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Abstract. Karasev [16] conjectured that for every set of r blue lines, r green
lines, and r red lines in the plane, there exists a partition of them into r colorful
triples whose induced triangles intersect. We disprove this conjecture for every r
and extend the counterexamples to higher dimensions.

1. Introduction

Tverberg’s theorem is a central result in combinatorial geometry. It
states that any set of (r —1)(d+ 1) + 1 points in R? can be partitioned into
r sets whose conver hulls intersect. It was proven by Helge Tverberg [28]
and its generalizations and extensions have sparked significant interest in
the area [7,11,20].

One of the most intriguing open questions regarding Tverberg’s theorem
is the colorful version. This was conjectured by Barany and Larman.

CONJECTURE 1.1 (Barany, Larman [4]). Let r, d be positive integers.
Given d + 1 sets X1,...,Xa41, each consisting of r points of R%, there ex-
ists a partition of their union into r sets Ay, ..., A, such that each A; has
exactly one point of each X; and the convex hulls of Ay, ..., A, intersect.
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The conjecture above has been confirmed when r + 1 is prime [9,10], or
when d = 2 [4]. If each X; is allowed to have more than r points, there are
plenty of positive results (see, e.g., [8,30] and the references therein).

One popular way to find variations of Tverberg’s theorem is to replace
the convex hull operator. The topological versions of Tverberg’s theorem are
the most notorious examples, in which one wants to show that any contin-
uous mapping from an (r — 1)(d + 1)-dimensional simplex to R? has points
covered by the image of r pairwise disjoint faces [6,24,29]. In this case, one
must either introduce conditions on the parameters, such as being prime
powers, or use a larger number of points [3,13,14,21]. Determining the va-
lidity of the topological Tverberg theorem for non-prime powers was a cru-
cial problem in topological combinatorics (see [22]) and it was a surprise to
the community the prime power conditions were necessary. Results whose
proofs use similar methods from equivariant topology always bring the ques-
tion of whether such conditions are needed. For instance see the progress of
the Nandakumar-Ramana-Rao problem in measure partitions [1,12,18,26],
or the cake-cutting partition results when one removes the “hungry guest”
condition [2,23].

There are other ways to replace the convex hull in Tverberg’s theorem.
A recent example is if we consider for any two points the ball centered at
their midpoint that contains both points in its boundary [15,27]. Huemer
et al. showed that the natural extension of the colorful Tverberg theorem is
valid in this setting in the plane. Another way to replace the convex hull is
with Tverberg’s theorem for hyperplanes.

In the hyperplane version, we are given sets of hyperplanes in R? in gen-
eral position instead of points. We say that a family of hyperplanes in R?
is in general position if the normal vectors of any d hyperplanes are linearly
independent and no d + 1 hyperplanes have a point in common. With these
conditions, any d + 1 hyperplanes uniquely define a simplex.

THEOREM 1.2 (Karasev [16]). Let r be a prime power and d be a positive
integer. Any family of r(d+ 1) hyperplanes in R? in general position can be
split into r sets of d+ 1 hyperplanes each so that their induced simplices all
intersect.

The case d = 2 was proved earlier by Rousseeuw and Hubert without
conditions on r [25]. Karasev also proved further extensions of the theorem
above [17]. Barany and Pach proved similar extensions of other results in
combinatorial geometry for hyperplanes [5]. Karasev [16] conjectured that a
colorful version of the Tverberg-type theorems for hyperplanes should hold
similar to the Barany—Larman conjecture.

CONJECTURE 1.3 (Karasev [16]). Given r blue, r red, and r green lines
i the plane in general position, it is possible to split them into r colorful
triples whose induced triangles intersect.
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If r is a prime power, Karasev proved a relaxed version of the conjecture
above if each family has 2r — 1 lines but we only look for r colorful triples
whose triangles intersect. This conjecture was previously known to be false
when r = 2m for odd m [19]. As Karasev’s proofs of Theorem 1.2 and the
cases for the colorful version use strong topological techniques, it is of in-
terest to know if his conjecture remains valid under some conditions of the
parameters.

In this note, we disprove Conjecture 1.3 for every r. Our examples work
in higher dimensions, so we also disprove the natural extension to R?. In
other words, Theorem 1.2 cannot be made colorful as in the Barany—Larman
conjecture. An interesting point is the structure of our counterexamples,
which are based in hypercubes with two particular cross-sections, equipped
with a doubling argument. We found it surprising that the dual of Lovasz’s
parametrization [4] (an octahedron with opposite vertices of the same color)
for the proof of the colorful Radon theorem helps one find the counterexam-
ples for the dual of the problem.

THEOREM 1.4. Let r,d > 2 be positive integers. There exists a family
of d+1 sets X1,...,Xq.1, each consisting of r hyperplanes in R%, so that
their union s in general position and the following statement holds. For
any partition of their union into r sets Ay, ..., A, so that each A; has a
hyperplane of each X;, there are two sets A;, Aj whose induced simplices do
not intersect.

In Section 3 we discuss the implications of our examples to the topo-
logical methods used by Karasev. Since his proof of Theorem 1.2 used the
Borsuk—Ulam type result that combines Brower’s fixed point theorem with
the standard configuration space for Tverberg’s theorem, no such extension
can be done with the configuration space for the known cases of the color-
ful Tverberg theorem. We also hope that the doubling argument used in the
examples can be useful in other results in combinatorial geometry.

2. Counterexamples

We first construct the counterexample in dimension two, and extend our
constructions in higher dimensional spaces. Given d 4+ 1 sets of hyperplanes
in R?, we say that they are in weak general position if every time we pick d
hyperplanes of different sets, their normal vectors are linearly independent.
This guarantees that their intersection is a single point.

Our constructions are made for sets in weak general position, and a small
perturbation argument gives Theorem 1.4. We consider each set X; as a
color class. Given d+ 1 sets X1,..., Xq41 of r hyperplanes each in R?, we say
that a colorful partition is a partition of their union into r sets Aq,..., A,
each with one element of each X;. For a colorful (d + 1)-tuple A in weak
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r—1 r—1

Figure 1: An illustration of the example for d = 2

general position we denote by A(A) the simplex generated by A. If the
hyperplanes of A are concurrent, then A(A) is their point of intersection.

THEOREM 2.1. Let r > 2 be an integer. Consider the set X1 (red) of
r — 1 copies of the line x =1 and one copy of the line x = —1, the set Xo
(green) of r — 1 copies of the line y = —1 and one copy of y = 1, and the set
X3 (blue) of r — 1 copies of the line x = —y and one copy of the line x = y.
Then, every colorful partition Ay, ..., A, of X1, X2, X3 has two sets Aj, A
so that A(Aj) N A(Aj) = 0.

The construction can be seen in Figure 1.

PrRoOOF. To make a colorful partition of the three colors we first make a
colorful partition of red and green and then assign blue lines to each part.
Choosing a pair of red and green lines is equivalent to choosing a vertex of
the square [—1,1]2. The number of times a vertex can be chosen is bounded
by the number of green lines containing it and by the number of red lines
containing it.

If the point (—1,—1) is chosen, then all the other r — 1 vertices chosen
have to be (1, 1). If the line associated with the point (—1,—1) is = y, then
all the other points are associated with the line x = —y. So the first simplex
is just the point (—1,—1) that is not contained in the simplex defined by
(x =1,y =1,z = —y). If the blue line associated with (—1,—-1) is z = —y,
then one of the copies of (1,1) is associated with = y. That last simplex
is simply the point (1,1), which is not contained in the triangle spanned by
(33: _17 Y= _17 xr = _y)

If, on the other hand, the point (—1, 1) is chosen, then the point (—1,—1)
cannot be (they share the same red line). Similarly, the point (1,1) can be
chosen at most r — 2 times (they share the same green line). Therefore the
points in the partition have to be (—1,1), (1,—1), and r — 2 copies of (1,1).
One of (—1,1) or (1,—1) will have to be associated with the line = = —y,
since there is only one copy of the line x = y. This means that one of the
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simplices will be a point, say (—1,1). But then one of the other simplices is
either the point (1,—1) or defined by this point and the line = y, and in
either case these two simplices are disjoint. The case analysis is analogous
if (1,—1) is chosen. O

Now we extend this construction to R?. For point z € R% we denote its
coordinates by x = (z1,...,24).

THEOREM 2.2. Letd > 3, r > 2 be integers, and € > 0 be a real number

smaller than 2\/2(1(1_2). Consider the sets X1, ..., Xqy1 of hyperplanes in

R? defined as follows. Fori=1,...,d, the set X; is made by r — 1 copies
of the hyperplane x; =1 and one copy of the hyperplane x; = —1. The set
Xgi1 is made by r — 1 copies of the hyperplane 1+ x9+¢e(xs+---+x4) =0
and one copy of the hyperplane 1 — xo +e(x3+ -+ x4) = 0. Then, every
colorful partition Ay, ..., Ay of X1, ..., Xgy1 has two sets A;, Aj so that
A(A)NA(A) =0.

PRrOOF. Let H be the two-dimensional plane spanned by eq,es. Let 1T :
R? — H be the orthogonal projection. Notice that every colorful partition
of X1, Xo, ..., X441 can be made by first making a colorful partition of X7,
X9, X441 and then assign each of the hyperplanes in X; to different sets in
the partition. The colorful partition of X1, Xo, X411 intersected with H
is essentially the same construction as in Theorem 2.1. We will show that
there are two sets A;, A’ such that TI(A(A;)) NTI(A(A;) = 0, which would
prove the theorem.

Let us compute the first two coordinates of every vertex of A;. We
denote by A1, A2, A3 the elements of {—1,1} so that the following holds.
The colorful (d + 1)-tuple A; has the hyperplane 1 = Ay from X1, the hy-
perplane x9 = A\ from X5, and the hyperplane x1 — A\sxo +e(zg + -+ - + )
from Xgy1. The (d+ 1)-tuple A; also has some hyperplane from each of X3,
vy Xy

To compute the first two coordinates of a vertex of A(A;), we have to
remove one of the d + 1 hyperplanes of A; and find the intersection of the
other d. If neither the hyperplanes from X; nor X, are removed, the first
two coordinates from the intersection are (A1, A2). If the hyperplane x1 = A\
is removed, then the second coordinate is Ao. We also have 1 — A3xzo +
e(xz + -+ xq) = 0. Therefore,

|.CL‘1 — )\3)\2| = €|:L‘3 + -+ :L‘d| < €(d — 2).
In the last case, if the hyperplane x5 = A5 is removed, the first coordinate is
A1. We also have x1 — Agzo +e(x3+ -+ +24) = 0, S0 A\3z1 — 22 + Aze(ws +
o4 1x4) =0, as (A3)?2 = 1. Therefore,
‘(L‘g — )\3)\1‘ = E‘)\g‘ . |.T3 + -+ .Td| <e(d-— 2).
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Therefore, the vertices of II( A(A;) are very close to the vertices of the tri-
angle in the corresponding partition of X1, X9, X411 in Theorem 2.1. Since
in Theorem 2.1 we could always find two (possibly degenerate) disjoint tri-

angles at distance greater than or equal to ’_, then as long as € <

1
V2?7 2+/2(d—2)

we will have the same conclusion. 0O

Finally, we make the approximation argument explicit to prove Theo-
rem 1.4.

PROOF OF THEOREM 1.4. We take the construction from Theorem 2.2
and denote it A. For each colorful partition P of A, there exist two col-
orful triples Aj, Ay so that A(A;) and A(Ay) are strictly separated by a
hyperplane H. Let

6(P) = min{dist(A (A1), H), dist(A(A2), H)}, 0 = mind(P),

where the minimum defining § ranges over all colorful partitions of A. We
apply a small enough perturbation to A so that for every colorful d-tuple X
of hyperplanes, the distance (] X moves is less than §. This guarantees that
the hyperplanes that separate colorful simplices still work. [J

3. Additional remarks

Karasev’s proof of Theorem 1.2 relies on a clever geometric idea. Given
a set of r(d+ 1) hyperplanes in R? in general position, and an additional
point p, we can consider S the set of projections of p onto each hyperplane,
and include p. This gives us a set of r(d+ 1) + 1 points in R?, so Tverberg’s
theorem can be applied. We obtain a partition of the point set into r + 1 sets
whose convex hulls intersect. Karasev showed that if in this partition one
of the parts is simply {p} and the rest are (d + 1)-tuples, then the partition
they induce on the hyperplanes is the one we seek. Moreover, for every
(d+ 1)-tuple A; of hyperplanes we would have p € A(A;). Then, the proof
boils down to showing that for some point p a partition as mentioned works.

At first glance, it might seem tempting to apply a similar idea by re-
placing Tverberg’s theorem by the optimal colorful Tverberg theorem by
Blagojevi¢, Matschke, and Ziegler [9,10], as the number of points matches
Tverberg’s theorem. One interpretation of the counterexamples found in
this note is that controlling the size of the sets in an optimal colorful parti-
tion is significantly harder than for Tverberg’s theorem, even with a similar
degree of freedom in the configuration of points. This is a bit surprising
since the projection of p onto a fixed hyperplane is an affine map, so the
reason why Karasev’s conjecture fails is not topological in essence.

Acta Mathematica Hungarica 167, 2022



[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

21]

22]
23]

24]

COUNTEREXAMPLES TO THE COLORFUL TVERBERG CONJECTURE 391

References

A. Akopyan, S. Avvakumov and R. Karasev, Convex fair partitions into an arbitrary
number of pieces, arXiv, fmath.MG (2018), 12 pp.

S. Avvakumov and R. Karasev, Envy-free division using mapping degree, Mathe-
matika, 67 (2021), 36-53.

S. Avvakumov, R. Karasev and A. Skopenkov, Stronger counterexamples to the topo-
logical Tverberg conjecture, arXiv:1908.08731, (2019).

I. Bardany and D. G. Larman, A colored version of Tverberg’s theorem, J. London
Math. Soc., 45 (1992), 314-320.

1. Barany and J. Pach, Homogeneous selections from hyperplanes, J. Combin. Theory
Ser. B, 104 (2014), 81-87.

I. Bardny, S. B. Shlosman and A. Sziics, On a topological generalization of a theorem
of Tverberg, J. London Math. Soc., 2 (1981), 158-164.

I. Bardny and P. Soberén, Tverberg’s theorem is 50 years old: A survey, Bull. Amer.
Math. Soc., 55 (2018), 459-492.

P. V. M. Blagojevi¢, F. Frick and G. M. Ziegler, Tverberg plus constraints, Bull.
London Math. Soc., 46 (2014), 953-967.

P. V. M. Blagojevi¢, B. Matschke and G. M. Ziegler, Optimal bounds for a colorful
Tverberg-Vreéica type problem, Adv. in Math., 226 (2011), 5198-5215.

P. V. M. Blagojevi¢, B. Matschke and G. M. Ziegler, Optimal bounds for the colored
Tverberg problem, J. European Math. Soc., 17 (2015), 739-754.

P. V. M. Blagojevi¢ and G. M. Ziegler, Beyond the Borsuk—Ulam theorem: the topo-
logical Tverberg story, in: A Journey Through Discrete Mathematics, Springer
(Cham, 2017). 273-341,

P. V. M. Blagojevi¢ and G. M. Ziegler, Convex equipartitions via equivariant obstruc-
tion theory, Israel J. Math., 200 (2014), 49-77.

F. Frick, Counterexamples to the topological Tverberg conjecture, Oberwolfach Re-
ports, 12 (2015), 318-312.

F. Frick and P. Soberén, The topological Tverberg problem beyond prime powers,
arXiv, math.CO (2020).

C. Huemer, P. Pérez-Lantero, C. Seara and R. I. Silveira, Matching points with disks
with a common intersection, Discrete Math., 342 (2019), 1885-1893.

R. N. Karasev, Dual theorems on central points and their generalizations, Sbornik:
Math., 199 (2008), 1459-1479.

R. N. Karasev, Tverberg-Type Theorems for intersecting by rays, Discrete & Comput.
Geom., 45 (2011), 340-347.

R. N. Karasev, A. Hubard and B. Aronov, Convex equipartitions: the spicy chicken
theorem, Geom. Dedicata, 170 (2014), 263-279.

S. Lee and K. Yoo, On a conjecture of Karasev, Comput. Geom., 75 (2018), 1-10.

J. A. D. Loera, X. Goaoc, F. Meunier and N. H. Mustafa, The discrete yet ubiquitous
theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg, Bull. Amer.
Math. Soc., 56 (2019), 1-97.

I. Mabillard and U. Wagner, Eliminating Tverberg points. I. An analogue of the Whit-
ney trick, in: Proc. 30th Annual Symp. Comput. Geom. (SOCG), ACM (Kyoto,
2014), pp. 171-180.

J. Matousek, Using the Borsuk—Ulam Theorem: Lectures on Topological Methods in
Combinatorics and Geometry, Springer (Berlin, Heidelberg, 2003).

F. Meunier and S. Zerbib, Envy-free cake division without assuming the players prefer
nonempty pieces, Israel J. Math., 234 (2019), 907-925.

M. Ozaydin, Equivariant maps for the symmetric group (1987), unpublished preprint,
https://minds.wisconsin.edu/bitstream/handle/1793/63829/Ozaydin.pdf.

Acta Mathematica Hungarica 167, 2022



392 J. P. CARVALHO and P. SOBERON: COUNTEREXAMPLES TO THE COLORFUL ...

[25] P. J. Rousseeuw and M. Hubert, Depth in an arrangement of hyperplanes, Discrete
Comput. Geom., 22 (1999), 167-176.

[26] P. Soberén, Balanced convex partitions of measures in R?, Mathematika, 58 (2012),
71-76.

[27] P. Soberén and Y. Tang, Tverberg’s theorem, disks, and Hamiltonian cycles,
arXiv:2011.12218 (2020).

[28] H. Tverberg, A generalization of Radon’s theorem, J. London Math. Soc., 41 (1966),
123-128.

[29] A. Y. Volovikov, On a topological generalization of the Tverberg theorem, Math.
Notes, 59 (1996), 324-326.

[30] R. T. Zivaljevi¢ and S. T. Vreéica, The colored Tverberg’s problem and complexes of
injective functions, J. Combin. Theory, Series A, 61 (1992), 309-318.

Acta Mathematica Hungarica 167, 2022



	COUNTEREXAMPLES TO THE COLORFULTVERBERG CONJECTURE FORHYPERPLANES
	Abstract.
	1. Introduction
	2. Counterexamples
	3. Additional remarks
	References




