
1. Introduction
“Chance favors the prepared mind (Louis Pasteur)”

1.1. The Problem of Selecting an Appropriate Representational System
Key to the development of any dynamical systems model, be it conceptual or data-based, is the selection of an 
appropriate representational system. This includes two aspects: (a) the choice of relevant inputs (drivers) and 
boundary conditions, and (b) the formal mathematical/algorithmic structure used to construct the input-state-out-
put mappings that are hypothesized to characterize the system (Gharari et al., 2021; Gupta et al., 2012).

Clearly, the selection of inputs and boundary conditions determines the nature and quality of the information that 
can be brought to bear on the prediction problem because without adequate and informationally relevant data, the 
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can ask, the nature of the analyses and inferences we can perform, and the answers we can obtain. Accordingly, 
a representation that is suitable for one kind of investigation might be limited in its ability to support some 
other kind. Arguably, how different representational approaches affect what we can learn from data is poorly 
understood. This paper explores three representational strategies as vehicles for understanding how catchment 
scale hydrological processes vary across hydro-geo-climatologically diverse Chile. Specifically, we test a 
lumped water-balance model (GR4J), a data-based dynamical systems model (LSTM), and a data-based 
regression tree model (Random Forest). Insights were obtained regarding system memory encoded in data, 
spatial transferability by use of surrogate attributes, and informational deficiencies of the data set that limit our 
ability to learn an adequate input-output relationship. As expected, each approach exhibits specific strengths, 
with LSTM providing the best characterization of dynamics, GR4J being the most robust under informationally 
deficient conditions, and Random Forest regression-tree method being most supportive of interpretation. 
Overall, the contrasting nature of the three approaches suggests the value of adopting a multi-representational 
framework to more fully extract information from the data and, by doing so, find information that better 
facilities the goals of robust prediction and improved understanding, ultimately supporting enhanced scientific 
discovery.

Plain Language Summary The representations we use when analyzing data and modeling systems 
completely determine the questions we can ask, the nature of the analyses and inferences we can perform, 
and the answers that we can obtain. So, any given modeling approach may be highly suitable for learning 
certain things about a system but be completely unsuitable for learning other things. To explore how different 
representational approaches can affect what we can learn from data, we explore how three different modeling 
approaches (one physical-conceptual lumped water balance method and two machine-learning methods) can 
support an improved understanding of how catchment-scale hydrological processes vary across the diverse 
hydro-geo-climatology of Chile. Each approach was found to exhibit specific strengths, and interesting insights 
were obtained regarding hydrological memory, attributes that correlate with transferability across different 
regions, and informational deficiencies of the available data set. Overall, this study suggests the value of 
adopting a general multi-representational framework to facilitate robust prediction and improved understanding, 
in support of scientific discovery in the Earth and Environmental Sciences.
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task of predicting the system outputs is doomed from the outset. Having done so, the mathematical/algorithmic 
representational system selected for constructing the input-state-output mapping is critical, because it completely 
determines the questions we can ask, the nature of the analyses and inferences we can perform, and the answers 
we can obtain.

For example, a theory-based physical-conceptual (PC) type of representation is typically constructed to answer 
questions such as “what kind and magnitude of streamflow response can we expect to see when a specific catch-
ment system is perturbed by a certain sequence of rainfall (and temperature) inputs?.” Within this representa-
tional system, whereas a lumped bucket water-balance architecture can be used to obtain insights into aggregate 
soil moisture storage variations, a spatially distributed architecture is necessary to infer the dynamic evolution 
of soil moisture (and other state-variables and fluxes) in three dimensional space. Such representations typically 
focus on preserving and tracking mass and energy (sometimes also momentum) flow through the system.

On the other hand, data-based machine learning (ML) types of representation are focused on preserving and 
tracking information flows through the system (e.g., about previous states of a catchment). Such representations 
may not be as well suited to directly inferring latent variables such as soil moisture state or fluxes such as perco-
lation, recharge, and interflow that are constrained to obey conservation principles, unless appropriate regulari-
zation constraints are also implemented. Further, while recurrent neural network methods facilitate the explicit 
representation of Markovian-like memory processes, regression tree methods better facilitate an exploration of 
explanatory variable importance.

Consequently, we can expect, a priori, that alternative representational strategies may provide different perspec-
tives on the factors and processes governing the generation of system behaviors. To avoid semantic confusion, 
please note that the term “representation” refers to the underlying mathematical and structural principles used 
in the construction of a “modeling system,” whereas several alternative model architectural hypotheses (model 
structures) can be constructed within a single representational system (e.g., as in the FUSE and SUMMA hypoth-
esis testing approaches developed by Clark et al., 2011; Clark et al., 2015a, 2015b, and 2015c). As such, the 
choice of representational system is more fundamental than that of the modeling system, and we discuss the 
implications of this distinction in more detail later.

1.2. Representations as Complementary Perspectives on Reality
For any given application, it can be challenging to determine what the most appropriate representational system 
for model development. In hydrology, as in other fields, this situation has led to the availability of a very large 
variety of models, each based on different assumptions (and even philosophies), and often having been tested 
under different (sometimes very specific) conditions. This diversity of approaches recalls the classic story of the 
“blind people and the elephant” where each person's interpretation is limited, both by their experience being 
based on some very specific aspect of the animal, and also by their ability to map that experience onto their 
previous knowledge (i.e., they are limited by what they can recognize).

So, rather than asking which representational approach is (somehow) “the best,” one might instead consider 
whether the multiple perspectives offered by different representations can provide information that can be used 
to develop a better overall understanding of the system under investigation. By taking a multi-representational 
perspective, within which each interpretation of the system is deemed to be valuable, we can hope to make 
progress towards a deeper understanding of the underlying Data Generating Process (DGP); that is, towards ulti-
mately discovering the real nature of the physical process that gives rise to the phenomena that we can observe 
and obtain observational data about.

1.3. Objectives and Scope of This Paper
The objective of this paper is to explore how a multi-representational approach can help to extract relevant infor-
mation from a data set, with a view to improving prediction and understanding, and with the ultimate goal of 
providing support for the discovery process. Our specific goal is to develop a better understanding of the nature 
of catchment hydrology across the hydro-geo-climatologically diverse extent of Chile. Rather than the tradi-
tional strategy of implementing a single, preselected, computational model code to the entire country, or perhaps 
different variations of a model code to hydrologically different parts of the country, we instead implement three 
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different representational approaches including one PC-based approach and two ML-based approaches. Our focus 
is on understanding the strengths and weaknesses associated with each of these three representational approaches, 
and on exploring the potential richness of inferences that such a multi-representational approach can support.

In the next section, we introduce the problem of catchment-scale hydrological prediction in the context of the 
climatology of Chile. Section 3 will discuss the study methodology. The study results are presented in Section 4. 
Finally, we provide a discussion and some thoughts about the implications of this work in Section 5.

To be clear, this study should be considered exploratory, with a view to improving our understanding of how 
a multi-representational approach can be exploited in the service of enhanced scientific discovery. Further, we 
make no claim to making any significant fundamental discoveries—what we are suggesting, and seeking to 
illustrate, is that adoption of a multi-representational approach is advisable in order to maximize the possibility 
of discovery (as in “chance favors the prepared mind;” a phrase is attributed to nineteenth-century bacteriologist 
Louis Pasteur).

2. The Challenge of Streamflow Prediction Across Hydrologically Diverse Chile
Prediction of streamflow at large scales is challenging, due to the multitude of relevant factors that can vary 
simultaneously across time and space. In particular, the ability of hydrological models to generalize can be poor 
in regions where the spatial variability of dynamical forcings and static attributes is large (Malone et al., 2015). 
This is especially relevant to Chile, which is characterized by tremendous geo-hydro-climatic variability, both 
along its 4,270 km (2,653 mi) North-South extent and also from East to West (Figure 1). At one extreme, North-
ern Chile is home to the driest desert in the world, containing regions where no precipitation has been recorded 

Figure 1. Map showing the geographic location of Chile, and its spatial distribution of mean annual precipitation. In the 
northern region, the precipitation is almost 0 mm/year and in the southern, it could be higher than 5,000 mm/year.
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for more than 25 years. At the other extreme, more than 5,000 mm/year of precipitation has been recorded in parts 
of the south, where there are also permanent icefields.

Bordered by the Pacific Ocean to the West and Argentina to the East, the country averages just 175 km (109 mi) 
in width, while the North-South running Andes Mountain range rises to the highest elevation in South America 
(6,959 m or 22,831 ft). Moreover, a second mountain range, with lower elevations, runs parallel to the coast along 
almost the entire country. Owing to the high elevations of the mountain ranges, precipitation in the headwater 
catchments occurs mainly as snow, due to which the corresponding streamflow peak will appear many days or 
even weeks after the precipitation event. In contrast, where liquid precipitation occurs in catchments with high 
slopes, the times of concentration can be shorter than 1 day. Other factors, including the variability of forest 
fraction, degree of human intervention, and valleys created between the two mountain ranges, are also strongly 
related to the availability of water in the long term.

This immense geographic and hydrologic variability in climatic conditions poses a considerable challenge for any 
modeling enterprise, and especially for the PC representational approach where model structures must be selected 
in advance. As such, Chile presents a perfect opportunity to explore the possibility of developing modeling 
techniques that can deal with large climatic variability, and even exploit it to achieve better model performance.

3. Study Methodology
This section presents and discusses our study methodology, including the data set used (Section  3.1), three 
representational methods used (Section 3.2), and issues related to the experimental design (Section 3.3).

3.1. Data Set
For this study, we use the information provided by the catchment-scale CAMELS-CL data set (Alvarez-Garreton 
et  al.,  2018). This data set includes 11 variables and 105 categorical and numerical attributes for 516 Chil-
ean catchments with daily data. Those catchments are distributed from latitudes 17.8°S to 54.9°S and represent 
almost the entire spatial extent of Chile (17.5°S–55.5°S). Catchment areas range from 18 to 52,244 km 2 with an 
average of 2,407 km 2 (median of 780 km 2), and together cover 53% of the entire surface of the country. Variables 
in the data set include streamflow, precipitation, temperature, potential evapotranspiration (PET), snow water 
equivalent (SWE), and static catchments attributes. For model development and evaluation, we selected 322 
catchments selected to span the country and to have a minimum streamflow record length of 7 years. The litera-
ture suggests that 2–3 water years of daily data represents a minimum record length for calibration of conceptual 
process-resolved models (Gupta & Sorooshian, 1985) while around 8–10 years may be required to ensure some 
degree of stability with respect to the estimated model (Vrugt et al., 2006). On balance, therefore, 7 years repre-
sents a reasonable tradeoff between the availability of the model development and spatial representation of catch-
ments. Note also that the time periods of model development data selected for each catchment are not necessarily 
identical or even overlapping, they simply represent whatever is available for those catchments. More details on 
how the data were selected and partitioned appear in De la Fuente (2021).

3.2. Representations Examined
We selected three different representational strategies for investigation, with a view to exploring whether doing so 
would lead to better understanding of the system. These included one lumped PC-based water balance modeling 
approach and two ML-based modeling strategies.

The PC-based approach represents the mainstay of how understanding is developed in science. Models based 
on this representational approach are designed to be structurally and behaviorally isomorphic to the system, 
and therefore enable theoretical prior knowledge (such as conservation and thermodynamic principles) to be 
imposed as physical constraints on the allowable input-state-output trajectories of a system (Gharari et al., 2014, 
2021). Their strength lies in the ability to constrain model behaviors to be consistent with physical principles, 
so that meaning can be ascribed to the various components, fluxes, and state variables of the model. This makes 
it possible, in principle, to transfer understanding between locations and to generalize to classes of systems that 
share similar representational properties, although the development of reliable functions to achieve such transfers 
remains an unsolved problem in hydrology (Blöschl et al., 2019). However, this strength can become a weakness 
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when, by imposing overly strong prior restrictions on model structures, we limit their ability to learn explicitly 
and directly from data, and to discover things that are inconsistent with the space of hypotheses explicitly covered 
by those priors (Gharari et al., 2021).

Conversely, ML approaches have recently gained a reputation for being able to help address some of the most 
challenging tasks in science, particularly where theoretical understanding is lacking or is weak (e.g., Kratzert 
et al., 2018; Hu et al., 2018; Sudriani et al., 2019; Zhang et al., 2018, among many others). The power of ML 
arises from its practical ability to extract complex relationships from large data sets, and from its theoretical abil-
ity to approximate any input-output (or, where appropriate, input-latent-variable-output) mapping to an arbitrarily 
high degree of accuracy. Notably, different ML approaches are based in different mathematical perspectives about 
how to represent the structures underlying a given data set, and/or on how to represent and extract information 
contained in the data (see below). Accordingly, when different ML approaches are applied to any given data set, 
each is likely to provide a different “informational” perspective on the underlying nature of the DGP. By under-
standing how different ML algorithms represent and extract information from data, we can seek to understand the 
value offered by each perspective and exploit it to obtain a more comprehensive picture of the underlying system.

For the PC-based representation, we chose the GR4J dynamical lumped water balance model (Perrin et al., 2003), 
due to its relative parsimony and the reports of good performance in other studies (Kunnath-Poovakka & 
Eldho, 2019; Pagano et al., 2010; Sezen & Partal, 2019), and because the catchment-scale data required for its 
implementation is available (Table A1). Moreover, we coupled to it the lumped CemaNeige snowmelt module 
(Valéry et  al.,  2014) to account for snow process dynamics at high altitudes in Andes Mountain range. For 
the ML-based representations, we selected the Long Short Term Memory network (LSTM; Hochreiter & 
Schmidhuber, 1997) and the Random Forest regression-tree method (RF; Breiman, 2001).

While additional representational strategies could also have been included, the three strategies explored here 
arguably represent sufficiently different approaches to extracting information from data to support the objectives 
of this study. Further details about these representational approaches are provided in Supporting Information S1; 
we encourage readers without a background in these approaches to read this material.

3.3. Experimental Design
The main challenge to creating a unified model development methodology is that each of the three representa-
tional strategies has different conceptual, mathematical, and coding characteristics, and therefore different struc-
tures and processes of implementation, that must be followed to obtain an operational model. It is, therefore, 
impossible to implement an entirely uniform methodology for model development. Accordingly, we followed the 
reasonable approach of implementing the commonly followed model development practices for each representa-
tional type and comparing the results so obtained. Accordingly, all comparisons are based on the use of the same 
daily data and performance metrics for model development and evaluation.

3.3.1. Partitioning the Data
A key step in model development is to partition the available data into model development and evaluation subsets, 
where the former is used for model structure selection and parameter tuning, while the latter is used to assess 
the generalization performance that can be expected from the developed model. However, no clear guidance 
exists on how to achieve such a partitioning for data that represent dynamical hydrological systems (Daggupati 
et al., 2015; Guo et al., 2020; Wu et al., 2013; Zheng et al., 2018). In general, the hydrological literature has 
traditionally assumed that the entire available data set comes from a stationary underlying DGP, and that any split 
that preserves the full range of hydrologic variability (dry, medium, and wet) in both sets is satisfactory. Based 
on this assumption, it is common to use a continuous-time period that makes up ∼60%–80% of the available data 
for model development, while allocating the remaining ∼20%–40% for an evaluation of the generalization ability 
of the model.

In this study, we adopt the strategy of further partitioning the model development subset into “calibration” and 
“selection” subsets, where the calibration subset is used for model/network parameter tuning (commonly called 
“training” in the ML literature), and the selection subset is used for model/network structure selection and/or 
hyperparameter tuning (commonly called “validation” in the ML literature). Note that we adopt this naming 
convention to try and overcome the existing inconsistency in terminology between the ML and hydrological 

 19447973, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
031548, W

iley O
nline Library on [12/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Water Resources Research

DE LA FUENTE ET AL.

10.1029/2021WR031548

6 of 23

modeling literature. Accordingly, the available data are partitioned into three subsets, where the first 60% of the 
data is used for model calibration, the next 24% is used for model/hyperparameter selection, and the final 16% is 
used for model evaluation (commonly called “testing” in the ML literature).

For consistency, all comparisons across the three representations are done using the exact same data subsets. 
Further, to ensure robust inference, the statistical distributions of all performance evaluation metrics computed 
on these data subsets were estimated via bootstrapping (Efron & Tibshirani, 1994) and the medians of these 
distributions were used as the representative values in all comparisons.

3.3.2. Variable Selection
The variables selected from the CAMEL-CL (Alvarez-Garreton et al., 2018) data set include two sources of 
precipitation (CR2MET and MSWEP, both having long records), three values characterizing temperature (maxi-
mum, mean, and minimum), and an estimate of PET obtained via the Hargreaves and Samani (1985) method. 
Further, the available SWE data does not cover the entire country and was therefore not considered suitable for 
the current study.

Because the GR4J model has a pre-defined input representation, we used the weighted average of the two sources 
of precipitation (CR2MET and MSWEP; see Section 3.3.5), temperatures, and PET as input to the GR4J model. 
This weighted average can be obtained in two ways; (a) by constraining the weights to sum to one (without 
bias correction), or (b) by allowing the sum of the weights to differ from one (with bias correction). We studied 
these configurations because it allows different corrections to be applied to the overall precipitation volume, 
which  could be specific for each catchment given the diversity of Chile.

In summary, all three representational approaches are provided with access to the same meteorological forcing 
information. More details regarding the variables and attributes used for the development of each model type are 
presented in Tables A1–A3.

3.3.3. Representing the Overall Hydrological Memory
For the RF-based model, which does not explicitly include dynamical state variables, information regarding 
hydrological memory was included by concatenating past inputs (precipitation, evapotranspiration, and temper-
ature) to the inputs for the current time step, and the number of past input lags was treated as a model hyper-
parameter. This emulates the idea of a Markov Process, where a state variable can be thought of as a summary 
property of an infinite number of past inputs to the system. While this strategy enables important information to 
be made available to the model, it results in a very high cost (in terms of computational and storage resources) 
because considerable computational memory is required to manage the data set as the number of lags is increased. 
We found that at 32 days of lagged memory, the computational system became unstable so that any analysis 
of longer time-lags could not be supported using the available ram memory of the computer (16  GB). This 
prevented us from explicitly exploring longer memory time scales, such as 270 or 365 days (or longer), and the 
results presented in the next sections only consider a memory time scale of 16 days (the most stable solution so 
obtained). To partially address this issue, we augmented the input data to include the month-of-year as a surrogate 
variable intended to be informative about the longer-term state of the system. The idea was to enable the model to 
learn a representation of long-term memory as the average behavior associated with different months of the year.

3.3.4. Model Warm-Up
It is recommended, regardless of representational strategy, to use a warm-up period (during which performance 
metrics are not computed) to minimize errors associated with the initialization of dynamical model states. For 
lumped water balance modeling it is common to use a full year (365 days) of data for this purpose; for exam-
ple, Perrin et al. (2003) used a full year to initialize the GR4J model, following the suggestion of Chiew and 
McMahon (1994). For the LSTM ML approach, Kratzert et al. (2019) used 270 days, after testing 90, 180, 270, 
and 365 days as different options.

In this study, we adopted the following strategy for warm-up period selection. For the GR4J and LSTM-based 
models, we followed the strategy of first tuning the LSTM to determine a suitable warm-up period length (as a 
model hyperparameter) and then using that same period to warm-up the GR4J model; this is possible due to the 
similarity in definitions of the “warm-up” process in PC-based models and the “sequence information” process in 
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LSTM-based models. Note that the RF-based model does not need a warm-up period given its lack of Markovian 
state variables.

3.3.5. Parameters and Hyperparameters to be Tuned
Each model involves different sets of parameters and hyperparameters, depending on its structural form. GR4J 
contains 4 tunable parameters plus 2 for the CemaNeige snow module, which must be calibrated for each catch-
ment. However, to ensure the best performance of GR4J, three combinations of parameters were evaluated, and 
the parameter set with the best performance was used when comparing against the ML-based models. The three 
combinations are (a) GR4J with snow module but without implementation of a precipitation bias correction 
factor (7 parameters), (b) GR4J without snow module but with implementation of a precipitation bias correction 
factor (6 parameters), and (c) GR4J with snow module and implementation of precipitation bias correction (8 
parameters). Moreover, by employing a Box-Cox transformation (Box & Cox, 1964) on streamflow, all of the 
configurations include an extra parameter that enables the optimization procedure to correct for skewness and 
thereby use the best form of the cost function for each catchment. This parameter enables the training approach 
to determine whether or not a transformation enables better characterization of the time series. A summary of the 
parameters is presented in Table A4.

For the LSTM-based model, in addition to the large number of system-wide network weights and biases, five 
hyperparameters must be tuned, namely the sequence length (memory from the past hidden states), number of 
hidden nodes, batch size, number of epochs, and the Box-Cox transformation parameter.

Finally, in addition to determining the nodal split parameters, the RF-based model requires that 4 hyperparame-
ters be tuned for the entire set of catchments taken together. The first represents hydrological memory (expressed 
as the number of days previous to the current day for which inputs are simultaneously presented to the model), the 
second is the Box-Cox transformation parameter, the third is the number of trees, and the fourth is the minimum 
number of elements that must be retained in the last leaf.

3.3.6. Out-of-Sample Testing
For an additional out-of-sample model evaluation step, we retained all of the CAMELS-CL catchments for which 
less than 7 years (for training) but more than 1 year of data is available. So, while none of these catchments were 
included in the model development data set, we can exploit the fact that they have similar climatic variability for 
model assessment (Figure A1). The resulting 167 catchments facilitate a meaningful out-of-sample operational 
comparison of the generalization abilities of the LSTM-based and RF-based models. Note that the GR4J model 
was not tested using this out-of-sample set of catchments since regional generalization of lumped water balance 
model parameters to ungauged catchments is not within the scope of this paper.

4. Experimental Results
This section consists of two main parts. In Section 4.1 we investigate issues of overall understanding, such as 
hydrological memory and feature importance, supported by different representational characteristics of each 
model. In Section 4.2 we investigate how the models performed in terms of the ability to generalize in space and 
time, looking for causes of similarities and differences in performance.

4.1. Understanding Enabled by the Multi-Representational Approach
Each representational approach responds differently to the fluxes of information through the system, and that 
response can provide useful insights into the characteristics of the system. Here, we investigate how hydrological 
memory and the relative importance of attributes provide insights into the underlying nature of the DGP.

4.1.1. Hydrological Memory
For the ML-based representations, an important property is how hydrological memory is characterized, in terms 
of the number of previous time-steps of input data (meteorological variables) that are determined to provide 
useful information about the current value of streamflow. Note that this lag-time hyperparameter is not relevant 
to the GR4J model, which tracks hydrological memory exclusively through its state variables. Figures 2a and 2b 
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show, for LSTM and RF respectively, how the cumulative density functions (CDF) of model performance vary 
with values of the lag-time hyperparameter.

Consider first the LSTM-based model. For catchments with KGE skill score (KGEss) >∼0.45, the CDFs move 
progressively to the right (indicating improved performance) as the lag-time is increased from 2 to 32 days, 
whereas for catchments with KGEss ∼0.45 the results are insensitive to the value of the lag-time hyperparameter 
(similar area under the curve for 16 and 32 days). Further, while the rate of improvement in performance increase 
slowly (on average) as the lag-time is increased, we see distinct improvement when going from 128 to 270 days, 
occurring mainly in catchments with KGEss <∼0.85. A similar, but less strong, result is found for the RF-based 
model between 2 and 16 days for catchments with KGEss > 0.70 (little change in the area under the curve for 
different lags).

These results suggest that the ML-based models are detecting the expression of two different kinds of processes 
giving rise to streamflow generation across the country, one related to (shorter) hydrological memory of around 
32 days and the other related to (longer) memory of around 270 days. We will revisit this topic in the next section, 
where we see that this difference in length of hydrological memory is correlated with climatic attributes. Note 
that this kind of information about systemic differences between catchments in the study region is somewhat 
more difficult (and time demanding) to infer from the warm-up period that we could use with the PC-based GR4J 
representation, because this memory is specific to the starting day in the training period, and is not general as is 
the memory learned using the ML-based models.
4.1.2. Feature Importance
Another interesting aspect of ML-based approaches is the manner and ease by which the relative informativeness/
importance of climatic attributes can be assessed. Whereas this is, in principle, also possible using a PC-based 
modeling approach, such an inference would have to be done indirectly through an analysis of the spatial patterns 
of calibrated values of the model parameters, which is arguably a less direct and somewhat more complicated 
process that is out of the scope of the present research.

Here, we analyze the information provided by feature importance (calculated using Gini importance, Breiman 
et al., 1984), and by the average values of the thresholds adopted at the first split, which are inherent properties 
of the RF-based model. If these data-space thresholds occur earlier in construction of the regression tree, they 
can be interpreted as being more fundamentally or globally important. Figure 3 indicates that the most important 
attribute is an aridity index (aridity_cr2met, computed using the annual CR2MET precipitation product divided 

Figure 2. Cumulative density function for the KGE skill score performance for (a) long short-term memory model and (b) RF model (selection period). Lines closer to 
the right represent better overall performance. The area under each curve is presented as a guideline to check which lag performs better.

 19447973, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
031548, W

iley O
nline Library on [12/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Water Resources Research

DE LA FUENTE ET AL.

10.1029/2021WR031548

9 of 23

by the annual PET), which strongly suggests that the form of the relationship between the availability of water 
and the generation of streamflow is different in different parts of the country (e.g., in humid vs. arid regions). 
While this observation is not novel (Booij et al., 2019; Chen et al., 2019; Meira Neto et al., 2020), it is consistent 
with  the need for flexibility in the architecture and process-parametrization representation of PC models when 
applied to diverse climatic conditions.

Of course, this does not imply that failure to account for aridity is, per se, a complete and meaningful explana-
tion for the poor performance of any given model type. In general, spatio-temporal changes in aridity index are 
likely to simply indicate relative changes in the importance of various drivers of streamflow. From Figure 3a 
we see that the second, fourth, fifth, and seventh most important attributes are daily precipitation values, which 
indicates  that the behavior of the RF model is mainly controlled by aspects related to precipitation, once aridity 
has been accounted for.

The first split that occurs in most trees of the RF-based model (Figure 3b) occurs at an aridity index threshold 
of 0.6 mm/mm. This observation suggests that different streamflow generating representations may be required 
for the model to perform well in regions that are energy-limited (aridity index < 1) as opposed to water-limited 
(aridity index > 1). When a similar analysis is performed for the daily precipitation threshold (independent of the 
lag), we find that the nature of the streamflow response is different for values above/below ∼10 mm/day, but of 
course, much more analysis would need to be done to understand the reasons for those specific values.

Finally, we note that of the top 10 most important attributes, the only ones that are not related to aridity and/
or precipitation are the month of the year (Month) and forested fraction (nf_frac). The month of year attribute 
conveys information related to climatic cycling (annual periodicity), whereas the forest fraction could convey 
(among other things) information about infiltrability and soil water retention capacity of the soil.

The main point of these two (rather simple) examples shown in Figure 3 is that the regression tree representation 
underlying the RF-based model facilitates a kind of analysis that can provide interesting information that is not 
easily or directly obtained using either the PC-based or LSTM-based representational approaches. Moreover, 
while these RF-based results might seem obvious (because they concur with our prior hydrological understanding 
of catchment behaviors), such checks are important when employing an ML-based representation if we want to 
proceed further with the process of deepening understanding (such as by investigating the pruning of unnecessary 
features, and analyzing deeper levels of the decision trees, etc.). In this sense, the RF-based model is a strongly 
informative tool when our goal is to use modeling in support of scientific understanding and discovery.

Figure 3. Feature importance and distribution of the first split of the RF model (names in Table A2). (a) It presents the top 10 inputs that generates more performance 
deterioration when this input is shuffled. (b) Percentage of times and the average threshold that this input was selected as first splitting in the 200 decision trees.
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4.2. Analysis of Similarities and Differences in Performance
The relative ability of any properly trained model to perform well (evaluation period) can be considered indicative 
of how well the underlying DGP has been represented. However, even if all the models tested provide essentially 
identical values for some aggregate performance metric (such as KGEss or NSE), a deeper analysis may reveal 
systematic differences in model simulated behaviors, simply because the aggregate metric is not capable of distin-
guishing between them (Gupta et al., 2008, 2009).

For that reason, in this section, we examine not only the similarities and differences as assessed by an aggregate 
metric (KGEss), but also more detailed analysis in terms of components of the metric (e.g., bias), the spatial 
distribution of the metric, and the ability of the model to generalize to unobserved catchments. Through this 
analysis, we also assess whether each representational approach supports (or not) our prior understanding of the 
climatic diversity of Chile.
4.2.1. Overall Performance
First, we examine the distributions of overall model performance across the country. Figure 4a shows the CDFs 
of evaluation period performance (as measured by KGEss) for all locations where KGEss > 0 (where predictions 
are, on average, better than the no-model prediction that simply uses the observed mean; Knoben et al., 2019). 
Similar results were obtained using NSE (De la Fuente, 2021). Two interesting points can be noted:

1.  The LSTM curve (blue line) is significantly further to the right (∼85% of the catchments) over most of the 
range, indicating statistically better overall performance.

2.  The GR4J curve (red line) fails to meet the KGEss > 0 threshold at only ∼7% of the catchments, as opposed 
to ∼11% for LSTM and ∼22% for RF.

Regarding the first result, the superior performance of the LSTM-based model over most of the range is (argua-
bly) expected given that the LSTM can both (a) explicitly learn about system dynamics and memory through its 
representation of state variable recurrence, and (b) learn the functional form of the input-state-output mapping 
due to its structural flexibility. Note that the former ability is not explicitly enabled by the RF architecture (green 
line), while the latter ability is not possible for the fixed GR4J architecture (red line).

Regarding the second point, given that all three models are trained using the same input-output information, this 
result suggests that there are climatic conditions under which the GR4J-based model provides useful (lumped water 
balance) information that is not directly inferable from the available data by the LSTM and RF representations 

Figure 4. Cumulative density function for the KGE skill score performance and bias ratio for the three models (evaluation period). (a) Lines closer to the right 
represent better overall performance. (b) Lines closer to the vertical line at 1 (10°) represent better overall performance.
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(∼15% of the catchments); this is arguably something that was not known before. Of course, whether this benefit 
comes from the specific mass-conserving and process-equation nature of the GR4J architecture, or from its ability 
to compensate for mass-balance errors by importing/exporting groundwater (or some other reason) is not imme-
diately clear, and will require more detailed investigation. Despite the recent study by Hoedt et al. (2021), where 
a mass-conservative LSTM-based model was found to be able to learn a good latent-variable representation of 
the dynamics of snow storage, such findings would need to be tested at larger scales over a variety of climatic 
conditions before more general conclusions can be drawn.

Next, we examine the distributions of the decomposition components of KGEss. While aggregate metrics such 
as KGEss can provide a good overall idea of model performance, they can often be poor at revealing important 
differences in characteristic model behaviors, particularly when overall performance is poor (Gupta et al., 2009). 
Figure 4 provides further discriminatory information by plotting the CDF of model Bias Ratio, where values 
larger (smaller) than 100 (= 1 ) indicate a tendency to overestimate (underestimate).

This plot reveals that the GR4J and LSTM-based models, which have the explicit ability to simulate system 
dynamics, tend (on average) to be unbiased, whereas the RF-based model tends to be positively biased. Interest-
ingly, for situations where the models tend to overestimate the mean (Bias Ratio > 1.0), the GR4J model tends to 
do better (have a lower bias) than the LSTM-based model. However, for situations where the LSTM-based model 
tends to underestimate the mean (Bias Ratio < 1.0) that situation is reversed. In the case of the RF-based model, 
its systematic bias does not allow us to consider it in this comparison.

So, while the LSTM-based model is statistically superior in terms of overall KGEss performance for most catch-
ments, the situation is clearly more nuanced—with each representational type providing different characteristic 
abilities to simulate various attributes of streamflow, even though all the models were trained using the same data. 
This supports our contention that a multi-representational approach can aid in providing better predictions when 
developing an ensemble-based model, particularly when faced with significant climatic variability.
4.2.2. Spatial Patterns of Performance
In this section, we investigate how the different representational types perform across the variety of different 
climatic conditions that characterize Chile. Figures 5a and 5b explore the relationship between model perfor-
mance and two interesting climatic factors—Latitude, and Aridity. Given the long narrow shape and North-South 
orientation of the country, these two factors serve as useful surrogates for climatological variability, with the 

Figure 5. Variation of KGE skill score (KGEss) performance versus aridity and latitude (evaluation period). Figure shows the rolling moving average of 15 catchments 
sorted by different attributes. The best performance is gotten for KGEss = 1.0 and everything lower than 0.0 means that the prediction is worse than a constant 
prediction equal to the mean of each catchment.
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Northern extent of the country being characterized by very dry conditions and high elevations, the Southern 
extent being characterized by extreme precipitation and permanent icefields, and the central region is character-
ized by intermediate degrees of wetness and considerable variability in elevation.

The curves in Figure 5a show smoothed trajectories (using a moving average of 15 catchments) of the variation 
in KGEss performance with Latitude from South to North (left to right across the x-axis). First, we see that, 
while all three models exhibit relatively good performance in the mid- and south-central (moderately wet) parts 
of the country [latitude − 45◦ to − 35◦ ], the performance of GR4J decreases sharply relative to the ML-based RF 
and LSTM as we move to the southernmost regions [latitude − 55◦ to − 45◦ ]. This decline in GR4J performance 
makes sense given that the south is characterized by the existence of glaciers and lakes, which can introduce 
significant time-lags into the dynamics of the system that cannot easily be reproduced by the GR4J architecture 
(even when supplemented by the CemaNeige snow module), resulting in flashy and delayed simulated hydro-
graphs compared to observations. In contrast, the flexibility of the ML-based representations enables higher 
degrees of information extraction from the data.

Meanwhile, all three models exhibit relatively poor performance (KGEss < 0.5) across the north-central parts 
of the country [latitude − 35◦ to − 25◦ ]. This region is characterized by steep slopes (very short times of concen-
tration), relatively greater aridity (with only a few precipitation events per year), and snowmelt and groundwa-
ter being the relevant processes, which contrasts with the mid/south-central and southern regions. Here, the 
RF-based model performs particularly poorly, which is largely attributable to the fact that it does not have explicit 
access to data with greater than 16 days lag time and is, therefore, (unlike in GR4J and LSTM) unable to account 
for longer time-scales of hydrological memory.

Finally, the northern part of the country [latitude − 25◦ to − 18◦ ] contains the Atacama Desert, which is the most 
arid region in the world and has moderate slopes. Here, GR4J exhibits better performance than RF and LSTM. 
Meanwhile, the relatively poor performance achieved by all models between latitude −35° and −18° suggests 
that the variables that make up the existing CAMELS-CL data set are not sufficiently informative about the 
particular input-state-output dynamics of the catchments in this region to enable a robust (stable under changes) 
and accurate model to be developed, and that other variables and attributes should be added to improve model 
performance.

The curves in Figure  5 show smoothed trajectories for how KGEss performance varies with Aridity Index 
(computed as the mean of aridity_cr2met and aridity_mswep attribute). Here we see a clear dependence of 
performance on aridity, with all three models exhibiting better performance (KGEss > 0.5) under wet (i.e., energy 
limited) conditions but with performance becoming progressively worse as the climatic conditions become 
increasingly more arid (water-limited). Interestingly, the performance of both the GR4J and the LSTM-based 
models (that can simulate system dynamics) declines more or less linearly with increasing log-aridity, but RF 
performance declines somewhat more rapidly and is significantly worse than for GR4J and LSTM when the 
Aridity Index is between about 1.5 and 8.0. Given that GR4J is designed to represent systems that are primarily 
driven by precipitation, it is understandable that performance can decline as the direct dependence of streamflow 
on precipitation becomes less, while the mediating effects of evapotranspiration and long-term groundwater 
storage become more predominant.

However, while the ML-based models have considerably more flexibility to discover appropriate functional 
relationships in the data and would therefore normally be expected to serve as indicators of upper bounds on 
achievable model performance (Nearing et al., 2020), they also show the same declining trend in performance 
with increasing aridity. This suggests that the information content of the CAMELS-CL data set is biased toward a 
better representation of the hydrological properties of wet (energy-limited) catchments and is therefore not suffi-
ciently complete to enable model development for arid parts of the country. For example, it is noteworthy that the 
CAMELS-CL data set does not include information about soil characteristics such as depth to bedrock, hydraulic 
conductivity, or soil texture, all of which are present in the US version (Addor et al., 2017), and which can be very 
important in the characterization of the baseflow and streamflow-precipitation elasticity (Addor et al., 2018).

Another interesting observation is that the hydrological memory associated with streamflow generation appears 
to be different for energy-limited (wet) and water-limited (arid) catchments. Referring to Figure 2a and combining 
it with the result in Figure 5, we see that catchments with KGEss > 0.45 showed improvement in LSTM perfor-
mance when provided with ∼32 past days of input data. This suggests the dominance of short-time-scale memory 
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processes in energy-limited catchments (Figure 5b). On the other hand, there is a smaller set of catchments with 
poorer model performance that showed improvement only when provided with 270+ past days of input data, 
reflecting longer-time-scale memory processes associated with water-limited regions. This indicates that when 
investigating and modeling the streamflow response of catchments, our representation—whether ML-based or 
PC-based—must contain structures that make it possible to track memory processes at more than one dominant 
time-scale, depending on the climatology of the region.

The important point is that the representational type selected for model development should make it possible 
for information about multiple climatic time scales to be exploited. The GR4J and LSTM-based models contain 
explicit representations (through dynamic state variables and multiple flow pathways) that to some degree facili-
tate this, however the assessment of the data-based RF model only included data lagged up to 16 days, which may 
explain why performance is worse than for the data-based LSTM when the aridity index is in the range of 1.5–8.0.

Figure 6 show evaluation-period KGEss performance for each of the three models at each catchment used for 
model development (green indicates good performance, yellow-orange indicates poor performance, and red indi-
cates really poor performance). Focusing specifically on the region between latitudes 27°S and 33°S, we see that 
RF (Figure 6c) performs very poorly throughout this part of the country (see also Figure 5). However, LSTM 
performs quite well along a narrow strip of this region that borders Argentina. This strip is located at higher 
elevations where temperatures are low and where snowmelt processes dominate the generation of streamflow. 
The ability of LSTM to track longer-term memory processes is likely contributing to its good performance here. 
As we move westward toward the coast, LSTM performance decreases, indicating that the model no longer has 
access to the information needed to properly simulate the streamflow response (which, in this case, is probably 
information about connections between groundwater and streamflow). Turning to GR4J, we see that its KGEss 
performance across the region is just slightly better than 0.0, indicating that the model is mainly reproducing 
the long-term mean value of streamflow and some of the variability (we checked this visually for some of the 
catchments). Given that GR4J does not have the explicit ability to represent the complex long-term dynamics of 
regional groundwater systems, these results make sense.

Figure  6d indicates which model provides the best evaluation-period KGEss performance per catchment 
(green = RF, blue = LSTM, red = GR4J). Here we simply report the model with the best evaluation-period 

Figure 6. Spatial distributions of KGE skill score performance for each model (evaluation period). (a) GR4J, (b) long short-term memory, (c) RF. Green colors present 
a good performance and red values very bad performance. Panel (d) presents the best model for each catchment.
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KGEss. No clear pattern emerges, but in general, the blue (LSTM) and red (GR4J) colors dominate, with GR4J 
generally being the best-performing model across the country. This could be an indication that some extra infor-
mation is available to GR4J (probably through the regularizing effect of the water balance constraint) which 
enables it to slightly outperform the other models on average (Figure 5).

Some more nuanced findings emerge from a statistical analysis of KGEss performance by model type, reported in 
Table 1. While the LSTM has an excellent median KGEss performance of 0.70, it obtains the best KGEss value 
at only 126 of the 322 catchments (39.1%). Further, where the LSTM fails, it does so badly. In contrast, GR4J 
performs best at 48.4% of the catchments with a median KGEss performance of 0.68, its distribution has much 
lower skewness and dispersion, and it achieves positive KGEss values (i.e., KGEss > 0) at a greater number (97%) 
of the catchments.

4.2.3. Spatial Generalization
The results presented so far indicate that the LSTM-based model has the potential to provide the “best” overall 
(median) performance, while GR4J tends to provide more “robust” results in cases where data-based approaches 
may fail. Meanwhile, the RF-based model is particularly useful for enabling exploration, by providing clues that 
can lead to hypotheses about what kinds of climatic processes (and hence data sets) should be incorporated into 
ongoing model development efforts.

However, the previous analysis was for a pseudo-independent data set, consisting of evaluation-period data from 
the same catchments that were used for model development. As such, the results may not provide a reliable 
assessment of the quality of model performance that might be expected at (other/new) catchments that are not 
part of the model development data set. Figures 7a–7c and Table 2 report the results of our out-of-sample anal-
ysis. Since GR4J parameter estimates are not available for these catchments (an extra parameter regionalization 
step would be required, that was not pursued in this study), this assessment was done only for LSTM-based and 
RF-based models.

Overall, the out-of-sample results indicate that LSTM and RF do not show significantly different (relative to each 
other) spatial distributions of performance. This tends to conflict with the in-sample evaluation results (Figure 8), 
even though both the in-sample and out-of-sample catchment locations are distributed similarly with respect 
to the Aridity Index. When we compare the CDF's of in-sample and out-of-sample performance (Figure 8) for 
these models, we see that both RF and LSTM exhibit remarkably similar statistical distributions of out-of-sample 
performance, which suggests that both ML-based approaches have a similar ability to generalize to locations that 
were not included in the model development data set. There is, however, a larger deterioration in the statistical 
distribution of model performance from in-sample to out-of-sample for LSTM than for RF.

Finally, Table 2 reports a more detailed statistical analysis of KGEss performance by model type, showing that 
RF slightly outperforms LSTM on most of the statistical indicators. So, while LSTM achieved in general better 
temporal generalization (in sample), the results for out-of-sample generalization are less definitive. The tradeoff 
between temporal and spatial generalization ability may be somehow different for each representational type. 
While the LSTM-based model is trained using batch data from different catchments, the RF model focuses on 
finding the best split for all catchments simultaneously, which may make it less sensitive to the new conditions 
encountered in out-of-sample testing. While this is simply speculative at this point, it would be interesting to 
further examine this issue using large sample catchment-scale data sets from other parts of the world.

Model Min 25% Percentile 50% Percentile 75% percentile Max # Positive # Best

GR4J −5.215 0.433 0.676 0.840 0.978 313 156
RF −703.128 0.075 0.563 0.762 0.940 249 40
LSTM −1,170.490 0.442 0.704 0.826 0.971 289 126
Note. The first five columns describe the KGEss distribution for each model. The sixth column describes the number of cases 
with positive performance. The last column describes the number of cases where this model had the best performance. Bold 
highlights the higher value from the three models.

Table 1 
Summary Statistic in the Evaluation Period (322 Catchments)
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5. Discussion and Conclusions
An understanding of how hydrological processes vary across large scales is important to the development of 
strategies for mitigating the effects of floods and droughts (and other natural hazards). Such understanding 
can be difficult to establish, given the large number of variables, attributes, and relationships that need to be 
considered. Under such circumstances, the traditional approach of attempting to model the entire diversity of 
hydro-geo-climatic conditions across a country/region with a single representational approach may not result 
in a sufficiently accurate characterization of the underlying DGP. Through a case study, we have explored the 
possibility of using a multi-representational approach to address the challenge of climatic diversity, where the 
different representations are selected to have different mathematical structures and assumptions, with the goal of 
maximizing prediction and understanding in support of discovery.

5.1. Opportunities and Challenges of a Multi-Representational Approach
While each representation can support different kinds of investigation, understanding and discovery through 
the model development and evaluation process, the adoption of a multi-representational approach creates 

Figure 7. Spatial distributions of KGE skill score performance for each model (out-of-sample). (a) RF and (b) long 
short-term memory. Green colors present a good performance and red values very bad performance. Panel (c) presents the 
best model for each catchment.

Model Min 25% Percentile 50% Percentile 75% Percentile Max # Positive # Better

RF −17.501 0.118 0.45 0.666 0.897 130 89
LSTM −203.124 −0.103 0.429 0.678 0.968 116 78
Note. The first five columns describe the KGEss distribution for each model. The sixth column describes the number of cases 
with positive performance. The last column describes the number of cases where this model had the best performance. Bold 
highlights the higher value from the three models.

Table 2 
Summary Statistic in Out-of-Sample (167 Catchments)

 19447973, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
031548, W

iley O
nline Library on [12/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Water Resources Research

DE LA FUENTE ET AL.

10.1029/2021WR031548

16 of 23

opportunities that can be exploited and challenges that need to be addressed. As such, the multi-representation 
approach adopted in this study was valuable in improving our understanding of the DGP in the following 
ways.
•  It facilitated a better understanding of the time-scales of hydrological memory in the system, and specifically 

that they are associated with degree of aridity. Our analysis suggests that (for Chile) the ability to access 
input information over the past 32 days (short time scales) is critical to achieving an optimal representation 
of energy-limited catchments, whereas the memory time-scale required for arid catchments is much longer 
(∼270 days). From our survey of the literature, this understanding is novel.

•  It suggests that multi-representational ensembles provide a practical approach to improving streamflow 
predictions. The model evaluation results indicate that the LSTM-based model provides better overall 
performance, while the PC-based GR4J model tends to be more robust (providing better performance where 
KGEss < 0.20). Moreover, the two models exhibit contrasting bias ratio distributions which is desirable to 
ensemble construction. Meanwhile, the out-of-sample assessment indicated that the RF-based model remains 
a viable approach as well.

•  It clearly revealed the need for more informative data associated with arid regions. Combining the fact of 
log-linear decline in performance with aridity for both GR4J and the LSTM-based model, with the fact that 
LSTMs are more capable of maximizing information extraction from data (relative to PC-based approaches), 
it seems fair to conclude that further performance improvements in arid regions would require catchment-scale 
data sets that are more informationally complete.

•  It facilitated a rapid and simple exploration of features important for prediction, via the regression-tree-based 
RF approach (complemented by GR4J and LSTM). We find clearly that aridity provides the most important 
basis for explaining differences between catchment behaviors. Beyond this, various characteristic features 
and their identified thresholds provide strong explanatory power (e.g., aridity index equal to 0.6 mm/mm, and 
previous days precipitation equal to 10 mm/day).

Meanwhile, we encountered challenges to be tackled in future research, including.
•  Because different representational approaches may exploit the information in data in different ways, and can 

impose different requirements for inference, it becomes difficult to implement a completely uniform strategy 
for multi-representational model development.

Figure 8. Cumulative density function for the KGE skill score performance and bias ratio for long short-term memory and RF model (evaluation period vs. 
out-of-sample). (a) Lines closer to the right represent better overall performance. (b) Lines closer to the vertical line at 1 (10°) represent better overall performance.
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•  For PC-based representations where learning about the spatial variability of hydrological processes is neces-
sarily mediated through an analysis of spatial patterns or parameters, multiple parameter sets can give rise to 
similar model performance, which can complicate the ability to make meaningful inferences.

Overall, our results illustrate how the process of synthesizing results obtained via a multi-representational 
approach can lead to a more comprehensive overall picture of the underlying DGP, thereby creating a broader 
context within which deeper exploration can facilitate further discovery.

5.2. On the Issue of Data Informativeness
In an ensemble approach to prediction, it might make sense to implement a PC-based (e.g., lumped water 
balance) model as a lower benchmark given its embodiment of valuable regularizing information that may 
help to prevent model performance from becoming catastrophically poor under conditions where the data is 
insufficiently informative about the dynamics of streamflow generation. As such, we should require that any 
ML-based approach under consideration should demonstrate benefits over the benchmark (see e.g., Schaefli 
and Gupta,  2007). In the case than an ML-based model fails in a comparison against the benchmark, we 
should consider the possibility that it has been unable to exploit all the information provided by the data set. 
Further, when every representational approach fails to perform well, this should alert us to the possibility 
that the data may not be sufficiently informative in quantity and/or quality regarding the processes we seek 
to model.

Our analysis suggests that this situation is true for the CAMELS-CL data set. Notably, the data set does not 
include attributes from which it could be possible to infer groundwater-driven baseflow or other related processes, 
thereby limiting proper characterization of the streamflow response across Chile. However, this situation will 
require further investigation and exploration of alternative sources of relevant information.

5.3. Conclusions
We propose that a meaningful answer to the question “Does a single ‘correct’ catchment-scale hydrological 
model exist at all?” expressed by Clark et al. (2011), is that we should instead abandon any concept of a “best” 
model, and instead consider the value of learning to live with a plurality of representations while developing 
strategies for extracting important relevant information from the representational ensemble.

Another way of think of this is that it is the ensemble of representations that is actually the “Model” per se, since 
it incorporates a representation of “what we know that we do not know” (i.e., our known uncertainties). From this 
perspective, our task is to populate this ensemble with representations that best support our investigative goals. 
Returning to the distinction made in the introduction, given that any representational approach can be used to 
express numerous alternative hypotheses, the aforementioned task is clearly consistent with the idea of a “multi-
ple hypothesis approach” (Clark et al., 2011), but one where the hypotheses are selected to be as information-
ally diverse as possible (containing contrasting structures and assumptions) so that the possibilities of learning 
and discovery can be maximized. In contrast, an approach where the ensemble consists of hypotheses that may 
representationally be only marginally different from each other (e.g., that all share the same or similar system 
architectures while differing only in the forms of the process parameterization equations) may not lend itself to 
efficient and effective learning (Gharari et al., 2021).

Such a perspective unavoidably affects how we think about the model development process and its role in a 
scientific investigation. Our view is that conceptual/process/theory-based and ML-data-based approaches to 
model development must co-exist within such an environment, with neither being the dominant approach, 
and that a multi-representational strategy is key to promoting model-based scientific discovery. Based on our 
experience with this exploratory study, we firmly believe that the multi-representational approach will be 
fundamental to achieving a better understanding of hydrology at the large scale. There, the complexity of the 
system we seek to understand (and represent) demands access to large and informationally diverse data sets and 
an analytical strategy that is purposefully diverse. As always, we are keenly interested in dialog and collabo-
ration on this and related issues of how we use models to support prediction and understanding, in support of 
scientific discovery.
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Appendix A: Definition of Metrics
A1. Model Calibration/Training
To calibrate the parameters of the GR4J model to each catchment in the calibration period, we tested both the 
Root Mean Square Error (RMSE) and the Kling-Gupta Efficiency (KGE, Gupta et al., 2009), as defined below. 
Overall, we found that KGE provided slightly more robust results (De la Fuente, 2021), and therefore we present 
here only the results obtained using KGE.

RMSE =

√

∑!

"=1
(#" − #̂")

2

!

KGE = 1 −

√

(% − 1)
2
+ (& − 1)

2
+ (' − 1)

2

#" ∶ Measured streamf low

#̂" ∶ Simulated streamf low

! ∶ Total number of data

% ∶ Linear correlation coeff icient between yi and ŷi

& ∶ ()∕(* ∶ relative variability between simulated and observed data.

' ∶ +)∕+* ∶ ratio between simulated and observed data.

 

For parameter optimization, we used three algorithms from the Spotpy Python library (Houska et al., 2015), 
namely Maximum Likelihood Estimation, Differential Evolution Adaptive Metropolis (DE-MCz), and Shuffled 
Complex Evolution. In total, 22 independent optimization runs were done for each catchment, and the parameter 
set that provided the best performance (of the 22 parameter sets so obtained) on the selection (hyperparameter 
tuning) data subset was chosen for the specific GR4J configuration used.

Figure A1. Aridity histogram comparison between both samples used in the performance analysis. In terms of aridity, both 
samples look very similar.
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Variable Description

PP_cr2-0 Precipitation in the same day (“0”) of the mean streamflow from CR2MET product (mm)
PP_mswep-0 Precipitation in the same day (“0”) of the mean streamflow from MSWEP product (mm)
Tmax−0 Maximum temperature in the same day (“0”) of the mean streamflow (°C)
Tmean−0 Mean temperature in the same day (“0”) of the mean streamflow (°C)
Tmin−0 Minimum temperature in the same day (“0”) of the mean streamflow (°C)
ETP-0 Potential Evapotranspiration in the same day (“0”) of the mean streamflow (mm)
Q Daily mean streamflow (mm)
Note. Static variables were not used given its catchment-by-catchment training.

Table A1 
Variables Used in the GR4J Model

To develop the RF model, we use the Scikit-learn Python library (Pedregosa et al., 2011). The RandomFore-
stRegressor module (version 0.23.1) has two options for performance metrics—Mean Squared Error (MSE) and 
Mean Absolute Error (MAE). While MAE can be used to reduce the tendency to emphasize larger streamflow 
values, because we are implementing the Box-Cox transformation on streamflow we chose MSE to be the metric 
used for RF calibration.

No Variable Unit No Variable Unit No Variable Unit No Variable Unit No Variable Unit

1 PP_cr2-0 mm 31 PP_mswep-13 mm 61 Tmean−9 °C 91 ETP-5 mm 121 gauge_lon °
2 PP_cr2-1 mm 32 PP_mswep-14 mm 62 Tmean−10 °C 92 ETP-6 mm 122 grass_frac %
3 PP_cr2-2 mm 33 PP_mswep-15 mm 63 Tmean−11 °C 93 ETP-7 mm 123 gw_rights_flow #
4 PP_cr2-3 mm 34 PP_mswep-16 mm 64 Tmean−12 °C 94 ETP-8 mm 124 gw_rights_n #
5 PP_cr2-4 mm 35 Tmax−0 °C 65 Tmean−13 °C 95 ETP-9 mm 125 high_prec_dur_cr2met days
6 PP_cr2-5 mm 36 Tmax−1 °C 66 Tmean−14 °C 96 ETP-10 mm 126 high_prec_dur_mswep days
7 PP_cr2-6 mm 37 Tmax−2 °C 67 Tmean−15 °C 97 ETP-11 mm 127 high_prec_freq_cr2met days/y
8 PP_cr2-7 mm 38 Tmax−3 °C 68 Tmean−16 °C 98 ETP-12 mm 128 high_prec_freq_mswep days/y
9 PP_cr2-8 mm 39 Tmax−4 °C 69 Tmin−0 °C 99 ETP-13 mm 129 imp_frac %
10 PP_cr2-9 mm 40 Tmax−5 °C 70 Tmin−1 °C 100 ETP-14 mm 130 lc_barren %
11 PP_cr2-10 mm 41 Tmax−6 °C 71 Tmin−2 °C 101 ETP-15 mm 131 lc_glacier %
12 PP_cr2-11 mm 42 Tmax−7 °C 72 Tmin−3 °C 102 ETP-16 mm 132 low_prec_dur_cr2met days
13 PP_cr2-12 mm 43 Tmax−8 °C 73 Tmin−4 °C 103 Q mm 133 low_prec_dur_mswep days
14 PP_cr2-13 mm 44 Tmax−9 °C 74 Tmin−5 °C 104 area km 134 low_prec_freq_cr2met days/y
15 PP_cr2-14 mm 45 Tmax−10 °C 75 Tmin−6 °C 105 aridity_cr2met - 135 low_prec_freq_mswep days/y
16 PP_cr2-15 mm 46 Tmax−11 °C 76 Tmin−7 °C 106 aridity_mswep - 136 Month #
17 PP_cr2-16 mm 47 Tmax−12 °C 77 Tmin−8 °C 107 big_dam # 137 nf_frac %
18 PP_mswep-0 mm 48 Tmax−13 °C 78 Tmin−9 °C 108 carb_rocks_frac % 138 p_mean_cr2met mm
19 PP_mswep-1 mm 49 Tmax−14 °C 79 Tmin−10 °C 109 crop_frac % 139 p_mean_mswep mm
20 PP_mswep-2 mm 50 Tmax−15 °C 80 Tmin−11 °C 110 day # 140 p_mean_spread mm
21 PP_mswep-3 mm 51 Tmax−16 °C 81 Tmin−12 °C 111 elev_gauge m 141 p_seasonality_cr2met -
22 PP_mswep-4 mm 52 Tmean−0 °C 82 Tmin−13 °C 112 elev_max m 142 p_seasonality_mswep -
23 PP_mswep-5 mm 53 Tmean−1 °C 83 Tmin−14 °C 113 elev_mean m 143 pet_mean mm
24 PP_mswep-6 mm 54 Tmean−2 °C 84 Tmin−15 °C 114 elev_med m 144 shrub_frac -
25 PP_mswep-7 mm 55 Tmean−3 °C 85 Tmin−16 °C 115 elev_min m 145 slope_mean m/km

Table A2 
Variables Used in the Random Forest Model
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Table A2 
Continued

No Variable Unit No Variable Unit No Variable Unit No Variable Unit No Variable Unit
26 PP_mswep-8 mm 56 Tmean−4 °C 86 ETP-0 mm 116 forest_frac % 146 snow_frac -
27 PP_mswep-9 mm 57 Tmean−5 °C 87 ETP-1 mm 117 fp_frac % 147 sur_rights_flow #
28 PP_mswep-10 mm 58 Tmean−6 °C 88 ETP-2 mm 118 frac_snow_cr2met % 148 sur_rights_n #
29 PP_mswep-11 mm 59 Tmean−7 °C 89 ETP-3 mm 119 frac_snow_mswep % 149 wet_frac -
30 PP_mswep-12 mm 60 Tmean−8 °C 90 ETP-4 mm 120 gauge_lat °
Note. Dynamic variables are lagged 16 days and all non-categorical attributes from CAMELS-CL data set were used.

No Attribute or variable Unit No Attribute or variable Unit

1 PP_cr2-0 mm 26 high_prec_dur_cr2met days
2 PP_mswep-0 mm 27 high_prec_dur_mswep days
3 Tmax−0 °C 28 high_prec_freq_cr2met days/y
4 Tmean−0 °C 29 high_prec_freq_mswep days/y
5 Tmin−0 °C 30 imp_frac %
6 ETP-0 mm 31 lc_barren %
7 Q mm 32 lc_glacier %
8 Area km 33 low_prec_dur_cr2met days
9 aridity_cr2met – 34 low_prec_dur_mswep days
10 aridity_mswep – 35 low_prec_freq_cr2met days/y
11 big_dam # 36 low_prec_freq_mswep days/y
12 carb_rocks_frac % 37 nf_frac %
13 crop_frac % 38 p_mean_cr2met mm
14 elev_gauge m 39 p_mean_mswep mm
15 elev_max m 40 p_mean_spread mm
16 elev_mean m 41 p_seasonality_cr2met -
17 elev_med m 42 p_seasonality_mswep -
18 elev_min m 43 pet_mean mm
19 forest_frac % 44 shrub_frac -
20 fp_frac % 45 slope_mean m/km
21 frac_snow_cr2met % 46 snow_frac -
22 frac_snow_mswep % 47 sur_rights_flow #
23 grass_frac % 48 sur_rights_n #
24 gw_rights_flow # 49 wet_frac -
25 gw_rights_n #
Note. Dynamic variables are lagged until 270 days but they are not presented in this table. All non-categorical attributes from 
CAMELS-CL data set were used.

Table A3 
Variables Used in the LSTM Model

 19447973, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
031548, W

iley O
nline Library on [12/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Water Resources Research

DE LA FUENTE ET AL.

10.1029/2021WR031548

21 of 23

MSE =

∑!

"=1
(#" − #̂")

2

!
 

MAE =

∑!

"=1
abs(#" − #̂")

!
 

To train the LSTM model, we used the implementation provided by Kratzert et al. (2019) and modified it 
to conform to the data structures and variables of the CAMELS-CL data set. Whereas the original code 
enables the choice of either MSE or NSE as the calibration metric, we used only NSE because its normal-
ization of the error enables better comparison across catchments having different amounts of temporal 
variability.

NSE = 1 −
MSE

!2
"

 

A2. Model Performance Evaluation
For performance evaluation, we use the KGE skill score (KGEss) (Knoben et al., 2019) computed on this period. 
KGEss is a rescaled version of the KGE metric such that a value of zero corresponds to the prediction being no 
better than simply using the mean observed streamflow, in a manner analogous to NSE. While other metrics, 
including NSE and RMSE, were also used for model evaluation (De la Fuente, 2021), we do not report them 
here as the conclusions are like those obtained using KGEss. Importantly, we account for sampling variability by 
computing the estimated posterior distributions of KGEss by bootstrapping 100 times (Efron & Tibshirani, 1994) 
and using the median value of KGEss in all comparisons.

KGE!! =
KGE − KGEbenchmark

1 − KGEbenchmark

=
KGE +

√

2 − 1
√

2

= 1 −
1 − KGE

√

2
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Data Availability Statement
The CAMELS-CL data set is freely available from https://doi.pangaea.de/10.1594/PANGAEA.894885. 
The analytical methods and codes are freely available at http://www.hydroshare.org/resource/
fc08997100fa4cd6abdd8a4f5731de15.

Parameter Description Searching range

Alpha1 Amplification factor for CR2MET precipitation product 0–2.5
Alpha2 Amplification factor for MSWEP precipitation product 0–2.5
Theta1 Snowmelt factor 0.1–7
Theta2 Cold content factor 0–1
x1 Storage production capacity 0–5,000
x2 Amplification of water exports −10 to 10
x3 Storage routing capacity 1–1,500
x4 Time-delay between the initial and maximum values of the hydrograph 0.501–4.5
Lambda Exponent of Box-Cox transformation 0–2.0
Note. The description of each parameter is presented by its physical meaning. Moreover, the last column shows the range used in the optimization.

Table A4 
Parameters and Search Range Used in the GR4J Optimization
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