we recover [15, Theorem 4]:

χ
(
OGr

d(C)

)
= − (g − d + r)(r + 1)

g − d + 2r + 1
Nr

g,d.

When ρ(g, r, d) = 2, we obtain

χ
(
OGr

d(C)

)
= (r + 1)2(g − d + r)2

2(g − d + 2r)(g − d + 2r + 2)
Nr

g,d.

Finally, when ρ(g, r, d) = 3, set s := g − d + r, and we have

χ
(
OGr

d(C)

)
= − (r + 1)2s2[((r + s + 1)2 − 2)s(r + 1) − 2]

6(s + r − 1)(s + r)(s + r + 1)(s + r + 2)(s + r + 3)
Nr

g,d.
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6 Schubert and Grothendieck Polynomials

As one more application of the degeneracy locus formula of Theorem B, we deduce

determinantal formulas for (double) Schubert and Grothendieck polynomials for 321-

avoiding permutations. Indeed in this section, we identify our K-theory formulas with

double versions of the f lagged skew Grothendieck polynomials recently introduced by

Matsumura [35].

For decreasing sequences p = (p1, . . . , pt) and q = (q1, . . . , qt), we defined

partitions λ and µ by

λi = qi − t + i, µj = pj − (t + 1 − j)

in Section 1.2. When p and q satisfy

qi ≥ pi − 1 for all i, ( ∗ )

the partitions form a skew diagram λ/µ, and we defined an associated permutation w

by setting

w(pi) = qi + 1 for 1 ≤ i ≤ t,

and then filling in the remaining entries with the unused numbers in increasing

order. As noted in Section 1.2, this is a 321-avoiding permutation, and all 321-avoiding

permutations arise this way.

Remark 6.1. The above is equivalent to the bijection of 321-avoiding permutations

with labeled skew tableaux of Billey–Jockusch–Stanley [7], which can be re-formulated

as follows. For a 321-avoiding permutation w, the skew shape σ (w) considered in [7] is

a 180 degree rotation of our skew shape λ/µ, that is, σ (w) = η/τ where ηi = λ1 − µt+1−i

and τi = λ1 − λt+1−i. Let fw = (f1, f2, . . . , ft) be the increasing sequence of indices j such

that w(j) > j, and let ei = w(fi) − 1. Then the labeling ω(w) of the skew shape σ (w)

is obtained by placing the entries ei, ei − 1, . . . , fi in the i-th row of σ (w) such that the

entries increase by one in each column and decrease by one in each row. In our setup,

the labeling ω(w) is determined by fi = pt+1−i and ei = qt+1−i.
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12690 D. Anderson et al.

6.1 Schubert polynomials

For any permutation w, the double Schubert polynomial Sw(x, y) of Lascoux and

Schützenberger is a canonical representative for the cohomology class of the corre-

sponding Schubert variety or degeneracy locus [23]. Similarly, the double Grothendieck

polynomial Gw(x, y) represents the structure sheaf of a Schubert variety or degeneracy

locus in K-theory [20, Theorem 3]. These polynomials are defined inductively, but for

special types of permutations, one can give direct formulas. Our goal here is to give

such formulas for 321-avoiding permutations.

First, we state the formula for Schubert polynomials. Given sets of variables x

and y, let

c(i, j) =
∏qi

a=1(1 − uya)
∏pj

b=1(1 − uxb)
,

and define ck(i, j) by collecting the coefficient of uk in the expansion of this rational

function (in positive powers of x and y). For example, if y = 0, then ck(i, j) is the complete

homogeneous symmetric polynomial hk(x1, . . . , xpj
) (for any i), and if x = 0, then ck(i, j)

is the elementary symmetric polynomial (−1)kek(y1, . . . , yqi
) (for any j).

Corollary 6.2. Let w be a 321-avoiding permutation, with associated tuples p , q

satisfying (∗), and let λ/µ be the corresponding skew Young diagram. The double

Schubert polynomial for w has the following determinantal expression:

Sw(x, y) = 'λ/µ(c; 0) =
∣∣∣cλi−µj+j−i(i, j)

∣∣∣
1≤i,j≤t

,

where ck(i, j) is the polynomial in x and y defined above.

Since double Schubert polynomials are obtained by specializing double

Grothendieck polynomials at β = 0, the statement is a special case of Corollary 6.4,

proved below.

This recovers a formula of Lascoux and Chen–Yan–Yang (see [13]), which in turn

generalized a formula of Billey–Jockusch–Stanley [7] for the single Schubert polynomials

of 321-avoiding permutations—that is, the case y = 0. More precisely, the matrices

computing these formulas in [13] are obtained by reflecting about the anti-diagonal the

matrices computing the determinants in Corollary 6.2. The right-hand side is a f lagged

double skew Schur function, a variant of the flagged double Schur function introduced
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by Chen–Li–Louck [10]. (“Flagging” refers to the nested sets of variables appearing along

rows and columns of the determinant: the i-th row uses {y1, . . . , yqi
}, and the j-th column

uses {x1, . . . , xpj
}.)

Example 6.3. An example of a 321-avoiding permutation that is not also vexillary

(another class having determinantal expressions, thanks to an older theorem of Wachs)

is w = 3 1 2 5 4. Here p = (4, 1) and q = (4, 2), so λ = (3, 2) and µ = (2, 0), and the

formula says

S31254 =
∣∣∣∣∣

c1(1, 1) c4(1, 2)

0 c2(2, 2)

∣∣∣∣∣ = c1(1, 1) · c2(2, 2)

=
(
x1 + x2 + x3 + x4 − y1 − y2 − y3 − y4

)
·
(
x2

1 − x1y1 − x1y2 + y1y2
)
.

Comparing with [7], and using their notation, the labeled skew diagram (σ (w) =
η/τ , ω(w)) associated to w = 3 1 2 5 4 is given by:

where η = (3, 1), τ = (1, 0), f = (1, 4), and e = (2, 4). The matrix computing the

determinant S31254 in [7] is obtained by reflecting the above matrix about the anti-

diagonal.

6.2 Grothendieck polynomials

Now we turn to Grothendieck polynomials. Here the variables should be identified as

follows. Let

c(i, j) =
qi∏

a=1

pj∏

b=1

(1 + βya − uya)(1 + βxb)

(1 + βya)(1 + βxb − uxb)
.

The term ck(i, j) is obtained as before, by expanding and collecting the coefficient of uk.

Corollary 6.4. Let w be a 321-avoiding permutation, with associated tuples p , q

satisfying (∗), and let λ/µ be the corresponding skew Young diagram. The double
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Grothendieck polynomial for w has the following determinantal expression:

Gw(x, y) = 'λ/µ(c; β)

=

∣∣∣∣∣∣

∑

k≥0

(
λi − µj + k − 1

k

)
βkcλi−µj+j−i+k(i, j)

∣∣∣∣∣∣
1≤i,j≤t

,

where ck(i, j) is the polynomial in x, y, and β defined above.

Proof. This follows directly from Theorem 2.1(ii), by choosing a base and vector

bundles so that there are no relations among the relevant Chern classes.

Here is one way to do this. Let Fl(p , V) and Fl(V, q) be the partial flag varieties of

subspaces of dimensions pj and quotients of dimensions qi, respectively, so they come

with tautological bundles Epj
⊆ V and V ! Fqi

. Let X = Fl(p , V) × Fl(V, q), and identify

variables x and y with Chern classes of the tautological bundles by writing

c
(
Epj

)
=

pj∏

b=1

1 + βxb − uxb

1 + βxb
and c

(
Fqi

)
=

qi∏

a=1

1 + βya − uya

1 + βya
;

that is, the x variables are the Chern roots of E∗
pj

, the y variables are the Chern roots

of F∗
qi

, and we have c(i, j) = c(Fqi
− Epj

). For any fixed degree d, one can take dim V

sufficiently large so that there are no relations among the Chern classes of Epj
and Fqi

in CKd(X).

Via the projection X → Fl(V, q), one can regard X as a (partial) flag bundle. By

Lemma 1.4, the degeneracy locus Wp ,q ⊆ X, defined by the conditions

dim ker
(
Epj

→ Fqi

)
≥ 1 + i − j for all i, j,

is identified with the Schubert locus corresponding to w in this flag bundle. Now

[20, Theorem 3] says this locus is represented by the double Grothendieck polynomial

Gw(x, y) in K-theory, while Theorem 2.1(ii) says it is represented by 'λ/µ(c; β). Since

there are no relations among the variables, we must have an equality of polynomials. "

We conclude with a tableau formula for the Grothendieck polynomials Gw(x) =
Gw(x, 0). As in Section 5.3, a set-valued tableau of skew shape λ/µ is a labeling of the

boxes of λ/µ by finite non-empty subsets of N such that the maximum element of the

label of any box (i, j) is at most the minimum element of the label at (i, j+1), and smaller
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than the minimum element of the label at (i + 1, j) (see [8]). Given a skew shape λ/µ and

a flagging f = (f1, . . . , ft), a f lagged skew set-valued tableau of skew shape λ/µ with

flagging f is a set-valued tableau on λ/µ such that every entry in the i-th row is a

subset of {1, 2, . . . , fi}. Let FSVT(λ/µ, f ) denote the set of all such flagged skew tableaux.

For a (flagged) set-valued tableau T, let xT be the monomial in which the exponent of xi

is the number of boxes of T, which contain i.

Corollary 6.5. Let w be a 321-avoiding permutation and let σ (w) = η/τ be the skew

Young diagram with flagging fw corresponding to w via the Billey–Jockusch–Stanley

bijection, as in Remark 6.1. The Grothendieck polynomial Gw(x) = Gw(x, 0) is equal to

∑

T∈FSVT(σ (w),fw)

β |T|−|σ (w)|xT . (30)

Proof. Matsumura [35, Section 4] defined f lagged skew Grothendieck polynomials

to be generating functions of flagged set-valued tableaux given by (30) and proved

that they have determinantal expressions. Corollary 6.4 also holds after the matrix is

reflected about the anti-diagonal—by replacing the (i, j) entry with the (t+1− j, t+1− i)

entry—since the determinant is unchanged by this operation. The entries of this

reflected matrix are equal to those in the determinantal formulas of [35, Section 4],

as explained in [3, Remark 1.1]. "

6.3 Flagged set-valued skew tableaux and pipe dreams

Corollary 6.5 recovers the tableau formulas for Schubert polynomials of 321-avoiding

permutations [7, Theorem 2.2] and for Grothendieck polynomials of Grassmann permu-

tations [33, Theorem 5.8]. The proofs of those formulas rely on writing Schubert and

Grothendieck polynomials in terms of pipe dreams (after [32]) along with bijections

between certain tableaux and pipe dreams [7, Theorem 2.2; 33, Proposition 5.3]. To

conclude, we give a bijection between flagged set-valued skew tableaux and pipe dreams

for 321-avoiding permutations that extends these bijections and gives an alternative

proof of Corollary 6.5.

For a flagged set-valued skew tableau T ∈ FSVT(σ (w), fw), let T be the flagged

skew tableau obtained by taking the smallest element of each box of T (see Figure 2).

A pipe dream is a tiling of the fourth quadrant of the plane by crosses and

elbows . A reduced pipe dream (or rc-graph) for a permutation w is a tiling such that

the pipe that starts at the beginning of the i-th row exits the top of the wi-th column,
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12694 D. Anderson et al.

Fig. 2. For the permutation w = 31254 in Example 7.3, and the given T ∈ FSVT(σ (w), fw), T is the

associated flagged skew tableau.

with no two pipes of P crossing each other more than once. For a pipe dream P, we write

P for the reduced pipe dream obtained by replacing all but the northeasternmost cross

between two pipes by an elbow, and say that P is a pipe dream for a permutation w if P

is a reduced pipe dream for w.

Following the notation of Remark 6.1, to T ∈ FSVT(σ (w), fw), we can associate a

pipe dream -(T) as follows:

Place a cross in position (i, ω(b) − i + 1) for each entry i in a box b of σ (w), and an elbow
in all other positions.

Given a pipe dream P, let xP := ∏
(i,j) xi, where the product is over crosses (i, j) in

P, and let |P| be the total number of crosses. Fomin and Kirillov ([18] and [19]; see also

[32] for the language of pipe dreams) show that

Gw(x) =
∑

P

β |P|−"(w)xP, (31)

where the sum is over P such that P is a reduced pipe dream for w. This specializes to

[7, Theorem 1.1] when β = 0.

Example 6.6. For T as in Figure 2, we have crosses in exactly positions (1, 1), (1, 2), (2, 3),

and (3, 2), so that -(T) is equal to the pipe dream P of Figure 3. Similarly, for T as in

Figure 2, -(T) is equal to the reduced pipe dream P of Figure 3. Here, xT = x2
1x2 = xP

and xT = x2
1x2x3 = xP, where P = -(T) and P = -(T).

Proposition 6.7. Let w be a 321-avoiding permutation and let σ (w) = η/τ be the skew

Young diagram with flagging fw corresponding to w. Then the map - gives a weight-

preserving bijection from FSVT(σ (w), fw) to the set of pipe dreams for w.

The map - generalizes the bijection between flagged skew tableaux and reduced

pipe dreams of 321-avoiding permutations in [7, Theorem 2.2] and the bijection between
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Fig. 3. A pipe dream P and related reduced pipe dream P for the permutation w = 31254.

flagged set valued tableaux and pipe dreams of Grassmann permutations in [33,

Proposition 5.3].

Proof. By its definition, the map - is an injection and specializes to the bijection

between flagged skew tableaux and reduced pipe dreams for w. Therefore, if P is a pipe

dream for w, there is a flagged skew tableau T such that -(T) = P. Since the proof of

[33, Proposition 5.3(a)] for ordinary shapes carries through for skew shapes, no pipe of

P passes horizontally through one cross and vertically through another. (For straight

shapes, the pipe dreams in [33] and here differ by a reflection across the vertical axis.)

We claim that if a horizontal and vertical pipe cross at a and pass through

a tile southwest of it, then the two tiles lie on the same anti-diagonal. This holds

since if a pipe crosses horizontally at position (i0, j0) it cannot cross any pipe vertically,

hence to the west of (i0, j0), the pipe is bounded to be at or above the anti-diagonal

through (i0, j0). Similarly, if a pipe crosses vertically at (i0, j0), it cannot cross any pipe

horizontally, hence going south of (i0, j0), the pipe is bounded to be at or below the anti-

diagonal through (i0, j0). If the two pipes also meet at an elbow, then that elbow must

lie on the anti-diagonal containing (i0, j0).

The pipe dream P is obtained from P by altering some such tiles to tiles.

This corresponds exactly to inserting extra entries in the box of T corresponding to the

original tile of P. More specifically, let b be a box in the labeled skew diagram σ (w).

Let i0 be the smallest entry of b. Then for i > i0, the additional entries of b correspond

to crosses in positions (i, ω(b)− i+1) in the pipe dream -(T) (these are southwest of the

entry (i0, ω(b) − i0 + 1) in the anti-diagonal {(i, j) | i + j = ω(b) + 1}), and conversely.

The bijection in [7] and [6] between flagged skew tableaux and reduced pipe

dreams satisfies xT = x-(T). By the description of the extra entries in fillings of T, we

conclude that xT = x-(T) and so - is a weight-preserving bijection. "
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We observe that |σ (w)| = |T| = |-(T)| = l(w). Comparing the summands in (30)

and (31) under the above bijection, this shows that the generating function formulas (30)

and (31) agree term by term, and therefore, this bijection gives an alternative proof of

Corollary 6.5.
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