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We compute the Euler characteristic of the structure sheaf of the Brill-Noether locus
of linear series with special vanishing at up to two marked points. When the Brill-
Noether number p is zero, we recover the Castelnuovo formula for the number of
special linear series on a general curve; when p = 1, we recover the formulas
of Eisenbud-Harris, Pirola, and Chan-Martin-Pflueger-Teixidor for the arithmetic
genus of a Brill-Noether curve of special divisors. These computations are obtained
as applications of a new determinantal formula for the K-theory class of certain
degeneracy loci. Our degeneracy locus formula also specializes to new determinantal
expressions for the double Grothendieck polynomials corresponding to 321-avoiding
permutations and gives double versions of the flagged skew Grothendieck polynomials
recently introduced by Matsumura. Our result extends the formula of Billey—Jockusch—
Stanley expressing Schubert polynomials for 321-avoiding permutations as generating

functions for flagged skew tableaux.
Introduction

Given a smooth projective curve C of genus g over an algebraically closed field, the

classical Brill-Noether theorem describes the locus of special line bundles

Wh(C) = {L e Pic?(C) |hO(C, L) > r + 1} .
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A parameter count—reviewed at the end of this introduction—estimates the dimension
of W} (C) as p = p(g,1,d) := g — (r +1)(g — d + ), and the Brill-Noether theorem states
that when C has general moduli, the locus W}(C) is in fact nonempty of dimension p
whenever p > 0. A connection with degeneracy loci for maps of vector bundles was
implicit in the original work by Brill and Noether and was brought into focus by Kleiman
and Laksov in one of the several modern proofs of the theorem given in the 1970s.

In this article, we prove two main theorems. The first gives a formula for
the holomorphic Euler characteristic (i.e., the arithmetic genus) of the Brill-Noether
locus—and in fact, for the generalized Brill-Noether loci parametrizing linear series
having specific vanishing profiles at one or two points. Our results extend the
classical computation by Castelnuovo, who studied the zero-dimensional case p =
0; Eisenbud-Harris [15] and Pirola [37], who studied the case p = 1; and Chan-
Martin—-Pflueger-Teixidor [11], whose remarkable computation uses the combinatorics
of tableaux and the geometry of limit linear series to treat the case when the
two-pointed locus is one dimensional. As a by-product of our formulas, we obtain
a new proof of an existence criterion for special linear series, originally due to
Osserman.

Our genus formulas are deduced from the 2nd main theorem of the article: a new
determinantal formula for the K-theory class of a certain type of degeneracy loci. These
loci arise naturally not only from the Brill-Noether problem but also in combinatorics—
they are built from a class of permutations called 32I-avoiding permutations. As
another application of our degeneracy locus formula, we find new determinantal
formulas for families of polynomials occurring in algebraic combinatorics known as
the double Schubert and double Grothendieck polynomials. These results extend recent
work of Matsumura [35], Hudson—-Matsumura [30], and Hudson-Ikeda—Matsumura—
Naruse [28, 29].

Another goal of this work is to highlight the connection between recent devel-
opments in Schubert calculus and the geometry of curves. The results of this paper
expand on the fruitful interactions that led to the growth of both subjects, as discussed
extensively in [1]. On one hand, an approach to linear series via degeneracy loci unifies,
and perhaps simplifies, several results in Brill-Noether theory—for example, one may
compute the Euler characteristic of a one-pointed Brill-Noether locus by applying the
determinantal formula of [28]. On the other hand, constructions arising in the study
of linear series led us to the geometric proof of the general determinantal formula
presented in Section 2. It seems natural to expect that further progress can be made

in both subjects by exploiting this bridge.
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Brill-Noether Loci and Determinantal Formula 12655

We now turn to more precise statements of the main results. The locus W}(C)
of special line bundles on a smooth curve C has a canonical desingularization by the
variety of linear series G7;(C), which parametrizes pairs ¢ = (L, V) with L € Pic?(C) and
V € HY(C,L) an (r + 1)-dimensional subspace. For a given linear series ¢ and a point

P € C, the vanishing sequence of ¢ at P is the sequence
a'(p) = (o <alP) <al®) < <alP) < d)

of distinct orders of vanishing of sections in V at P.
The two-pointed Brill-Noether locus is defined as follows. Fix two points P and

Q on a smooth curve C. Given sequences of integers

a=0<ay<a, <---<a,.<d) and

b=0<by<b; <---<b,<a),

we wish to parametrize linear series ¢ of projective dimension r and degree d on C with

a’(P) dominating a, and a‘(Q) dominating b. That is,
G3"(C,P,Q) = [t € G4(©) | af(P) = a; and a{(@) = b; forall 0= i =} .

We will require the following nontrivial fact about curves as input. The two-pointed
Brill-Noether theorem says that for a general two-pointed curve (C,P, Q) of genus g,
the Brill-Noether locus Gfi’b (C,P, Q) is either empty or has dimension equal to the two-

pointed Brill-Noether number:

-
p:=p(g,rdab)=g— Z(g —d+a;+b,_).
i=0

This was first proved by Eisenbud and Harris [15, Section 1] using limit linear series
and a construction on a singular curve. More recently, explicit examples of smooth two-
pointed curves satisfying the two-pointed Brill-Noether theorem in any genus have been
constructed, by studying curves on decomposable elliptic ruled surfaces [22, Section 2].
In contrast to the situation with G (C), the condition p > 0 is not sufficient to guarantee
that the pointed locus Gg'b (C,P, Q) is nonempty. A numerical criterion for nonemptiness
was given by Osserman [36] and also follows from our results, see Proposition 5.2.

Our 1st main theorem computes the holomorphic (sheaf) Euler characteristic of

the locus G‘;'b(C,P, Q) when this has expected dimension p. To state it, we need some
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12656 D. Anderson et al.

more notation. Given sequences a and b as above, we define two partitions A and u by

setting

Mi=n+a.,_;—T+1-1i), and

/Li:n—bi71+i—1—g+d—r

for 1 <i <r+1, where n is a fixed, sufficiently large nonnegative integer.

Partitions are commonly represented as Young diagrams, so A is a collection
of boxes with X; boxes in the i-th row. When u; < A; for all i, one has © C A, and one
represents the sequence A; — u; as a skew Young diagram A/p (the complement of u in
A). Borrowing this notation, we will write |I/m| = er:ll (I; — m;) for any sequences of

integers [ and m of length r + 1, regardless of whether [, — m; > 0.

Theorem A. Let (C,P, Q) be a smooth two-pointed curve of genus g. If G := Gg’b (C,P,Q)

has dimension equal to p, then its Euler characteristic is

o= (T1(, ") ()

I,m \i=1

1

1<ij<r+1

the sum being taken over all nonnegative integer sequences [ and m such that m; < y;
and [; > A; for all i, and such that |[I/m| = |[A/u| + p.

The proof is given in Section 5. In the statement, the binomial coefficients for a

negative integer —s are given by (%) = _S(_S_l)',;!(_s_kH) = (—l)k(H’,z*l), for k > 0. Also,
the sequences I and m need not be partitions, and even when they are, I[/m need not
be a skew Young diagram—indeed, A/u itself may not be skew. However, with a more
detailed combinatorial analysis, one can rewrite the formula so that terms where [ and
m are partitions are the only ones, which contribute to the sum—see Theorem C.

We now turn to the degeneracy locus formulas. Hudson-Tkeda-Matsumura-—
Naruse gave a determinantal formula for the K-theory class of the structure sheaf of
a Schubert variety in a Grassmann bundle [28], and this formula may be applied to
obtain the one-pointed case of Theorem A. The formula of [28] was subsequently refined
in [3] and [30], but the loci considered by these authors are not sufficient to compute
the class of a two-pointed Brill-Noether variety—so we require a new determinantal
formula in K-theory, which is of independent interest. A special case of our formula is

related algebraically to a formula of Matsumura [35].
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Brill-Noether Loci and Determinantal Formula 12657

Here is the general setup. Given decreasing sequences of integers p and q,

consider vector bundles

@
Ept(—>~--<—>Ep1—>Fq1 —»...—»th

on a nonsingular variety X, with the ranks indicated by subscripts. The degeneracy

locus is

Wyq= {X € X | dimker (Epj — FQi) >1+4i—jforall i,j}.

From the data p, q, we define partitions A and u by

These partitions are related to the ones associated to the Brill-Noether loci; see the
discussion at the end of this introduction for a special case and Section 3 for more
detail.

In order for the rank conditions defining Wp,q to be feasible and nontrivial,
one should require A; > u;, so that A/ forms a skew Young diagram. The expected
codimension of the locus Wy.q equals |A/u].

We compute the class of W, o as a variation of a skew Schur determinant. Given
partitions A = (A; > --- > A) and u = (u; > --- > pu,), and doubly indexed series

c@i,j) = Zmzo ¢, J), for1 <i,j <t,let us define the determinant

Ai—ui+k—1 ..
( i ]k ),Bkckiu.j+ji+k(l’-])

1<ij<t

Ay B) = >

k>0

The notation for the entries of this determinant can be condensed by using the operator
T, which raises the index of c(i, j), so T - Cr(1,]) = Cpyir(i,)). Then
. _ — A+ .o
Ay yuci B) = |1 = BT) ujcki*ltﬁffi(l’p 1<ij<t’
When 8 = 0 and c(i,j) = H’klzl(l — Xk)_l for all i,j, this is the classical Jacobi-Trudi
formula for the skew Schur function s, /(X))

Theorem B. Assume that A; — y;

; > 0 for all i and that W := Wp,q has codimension

|A/]. The class of W in the Grothendieck group of coherent sheaves K (X) is

[Owl == A)L/M(C; _1) . [OX]’
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12658 D. Anderson et al.

where c(i,j) = CK(Fqi - Epj) is the K-theoretic Chern class.

This is proved in Section 2, as part (ii) of Theorem 2.1. Part (i) of Theorem 2.1
provides a more general statement needed for the proof of Theorem A. In fact, all the
formulas we prove take place in the connective K-theory of X, a module over Z[8], which
interpolates K-theory (at 8 = —1) and Chow groups (at 8 = 0). So our formulas also
specialize directly to cohomology. Moreover, in Theorem 2.1, we remove the assumption
that X is smooth, allowing rational singularities.

There is a general correspondence between degeneracy loci and permutations,
as explained in [23], for example. Our loci W, o are exactly those corresponding to
321-avoiding permutations, that is, permutations with no decreasing subsequence of
length three. Under this correspondence, the formulas for general degeneracy loci are
related to the (double) Schubert polynomials and Grothendieck polynomials of Lascoux
and Schiitzenberger. Our K-theoretic results therefore give new determinantal formulas
for the double Grothendieck polynomials of 321-avoiding permutations, extending
work by Matsumura [35]. Specializing to cohomology, we recover formulas of Billey—
Jockusch-Stanley [7] and Chen-Li-Louck [10], giving new proofs via geometry. The
details, including the correspondence between (p,q) and 321-avoiding permutations,
are described in Section 6.

In Section 5, we explain how our results can be phrased in terms of the
combinatorics of tableaux. A row semi-standard Young tableau on a skew diagram
A/u is a filling of the boxes of 1 /u whose entries are strictly increasing along rows and
weakly decreasing down columns. A strict Young tableau is a filling whose entries are
strictly increasing across each row and down each column. A standard Young tableau
is a strict Young tableau using the numbers 1,..., [A/u].

The number of standard Young tableaux on a skew shape A/u is denoted by f*/*.
We will use o*/* to denote the number of row semi-standard Young tableaux on A/u
whose entries in row i are in {1, ..., ;} and ¢** for the number of strict Young tableaux

whose entries in row i are in {1,...,; — 1}.
Theorem C. If dim G’;’b (C,P,Q) = p, then the Euler characteristic is

+ - + + /0
X (@G;b(ma)) = D (D) gl T e
At~

where the sum is over partitions u~ € u and AT D A of length r + 1 such that |AT/u~| =
/1l + p.
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Special cases of Theorem C include Castelnuovo’s formula and the Eisenbud-
Harris-Pirola formula. Its proof is given in Section 6, along with a discussion of
other special cases and further connections to the combinatorics of tableaux. We
also establish the one-pointed case of a conjecture of Chan and Pflueger, expressing

X (ch(C,P)) as an enumeration of set-valued tableaux. (Chan and Pflueger have now

proved their conjecture in the general two-pointed case, expressing x ((9 as

G;"’(C,P,a))
an enumeration of set-valued skew tableaux in [12].)

To conclude this introduction, we briefly sketch the argument for the classical
case of our main theorem, describing the Euler characteristic of the locus WQ(C) C
Pic?(C). The construction of W7 (C) as a degeneracy locus is standard; see [31], [1, Section
VII], or [24, (14.4.5)].

Fix a point P on a smooth curve C, and let £ be a Poincaré bundle on C x Picd(C),

normalized so that £|{P} is trivial. Choose a nonnegative integer n large enough

xPict(C)
so that all divisors of degree n + d are non-special; any nonnegative n > 2g — 1 — d will

do. Writing 7; and m, for the projections from C x Pic?(C) to C and Pic?(C), respectively,
let £ = my (L ®n{Oc(nP)) and F = 7, (L ® 7 O,p). Then the exact sequence on C

0—-0,— Os(nP) - O,p— 0

transforms via 7, (£ ® 7{(-)) into an exact sequence

0—>n2*£—>5£>}"

on Picd(C). The Brill-Noether variety W} (C) is thereby identified with the locus in
Pic?(C) where dimker(p) > r+ 1.

Since L(nP) is non-special for all L in Pic?(C), Riemann-Roch shows that the
sheaf € is locally free of rank equal to h°(C, L(nP)); that is,

k() =n+d—-—g+1.
The sheaf F is also locally free, of rank

rk(F) =n,

and, in fact, 7 has a filtration 7 = F,, - F,_; — --- - F; = O with Ker(F; - F;_;)

trivial for all i—to see this, apply 7, (£ ® 7] ()) to the exact sequence

0—->0p—>Opp—>Op_1p—>0
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12660 D. Anderson et al.

and use that m,, (£ ® 7§ (Op)) = O, from the normalization of £. This means the Chern
classes of F are trivial, so ¢(F — &) = ¢(=€).

The Brill-Noether dimension estimate comes from a basic fact about matrices:
the locus of g x p matrices having kernel of dimension at least ¢ has codimension
t(q — p + t) inside the affine space of all matrices. (Taket=r+1,p=n+d—g+1, and
q = n to get the Brill-Noether number.) Applying the K-theoretic Giambelli formula of
[3] yields

g—d+r+k-1
[OW(rz(C)] = 2 ( k )(_1)kcg—d+r+j—i+k(_(€)

k=0 1<ij<r+1

in K(Pic%(C)), whenever dim W3(C) = p(g,r,d). The Euler characteristic formula is then

deduced from Hirzebruch-Riemann-Roch and some linear algebra (see Section 5).

1 Background and Preliminaries

We begin by reviewing some of the basic facts we will need in proving Theorem B.

1.1 Connective K-theory

Our main theorem about degeneracy loci gives formulas in the connective K-homology of
an algebraic variety X. Foundational facts about this theory can be found in [9, 14], and
briefer digests are in [28], [29], and [3, Appendix A]. The main features we will require

are the following:

(a) The connective K-homology CK,(X) is a graded module over Z[g], with
degg = 1.

(b) There are Chern classes operators for vector bundles; for a vector bundle E
on X, if o € CK, (X), then ¢ (E) - o € CK,_;(X).

(c) Specializing 8 = 0 and 8 = —1 induces natural isomorphisms

CK,(X)/(B=0)=A,(X) and CK,(X)/(B=-1)=K,(X)

with Chow homology and the Grothendieck group of coherent sheaves,
respectively.

(d) There are fundamental classes [Z] € CK, (X) for closed subvarieties Z C X,
specializing to [Z] € A,(X) and [O,] € K, (X).
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A degeneracy locus inherits its scheme structure by pullback from a universal
degeneracy locus. In exploiting this, the key statement we need is this (cf. [21, Lemma,
p. 108] and [14, Theorem 7.4]):

Lemma 1.1. Let f be a morphism from a pure-dimensional Cohen—Macaulay scheme
X to a nonsingular variety Z. Suppose Y C Z is a Cohen-Macaulay subscheme of pure
codimension d. Then W = f~'Y has codimension < d. If W has pure codimension d in
X, then it is Cohen—Macaulay and [W] = f*[Y] in CK, (X).

Proof. Everything except the last statement is contained in [21, Lemma, p. 108], and
the equality [W] = f*[Y] is also proved there for cohomology (or Chow) classes. So it
suffices to prove this equality for K-theory, which we do by a slight refinement of the
standard argument for cohomology. Let I'y € X x Z be the graph of f, so W is identified
with I's N (X x Y) via the 1st projection.

If dimZ = m, then the graph I'r € X x Z is locally cut out by a regular sequence
zZy,....Z,,; that is, the Koszul complex K, (2) is exact and resolves Orf- Indeed, there is

an exact sequence
O<—(9rf<—T<—/\2T<—-~-<—/\mT<—O,

where T = prj T, is the cotangent bundle of Z, pulled back to X x Z.

Since X x Y is Cohen—-Macaulay and W = FeNEX xY) has codimension d + m in
X x Z, the restrictions z;,...,Z,, to X x Y also form a regular sequence. This means the
Koszul complex K, (z) = K, (2) ® Oy, vy is also exact, so by restricting the above resolution

to X via the graph morphism, we obtain an exact sequence
0O «<TRO;x —« N°TR0Ox « -+« \N"T®Ox < 0.

Since f*[0y] = > ,(~1)} [ToriZ(OX,(’)y)] by definition, we see that f*[Oy] = [Ox ®¢, Oyl
= [Oyl, since exactness of the above sequence shows that the higher Tor terms

vanish. u

Remark 1.2, In [28], formulas are proved in connective K-cohomology CK*(X), under
the hypothesis that X is smooth. The relationship with our more general setup is
best described in the framework of the operational cohomology theory associated to
a (generalized oriented Borel-Moore) homology theory [5, 26]. One can define CK* to be
the operational cohomology ring associated to the homology theory CK,, so that CK*(X)

is defined for any scheme. This is a graded algebra over Z[g], where now 8 has degree
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12662 D. Anderson et al.

—1, and CK,(X) is a module for CK*(X), with ¢ € CK'(X) acting as a homomorphism
CK,(X) — CK, ;(X).

Specializing at § = 0 and 8 = —1 produces natural isomorphims

CK*(X)/(B=0) = A*(X) and CK*"(X)/(8=-1)= opK°(X),

where A*(X) is the Fulton-MacPherson operational Chow ring, and opK%X) is the
operational K-theory developed in [5]. When X is smooth, Poincaré isomorphisms show
that the operational CK*(X) agrees with the connective K-cohomology used in [28] and
that CK*(X) = CKgi 1 (X).

Remark 1.3. Higher connective K-groups are defined and studied in [9] and [14]. The
two versions coincide in the part corresponding to the Grothendieck group K,, but
they diverge in general. Both work in the category of quasi-projective schemes. For
an explanation of how to extend results to general schemes, see [4]. In particular, one
can construct Chern classes using the projective bundle formula and Grothendieck’s
method, as in [9] (and [3]).

1.2 The degeneracy loci Wp,q and Qp g
Now we turn to the degeneracy locus setup. We have a sequence of vector bundles

@
E, < —>E, =E5F=F, — —>F,

on a (now possibly singular) variety X, where subscripts indicate rank, so that

O<p;<---<p; and g, >--->q,>0.

It will be convenient to assume that the flag E, < --- < E, extends to a full flag
E| < - > E, of sub-bundles of E defined on X, and similarly, the flag Foo = —>Fg
extends to a full flag F, — --- — F; of quotients of F defined on X. This is harmless, as
there exists always a full flag extending a given partial flag, possibly after replacing X
with X’ such that X' < X is a tower of projective bundles, so that CK,(X) — CK,(X").

Let V := E @ F. The vector bundle V includes isomorphic copies of the sub-
bundles E, via the graph E,, of ¢:

EptC"'CE

P1=E cv,

0 =

and it also comes with natural projections V — F, for all i.
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Our degeneracy loci lie in X, and in a Grassmann bundle over X:

Qpqg — Gr(t,V)

| I

qu 3 X. (2)

The locus Wy, q CEXis defined by the conditions
dimker (B, > Fp) = 1+i-j forallij
where here we usually assume
q; >p;—1 foralli. (%)

(Evidently, it suffices to require these conditions only for j < i. Later we will see that
the ones for j = i are enough.)

To define the locus Qp,q C Gr(t,V), let S € V be the tautological rank t
sub-bundle on Gr(t¢, V). (Here V should be understood as n*V—following a common
abuse, we omit notation for such pullbacks.) Using the inclusions and projections
Epj — V —F, described above, Qp,q C Gr(t, V) is defined by the conditions

dim(SNE,)zt+1-j and dimker(S—F,)zi foralll<ij<t (3

No restrictions on p and q are needed here. Note that Qp,q, C Qp,q if q; > q; for all i.
(And likewise, Qp,,q - prq if p} <pj for all j.) From the definition, the fiber of prq - X
over any point x € X is an intersection of two Schubert varieties in the Grassmannian
Gr(t, V|,).

1.3 32l1-avoiding permutations

In analyzing the relationship between @, , and W, ;, we will need some combinatorics

of permutations and Schubert varieties. For any permutation v, there is a rank function

r,(a,b):=#{i <a|v(@) > b}.
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12664 D. Anderson et al.

These define Schubert varieties in the flag variety (or a degeneracy locus on any variety

with flagged vector bundles), by imposing conditions

dimXker (E, - F,) > r,(a,b) for all (a, b).

The Bruhat order on permutations describes containment of Schubert varieties; equiv-
alently, given two permutations u and v, one has u < v if and only if r (a,b) < r,(a,b)
for all (a, b).

In fact, the above conditions are redundant, and one can find a much shorter
list of conditions. Suppose one has a collection of pairs S = {(a;, b;)}; and corresponding
integers k; such that the set of permutations u satisfying r,(a, b) > k; has a unique min-
imum v in Bruhat order. Then the Schubert variety (or degeneracy locus) corresponding

to v is determined (scheme-theoretically) by the conditions

dim ker (Eai N Fbi) >k,  for(a; b inS.

One choice of S is given by Fulton's essential set for the permutation v [23,
Lemma 3.10]. For the permutations arising in our situation, we will use a different
choice.

For any p, q, we define an associated permutation w by setting
w(p,) :=max{q; + 1, p;} forl <ic<t,
and then filling in the remaining entries minimally with unused numbers in increasing
order. For example, if p = (5,4,1) and q = (5, 2,1), then

w=213465. (4)

Given p, q, let us also define a sequence q’ by
q; = max{q;, p; — 1}.

The associated permutations for p, q and for p, g’ are the same, but note that w(p;) =
q; + 1 for all i. The new pair p, g’ satisfies (x) by definition.

In fact, the permutation w is a 321-avoiding permutation (i.e., there are no a <
b < c such that w(c) > w(b) > w(a)), and all 321-avoiding permutations arise this way
for some p, q, since any such permutation is a shuffle of two increasing subsequences

(see e.g., [16]). More precisely, w is obtained by shuffling (q; + 1,...,q} + 1) with the
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sequence of left-over numbers. We have w(p;) = g; + 1 > p; for all i and w(p) < p for all

p not among the p;. It follows that
rw@iq) =1 and r,(p;,,q) =0, (5)

which will be useful later, in the proof of Proposition 2.5.
From the construction, one sees that w may also be characterized as the (unique)

minimal element among all u such that r,(p;, q;) > 1, for p, q’ as above.

Lemma 1.4. The permutation w is the unique minimal one in Bruhat order such that

#Hp <p;lwp) >q} =1 for all i.

Its length is equal to Zle(q; —p;+1).

The length of w is defined to be #{a < b|w(a) > w(b)}; it is the codimension
of the corresponding Schubert variety in the flag variety. The lemma implies that the
conditions specified by p, q are equivalent to those given by p, ¢/, that is, Wyq=Wp,q-
Its proof is fairly straightforward, since the condition is trivial whenever g; < p; — 1.

It follows that among the conditions

dimker (E,, > Fp,) = 1+i-j

defining W, ., those with i = j are sufficient.

q’

1.4 Schubert varieties in flag bundles

Next we consider a special case of the degeneracy locus problem (which turns out to be
the universal situation). We have a variety Y, with a vector bundle Vy of rank p; + q;
and quotient bundles Vy, — F, of ranks g;. Let X = Fl(p, Vy) — Y be the flag bundle,
and let E, be the tautological flag of sub-bundles. As usual, we suppress notation for
pullbacks, writing V = V;, and F, for the corresponding bundles on X.

In this setting, the diagram (2) takes the form

Qp,q —> Fl(p7 Vy) Xy Gr(t, Vy)

| [

Wy g —— X =Fl(p, y). 6)
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The degeneracy locus W, . is a Schubert variety in the flag bundle X, so it corresponds

to a permutation; in fact, this is the permutation w of Lemma 1.4.

Proposition 1.5. Assume the above situation, so X = Fl(p, Vy). Given p, q, let q’ be

. o ~ _ _
defined as before, that is, q; = max{q;, p; — 1}. Then n(Slpyq) = Wp,q, = Wp,q.

Proof. The statement is local, so in proving it we may reduce to the case where Y is a

point. In this case, X = Fl(p, V) is a partial flag variety, and Qpq S Fl(p,V)xGr(t, V). Let

w: Fl(p, V) x Gr(t,V) — Fl(p,V) and ¢: Fl(p, V) x Gr(t,V) — Gr(t, V) be the projections.
The conditions (3) defining €2, , imply that after forgetting the t-dimensional

subspace S € V, one has

dimker (E,, — Fg) = 1+i~j foralli,j )

By Lemma 1.4, these conditions with i = j imply the rank conditions given by the
permutation w associated to p, q, and thus define the Schubert variety Wyq € Fl(p, V).
So it follows that T(Q2p.q) E Wy o

On the other hand, the projection 7: Q, , — W, o is B-equivariant, for the
standard action on Fl(p, V) x Gr(t,V) of a Borel subgroup B € GL(V) fixing the flag
F,. To show that = is surjective, it suffices to show that the fiber is nonempty over a

general flag A, in W, i.e., aflag A, such that

p.q"

K;;:=ker (Api — Fq;) satisfies dimK;; = 1 for all i,

and

K.y ;:=ker (A — F,

; piy = Fq) =0 foralli.

The dimensions here follow from (5). We see that the vector spaces K; ; give independent
lines, since K, ; = 0 means K;; N A, = 0.S0

S=K|1®K;,®---DK;; C Ay,
has dimension ¢, and SN Ay =K@ ® Ky has dimension ¢ 4 1 — j. Since there is a

and therefore has
|

surjection Fq{ — F .+ ONe sees ker(S — FQi) contains Ki,® - ®K;;

dimension at least i. We conclude that T(Qpq) =Wpg-

Next we turn to the singularities and dimensions of our degeneracy loci. At this

point, it will help to use partition notation. As in the introduction, we define partitions
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A and u by

Ai=¢q—t+i and p;=p;—({E+1-)).

The condition («) is equivalent to requiring that A; > u; for all i, i.e., A/u is a skew shape.

We use the notation A’ to denote the partition given by A} = q; —t +i.

Proposition 1.6. Assuming X = Fl(p, Vy), the locus is reduced (or is Cohen-

D.q
Macaulay, or has rational singularities) if ¥ is reduced (resp., is Cohen-Macaulay, has
rational singularities). The same is true of W, .

The dimensions of these loci are dim Q4= dimX — |A| + |u| and dim Wyq =

dim X — |A'/ul.

Proof. Again the statements are local on Y (and preserved by products), so we will
assume Y is a point and show that the varieties in question have rational singularities
(which implies Cohen-Macaulay and reduced). Since Wy, q is a Schubert variety, it has
rational singularities; its codimension is the length of w, which was calculated in

Lemma 1.4 and is equal to |A'/u|. We focus on using a description which will be

p.q’
useful later.
Recall that ¢: Fl(p, V) x Gr(t, V) — Gr(t, V) is the 2nd projection. Then

o -1
Qp,q_Q Ng~ ",

where

Q, = {S| dim ker (S — F‘h‘) > i for all i} C Gr(t,V), and

Q = {(A.,S)| dim (SﬁApj) >t4+1—jfor auj] C Fl(p, V) x Gr(t, V).

Restricting the projections 7 and ¢ to Q’ produces flat morphisms (which we will denote
by the same letter). In fact, they are locally trivial fiber bundles, and we can describe
their fibers explicitly.

The fiber of the 1st projection n: Q@' — Fl(p, V) over a flag A, is a Schubert
variety ©,(4,) € Gr(t, V). Here v = u" is the complementary partition to u inside the
t x (p; + g —t) rectangle; specifically, vi=p1+q —t—ppa It follows that

dim Q' = dim Fl(p, V) + ||,
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which we will use again in the proof of Theorem 2.1.
The fiber of the 2nd projection ¢: Q' — Gr(t, V) is a Schubert variety in Fl(p, V).
Its corresponding permutation is the inverse of the Grassmannian permutation for the

partition v. In particular, intersecting with =1, , the morphism
¢: Qp,q - Q,

is again flat, and both the base and fibers have rational singularities. By [17, Théoréme
5], we conclude that €, , has rational singularities. The formula for dim &, . also
follows. |

We conclude this section with the following statement:

Proposition 1.7. Assume X = Fl(p,Vy). Given p,q, let q' be defined as

q; = max{g;, p; — 1}. When restricted to @, , < @ the map 7: @, — Wp o is

p.q’
birational.

Proof. As the statement is local on Y, we can reduce to the case where Y is a point.
The argument in the proof of Proposition 2.5 to construct an element S in the fiber of
7 Qp g = Wy o Over a generic point A, of W, o» shows that ker(S — Fg) =Ky 1@ @®K;;,
s0 S € Qp o is uniquely determined. It follows that 7: @, . — W, o is generically
bijective.

Being a Schubert variety, Wp,q’ C Fl(p,V) is the closure of a Schubert cell
W°, which in turn is a principal homogeneous space for a certain subgroup of B. By
Proposition 1.6, Qp,q, is reduced. Since 7 is B-equivariant, it follows that the restriction

7~ 1(W°) — W° is an isomorphism. [ ]

2 A Determinantal Formula in K-theory

Now we can state and prove the main theorem. Given doubly indexed series c(i,j) =

Zmzo ¢, (@, J) for 1 <i,j <t, we define the determinant

8oy€ ) = (1 = BT) M0, i i(i])

1<ij<t

=i+ k-1 .
Z( ' MJk )ﬁkc;\i_uﬁj_wk(llj)

k=0 1<ij<t
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as in the introduction. In the statement of the theorem, we return to the general setting,

no longer requiring X to be a flag bundle.

Theorem 2.1. Let X be a variety with rational singularities, and let c(i,j) = cK(Fqi —Epj)
be the K-theoretic Chern classes.
(i) The locus Q, 4 € Gr(t, V) has codim®, ; < |A/ul + t(py + q; — ©). If equality
holds, then Qp,q is Cohen—Macaulay, and

T2 g = A, B) - X1 in CK,(X).

(ii) Assume A; > p; for all i. Then Wp'q C X has codime'q < |A/ul]. If equality
holds, then Wp,q is Cohen—Macaulay, and

Wyl = A;,(cB) - IX] in CK,(X).

The statement in (ii) specializes to Theorem B from the introduction.

In the course of the proof, we require some formulas from [3]. The first is the
determinantal formula for a Grassmannian degeneracy locus. (This appeared originally
in [28], in a slightly different form.) Let @2, be a Grassmannian degeneracy locus, defined

by conditions dimker(E; — F,) > i for all i, where A; = g; — ¢ + i as above. Then

(9)

2,1 == 1) 0,454 (R, - B,)

1<ij<t

Next, the formal determinantal identity used in proving the “general case” of [3, Theorem
1] shows that

(1-— ﬂT)_)LiC)Ll«kjfi (Fqi - Et) |15i,j§t =[(1- ﬂT)_)LiC)»iJrjfi (Fqi - EtJrl*J') 1<ij<t ' (10)
Finally, suppose we have a tower of projective bundles
Z@® 7®) 7@ 7@
P (Epl/St_l) LA (EpH/Sl) P (Ept) X, (11)

where Si/S; C EPr—j/Sf is the tautological line bundle on the projective bundle

]P’(Epw, /S;) (suppressing notation for pullbacks of bundles under the natural projections
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7@ as usual). Then

7 (1= BT) ™0 (F = Spyyj)) = A — TP~ Dg, ) (F-E,)  (12)
for any bundle F on X and all m. (This is [3, Equation (5)].)

In broad strokes, the idea of the proof is simple. As before, we first treat the
case where X = Fl(p, V) is a flag bundle. There we use the description of Q, ; as an
intersection Q' N ¢~1Q,, together with a resolution of ' and the determinantal formula
(9) to produce the desired formula. This case is universal, and we deduce the general
case by pullback, using Lemma 1.1.

Now we turn to the details.

Proof of Theorem 2.1. As before, we first suppose X = Fl(p, Vy) — Y is a flag bundle
over a variety Y with rational singularities, so Gr(t, V) = Fl(p, Vy) xy Gr(t, Vy). In this
case, we have already seen in Proposition 1.6 that the degeneracy loci have the expected

codimensions:

codim Qpg=IA/nl+tp,+q, -0

and (when the pair p, q satisfies (x))

codim Wp,q = 12/ul

in Gr(¢, V) and X, respectively. In Proposition 1.6, we also saw that Q, , and W, , have
rational singularities; hence, they are in particular Cohen-Macaulay.

Recall from the proof of Proposition 1.6 that Q,, = Q' N¢~'Q,, and this
intersection is proper: the codimensions of Q' and ¢ 'Q, add to that of Qpq- In
particular, [, ;] = [Q- ¢*[2;].

The locus @' admits a desingularization by the variety Q' parametrizing flags of
sub-bundles S; C S, C --+ C S; such that rank(S;) =jand S;;;_; € E,.-In the tower of
projective bundles (11), this is Q' = P(E,, /S;_1). The rank ¢t bundle S; € E, C V on Q

defines a map
f:Q - Q cGrt, V), (S, CSyC---CS)+S,,
which is a desingularization. (This is one of the standard desingularizations of Grass-

mannian Schubert varieties, going back to Kempf and Laksov.) Write 7’: Q' — X for the

composition 7’ =7 o f.
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Since @’ has rational singularities, f*[SNZ’ ] = [']. By the projection formula, we

obtain
L] =121 ¢%12,] = (2 4.
Now we can compute the pushforward as
7,[Qp o) = T L9 Q,] = 7l f*¢*[Q,].

The formula (9) for [€2,] is preserved under pullback, and we can rewrite it using the
identity (10):

1<ij<t

— =i - .
Finally, applying (12) to the entries of the determinant gives

-
ﬂ*[Qp,q] = 7'[; (‘(1 — ﬁT) C)ni+j—i (Fqi — St+1_j)‘1<i,j<t)

— ‘(1 _ ﬂT)—)\i+pj—(t+1—j)Ck'
1

P+ 1) (Fqi - Ep,») it

— _ —Aitu; .. —

B ‘(1 AD) TChimpyty—i (Fqi EPJ‘) 1<ijs<t’

so we have the asserted formula for this locus. When p, q satisfy (x), that is, g; > p; — 1
for all i, then by Proposition 1.7 the map 7 : Qpgq = Wpqis birational. Since both loci
have rational singularities, it follows that n*[Qplq] = [Wp,q], and the theorem is proved
in this case.

Now we turn to the general situation where X is an arbitrary variety with
rational singularities. We have the vector bundle V = Ep1 ® Fq1 on X, as usual, and
we form the flag bundle F1 = Fl(p, V) — X and Grassmann bundle Gr = Gr(t, V) — X.
On Fl, we have the tautological flag

U,: Uy, C---ClUp CV
and the flag E, on X determines a section o : X — Fl such that ¢*(U,) = E,. The universal

loci

Wp'q CFl and Slpyq C Fl x5 Gr
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Q4 Fl xx Gr
/ /
Qp q Gr T
™
7 Wp q / "
o
Wpq © X

Fig. 1. The universal loci Wp q and 2p q.

are defined by the same conditions defining W, ; and © respectively, using U, in

place of E,. The situation and notation are summarized in ;‘iqgure 1.

The just-proved case of the theorem applies to these universal loci; in particular,
they have rational singularities (so they are Cohen—-Macaulay) and we have the asserted
formulas for ﬁ*[ﬂplq] and [Wp,q]' By construction, we have

Wyq=0"(W,,) and Q,,=5"(®

pq P

Since the loci £, ; and W, , are Cohen-Macaulay, we may apply Lemma 1.1 to deduce

the general statement of the theorem. |

Remark 2.2. In fact, one can further relax the hypothesis on X, requiring only that it
be Cohen-Macaulay. Instead of using the flag bundle Fl as in the proof of Theorem 2.1,
after possibly replacing X by X’ for an affine bundle X’ — X, one can assume that the

vector bundles E, and F, are pulled back from a product of flag varieties

Z = Fl(p,CY) x FLCY, q)

for some sufficiently large N; here FI(CV, q) is the flag variety parametrizing quotients
of CV. (See e.g. [25].) The loci Wy, and €2, o are then pulled back from Z and a Grassmann
bundle over Z, respectively. Since Z is nonsingular, the formula on Z is then given by
Theorem 2.1, so we can deduce it on X via pullback, using Lemma 1.1 as in the proof of

Theorem 2.1 (we require X to be Cohen-Macaulay to apply Lemma 1.1).

In the rest of the paper, we will discuss some applications of the degeneracy

locus formula. One of them is a direct generalization of Kleiman and Laksov’s proof of
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the existence theorem [31]: by standard intersection theory, one can deduce a criterion

for non-emptiness of a degeneracy locus from a formula for its class.

Corollary 2.3. Let p,q, and q’ be as above, so the pair p, q’ satisfies (x), and let A'/u
be the skew diagram corresponding to p, q’. If Ay07,(c;0) - [X] # 01in A, (X), then Wy, g is
nonempty, and so Q, ; is also nonempty.

The converse holds when X is projective: if codimerq/ > |A/u| and Wy, (or
equivalently,
inA,(X).

p,q) is nonempty, then codime,q/ = |A/u| and Ay (€ 0) - [X] is nonzero

3 Varieties of Linear Series as Degeneracy Loci

We apply here Theorem 2.1 to the study of the Brill-Noether theory of a smooth
algebraic curve C of genus g. We start by describing the degeneracy locus structure
of two-pointed Brill-Noether varieties. Given a linear series ¢ = (L, V) in G[;(C) and a

point P € C, the definition of the vanishing sequence

a‘P)=(0<afP) <---<a(pP)<d

from the introduction can be equivalently phrased by saying that a‘(P) is the maximal

sequence verifying the condition

dim (VnH® (C,L(~aly, ;@) -P)))zi forlzizr+l.

Fixing two points P and Q in C and two sequences a and b, the variety of linear series
Gg'b (C,P, Q) is therefore defined by the conditions

dim (VN H (C,L (<@, iP))) = i

v

and dim (VNH® (C,L(<b,;,Q))) zi foralll si<r+1. (13)

We will construct Gg'b(C,P, Q) as a degeneracy locus of type ., inside a certain
Grassmann bundle 7 : Gr — Pic?(C), with indices p and q determined below.

The construction generalizes the description of W}, (C) reviewed in the introduc-
tion. As before, choose n > 0 large enough so that line bundles of degree d + n — b, are
non-special, that is, n > 2g — 1 — d + b,.. Fix a Poincaré line bundle £ on C x Picd(C),

normalized so that L, p;cd(c, is trivial. Let 7, and 7, be the projections from Cx Pict(C)

€202 Iudy 20 uo Josn saleiqI AlSIaAuN 81elS 0IUO Ad 89/€GZ9/EG9Z /9 1/2Z0Z/101ME/UIWY/WOD dNO"olWapeoe)/:sdRy WOI) POPEOJUMOQ



12674 D. Anderson et al.
to C and Picd(C), and set
&= (mp), (/.3 Qi O¢ (nP — b]-,IO)) and

‘Fl = (7T2)* (£ ® ﬂikO(n+ar+l_l,)P)
for 1 <i,j <r+ 1. The sheaf & is a vector bundle of rank

pj::rk(5j>=n+d—bj—1+1_g'

and F; is a vector bundle of rank

g =1k(F) =n+a,,

One thus obtains a sequence

&

[Z
r+1c_>grc_)...;)81=:£_>]::=]:1_»]:2_»..._» r+1

of vector bundles over Picd(C).
Define V := £ @ F, with natural maps V — F;, and with Ej < YV included via the

graph of ¢. Consider the Grassmann bundle

7: Gr(r+1,V) — Pic%(C),

and let S be the tautological rank r+1 sub-bundle on Gr(r+1, V). The locus in Gr(r+1,V)
defined by the conditions

dim(SN&;)>r+1 and dimker(S— F;) >i foralli,

coincides with the locus of linear series (L, V) € G};(C) such that
dim (VN H (C,L (~@yy_iP —byQ))) z i foralli,
Imposing the additional conditions

dim(SﬂEj) >r4+2—j forallj,

as in (3), one obtains the locus of linear series also satisfying

dim (VN H (€L (~apP ~ b;_,Q))) zr+2~j forallj,
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hence satisfying (13). Thus, Gf'i'b(C,P, Q) can be identified with the degeneracy locus
prq CGr(r+1,V).

We now study the image of Gg’b (C,P,Q) in Picd(C) via the map =m. Let
Wg'b(C, P, Q) be the degeneracy locus Wpyq in Picd(C) as in Section 3, that is,

waP(c,P,Q) := {L e Pic?(C) | dim ker (Sj - ]-"i) >14i —j} .
Equivalently, Wg'b (C,P, Q) is the locus of line bundles L € Picd(C) such that
RO (C,L (~ar1-P- bj,la)) >1+i—j foralli,j.
Recall the definition of the two partitions A and u associated to the data g,d, a, b:

Ai=n+a,,_ ;—T+1-10
forl<i<r+1.
ui=n—->b;,_+i—-1—g+d-r

From Proposition 1.7, when A/u is a skew shape, one has n(Gg'b (C,P,Q)) = WS'b(C,P, Q),
and in this case 7: Gg'b (C,P,Q) — W;'b (C,P,Q) is birational. In general, let a’ be the

sequence defined as
a;:=a; +max{0,d—g—a; —b,_;}  foralli.
The diagram 2’/ is a skew shape by construction, where
M=n+a,,,_;—@+1-i) foralli.

If A/u is already a skew shape, then a’ = a and A’ = A. We have the following diagram

G¥*(C, P,Q) — Gr(r +1,V)

| I

W (C, P,Q) —— Pic!(C)

fitting into the framework studied in Section 3, so we can apply Theorem 2.1.
Since the vector bundles F; have trivial Chern classes and therefore the K-

theoretic Chern classes c(i,j) = cX (F; — Sj) are equal to cX (—é’j), the determinantal
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formula in (8) gives

Ay u(CiB)

1<ij<r+1
(14)

Ai—pit+k—1
Z ( ]k )ﬁkcﬁ—uﬁj—wk(_‘%)

k=0 1<ij<r+1

Recall that the expected dimension of the pointed Brill-Noether locus G;'b (C,P,Q) is

r
p(g,r,d,a,b) Zg_Z(g_d'i_ai_"brfi) =9- |)‘/M|
i=0

Assume that Gfl'b (C,P,Q) has dimension equal to p. Then by Theorem 2.1 it is Cohen-

Macaulay and

7, [Gfl'b (C,P, o)] — Ay B in CK*(Rict(0)). (15)

Similarly, assume 1/u is a skew shape. If Wg’b (C,P, Q) has dimension equal to
p, then it is Cohen—Macaulay, and has class given by (14) in CK*(Picd(C)).
The determinant in (14) will be further manipulated in Section 5. We conclude

this section with the following statement:

Proposition 3.1. Let (C,P,Q) be any smooth two-pointed curve of genus g. If both
Gad'b (C,P,Q) and ng'b (C,P,Q) have the expected codimension, then they are Cohen-—

Macaulay and
7, [Gg'b(C,P, a)] — (=plaIlA,, (e B)

= (—p)&-1al [Wg"b(c, P, a)] in CK* (Pic?(C)).

Proof. For the 1st equality, we start by observing that for partitions A and u, the

determinant |c; | vanishes, unless A/u is a skew shape. Indeed, if A, < p; for

i
some k, then thle llg;trix is singular, since it has 0 in position (i,j), for all i > k > j.
Using (15), the entries of the determinants Ay (i B) and Ayryu(ci B) from (14) differ in
those bottom rows i where A; < u;. For Ak’/u (c; B), such rows have entries equal to 1 in
position (i, 1), and 0 in position (t,j), for j < i. For A, (c; B), expanding by linearity in
these bottom rows, one has vanishing contributions by the above observation, unless
for each such row i, one considers the term with k = —A; + u;. It follows that the nonzero

contribution to the left-hand side is given by the determinant with entries equal to
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(—p)~**Hi in position (i,7), and 0 in position (i,j), for j < i. The 1st equality follows
since —A; + u; = a; — a;, for each i such that A; < u;. The 2nd equality follows from
Theorem 2.1 and the fact that A'/u is a skew shape. |

Remark 3.2. When b = (0,...,r), the two-pointed Brill-Noether varieties specialize
to the one-pointed Brill-Noether varieties G%(C,P) and W3(C,P), which parametrize
respectively linear series and line bundles on C with imposed vanishing sequence a
at a single point P. In this case, the role of the flag of sub-bundles of £ is redundant in
the above construction, as it is enough to consider maps from £ to the flag of quotients
of F. With this description in place, the degeneracy locus formula from [28] suffices to
compute the K-theory class 7,[G(C, P)]. Explicit computations in the one-pointed case

will be given in Sections 5.2 and 5.3.

4 Euler Characteristics

Our next goal is to give a formula for the Euler characteristic of the two-pointed Brill-
Noether loci Gg'b (C,P,Q). In order to simplify the determinantal formula (14) for the
K-classes of varieties of linear series, we prove some general lemmas on K-theoretic
Chern classes and apply them to the bundles &; in Section 3.

Throughout this section, we specialize at § = —1, and take all Chow and

numerical groups with coefficients in Q.

Lemma 4.1. Suppose a rank-r vector bundle E has ch(E); = 0 for i > 1. Then

ch(cK (E)) = ¢;(E).

That is, if the Chern character of E is ch(E) = r + ¢, (E), then K-theory Chern

classes agree with cohomology Chern classes under the Chern character isomorphism.

Proof. First recall that the Chern class of a line bundle has Chern character
ch(cK(L)) = 1—e D, where e* is the formal power series 2 k=0 ’72—1‘6 Now let Ly, ..., L, be
the K-theoretic Chern roots of E, i.e., line bundle classes so that ¢X(E) = ¢X(L;) - - - cX(L,).
Then

ch (CLK(E)) —ch (ei (cf(Ll), o c{‘(Lr)))
—e (ch (cf(Ll)),. . ,ch(cf(L,)))

(1 _ea@) oy e—cl<Lr>) ,

€
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12678 D. Anderson et al.

where e;(x;,...,x,) is the i-th elementary symmetric polynomial. The lowest-degree term

in the last line is equal to ¢;(E). The higher-degree terms vanish, thanks to the hypothesis

ch(E); =0, fori > 1, and Lemma 5.2. [ |

Given formal variables x;,...,x,, let e;(x;,...,x,) be the i-th elementary sym-
metric polynomial, and let p;(x;,...,x,,) := Xli +-- ~+Xfl be the i-th power sum symmetric
polynomial.

Lemma 4.2. Consider the ideal I := (p,,...,p,) + (x1,...,%,)""! in Q[x;,...,x,]. For

1 <i <n, one has

e,(1—e™,. .., 1—-e™)=¢(x,...,X,) modulo I.
Proof. Write e; :=¢;(x,...,x,) and ¢; :=¢;(1 —e ™ ,...,1 —e ¥ ), and similarly, write
p; =p;(x;,...,x,) and p; :=p;(1 —e™™,...,1 —e ™). Since
p(1-e™, 1) = Z(—1)’°—1%
k>1 :
and py, € (x;,...,x,)""! for k > n, we have p;, = p; modulo I. It follows from Newton's
identities that
E.zl_)—ll mod (p D) and e-=p—li mod (p D)
T 211 Y 21 En
i p
for 1 < i < n. Since p,,...,p, € I, we conclude that e; = l—ll = —ll = e; mod I, for
! i!
each i. |

Let (C,P,Q) be a smooth two-pointed curve of genus g, and consider the
vector bundles &£; from Section 3. Lemma 5.1 applies to these bundles. Indeed, modulo
numerical (or homological) equivalence, the Chern classes of —&; are

oJ

¢ (=&) = K

where 6 is the cohomology class of the theta divisor. (The proof given in [1, Section VII] is
for singular cohomology, but it works as well in numerical or homological equivalence.)
Equivalently, ch(-¢&;) = rank(—¢;) + 6. We therefore have
oJ
ch (CJK (—5i))

= J_' (16)
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Now we can compute the Euler characteristic of the loci Gf’i'b (C,P,Q) via

Hirzebruch-Riemann-Roch. The Todd class of Picd(C) is trivial, so

¢ Ogrcna) = [ Orcna)
Gd (C,P,Q) Picd(C) * Gd (C,P,Q)

Combining (15) and (16) with the specialization of (14) at 8 = —1, the Euler characteristic

is
— —g+d—ary1-i—bj_1+j—1
X (OGZ'IJ(C,P,Q)) /l;icd(c) ’(1 + T) Cg—d+llr+1,i+bj,1 1<ij<r+l : (17)

From the Poincaré formula [ 69 = g!, it follows that the Euler characteristic is g! times
the coefficient of #9 in the expansion of the determinant. The next step is to analyze this
expansion.

Let p := p(g,r,d,a,b), and recall that

Ai—pnijtj-—i=g—d+a,,_;+bj,.

If we expand the operators (1 4+ T) *"4 in powers of T, the constant term is the

cohomology class

(18)

C . : s
‘ Mo ey

and is a multiple of 6977 (possibly zero). The determinant in (17) is obtained by applying
the operator (1 + T)*/ to the j-th column of the matrix in (18) and the operator (1 +

T)™*i to its i-th row. With binomial coefficients for negative integers —s given by (%) =

_S(_S_l)‘,;!(_s_kH), for k > 0, for k > 0, we have by linearity:

r+1
Z H M —A ‘Tli—xfruj—mjc o
wi —mi) \l; — X, M < jrgr

[l/mi=|r/pl+p \i=1

the sum being over all sequences [ and m with l; > ; and m; < u;. (Here [ and m are not
required to be partitions, but we still use the notation |I/m| = > (I, — m,).)

This proves Theorem A. More precisely, we have proved the following:
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12680 D. Anderson et al.

Theorem 4.3. Let (C, P, Q) be any smooth two-pointed curve of genus g. If Gg'b (C,P,Q)

has dimension equal to p, then the Euler characteristic X(OGa,b C.P 0)) equals
27(C.P,
+1
> o110, ) ()
’ . —m. R e m47 =1
[I/m|=|r/p|+p i=1 Ki — My ll )\l (ll m] +J - D! 1<ij<r+1

Assume furthermore that A; > u; for all i. If W;'b (C,P, Q) has dimension equal to p, then

X (Owg"’(c,P,o)) =X (OG;"’(C,P,Q))‘

5 Determinantal and Tableau Formulas

In this section, we will give a simplified expression for the Euler characteristic of
the loci G;'b (C,P,Q), expressing it as a weighted enumeration of standard Young
tableaux, by performing a combinatorial analysis of the sum. Along the way, we find a
nonemptiness criterion for these loci, stated in Proposition 5.2. Then we examine several
special cases of particular interest.

We use the convention that a partition A corresponds to the shape with ; boxes
in the i-th row, where rows are indexed from top to bottom. There is a containment of
shapes 4 € A when two partitions A and u satisfy A; > u; for all i. The skew Young
diagram )/u is represented as the complement of 1 in A. A standard Young tableau on
a skew shape A/u is a filling of the boxes of A/u by numbers 1,...,|1/u| such that the
entries in each row and in each column are strictly increasing. The number of standard

Young tableaux on A/ is commonly denoted by f*/# and is given by the determinantal

formula
= 1a/u — (19)
w4 — D)
(A =y +7 =0 1<ij<r+l
(see [2]). For example, for A = (3,1), u = (1,0), one has
N 11
o L and fHr=31| 2 4 =3
0 1
We extend the above notation to arbitrary sequences I = (Iy,...,l,, ;) and m =
(my,...,m,, ) of nonnegative integers, writing I/m for a “generalized skew diagram”—

note that we allow the differences [; —m; to be negative. Extending the notation for skew
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shapes, we will write
r+1
/m| = > (; —my)
i=1

and

fUm = iymj! (20)

M+ T— )]
& m;+Jj ot 1<ij<r+1

There are two basic facts underpinning our arguments in this section:

Fact 1. Suppose A and p are partitions of length r 4+ 1. Then

FH =/

(= pj+J = D)! 1<ij<r+1
is nonzero if and only if A; > u; for all i. (Here one should read reciprocals of
factorials of negative integers as 0.)

Fact 2. Suppose A = (Ay,...,A.,;) is @ partition, and ! = (l;,...,l,, ) is any sequence of
nonnegative integers such that /; > A; for all i. If the sequence (}, - 1,...,1,,; —
(r + 1)) consists of distinct integers, and w is the permutation, which sorts
them into decreasing order, then the sequence k;r =1

with A} > 1; for all i.

w() — W) +11is a partition

Proof of Theorem C. We can rewrite the formula of Theorem 4.3 as

x(Oaspcra)= 2 (ﬁ (Mi ljimi) (li__/\;i))f i

[I/m|=|r/ul4+p \i=1
r+1 l 1
- Z (H( W )( {— )) (—1)l/Iglm, 21)
Umisioniee Nim1 Wi~ M\ = 4

since [A/u| + p = g. (Recall that the sums are over sequences [ and m such that I, > A;
and m; < u; for all i.)

When the determinant

1 B 1
i/m|!

l/m _

I<i<j<r+l
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12682 D. Anderson et al.

is nonzero, there is a unique permutation w € S, ; acting on the columns of the matrix,

which sorts the entries across rows into decreasing order; equivalently,
[ = My +j—w() (22)

defines a partition u~ C u, using a variation of Fact 2. Then /™ = (—1)382W) fl/1” and

collecting terms gives

r+1
- I,—-1 -
— / i _)I/ALfl
X (OGg'b(C,P,Q)) =2 o (H (l- —A-))( PR, (23)
Jra sy i=1 ! l
where the sum is over partitions u~ € u and sequences I = (Iy,...,l.,,) of nonnegative

integers such that [; > ; for all i, [u/u~| + |I/A| = p, and

r+1
- How ()
) - Z (—1)%82wW) H( )
Hw ) —

WESri1 j=1 I'L]_ +J - W(])
o iss-0)
My —wny +j—i

Similarly, using Fact 2 again, when the determinant

(24)

1<ij<r+1

1
1l/w=!

1

fin = —

I<i<j<r+1

is nonzero, there is a unique permutation w € S, ; acting on the rows, which sorts the

entries into decreasing order down columns. Equivalently,
A= Ly — w(@) + 1, forl<i<r+1, (25)

defines a partition At 2 A. Then f¥/#~ = (—1)888W) £A7/u" Collecting terms gives

r+1 I

i=1 Ao
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where the sum is over partitions A™ of length r + 1 (so AT /u~ is a skew diagram) such
that |AT/A| = |I/A|, and

r+1 + . .
i sen(w A tw@ —1-1
- 2 (—1)s8n )(H ()ﬁ g + WD —i))

WGSr+1 i=1
+ . .
(Ai +Jj—1- 1)
+ . .
)\'i _)\'J +]—l

The binomial determinants o*/*~ and ;““/ * enumerate tableaux, by the method

(27)

1<ij<r+1

of Gessel-Viennot. A (column) semi-standard Young tableau on a given shape is a filling
of the boxes by positive integers such that the entries are weakly increasing across each
row and strictly increasing down each column. A filling is a row semi-standard Young
tableau if the transpose condition holds: the entries are strictly increasing across each
row and weakly increasing down each column. A strict Young tableau is a filling whose
entries are strictly increasing across each row and down each column.

By [27, Theorem 14], the determinant o/#" is equal to the number of row semi-
standard Young tableaux on u/u~ whose entries in row i are between 1 and p;, inclusive,

and the determinant ¢*'/*

is equal to the number of semi-standard Young tableaux on
1T /1 whose entries in row i are between —A; and —1, inclusive. Such tableaux are in
bijection with strict Young tableaux on A*/A whose entries in row i are between 1 and
k;r — 1: given a semi-standard tableau on At /A with i-th row entries in {—4,,...,—1}, add
to each entry the index of its column to obtain a strict tableau with i-th row entries in

{1,... ,A;f — 1}. Combining equations (23) and (26) concludes the proof of Theorem C. H

Next we will prove a nonemptiness criterion for the variety Gz'b (C,P,Q), using
Corollary 2.3. By setting 8 = 0 in (15), and passing to numerical equivalence, we obtain

a variation on the formula for the cohomology class of W}, (C):

Proposition 5.1. Let (C,P, Q) be a smooth two-pointed curve of genus g. If A; > u; for

all i and Wg'b(C, P, Q) has dimension equal to p, then its numerical class is

1

09~P.
(ar,i + b] +9g-— d)l

[Wg"’ (C, P, a)] =

o<i,j<r

If Gfl’b(C,P,O) has dimension equal to p, then yr*[Gfi'b(C,P,O)] equals

[Wg’b (C,P,Q)] when 1/u is a skew diagram and vanishes otherwise.
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In comparing with (15), note the shift of indexing of the matrix, and recall
that the definitions of A and p imply 4; — u; +j—1i = a,,_; + b;_; + g — d. The
vanishing statement follows algebraically from Fact 1, or geometrically from the fact
that dimn(Gg'b (C,P,Q)) < dim(Gg'b (C,P,Q)), unless A/ is a skew diagram; see also the
specialization of Proposition 3.1 at 8 = 0.

Now we can state the nonemptiness criterion.

Proposition 5.2. Let (C, P, Q) be a smooth two-pointed curve of genus g. If

.
p':=g— > max{0,a;+b, ;+g—d}>0, (28)
i=0

then the locus of special linear series GZ’b (C,P,Q) is non-empty.

This was first proved by Osserman, using degeneration techniques [36]. When
b =(0,1,...,r), it recovers the statement for the one-pointed case in [15, Proposition
1.2].

Proof. The nonemptiness of Gfi'b (C, P, Q) is equivalent to the nonemptiness of its image
w = ng'b (C,P,Q) in Picd(C). By Corollary 2.3, W is nonempty when the class Ayryu(c; 0)

is nonzero. By Proposition 6.1, this class is numerically equivalent to

1 49—
@,_;+bi+g—ad)

' (29)

o<ij<r
where, as before, a’ is the sequence defined by

a;:=a; +max{0,d —g — a; — b,_;}.

This means o' = p(g,r,d,a’, b).

Associating partitions A’ and u to the data g, d, a’, b as usual, the definition of a’
guarantees that A;. > u; for all i. It follows that the determinantal coefficient is nonzero
(see Fact 1), so the expression (29) is nonzero if and only if o’ > 0. This is equivalent to
the condition in (28). "

Now we turn to some special cases.
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5.1 The curve case

Let us write A + ¢; for the diagram obtained by adding one box to the right of the i-th
row of A, and u — ¢; for the diagram obtained by subtracting one box from the i-th row
of p. (This means the diagram A/(u — ¢;) is obtained by adding one box to the left of the
i-th row of A/u.)

Now assume p(g,r,d,a,b) = 1. The reformulation in (21) of Theorem A reduces

to
r+1 r+1

_ A (=€) _ CFte)/
X (OGZ'I’(C,P,O)) = Z“if Z)‘lf :
i=1

i=1

By Fact 1, f*/(*=<) vanishes when A/(u —¢;) is not a skew diagram, and f*+<)//* vanishes
when (A + ¢;)/u is not a skew diagram. Using the identity
r+1 r+1

r+ DA/l + DFY* =D 04+ 1+ 2= Df CFDH D"y r 1 — i) 0D,

i=1 i=1
for the number of standard skew Young tableaux, we recover [11, Theorem 1.2].

5.2 The one-pointed case

When b = (0, ..., r), the locus Gg'b (C,P,Q) is identical to the one-pointed locus
GA(C,P) = {z € GL(C)|a'(P) = a} :

On the other hand, when the points P and Q collide together on the curve C, the locus
Gfl'b (C, P, Q) specializes to the locus of linear series (L, V) € G};(C) such that

dim (VN HO(L(~ (@; +b,_)P))) = 1+j 1.
Fix I such that [; > 1; and |I/A| = p. By an application of the Vandermonde identity,

gliti—i

- | H1§i<j§r+1 (li - lj +j - i)
(L;+j—i)

T G +r+1-i)!

’

1<ij<r+l
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so Theorem A reduces to

—* —A [heicjeri (-4 +i—1
X(ch(c,P))= > (ll_;‘l)“‘(lr rl )Xg! lri1r+ (z A )

\1/x=p +1 7 A Hi:l (li +r+1-— i) !

When in addition p(g,7,d,a,b) = 1, this sum becomes

3 H0§i<j§r (aj —a; + 5J’F — 5:;
X(Oc;;(c,p))=—g!2(g—d+r+ak_k)nr ( - +8k))l,
k=0 i=0\9 — r+a; )

where § is the Kronecker delta.

5.3 Set-valued tableaux and the one-pointed case

In the one-pointed case, we can re-write the Euler characteristic in terms of numbers
of certain tableaux. A set-valued tableau on a shape A is a labeling of the boxes of
by finite non-empty subsets of N such that the maximum element of the label of any
box (i,j) is at most the minimum element of the label at (i,j + 1), and smaller than the
minimum element of the label at (i + 1,j) (see [8]). Given a nonnegative integer p, a p-
standard set-valued tab-leau on A is a set-valued tableau on A such that the labels of
the boxes of A are subsets of {1,...,|A|+p} and each of 1,...,|\|+ p appears exactly once.
(See Section 7 for more about set-valued tableaux and the connection with Grothendieck
polynomials.)

Chan and Pflueger conjectured a formula expressing the Euler characteristic of a
two-pointed Brill-Noether locus via set-valued tableaux on a skew shape. The following
establishes the one-pointed version of their conjecture. (Chan and Pflueger have now

proved their conjecture using different methods in [12].)

Corollary 5.3. Suppose dim GZ(C, P) = p, and let A be the partition corresponding to a.
Then

X (OG;(C,P)) = (—1)° - #{p -standard set-valued tableaux on A}.

This is zero if and only if W3(C,P) = Pic?(C).
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Proof. In the one-pointed case, Theorem C becomes

X (OG‘;(C,P)) — (_l)p Z g)ﬁr/k ,fA+,

W+ /xl=p

so we must identify the sum on the RHS with the number of p-standard set-valued
tableaux on A.

For any partition v, it follows from a theorem of Lenart [34, Theorem 2.2] that
(The result of Lenart has now been extended to skew shapes in [12, Theorem 6.8]. By
means of this extension, the argument in the proof of Corollary 6.3 can be applied to

prove the two-pointed version of the statement.)

#{p -standard set-valued tableaux on v} = Z g”+/"f”+,
v+ /vl=p

where ¢g""/” is the number of strict Young tableaux on vt /v whose entries in row i are
between 1 and i — 1, inclusive, andf"+ is the number of standard Young tableaux on v+.
(To deduce this from Lenart’s theorem, which writes the Grothendieck polynomial for v
as a sum of Schur polynomials, compare the coefficient of the monomial x; - - - x,,, on
each side of his formula.)

Our claim follows by taking v to be the conjugate partition A/, that is, the diagram
obtained by reflecting across the diagonal, so that rows and columns are interchanged.
It is easy to see that p-standard set valued tableaux on A and v are in bijection. Similarly,
standard Young tableaux on A™ and v™ = (A7)’ are also in bijection, so f’\+ =f"+. Finally,
M/ =g/ for v =1 and vt = (A1), because sending a tableau T to its conjugate T’
defines a bijection from strict tableaux on A*/A with i-th row entries in {1,... ,A;r -1}

to strict tableaux on v* /v with i-th row entries in {1,...,i — 1}. [ |

5.4 The classical case

Here there are no point conditions, and in the formulas one can take © = ¢, and let
A = (g —d +r)"! be the rectangular shape. Any partition A* 2 A of length r + 1 can be

At/

written as A+ y, for some partition y of length r+ 1. The determinant ¢ can therefore

be written as

G-—d+r+y,+i—i—-1,4

=
v, +j—! 1<ij<r+1

’
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where (n), =n(n—1)--- (n+1—k) is the falling factorial. Manipulating the matrix leads

to a factorization of this determinant as

r+1
~H(g—d+r+yi—i)yi.

1<ij<r+l ;3

1
’ (r; +J— !
Applying this simplification to Theorem C, we obtain the following:

Corollary 5.4. If dim G}(C) = p(g,7,d) < g, then

*(9g,0) = 1 (Owyo)

(—l)p ) r+1 ‘ iy
= 2 le-dsrevi-o,.f
lyl=p i=1
where the sum is over partitions y = (y; > --- > y,,; > 0) and A + y is the partition

@G—d+r+y,....g—ad+r+v. ).

In low dimensions, the Euler characteristic can be written in a fairly simple
closed form.
When p(g,7,d) = 0, the formula in Corollary 5.4 recovers Castelnuovo’s count

for the number of line bundles of degree d with r + 1 sections:

r .

t!
r o — -
Noa = x (OGE(C)) _gln)(g—d+r+i)!'
1=l

When p(g,r,d) = 1, we recover [15, Theorem 4]:

_ @-d+no+D
X (OGQ(C)) = T Tg—diart1 Ned

When p(g,r,d) = 2, we obtain

( )_ (r+1)%(@g —d+r)? .
XFe0) T 2 g—dr2ng—d+2rt2) 94

Finally, when p(g,r,d) = 3, set s := g — d + r, and we have

(0 )__ (r+ 1DZs2[((r + s+ 1)? — 2)s(r + 1) — 2] .
X\HGO) T T s+ r— DG+ +r+ D +r+2)s+r+3) 994
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6 Schubert and Grothendieck Polynomials

As one more application of the degeneracy locus formula of Theorem B, we deduce
determinantal formulas for (double) Schubert and Grothendieck polynomials for 321-
avoiding permutations. Indeed in this section, we identify our K-theory formulas with
double versions of the flagged skew Grothendieck polynomials recently introduced by
Matsumura [35].

For decreasing sequences p = (p;,...,p,) and q = (q;,...,q,), we defined

partitions A and u by

in Section 1.2. When p and q satisfy

q;>p;—1 foralli, (%)

the partitions form a skew diagram A/u, and we defined an associated permutation w

by setting

and then filling in the remaining entries with the unused numbers in increasing
order. As noted in Section 1.2, this is a 321-avoiding permutation, and all 321-avoiding

permutations arise this way.

Remark 6.1. The above is equivalent to the bijection of 321-avoiding permutations
with labeled skew tableaux of Billey-Jockusch-Stanley [7], which can be re-formulated
as follows. For a 321-avoiding permutation w, the skew shape o (w) considered in [7] is
a 180 degree rotation of our skew shape A/u, that is, o (w) = n/t where n; = Ay — s, 1_;
and t; = Ay — Ay ;. Let f, = (f1. fo, ..., fy) be the increasing sequence of indices j such
that w(j) > j, and let e; = w(f;) — 1. Then the labeling w(w) of the skew shape o (w)
is obtained by placing the entries e;, e; — 1,...,f; in the i-th row of o (w) such that the
entries increase by one in each column and decrease by one in each row. In our setup,

the labeling w(w) is determined by f; = p,,, ; and ¢; = q,,;_;.
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6.1 Schubert polynomials

For any permutation w, the double Schubert polynomial &, (x,y) of Lascoux and
Schiitzenberger is a canonical representative for the cohomology class of the corre-
sponding Schubert variety or degeneracy locus [23]. Similarly, the double Grothendieck
polynomial & ,(x,y) represents the structure sheaf of a Schubert variety or degeneracy
locus in K-theory [20, Theorem 3]. These polynomials are defined inductively, but for
special types of permutations, one can give direct formulas. Our goal here is to give
such formulas for 321-avoiding permutations.

First, we state the formula for Schubert polynomials. Given sets of variables x

and y, let

i
1—u
i, = a=t L= Wa)
Hb’:1(1 — uxy)
and define ¢, (i,j) by collecting the coefficient of u* in the expansion of this rational
function (in positive powers of x and y). For example, if y = 0, then ¢ (i,j) is the complete
homogeneous symmetric polynomial A (x,... ,ij) (for any i), and if x = 0, then ¢, (i, )

is the elementary symmetric polynomial (—1)¥e,(y, ... 1¥q,) (for any j).

Corollary 6.2. Let w be a 321-avoiding permutation, with associated tuples p,q
satisfying (x), and let A/u be the corresponding skew Young diagram. The double

Schubert polynomial for w has the following determinantal expression:

GW(X, Y) = AA/M(C; 0) = C)»i—uj+j—i(i’j)

1<ij<t'

where ¢, (i,)) is the polynomial in x and y defined above.

Since double Schubert polynomials are obtained by specializing double
Grothendieck polynomials at 8 = 0, the statement is a special case of Corollary 6.4,
proved below.

This recovers a formula of Lascoux and Chen-Yan-Yang (see [13]), which in turn
generalized a formula of Billey—Jockusch-Stanley [7] for the single Schubert polynomials
of 321-avoiding permutations—that is, the case y = 0. More precisely, the matrices
computing these formulas in [13] are obtained by reflecting about the anti-diagonal the
matrices computing the determinants in Corollary 6.2. The right-hand side is a flagged

double skew Schur function, a variant of the flagged double Schur function introduced
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by Chen-Li-Louck [10]. (“Flagging” refers to the nested sets of variables appearing along
rows and columns of the determinant: the i-th row uses {y;, ... ,yqi}, and the j-th column

uses {Xl,...,ij}.)

Example 6.3. An example of a 321-avoiding permutation that is not also vexillary
(another class having determinantal expressions, thanks to an older theorem of Wachs)
isw=31254 Herep = (4,1) and q = (4,2), so A = (3,2) and u = (2,0), and the

formula says

c;(1,1) c¢,(1,2)

S =
31254 0 C2(2,2)

‘ =c1(1,1)-¢,y(2,2)

=X +X+X3+X, -y V2~ V3 —Y4)'(X% —X1¥) — X1V2 + V1V2)-

Comparing with [7], and using their notation, the labeled skew diagram (o (w) =

n/t,w(w)) associated to w =31 2 5 4 is given by:

where n = (3,1), t = (1,0), f = (1,4), and e = (2,4). The matrix computing the
determinant &4;,5, in [7] is obtained by reflecting the above matrix about the anti-

diagonal.

6.2 Grothendieck polynomials

Now we turn to Grothendieck polynomials. Here the variables should be identified as
follows. Let

q Dj

. (1 + Byq — uyay) (1 + Bxp)
c@.p =111 1+ Bya) (1 + Bxp — uxp)

a=1b=1

The term c; (i,j) is obtained as before, by expanding and collecting the coefficient of uk.

Corollary 6.4. Let w be a 321-avoiding permutation, with associated tuples p,q

satisfying («), and let A/u be the corresponding skew Young diagram. The double
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Grothendieck polynomial for w has the following determinantal expression:
6W(Xl Y) = Ak/u(C; 13)

r—pit+k—1 ..
= Z( i Jk )ﬁkcxi—ﬂj+j—i+k(l'1) ,

k=0 1<ij<t

where ¢, (i,j) is the polynomial in x, y, and 8 defined above.

Proof. This follows directly from Theorem 2.1(ii), by choosing a base and vector
bundles so that there are no relations among the relevant Chern classes.

Here is one way to do this. Let Fl(p, V) and FI(V, q) be the partial flag varieties of
subspaces of dimensions p; and quotients of dimensions g;, respectively, so they come
with tautological bundles Epj CVandV —» qu" Let X = Fl(p, V) x FI(V, q), and identify

variables x and y with Chern classes of the tautological bundles by writing

qi

C(Epj) B Rl o el R C(F ) =11 %ﬂ;‘;‘%;

a=1

that is, the x variables are the Chern roots of E;;j, the y variables are the Chern roots
of sz‘i, and we have c(i,j) = C(Fqi — Epj). For any fixed degree d, one can take dim V
sufficiently large so that there are no relations among the Chern classes of Ep and F,
in CK4(X).
Via the projection X — FI(V, q), one can regard X as a (partial) flag bundle. By
Lemma 1.4, the degeneracy locus Wp,q C X, defined by the conditions
dimker (B, > Fg) = 1+i-j forallij

is identified with the Schubert locus corresponding to w in this flag bundle. Now
[20, Theorem 3] says this locus is represented by the double Grothendieck polynomial
&, (x,y) in K-theory, while Theorem 2.1(ii) says it is represented by A, (c; B). Since

there are no relations among the variables, we must have an equality of polynomials. B

We conclude with a tableau formula for the Grothendieck polynomials & ,(x) =
&, (x,0). As in Section 5.3, a set-valued tableau of skew shape A/u is a labeling of the
boxes of A/u by finite non-empty subsets of N such that the maximum element of the

label of any box (i,j) is at most the minimum element of the label at (i,j+ 1), and smaller
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than the minimum element of the label at (i 4+ 1,j) (see [8]). Given a skew shape A/u and
a flagging f = (f1,....f}). a flagged skew set-valued tableau of skew shape A/u with
flagging f is a set-valued tableau on A/u such that every entry in the i-th row is a
subset of {1,2,...,f;}. Let FSVT(A/u,f) denote the set of all such flagged skew tableaux.
For a (flagged) set-valued tableau T, let xT be the monomial in which the exponent of x;

is the number of boxes of T, which contain i.

Corollary 6.5. Let w be a 321-avoiding permutation and let o(w) = 5/t be the skew
Young diagram with flagging f,, corresponding to w via the Billey-Jockusch-Stanley
bijection, as in Remark 6.1. The Grothendieck polynomial & ,(x) = & ,(x, 0) is equal to

Z /ngl—lU(W)le. (30)

TEeFSVT (o (W) fw)

Proof. Matsumura [35, Section 4] defined flagged skew Grothendieck polynomials
to be generating functions of flagged set-valued tableaux given by (30) and proved
that they have determinantal expressions. Corollary 6.4 also holds after the matrix is
reflected about the anti-diagonal—by replacing the (i,j) entry with the (t4+1—j,t+1—1)
entry—since the determinant is unchanged by this operation. The entries of this
reflected matrix are equal to those in the determinantal formulas of [35, Section 4],

as explained in [3, Remark 1.1]. [ |

6.3 Flagged set-valued skew tableaux and pipe dreams

Corollary 6.5 recovers the tableau formulas for Schubert polynomials of 321-avoiding
permutations [7, Theorem 2.2] and for Grothendieck polynomials of Grassmann permu-
tations [33, Theorem 5.8]. The proofs of those formulas rely on writing Schubert and
Grothendieck polynomials in terms of pipe dreams (after [32]) along with bijections
between certain tableaux and pipe dreams [7, Theorem 2.2; 33, Proposition 5.3]. To
conclude, we give a bijection between flagged set-valued skew tableaux and pipe dreams
for 321-avoiding permutations that extends these bijections and gives an alternative
proof of Corollary 6.5.

For a flagged set-valued skew tableau T € FSVT(o(w),f,,), let T be the flagged
skew tableau obtained by taking the smallest element of each box of T (see Figure 2).

A pipe dream is a tiling of the fourth quadrant of the plane by crosses + and
elbows Jf. A reduced pipe dream (or rc-graph) for a permutation w is a tiling such that

the pipe that starts at the beginning of the i-th row exits the top of the w;-th column,
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23 2

Fig. 2. For the permutation w = 31254 in Example 7.3, and the given T € FSVT (¢ (W), fw), T is the
associated flagged skew tableau.

with no two pipes of P crossing each other more than once. For a pipe dream P, we write
P for the reduced pipe dream obtained by replacing all but the northeasternmost cross
between two pipes by an elbow, and say that P is a pipe dream for a permutation w if P
is a reduced pipe dream for w.

Following the notation of Remark 6.1, to T € FSVT (o (w), f,,,), we can associate a
pipe dream Q(T) as follows:

Place a cross in position (i, w(b) — i + 1) for each entry i in a box b of o(w), and an elbow
in all other positions.

Given a pipe dream P, let x* := H(i,j) x;, where the product is over crosses (i,j) in
P, and let |P| be the total number of crosses. Fomin and Kirillov ([18] and [19]; see also

[32] for the language of pipe dreams) show that

&, (x) = Zﬁ'PF“W&P, (31)
P

where the sum is over P such that P is a reduced pipe dream for w. This specializes to
[7, Theorem 1.1] when 8 = 0.

Example 6.6. For T as in Figure 2, we have crosses in exactly positions (1, 1), (1, 2), (2, 3),
and (3,2), so that Q(T) is equal to the pipe dream P of Figure 3. Similarly, for T as in
T 2 P

Figure 2, Q(T) is equal to the reduced pipe dream P of Figure 3. Here, xT = X{Xy) = X

and xT = x?x,x5 = x*, where P = Q(T) and P = Q(T).

Proposition 6.7. Let w be a 321-avoiding permutation and let o (w) = 5/t be the skew
Young diagram with flagging f;,, corresponding to w. Then the map @ gives a weight-

preserving bijection from FSVT (o (w), f,,) to the set of pipe dreams for w.

The map Q generalizes the bijection between flagged skew tableaux and reduced

pipe dreams of 321-avoiding permutations in [7, Theorem 2.2] and the bijection between
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Fig. 3. A pipe dream P and related reduced pipe dream P for the permutation w = 31254.

flagged set valued tableaux and pipe dreams of Grassmann permutations in [33,

Proposition 5.3].

Proof. By its definition, the map Q is an injection and specializes to the bijection
between flagged skew tableaux and reduced pipe dreams for w. Therefore, if P is a pipe
dream for w, there is a flagged skew tableau T such that Q(T) = P. Since the proof of
[33, Proposition 5.3(a)] for ordinary shapes carries through for skew shapes, no pipe of
P passes horizontally through one cross and vertically through another. (For straight
shapes, the pipe dreams in [33] and here differ by a reflection across the vertical axis.)

We claim that if a horizontal and vertical pipe cross at a Jf and pass through
a JF tile southwest of it, then the two tiles lie on the same anti-diagonal. This holds
since if a pipe crosses horizontally at position (i, j,) it cannot cross any pipe vertically,
hence to the west of (i, j,), the pipe is bounded to be at or above the anti-diagonal
through (i, j,). Similarly, if a pipe crosses vertically at (i, j,), it cannot cross any pipe
horizontally, hence going south of (i, j,), the pipe is bounded to be at or below the anti-
diagonal through (iy, j,). If the two pipes also meet at an elbow, then that elbow must
lie on the anti-diagonal containing (iy, jg).

The pipe dream P is obtained from P by altering some such JF tiles to Jf tiles.
This corresponds exactly to inserting extra entries in the box of T corresponding to the
original Jf tile of P. More specifically, let b be a box in the labeled skew diagram o (w).
Let iy be the smallest entry of b. Then for i > i, the additional entries of b correspond
to crosses in positions (i, w(b) —i+ 1) in the pipe dream Q(T) (these are southwest of the
entry (iy, w(b) —ig + 1) in the anti-diagonal {(i,j) |i +j = w(b) + 1}), and conversely.

The bijection in [7] and [6] between flagged skew tableaux and reduced pipe
dreams satisfies xT = x2™_ By the description of the extra entries in fillings of T, we

conclude that x7 = x%( and so 2 is a weight-preserving bijection. [ |
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We observe that |o(w)| = |T| = |(T)| = [(w). Comparing the summands in (30)

and (31) under the above bijection, this shows that the generating function formulas (30)

and (31) agree term by term, and therefore, this bijection gives an alternative proof of

Corollary 6.5.
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