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We provide a short introduction to the devising of a special type of methods
for numerically approximating the solution of Hamiltonian partial differential
equations. These methods use Galerkin space-discretizations which result in a
system of ODEs displaying a discrete version of the Hamiltonian structure of the
original system. The resulting system of ODEs is then discretized by a symplectic
time-marching method. This combination results in high-order accurate, fully
discrete methods which can preserve the invariants of the Hamiltonian defining
the ODE system. We restrict our attention to linear Hamiltonian systems, as the
main results can be obtained easily and directly, and are applicable to many
Hamiltonian systems of practical interest including acoustics, elastodynamics, and
electromagnetism. After a brief description of the Hamiltonian systems of our
interest, we provide a brief introduction to symplectic time-marching methods for
linear systems of ODEs which does not require any background on the subject. We
describe then the case in which finite-difference space-discretizations are used
and focus on the popular Yee scheme (1966) for electromagnetism. Finally, we
consider the case of finite-element space discretizations. The emphasis is placed
on the conservation properties of the fully discrete schemes. We end by describing
ongoing work.

KEYWORDS

symplectic time-marching methods, finite difference methods, finite element methods,
Hamiltonian systems, Poisson systems

1. Introduction

We present a short introduction to the devising of a particular type of numerical
methods for linear Hamiltonian systems. The distinctive feature of these methods is that
they are obtained by combining finite element methods for the space-discretization with
symplectic methods for the time-discretization. The finite element space discretization of
the Hamiltonian system is devised in such a way that it results in a system of ODEs which
is also Hamiltonian. This guarantees that, when the system is discretized by a symplectic
method, the resulting fully discrete method can conserve the linear and quadratic time-
invariants of the original system of ODEs. This is a highly-sought property, especially for
long-time simulations.
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For a description of the pioneering work and of the
development of these methods, the reader can see the Introductions
in our papers published in 2017 [1], in 2021 [2], and in
2022 [3] and the references therein. In those papers, other
approaches to achieve energy-conserving schemes are also briefly
reviewed. Particularly impressive are the schemes proposed in
2019 by Fu and Shu [4] in which the authors construct energy-
conserving discontinuous Galerkin (DG) methods for general
linear, symmetric hyperbolic systems.

When we began to study this type of numerical methods for
linear Hamiltonian systems, we were impressed to see that the
methods displayed arbitrary high-order accuracy and preserved
(in time) very well the energy and other quantities of physical
relevance. Although we were familiar with finite element space
discretizations, we were unaware of the relevance and properties
of the symplectic time-marching methods. In a way, the paper we
present here is the paper we would have liked to read as we plunged
into this topic. It is written as an introduction to the subject for
numerical analysts of PDEs which, like us, were not familiar with
symplectic methods.

We restrict ourselves to the linear case for two reasons. The first
is that we have studied those numerical methods for Hamiltonian
formulations of acoustic wave propagation, elastodynamics and the
Maxwell’s equations. So, we do have some experience to share for
those systems. The second is that the theory of symplectic time-
marching can be covered quite easily and that most of its results also
hold in the nonlinear case, although they are not that easy to obtain.

Let us sketch a rough table of contents:

e Hamiltonian and Poisson Systems. (Section 2) We define a
general Hamiltonian (and its simple extension, the Poisson)
systems, of ODEs or PDEs. We then restrict ourselves to linear
systems, give several examples, and discuss the conservation
laws associated to them. For the Hamiltonian and Poisson
systems, we took material from the books that appeared in
1993 by Olver [5], in 1999 by Marsden and Ratiu [6], in
2004 by Leimkuhler and Reich [7], and in 2010 by Feng and
Qin [8]. For the conservation laws, we took the information
gathered in our papers on the acoustic wave equation in 2017
[1] elastodynamics in 2021 [2], and electromagnetism in 2022
(3,9].

Symplectic and Poisson time-marching methods. (Section
3) We describe the symplectic (and their simple, but useful,
extensions to the Poisson) methods for linear Hamiltonian
ODE:s with special emphasis on how they approximate their
linear and quadratic invariants. We took material from the
pioneering work of the late 1980’s by Feng et al. [10-12], from
the popular 1992 review by Sans-Serna [13], from the 2006
book by Hairer et al. [14], and form the 2010 book by Feng
and Qin [8].

Finite Difference space discretizations. (Section 4) We show
how to discretize in space the linear Hamiltonian systems by
using finite difference methods. In particular, we recast as one
of such schemes the popular Yee scheme for electromagnetism
proposed in 1966 [15], that is, more than 17 years before the
appearance of the first symplectic method. We took material
from the work done in 1988 by Ge and Feng [10] and in 1993
by McLachlan [16].
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o Finite Flement space discretizations. (Section 5) We describe
space discretizations based on finite element methods and
combine them with symplectic time-marching schemes. We
discuss the corresponding conservation properties and show
a numerical experiment validating a couple of them. We took
material from the work done in 2005 by Grof§ et al. [17], in
2008 by Xu et al. [18], and by Kirby and Kieu [19], as well as
from our own work in 2017 [1], 2021 [2], and 2022 [3, 9].
Ongoing work. (Section 6) We end by briefly commenting on
some ongoing work.

2. Hamiltonian and Poisson systems

2.1. Canonical Hamiltonian systems and
their generalization

2.1.1. The canonical nonlinear Hamiltonian
systems

A canonical Hamiltonian system is defined on (the phase-space)
R?" in terms of the smooth Hamiltonian functional  : R?" — R
and a structure matrix J by the system of equations

ﬂu:]V,{H(u), 0 _Id] (1)

dt

where! ]: = |:Id 0

The Hamiltonian has the remarkable property of remaining
constant on the orbits of the system, ¢ — u(t). Indeed,
Td
Zu=

o= (VM) " T (VuHw) =0,

d
a?—[(u) = (V,{H(u))

since the matrix ] is anti-symmetric. This computation suggests
an immediate extension of this Property to other functionals. If
u — F(u) is any differentiable functional, we have that

d d
ZFw = (v,,f(u))TEu = (VuF @) " T (VuH(w)) = {F, H),

and we can see that F(u) remains constant on the orbits of the
system, ¢ — u(t), if and only if the Poisson bracket, {F, H}, is zero.
Such quantities are usually called first integrals of the system. They
are also called invariants or conserved quantities.?

2.1.2. A generalization
This definition can be generalized by taking a phase space of
arbitrary dimension, by allowing J to be an arbitrary anti-symmetric

1 What we are denoting by J was originally denoted by J~!. We decided
not to keep such notation because it suggests the invertibility of J and
this property does not hold in many interesting cases. For example, when
extending these definitions from ODEs to PDEs, J~! naturally becomes a
non-invertible differential operator, as already noted in the pioneering 1988
work by Ge and Feng [10, Section 3]. This prompted them to simply drop the
notation J='. No wonder most authors dealing with Hamiltonian PDEs, see,
for example, the 1993 book by Olver [5], automatically replace the original
J=! by J, just as we are doing it here.

2  This holds when the functional F only depends on the phase variable u.
If the functional F depends also on time, that is, if 7 = F(u,t), the above
calculation must be modified to read %J—‘ ={F,H}+ o F.

frontiersin.org


https://doi.org/10.3389/fams.2023.1165371
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Cockburn et al.

matrix, or by letting it depend on the phase-space variable u, that

is, by using J: = J(u). In these cases, the system is called a
Poisson system.

A Poisson dynamical system is, see the 1993 books [5, 16],
the triplet (M, H, {-,-}), where M is the phase-space, H is the
Hamiltonian functional, and {-,-} is the Poisson bracket. The

system can then be expressed as

d
Eu = {u, H}.

The Poisson bracket {-,-} is a general operator with which
we can describe the time-evolution of any given smooth function
F:R? — R. This operation is defined for a pair of real-smooth
functions on the phase-space satisfying: (i) bilinearity, (ii) anti-
symmetry, (iii) Jacobi identity:

{FGLHY + -, FL G+ ({G. H)L, F) =0,
and, (iv) the Leibniz’ rule:
{(F.G-H}y={F.G} - H+G-{F,H},

for F, G, H: R4 — R. For a constant anti-symmetric matrix J,
usually called the structure matrix, these four properties are trivially
satisfied by the induced Poisson bracket, see the 1993 book by Olver
[5, Corollary 7.5].

2.2. Definition of linear Hamiltonian and
Poisson systems

As we restrict ourselves to linear Hamiltonian and Poisson
systems, let us formally define them. All the definitions are in terms
of the structure matrix J (which is anti-symmetric), but, to alleviate
the notation, we omit its mention.

Definition 2.1 (Hamiltonian systems) We say that the linear
system

d
au =JV,H(u)

is Hamiltonian if the structure matrix J (which is anti-symmetric)
is invertible and the Hamiltonian is a quadratic form H(v): =
1vTHv for some symmetric matrix H.

Definition 2.2 (Poisson systems) We say that the linear system

d

—u=]JV,H(u

7 JVuH (u)
is a Poisson system if J is a structure matrix (which is anti-
symmetric) and the Hamiltonian is a quadratic form H(v): =
%VTHV for some symmetric matrix H.

We see that a Poisson system is the straightforward
generalization of a Hamiltonian system,® to the case in which the
structure matrix is not invertible.*

3 This generalization is so simple that, in our first reading, the difference
between a "Hamiltonian” and a “Poisson” dynamical system completely

escaped us.
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2.3. Examples of linear Hamiltonian systems
of ODEs

Let us illustrate and discuss examples of linear Hamiltonian
systems and their respective symplectic structure.

Example 1. A textbook example of a linear canonical
Hamiltonian system is the system modeling the harmonic
oscillator. Its Hamiltonian and structure matrix are

T
Hp,q) = 5 + X

This gives rise to the Hamiltonian system of equations

p=-a q=p
We know that the restriction of the Hamiltonian to the orbits of

this system is constant in time, or, in other words, that the quadratic
form H(p, q) = %2 + % is a first integral of the system. This implies
that the orbits lie on circles. No interesting property can be drawn
from a linear first integral of the system since the only one it has is
the trivial one.

Example 2. The following is a simple example in which the
structure matrix J is not invertible. We work in a three-dimensional
space (we take u: = (p,q, 7)) and consider the system associated
with the following Hamiltonian and structure matrix:

011
2 2 1"2

Hw=2+L 1T =] 1 o0
27273

-1 00

This gives rise to the Poisson system

i p B _q+ r
r —P

Let us examine the conserved quantities of the system. Again,
we know that the restriction of the Hamiltonian to the orbits of this
system is constant in time, or, in other words, that the quadratic

2 2 5
form H(p,q,r) }’2 + L + Z is a first integral of the system.
This implies that the orbits lie on spheres. Unlike the previous

case, this system has one linear first integral,” namely, C(p, q,7) : =
(0,1,1)-(p, g, 7), as this reflects the fact that g+ is a constant on the

4 A small remark on the matrix A: = JH is in order. For the canonical
structure matrix J, it is standard to say that the matrix A is Hamiltonian if
JTA = H is symmetric. If J is only required to be invertible, one could say
that A is a Hamiltonian matrix if J7'A = H is symmetric. Finally, if J is not
invertible, one is tempted to say that A is a "Poissonian” matrix if AJ=JH]J is
symmetric. We did not find this terminology in the current literature and so
dissuaded ourselves to introduce it here, especially because we do not need
it in a significant way.

5 This is an example of a Casimir: a function C whose gradient VC lies in
the kernel of J. The functional C is then conserved for any Poisson system
with structure matrix J. A Casimir is also called a distinguished function in the
1993 book by Olver [5]. The history of the term Casimir can be found in the
notes to Chapter 6 of that book.
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—— (p, g,r) orbit

FIGURE 1

Two views of the orbits (orange solid line) of the Poisson system on the phase-space (g, p, r). The orbits are circles (right) lying on planes (left) with
normal (0, 1, 1) so that g + r is a constant. The blue sphere represents the constant Hamiltonian value corresponding to H = 3%/2.

3 —— (p, g, ) orbit

orbits of the system. This has an interesting geometric consequence
since it means that the orbits of the system lie on the intersection of
a sphere and a plane of normal (0, 1, 1), see Figure 1.

2.4. Hamiltonian PDEs: Definition and
examples

To extend the definition of finite-dimensional Hamiltonian and
Poisson systems, the triplet (M, #,{-,-}), to systems of partial
differential equations, we need to introduce a phase-space M of
smooth functions with suitable boundary conditions (periodic for
simplicity), a Hamiltonian functional 7{, and a Poisson bracket
{-,-}. The definition of the bracket is induced by an anti-symmetric
structure operator J, for functionals F,G on the phase-space M
defined by

{f,g}(u):zf E]gdx.
o ou Su

It satisfies bilinearity, anti-symmetry, and the Jacobi identity
(Leibniz’s rule is dropped). In the definition the operation §/5u
denotes the functional derivative defined for functionals 7 on M
by

Sudv — lim Flu+ edu] — Flu]

u e—0 £

SF / 3Fu]
Q

Su

fadl Sul,
7 =0.7-'[u-|-8 u]

for any smooth test function §v in M. Thus, a Hamiltonian partial

&

differential equation system is given by

o_ 4
u._dtu_{u,H}(u).
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An important simplification occurs in the case when the structure
operator ] is a constant, anti-symmetric operator whose definition
might include spatial differential operators. In this case, the Jacobi
identity is automatically satisfied. See Olver [5, Corollary 7.5].

Let us define and illustrate the Hamiltonian® systems of PDEs
we are going to be working with.

Definition 2.3 (Linear Hamiltonian PDE system) We say that the
linear system of partial differential equations

b
= (1)) =1

is a Hamiltonian system for any constant structure operator J
(which is anti-symmetric), inducing the Poisson bracket {-, -}, and
the Hamiltonian functional is a quadratic form (meaning that
dH/0v is linear in v).

2.4.1. The scalar wave equation
Let us consider the linear scalar wave equation on a bounded,
connected domain © C R? with smooth boundary 92

pi—V-(kVu)=f, inQ,t>0, u=0 ond, (2)

6 In the framework of PDEs, the fine distinction made between
“Hamiltonian” and “Poisson” dynamical systems of ODEs does not seem too
popular. In the 2006 book by Harier et al. [14, Section VII.2], a “Poisson”
dynamical system is defined as the dynamical system obtained when (in
our notation) the structure matrix J is a non-constant matrix which depends
on the unknown u, ] = J(u). We were perplexed by the explicit absence of
the case in which J is constant but not necessarily invertible. However, later
we understood that the “constant” case was trivially contained in the more

interesting "non-constant” one.
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TABLE 1 Glossary of scalar wave equation quantities.

Name Symbol Definition
Linear momentum P pv

Kinetic energy K % pv?

Elastic energy r 1klq-q
Lagrange density L r-K

Total energy & r+K

TABLE 2 Conservation laws for the scalar quantity », 7+ V - f, =0,
deduced from the scalar wave equation.

n fn

p -4
& —vq
pqv —-q®q+Lk

pXXqV xx(—q®q+Lk)

p((d=1u/2+ (x-V+td)uyv+tL | —(d—1Du/2+ (x-V +1td)u)q+xL

The flux of 7 is denoted by f,. We assume that external force f is zero and that the
medium is homogeneous. The linear momentum is associated with a linear functional of the
unknowns whereas all the remaining quantities are associated to quadratic ones. Inspired by
the 1976 work by Fletcher [20] and by the 1993 book by Olver [5, Example 4.36] for the
two-dimensional (d = 2) case. Here, d denotes the dimension of the space.

Where p is a scalar-valued function and « a symmetric, positive
definite matrix-valued function. Here the unknown u can be
a variety of physical quantities. For example, in acoustics, it
represents the deviation from a constant pressure of the medium.
In water waves, it represents the distance to the position of rest of
the surface of a liquid. Here, we take advantage of its closeness to
the vector equations of elastodynamics,” and we formally assume
that u has the dimensions of a length. We can then introduce the
velocity variable v, and rewrite the equation as a first-order system
of equations as follows:

pu=pv, pv=V-kVu)+f, inQ, t>0. (3)
This system can be written in a Hamiltonian form with
Hamiltonian functional, and the canonical structure operator |

defined by

0 Id

1, 1 .
N = — — V V — N =
Hlu,v] /Q< pv +2/c u-Vu fu) J=p o

2

Indeed, observe that the variational derivatives of the
Hamiltonian functional are

de

e=0

Hu+ edu, v+ edv] = / (pvév —(f+ V- (kVu)) Su) R
Q
for §u, §v smooth test functions with compact support on €2.

7 Everything done for the scalar wave equation can be extended to the
equations of elastodynamics very easily. See, for example, the Hamiltonian
formulations in our recent work [2] and the six independent conservation
laws in the 1976 work by Fletcher [20].
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A second and equivalent Hamiltonian form can be found as
follows. We rewrite the scalar wave equations as a first-order system
introducing the vector-valued function ¢ = «Vu and removing u
from the equations, this is known as the mixed formulation

in 2, Vt > 0, v=0 onadf.
4)

This system can also be written in a Hamiltonian form with an

pv=V-q+f, q=«Vv,

equivalent Hamiltonian functional, now in terms of v and ¢, and
the structure operator J defined by

1 1
Hv, q] =/ <Epv2+§f<‘l |q|2+F~q),
Q

0 (p~'V)oxk

J= (kV)op~! 0

The Poisson bracket is then induced by the operator, for functionals
F,G

SF §G S§F §G
{F, G} =/ (—KV(p—l—)+ —p_lv-(l(—)) dx.
o \4q sv ov oq
Thus,
— | Hlv+edv,q+ dq] =f (ovév+ (k"'q—F)-8q),
de le=0 Q

where f = V - (kF).

In Tables 1, 2, we describe the conservation laws associated with
the linear scalar wave equation. See Example 4.36 in Olver [5], and
in Walter [32].

2.4.2. Electromagnetics
Our last example is the Maxwell’s equations for the electric and
magnetic fields,

eE=VxH-J, pH=-V xE.

The Hamiltonian form of these equations corresponds to the
Hamiltonian functional and anti-symmetric operator given by

(i B
H[E,H]—/Q(ZIEI + 2 1P~ g ),

_ 0 (e 1vx)o(u™h
J= —(u~lVx)o(e™)) 0 ’

Where J  satisfies V x J = J. A second Hamiltonian formulation

can be derived by introducing the magnetic vector potential

variables A, by uH = V X A, and writing the system as follows
A=—E €E=Vx(u 'VxA)-—]J

with corresponding Hamiltonian functional and anti-symmetric
operator given by

H[E, A] =/ (le|E|2+lu_1|V><A|2—A-I>,
o \2 2
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TABLE 3 Glossary of electromagnetic quantities, see Sanchez et al. [3].

10.3389/fams.2023.1165371

TABLE 4 Conservation laws for the (scalar or vectorial) electromagnetic
quantity , y +V - f, = S,, deduced from the first two Maxwell’s equations.

Name Symbol Definition
Conservation of 7 fa Sy
Energy £ 1(¢E-E+ uH - H)
Magnetic charge V- (nH) 0 0
Energy flux, N ExH ¢ 8
Poynting vector Electric charge V - (¢E) ] 0
Linear momentum 14 €Ex uH Energy &£ N —E-]
Lorentz force F pE+] x uH Linear momentum P —0 —F + %( E-EVe
Angular L xx P truecm+H - HV 1)
momentum
Angular momentum L —xX0o | xxS8p
Maxwell’s stress a —E1+€EQE+uHQ®H
for p = 0,] = 0 and homogeneous media
Quantities associated to the Lipkin’s zilch tensor [21]
Optical chirality X X 0
Optical chirality X 1(€E-V x E+ pH-V x H)
[22] Optical chirality flux X X 0
Optical chirality X LE x (V x H)+ (V x E) x H) Flux of the ij-th entry X 85X |0
fl
- of the +<(—E,VH; + H,VE
Flux of th X I-1E®(VxE+He®(VxH
ux of the X (= 3GE® NV xE)+ (H®(V x H) Optical chirality flux —E\VH, + H,VE))
. A 1 1
Optical chirality FHVxE® " E+(VxH)® :H) The flux of 7 is denoted by f,, and the corresponding sources and sinks, by S,,. The magnetic
flux and electric charges are associated with linear functionals of the unknowns whereas all the

In Tables 3, 4, we describe the rich set of conservation laws
associated to the Maxwell’s equations. The first two are associated
with the conservation of charge, magnetic and electric. The next
three are the classic conservation laws of energy and momenta.
Less standard are the last three, which were obtained back in 1964
by Lipkin [21]. See the 2001 paper [33] for a recent update on the
classification of conservation laws of Maxwell’s equations.

3. Symplectic and Poisson
time-marching methods

As pointed out in the 1992 review by Sanz-Serna [13], the
symplectic time-marching methods were devised specifically for
the time-discretization of Hamiltonian systems. In this section, we
present a simple and direct introduction to the topic, with emphasis
on Poisson linear systems, which seems to be new. The approach
we take reflects our own path into the subject and is intended
for readers that, like us, were utterly and completely oblivious
to the relevance of symplectic and Poisson matrices, and were
only interested in devising numerical methods for Hamiltonian
systems which would capture well their conservation properties.
The main objective of this section is to overcome this terrible,
terrible shortcoming.

3.1. Symplectic and Poisson matrices

Here, we introduce the symplectic (and their simple extension,
the Poisson) matrices which are, as we are soon going to see, deeply
related to Hamiltonian (and their simple extension, the Poisson)
systems. We use the definitions from the 2006 book by Hairer et al.
(14, p. 254].

Frontiersin Applied Mathematics and Statistics

remaining quantities are associated to quadratic ones. Taken from Sanchez et al. [3].

Definition 3.1 (Symplectic matrices) We say that the invertible
matrix E is a symplectic matrix for the structure matrix J (which
is anti-symmetric) if ] is invertible and if ETJ'E=JL

Definition 3.2 (Poisson matrices) We say that the invertible matrix
E is a Poisson matrix for the structure matrix J (which is anti-
symmetric) if it satisfies E J ET = J.If, in addition, ET = Id on
the kernel of ], we say that E is a Poisson integrator matrix.

Note that, since
E'J'E=]"! = J=E'JE T = EJE' =],

the definition of a Poisson matrix is a straightforward
generalization of the definition of a symplectic matrix to the
case in which the structure matrix is not necessarily invertible.
Note also that the difference between Poisson matrices and Poisson
integrator matrices is that the behavior of the transpose of the latter
on the kernel of the structure matrix is explicitly specified.

3.1.1. The geometry of Poisson matrices

We next gather what we could call the geometric properties of
the Poisson matrices. To state it, we introduce some notation. The
kernel of a matrix M is denoted by M~!{0}. Its range is denoted
by MR?. Although we do not assume the structure matrix J to be
invertible, we can always define its inverse on part of the space R%.
Indeed, since the restriction of ] to JR is a one-to-one mapping, we
can define ]! as the inverse of ] on JR4.

Proposition 3.1 (The geometry of Poisson matrices) Let E be a
Poisson matrix. Then

(a) EJR? = JRY,

(b) ETJE=7!
(© ETT'0} =770}

on ]]Rd,
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Moreover, if E is also a Poisson integrator matrix, then

(d E-Id=JB onR%,

for some matrix B: R — JRA.

This result states that a Poisson matrix E is one-to-one on the
range of ] and behaves as a symplectic matrix® therein, see property
(b). Moreover, its transpose is also one-to-one on the kernel of J. If
the matrix is also a Poisson integrator, that is, its transpose is the
identity on the kernel of ], then E coincides with the identity plus a
matrix whose range is included by the range of J.

Proof of Proposition 3.1. Let us prove (a). Since E is a Poisson
matrix, we have that E ] = J E~ 7, and so EJR? C JRY. We also have
thatE™! J=J ET, and so E"}JR? c JR?. This proves Property (a).

Let us prove (b). Since the restriction of ] to JR? is a one-to-one
mapping, we can define ]! as the inverse of ] on JR?. Then, since
E is a Poisson matrix, on ]Rd, we have that ] = E~! J E~ T and so,
that ]! = ET J~! E, because EJR? = JR4 by Property (a). This
proves Property (b).

Let us now prove (c). Since E is a Poisson matrix, we have
that JET = E~!J, and so ETJ~1{0} C J~'{0}. We also have that
E~TJ71{0} c J~1{0}. This proves Property (c).

It remains to prove (d). Since E is a Poisson integrator, the
kernel of ET — Id includes the kernel of J. As a consequence,
the range of E — Id is included in the range of J. This proves
Property (d).

The proof is now complete. O

3.1.2. The evolution operator

Our first result states that Hamiltonian (Poisson) systems and
symplectic (Poisson) matrix integrators are deeply related in an
essential manner.’

Proposition 3.2 (The evolution matrix is a Poisson integrator
matrix which commutes with A) Consider the Poisson system

%u = Au, where A = JH. Then,

A

(i) The evolution matrix E(¢) : = e is a Poisson integrator matrix,

(i) [E(#),A]l: = E(t)A — AE(t) = 0.

8 Forageometric interpretation of the symplecticity of an operator, see the
1992 review by Sanz-Serna [13], the 2006 book by Hairer et al. [14] and the
2010 book by Feng and Qin [8]. In the many discussions with our dynamical
system colleagues, we always got the impression that symplecticity enhances
the numerical schemes in much better ways than the simple conservation of
energy can. We admit that we are more ready to believe their statements
than to really understand their arguments. Perhaps because it is difficult to
visualize orbits of infinite-dimensional dynamical systems. To be pragmatic,
we restrict ourselves to the operational definition of symplecticity given by
equality (b).

9 Tous, the intuition of what is a Poisson integrator matrix can be extracted
directly from Proposition 3.2: If the matrix A is of the form JH, with J anti-
symmetric and H symmetric, then the matrix e'* is a Poisson integrator matrix.
We have the impression that the properties defining Poisson integrator

matrices can be formulated precisely to match this remarkable relation.
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Proof. Let us prove that E(t) is a Poisson matrix. We have that

d T _ i T i T
E(E(t) JE (1) = dt(E(t)) JE' () +E®)] dt(E ®)
=E(t) (AT +JAT) ET(1)
= E(t) JHJ +JHJ ) ET (¢)
= O)
because ]| = —J. Asa consequence, we get that E(¢) J ET(t) =

E(0) J ET(0) = J. This proves that E(f) JET (t) = J forall t € R.
Let us now complete the proof of Property (i) by showing that
ET(t)v = v for all v in the kernel of J. Observe that

d
EET(t)v =ATETv=E"ATv=0.

Thus, ET()v = ET(0)y = v.
Property (ii) clearly holds. This completes the proof. O

3.1.3. Conserved quantities

Next, we characterize all possible linear and quadratic
functionals which remain constant on the orbits of any linear
system. It does not have to be a Hamiltonian system.

Proposition 3.3 (Characterization of linear and quadratic first
integrals) Let t > u(t) be any of the orbits of the linear system
%u = Au. Then,

(i) The mapping t — v u(t) is constant if and only if ATv = 0,
(i) If the matrix S is symmetric, the mapping ¢ u' () Su(t)
is constant if and only if SA + ATS = 0.

For Poisson systems, a couple of simple consequences can be
readily obtained. The first is that, in (i), the linear functional t
vTu(t) is constant in time if and only if ATy = —HJv = 0. In
other words, the system has linear first integrals if only and only if
either J or H is not invertible. If they are, then so is AT and the only
linear first integral of the system is the trivial one.

The second consequence is that, in (i), we can take S: =
H. Indeed, SA + ATS = HJH + HJTH = 0, because J is
anti-symmetric. This shows that, for any Hamiltonian system, the
Hamiltonian H(u): = %uTHu is always a quadratic first integral.

Proof. Let us prove Property (i). We have

d
T Zu=v"Au

d
E(V u)=v pr

This implies Property(i).
Let us now prove Property (ii). We have

d d d
E(u-r S u) = (EuT) Su+ u's (Eu) = uT(ATS + SA)u,

and we see that, for the last quantity to be equal to zero, the
matrix AT S 4 SA has to be anti-symmetric. Since this matrix is also
symmetric, because S is symmetric, it must be identically zero. This
implies Property (ii) and completes the proof. O
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3.2. Approximate Poisson evolution
operators commuting with A

From now on, we focus on finding out when it is possible
to guarantee that the linear and quadratic first integrals of the
original Hamiltonian system are also maintained constant after
discretization. We give a characterization of the Poisson Runge-
Kutta methods and show that these methods do conserve the
linear and quadratic first integrals of the original Hamiltonian.
This exact conservation property is the first main result of this
section. It justifies the relevance of Poisson numerical methods for
the time-discretizations of Hamiltonian ODE:s.

So, consider now the approximation u,, to u(At n) given by the
one-step numerical scheme

Upt1: = By

If Ear is a symplectic matrix, we say that the scheme is
symplectic. If Ex; is a Poisson matrix, we say that the scheme is
a Poisson scheme.

Clearly, the discrete evolution matrix Ex; is an approximation
to the exact evolution matrix E(Af) = e 2!, Since, by Proposition
3.2, the exact evolution matrix is a Poisson integrator matrix, one
wonders what do we gain by requiring that the discrete evolution
matrix Ea; to be also a Poisson integrator matrix.

It is possible to answer that question in a very satisfactory
manner if we additionally require that the discrete evolution matrix
Ea¢ commute with A. As we see next, if this is the case, the
original Hamiltonian remains constant on the discrete orbits of the
numerical scheme.

Proposition 3.4. Assume that

(i) The discrete evolution matrix Ex; is a Poisson integrator matrix,

(ii) [EAt,A] L= EAtA — AEAt =0.

Then the mapping n — %uIHun is constant.

Proof. Since

1 1 1 1
E”IHH Upy] = EunTELHEAtun = EunTH u, + 56’

Where ©: = unT(ELHEAt — H)u,, we only have to show that
® =0.

We know that JRY @ ]1{0} = RY so we can write u, = Jw+ v,
for some w € RY and v € J71{0}. Then, we insert this expression
into the definition of ® to obtain

0= ®w,w +2 ®v,w + ®v,1/)
where

O = w'JT (BN HEA; — H) Jw,
(EAHEA; — H) Jw,
©,,=v' (E\,HEr, —H) v
=v| (EL,H—HE) Eawv
At At/ DALYV
=v' (E5H—HEL)) (v+]By),

Oy = vl
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by Property (d) of Proposition 3.1. We can rewrite these quantities
in a more convenient manner with the help of the following matrix:

. T —1
®:=EJ,H— HE,..
Indeed, we can now write that

O =w'JT @ Ens W,

@ (v + JBv).

Oy = vl ®Ep;Jw  and

®,, = vl
But

® EarJ = (EAH —HE DEa;]

ENHEAJ +AT

(ELHEAt]EL + ATEL) EZ:
(EAH(EAJEL, —J) + ELHJ + ATEL,) By

(ENH(EAJEL, — 1) + [EanAlT) B3,

Since Ea is a Poisson matrix and commutes with A, we have
that ® = 0 on the range of Ex¢J, and, by Property (a) of Proposition
3.1, on the range of J. As a consequence, we get that © = vIdy.

It remains to prove that vid v equals to zero. Since JRY @
J71{0} = R¥, we can write that Hv = y + h where y is in the range
of J and h in kernel of J. Since we can consider that J~! is defined
on the range of J, we can write that y = J~1x for some element x of
the range of J. Then

vidy=v'(E\,H-HE v
= v (ELHv) — By Hv) v
= v (EA(0 "2+ 0) — (B[ (7 'x+h)Tv
= vT(EZt]_lx) — (Egjl_lx)-rv
since ET = Id on J~1{0},
=v (7'Ex®) — 0 'Eam) Ty
by (b) of Proposition 3.1,
=0,

because of the orthogonality of the kernel of ] with its range. This
completes the proof. O

3.2.1. Evolution matrices which are rational
functions of hA

Next, we consider an important example of evolution matrix
En¢ satisfying the assumptions of the previous result, that is, Ex is
a Poisson integrator matrix and commutes with A.

Proposition 3.5. Set A: = JH where J is antisymmetric and H is
symmetric. Set also Ex¢ : = R(At A), where z — R(z) is a rational
function. Then, Ex; is a Poisson integrator matrix if and only if
R(z)R(—z) = 1 and R(0) = 1.

This result has a simple and remarkable geometric interpretation. It

states that the Poisson numerical methods whose evolution matrix
is a rational function of hA are those for which we can recover the
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point we were evolving from by just applying the same scheme with
time reversed, that is, the schemes for which,

ifu,1:=Earu, then wu, =E_prmu,y.

Let us now prove the result.

Proof. Set Z: =
operator Ex; : = R(At A) is a Poisson integrator matrix if

At A. By definition, the discrete evolution
i) R@Z)JRZ)" =],
(i) R(Z)T = 1d on the kernel of J.

We want to show that these two properties are equivalent to

(1) R(z)R(—2) =1,
(2) R(0)=1.

Since R is a rational function, there are polynomials P and Q such

that R(z) = (Q(z)) ! P(z). In terms of these polynomials, the above
conditions read

(@) P(2) P(—z) = Q(z) Q(—2),
(b) P(0) = Q(0).

We only prove that (a) and (b) imply (i) and (ii), as the converse is
equally easy.

Let v be an arbitrary element of the kernel of J. So (AtH)) 'y =
0, for £ > 0, and since P is a polynomial matrix we have

P(Z)Tv = P(— AtH])v = P(0)v.
By (b), we get
P(0)v = QO)v = Q(—AH))v = Q(Z) v,

and then Property (ii) follows.

Let us prove Property (i). Take u: = Jw, where w is an arbitrary

element of RY. By (a),

0 = Q(Z)Q(—Z)u — P(Z)P(~Z)u =
Q2)QA=2)Jw — P(Z)P(=Z)]w,

and since
(AT = (A (T = (AT TAT) =TT,
because J is anti-symmetric, we get that

0 = QZ)Q(—Z)Jw — P(Z)P(~Z)Jw
= Q@JQZ" YW — P(Z)]P(Z")w.

As this holds for all elements w of RY, we obtain that
Q)IQZT) = PZ)IP(Z"),

and Property (i) follows. This completes the proof. O
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3.2.2. Symplectic Runge-Kutta methods

Perhaps the main example of numerical methods whose
discrete evolution operator Ex; is a rational function of AfA is
the Runge-Kutta methods. In fact, if the Butcher array of the
Runge-Kutta method is

c ! A
bT
then
Rz):=1+2zb'(Id—zA)"'1 = Q(z)"! P(z),

Where 1 is the s-dimensional column vector whose components
are one, and, see [31],

P(z) = det(ld — zA + z1b') and Q(z)= det(Id — zA).

This means that the previous result characterizes all the
symplectic Runge-Kutta methods. Two important conclusions can
be immediately drawn:

(i) No explicit Runge-Kutta method (that is, Q is not a constant)
is symplectic.

(ii) Any Runge-Kutta method for which Q(z) =
symplectic. Two notable examples are:

P(—z) is

() The s-stage Gauss-Legendre Runge-Kutta method, which
is of order 2s. The function R(z) is the s-th diagonal Padé
approximation to e?.

(B) Any diagonally implicit Runge-Kutta method for which

by 0 0 0

by 1by 0 0
A=|b by 3b5.. 0
0

by by by . b

s 14zbi/2

The function R(2) is given by IT;_, b2

3.2.3. Conserved quantities

The Poisson integrator Runge-Kutta methods also maintain
constant all the linear and quadratic first integrals of the original
Poisson system. As pointed out above, this result unveils the
importance of these methods for reaching our objective, namely,
the conservation of the first integrals of the original Poisson system.

Theorem 3.1 (Exact conservation of linear and quadratic first
integrals) All linear and quadratic first integrals of the original
Poisson system %u = Au remain constant on the orbits n > u,
provided by a Poisson integrator Runge-Kutta method. That is,

(i) The mapping n — v u, is constantif AT v = 0,

(ii) The mapping 7 > u, Su, is constant if SA + ATS = 0.
Proof. Let us prove Property (i). We have

vTunH =v' R(AtA)u,
=v" R(0) u,

= u,,

because AT v = 0,
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because the evolution matrix for At = 0 must be the identity,
that is, R(0) = Id. This proves Property (i). Note we did not use
that the numerical scheme is Poisson, we only used the form of the
evolution operator.

Now, let us prove Property (ii). We have

u) . Suy1 = u, R(AtA)T SR(ALA) uy,

Since SA = —AT S, we have that SP(At A) = P(—AtAT) S, and, as
a consequence, that

Q(—=AtAT) IS = SQ(ArA)~L.
We can then write that

1 Suni1 = u, R(AtA)T P(—=AtAT)SQ(AtA) ' u,
=u) R(AtA)T P(—AtAT) Q(=AtAT) ' Su,
=u] R(AtA)T R(—AtAT)Su,

T
=u, Suy,

since the scheme is a Poisson integrator. This proves Property (ii)

and completes the proof. O

3.3. Poisson integrator matrices which do
not commute with A

Now, we turn our attention to discrete Poisson methods
whose evolution matrix Ex; does not commute with the matrix
A defining the original system. The loss of this commutativity
property has dire consequences, as the exact conservation of the
original Hamiltonian cannot be guaranteed anymore. Indeed, as we
saw in the proof of Proposition 3.4, when the structure matrix J is
invertible and E is symplectic, we have that

1
-
Eu"'HH Upt1 =

%uIH u, — %un+1]71 [Eas Aluy,
Which means that the original Hamiltonian is not maintained
constant, as claimed.
Nevertheless, because the matrix evolution Ex; is a Poisson
integrator matrix, we can still get

(i) the existence of a matrix A; such that AJ is symmetric and
that Ex; = eAfAAr

(ii) the non-drifting property of quadratic first integrals (on
bounded orbits) of the original Hamiltonian.

The property (i) states that the discrete dynamics of the numerical
scheme is exactly that of a dynamical system (Hamiltonian if Ex is
symplectic) defined by a matrix Ax; which we expect to converge
to A as the discretization parameter At tends to zero. This property
will allow us to obtain the non-drifting property (ii).

The non-drifting property (ii) states that, provided that the
orbits are bounded, the original quadratic first integrals oscillate
around the correct value for all times and are away from it a
number proportional to the size of the truncation error of the
numerical scheme. This remarkable, non-drifting property is the
second main result of this section. This is why we are interested in
working with Poisson integrators of this type.
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3.3.1. The approximate Poisson system

We begin by showing that there is a Poisson system whose
continuous orbits contain the discrete orbits generated by the
evolution matrix Ea;.

Proposition 3.6. Let the mapping At — Ea;, where the discrete
evolution matrix Ex; is a Poisson matrix, be continuous on (0, T)
and such that Ex¢—¢ = Id. Then, for At small enough,

(i) The matrix Aa;:
symmetric.

= ﬁ logEa; is such that AaJ is
(ii) The orbits n +— u, generated by the discrete evolution
operator Ex¢ lie on the orbits ¢ +— u(t) of the Poisson system

FU= Apru.

Proof. Let us prove Property (i). We have to show that AxJ is
symmetric. But, for At small enough, we can write

1 o0
a2

=1

(_1)l+1

—(Bar— 1d)"7.

1
Apd = Xt 10g Ead =

Using the fact that Ea; is Poisson, we get that
(Ear —1d)] = (Ead =) = (B3 —]) =J(Ey, —1d),

and so, we can write that

1 i~ (_1)Z+1
Anf] = EZH—E

1 T 1 o
= ]B logE,, = ]Kt logEL, =JTAL,.

J(By —1d)°

This proves Property (i).
It remains to prove Property (ii). But the discrete orbits are
made of the points

un = (Ear)"ug = (e A21)"ug = "2 Aoty

Which lie on the orbit ¢ +> ef*tug. This proves Property (ii)

and completes the proof. O

3.3.2. Closeness of the approximate system

Although Proposition 3.3, with A replaced by Ax;, gives
information about the linear and quadratic first integrals of the
new system %u = Aasu, we are more interested in knowing
how close are those invariants to those of the original system. We
have then to relate the matrices A and Aa; in order to estimate
how well the numerical scheme approximates the original quadratic
first integrals.

We show that those matrices are as close as the order of
accuracy of the numerical scheme. We say that the order of
accuracy of the numerical scheme u,, 1 = Easuty, is p if

IB(AL) = Eaell < C (A1)P*,
for some constant C independent of At.

Proposition 3.7. Assume that At < In(3/2)/ max{||A[|, [Aa¢ll}.
Then

2
A —Aaell < Ar IE(AL) — Ecll.
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Proof. We have that

1
A—Apr = E(logE(At) —logEnas)
1 o (_1)[4—1

—_— — Z —
=5 7 ((E(Ap) —1d)

=1
)€+1 ¢

- Z Z(Em — 1"

4:1 m=
(E(At) — Ear)(E(A )—Id)@ ",

(Ear — 1))

because R¢ — §¢ = Zf;qzl §"=1(R — S)RE™"™. This implies that

Z IEar — 1| M IE(AL) — 1d| ]

m=1

|
A—A < — —
I Atn_N;g

IE(At) — Eacl

1 m—1 {—m
< E; max {[Ear —1d|" [ E(AD — 1d] ")
IE(A) — Eacl

Since [|e® — Id|| < €'IBl — 1, we get that

hHAAzII m—1 Al _ 1yt—m
< _
I~ Aol = 1r<na><c£{ DAL 1y

IIE(Af) —Eacll

1 5 -1
< 2 /) THE@AD — Eadl
=1

- IE(AL) — Eacll

= A7 atlls
because At max{IALIAAIDY < 3/5 This completes the proof. O

3.3.3. Non-drifting of quadratic first integrals

We end by noting that the quadratic first integrals of the
original Hamiltonian system do not drift on the discrete orbits
generated by the numerical scheme.

Theorem 3.2 (Non-drifting property of the quadratic first
integrals) Let the discrete evolution matrix Ep; be a Poisson
matrix, and let n +— u, denote any of its orbits. Assume that

T
Amin @ = infv;ﬁO }%| > 0. Then

1
|t St — g Sagttn] < —— IS = Sadll [uySacw| Vo

min
: T T _ o Tie
Proof. Since u, Su, — u, Satutn, = u, (S — Sar)uy, we have that

vT(S—San)v

}uISun - "nTSAfu”| = v#0| VTSAy { {”JL—SAtun{
= suplvTS [ 1S = Sacll |uy S|
1
< 5 IS=Sad |y Sarttn)-
This completes the proof. O
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In the case in which S = H = J7!A, we can take Sp; = J "' Aa;

to get that
T T ||1—1||
|, Sy — u,) Sapun| < A = Aaell |u, Sacun
m1
20571 T
< —— ||JE—E u, SAtty|,
= At I el |y Sarun

and, if the scheme is of order p, we immediately get that

2|y

min

|unTSu,, — unTSAtun| §C |uTSAtun| AtP,

for At small enough. Since n +— uISAtun is constant, we see that
uI Su,, does not drift in time, as claimed. Of course, for this to take
place, Amin has to be strictly positive, which happens when v Sa v

T

is never equal to zero on the unit sphere v' v = 1.

3.4. Separable Hamiltonians and partitioned
Runge-Kutta methods

Since there are no explicit symplectic Runge-Kutta methods
for general Hamiltonians, one wonders if the situation changes for
some subclass of Hamiltonians. It turns out that this is the case for
the so-called separable Hamiltonians. Indeed, there are explicit,
partitioned Runge-Kutta which are symplectic when applied to
separable Hamiltonian systems. This is the third main result of
this short introduction.

3.4.1. Separable Hamiltonians
If the Hamiltonian is separable, that is, if

1
H= > (p"Hppp + 9" Hyqq)

and if the corresponding Hamiltonian system is of the form

AP _ | O Jpg||[Hep O |[P|_| O Ap||p
dat|q| |[Jp O || 0 Hylla| [Ap 0 ||q]
S~ ——— —

u ] H A

it is interesting to explore schemes which treat the g- and p-
components of the unknown u in different ways.

3.4.2. Partitioned Runge-Kutta methods
The so-called partitioned Runge-Kutta methods are of the form

N
0 bA
— 74P .
Easu=u+ At Z |:bqup 0 j| U; and
j=1
N
0 ai'A
Ui=u+ At UREN R
i u-+ Z |:aiqup 0 f

and can be thought as associated to two Butcher arrays,
c ! A
bT

| A
-=T.

and b
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To emphasize its relation with the standard RK methods, we can
rewrite them as

S
Egt=u+ AtAY BUj where
j=1

N
Ui=u+ AtAY A;U; i=1,...,s
j=1

where By : = be Idpp 0 and Agy, = A¢m Idpp 0 .
0 be quq 0 afm quq

We can see that we recover the standard RK methods whenever
by = by and a;; = aj;.

3.4.3. Conservation of the original linear first
integrals

It is clear that these methods have an evolution matrix which
does not commute with A. Because of this, all the results in the
previous subsection apply to them when they are symplectic. In
addition, they maintain constant all the linear first integrals of
the original Hamiltonian, not because of their symplecticity but
because of the structure of their evolution matrix.

Theorem 3.3 (Exact conservation of linear first integrals) Suppose
that the original Hamiltonian is separable. Then, all linear first
integrals of the original Hamiltonian are also first integrals of any
partitioned Runge-Kutta method.

Proof. We have that v Eajue = v (u+ AtA Z;zl BiUj) =v'u,

whenever AT v = 0. This completes the proof. O

3.4.4. Symplecticity

We end this section by providing a characterization of
the partitioned Runge-Kutta methods which are Poisson (or
symplectic), see a detailed proof in Appendix A, and by showing
that they can be explicit.
Proposition 3.8. Suppose that the original Hamiltonian is
separable. A partitioned Runge-Kutta method is Poisson (or

symplectic) if an only if
b,»a,j —|—Ejaji — b,‘gj =0 ij=1,...,s

When
a standard Runge-Kutta method, this result is equivalent

the partitioned Runge-Kutta methods becomes
to Proposition 3.5, as it can be seen after performing a
simple computation.

3.4.5. Explicit methods

An important example symplectic partitioned Runge-Kutta
methods have the A-matrices of the Butcher arrays of the
following form:

by 0 0 ... 0 0 00..0
by b, 0 .. 0 by 0 0 ..0
A= bl bz b3 .. 0 and K: El 52 0 ..0
ot e O e e e O
by by b3 ... b, by by by ... 0
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These methods are charaterized by the two vectors b and b, with the
obvious notation, and can be efficiently implemented as follows:

P “~—u fori=1 s:
Q , =1,...,s:

Earu <~ |:gi| .

There are two, low accuracy methods which, nevertheless, deserve

P < P+ hbiAy,Q
Q < Q+hbiAyP

to be mentioned as they are considered as classic. The first is the so-
called the Symplectic Euler method. It is associated with the vectors
b=1,b =1, and is first-order accurate. It reads:

Pn+1 =P, + AtquQm
Qu1 =Q, + AtAqPP,,H.
The second is the Stormer-Verlet method. It is associated to

[0,1]T and b [1/2,1/2]T and is second-
order accurate. It can be obtained by applying the Symplectic Euler

the vectors b

method twice by using the Strang splitting, that is,

= Pyt 55 ApQy
= Q,+ 5 AgpPui12s

Q12 + 5 AgpPurif
Puii+ 5 ApgQuyr-

Qn+1

Pn+1»

Pyui1)2
Qn+1/2

We can also write the method as follows:

Q1= Qu+ AtAgpPuti)2,

forn=0,...,N—1,
Pyi3p =Put12 + At ApgQuyirs

(5)

Where Py =Py + % quQO and Py =PNt12 — % quQN~
This is precisely the time-marching scheme used in the well known
Yee’s scheme [15] for Maxwell’s equations.

We end this section by noting that explicit partitioned Runge-
Kutta methods of any (even) order of accuracy can be obtained, as
was shown in 1990 by Yoshida [23].

3.5. lllustration

We end this section by illustrating the application of the
implicit midpoint method (the lowest order, symplectic Runge-
Kutta method) and the symplectic Euler method (the lowest
order, symplectic partitioned Runge-Kutta method). We consider
Example 2, introduced in Section 2.3. Both methods preserve
the linear first integral exactly (see Theorem 3.1 for the implicit
midpoint method and Theorem 3.3 for the symplectic Euler
method), this is observed in Figure 2 where the approximate orbits
lie on planes perpendicular to the kernel of J, the vector (0, 1, 1).
The implicit midpoint preserves the Hamiltonian exactly (see
Theorem 3.1) and the symplectic Euler computes a non-drifting
approximation of it (see Theorem 3.2).

4. Symplectic finite difference
methods

The idea of combining symplectic time integrators with finite
difference spatial discretizations can be traced back to the late 1980’
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symplectic Euler
— implicit midpoint

FIGURE 2

value corresponding to H = 32/2.

Two views of the approximate orbits of the Poisson system in Example 2 on the phase-space (p, g, r). The approximate orbits lie on planes with
normal vector (0, 1, 1) so that g + r is a constant. The orbits in the dashed-green line were computed using the symplectic Euler method are ellipses
and the ones in solid-red were computed using the implicit midpoint method and are circles. The blue sphere represents the constant Hamiltonian

symplectic Euler
implicit midpoint

with the work of Feng and his collaborators [10, 11]. For instance,
in 1987, Feng and Qi [11] applied symplectic integrators to the
discretization in space by central difference schemes of the linear
wave equation. In 1988, Ge and Feng [10] combined symplectic
time-marching methods with finite difference schemes for a linear
hyperbolic system. In 1993, McLachlan [16] incorporated the
Poisson structure from Olver [5] to the design of symplectic
finite difference schemes, and applied it to the non-linear waves,
the Schrodinger, and the KdV equations. This effort continues.
See, for example, the study of multisymplectic finite difference
methods [24].

On the other hand, numerical methods (which are essentially
symplectic time-marching methods applied to finite difference
space discretizations) had been proposed much earlier (than 1980’s)
when the concept of symplectic time-integrators did not exist
or was not systematically studied. A prominent example is Yee’s
scheme proposed in 1966 [15]. This scheme is also known as
the finite-difference time-domain (FDTD) method, for which the
acronym was first introduced in Taflove [25]. Later on, Yees
scheme was studied in the multisymplectic framework [26, 27].
However, to the best of our knowledge, no work exists which
attempts recasting Yee’s scheme as a combination of symplectic
time-marching methods with finite difference space discretizations.

In this section, instead of attempting to reach for maximal
generality, we focus on the Yee’s scheme [15]. We show that the
spatial discretization of the scheme leads to a Hamiltonian ODE
system, while the time-discretization of the scheme is nothing but
the well known, symplectic, second-order accurate Stormer-Verlet
method. As a result, all the conservation properties of Section 3
hold for Yee’s scheme.
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4.1. The time-dependent Maxwell
equations

Let us begin by recalling the time-dependent Maxwell’s
equations in the domain Q = [0,L;] x [0, L] X [0, L3]:
eE=VxH ing,
uH=-VxE inS,
With periodic boundary conditions, where E and H represent

the electric and the magnetic fields, respectively. If we set u
(E,H)", we can rewrite the above equations into a more compact

form:
it = Au = JHu, (6a)
where
B 0 eI (Vx)u™! _leo
J= |:—;/,1(Vx)el 0 and H= Rk
(6b)

Note Equation (6) is a Hamiltonian dynamical system with
the triplet (M, H, {-,-}), where M is the phase space, H is the
Hamiltonian

1

1
H=-uHu=-
2 2

f (€|EI” + nlH?),
Q
and the Poisson bracket is defined by

SF )
(F.G): = f <6—)T1—g.
Q u
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4.2. The space discretization of Yee's
scheme

We next consider the spatial discretization of Yee’s scheme [15],
for which the electric and the magnetic fields are defined on the

following grid points:
Epija Lt 1> Baig s 1o By Lo
Hyiy L Hajj o Hajijpi -

Namely, the magnetic field is defined on the edges and the
electric field is defined on the faces of the cube element [iAx, (i +
1)Ax] x [jAy, (j+ 1)Ay] x [kAz, (k + 1) Az]. Let us denote by

VE = VE1 X VE2 X VE3, VH = VH1 X VH2 X VH3,

the approximation spaces for the electric field E and the magnetic
field H, respectively, and let z € Vg x Vg be the vector
representing the discretized electric and magnetic fields. Then,
the spatial discretization of Yee’s scheme introduces the following
Hamiltonian system of ODEs:

z = JHz, (7a)
where
1 0 (D) *eurl; (D))~
' = axayan? |~ curlf(Dg)! ’
yAZ) (D) "curly (D;) 0
(7b)
DS 0
H = (AxAyAz) [ Oh D;f i| . (7¢)

In the above equations,
Df,: Vg — Ve, D) :Vyg— Vg,

are the discretizations of the multiplication operation by € and pu,
respectively. Moreover,

curlhH :Vy — Vg, curlﬁ Vg — Vg,

are two different finite difference discretizations of the Vx
operator. These operators will be described in full detail in the last
subsection. Here we want to emphasize the abstract structure of the
scheme as well as the main properties of these operators which are
contained in the following result. A detailed proof is presented in
Section 4.5.

Proposition 4.1. The operators Dj and DZ are symmetric and
semi-positive definite. In addition, we have

(culrlhH )= curlf .

Consequently, the operator J defined in Equation (7b) is anti-
symmetric, and the operator H defined in Equation (7¢) is semi-
positive definite.

As a consequence of the above proposition, the ODE system
(Equation 7a) is a Poisson dynamical system. In addition, thanks
to the structure of J and H (see Equations 7b, 7c), we know its
Hamiltonian is separable.
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4.3. The fully discrete Yee's scheme

So we can now time-march this system of ODEs by using a
symplectic scheme so that all the results of Section 3.4 hold.

In particular, if in the Equation (5), we replace Q by E, P by H,
Agp by (D;)*lcurlf and Ay, by (—(DZ)*lcurlf), we obtain

Eni1 = Ey+ At(DS) curl! Hyy12, (8)
H,3p=Hu12 — At(Dﬁf)_lcurlem %)

and we recover Yee’s scheme [15].

4.4. Conservation laws

Finally, we identify some conservation quantities associated to
Yee’s scheme. By Proposition 3.3, this task reduces to identify

o Thekernel of AT. Suppose ATv = 0, then v' u is conserved in
time.

e Symmetric matrix S such that SA + ATS = 0. Then, the
bilinear form u " Su is conserved in time.

Before, we can present the main result, let us introduce some
notation. For a given function f;;x, we define a shifting operator
as follows:

T(s1,52,83) (fi,j,k) = fi+s1 Jsa.k4sz-

In the above formulation, we allow the indexes i, j, and k to be non-
integers so that the operator (s, , ;) can be applied to f; ;x on non-
integer grid points. With this notation, we define the discretized
Hamiltonian energy function

‘H(E1, Ez, E3, Hy, Hy, H3)

1
S AxAyAz ((DGEE),, + (D) H.H)
2 VE Vi

INT]

1 2 2
2 % (T(o, 11 (kB0 + 7L 0,1 (€0

2
+T(%,Z,o)(€i’j’kE3,i,j,k))

1 2 2
peaAT) <T(%,o,0)(“i’f’kH Lijk) T %0,.4,0 Wikt jx)
ik
2
+r(0,0,%)(MiJ)kH3,i,j,k)> ~

We also introduce two gradient operators

() Viodijk s = Ti(diji),

(ii) Vh’% ¢i+%,j+%,k+% L= Th(¢i+%,j+%,k+%)’

Where T, is the differencing operator given by

>

T, : — T(1,0,0) — 7(0,0,00 T(0,1,0) — T(0,0,0)
he= Az

7(0,0,1) — T(0,0,0)
Ax ’ Ay '
Note that the two gradients are defined on different grid spaces.
The gradient V}, is defined for function living on integer-grid
points (i, j, k), while the gradient V 1 is defined on half-grid points
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i+ %,j + %, k+ %). In addition, we remark that the range of Vj o
is Vi, and the range of V1 is V.
22

Proposition 4.2 (Conservation of energy and electric/magnetic
charges) For the Yee’s semi-discrete scheme defined by Equation
(7a), the energy # is conserved in time. In addition, (the weak form
of) the electric and magnetic charges

Cy(E1, Ez, E3, Hy, Hy, H3) :

= (DLE Vo) y, + (D) H, Vii2),.

is conserved in time. Here, ¢; (i = 1,2) are arbitrary test functions.

4.5. Proof of proposition 4.1 and 4.2

In this subsection, we first define the operators D¢, DZ R curth R
and curlf. Then we prove Propositions 4.1 and 4.2.
We introduce two types of central difference operators 3/*° and

h,l
0, 2, which are defined as

h,0 7(1,0,00 — T(0,0,0)
O PiyLjx = — Ax fijks
h3 _T(1/2,00) ~ T(=1/2,0,0)
0 Nijk = Ax fijik:
Similarly, we can define 3;’ 0 By a0, and 3 . It is easy to
observe that
O Vi, = Ve, 005 Vi, = Vi,
atz . , = VE3, asz : VH2 — VEI:
axH3 Vi, — Vi, 8yH3 Vi, — V.

Note that we have added the additional sub-indexes H; to
indicate the domain of the operators.

Lemma 4.1 (The anti-symmetry of central differences) We have

h3 h,}

O, = =) Ve, = Vi, 0, = —@0)": Ve, > Vi,
hi ht

ax,E23 = _(8xH2)* VE3 - VHZ’ 3z,Ezl = _(asz)),< VEI - VH2’
hi hi

dep, = (Bst) Vg, — Vi, 8y,}321 =—( st)* 1V, — Vi,

h,
Proof. We will only prove that By) (8}],1 131)* : Vg, = Vp,.The

rest is similar. Notice that

(ayHlHl’ Ves = Z( Hl)z+%,j+%sz+ g3k

ij.k
Z Hyi e = Hiip Lk T
= L1
A Ax i+ 3,43k
ij,k
Tips Li-3k T Ti+%,j+%,k
- Z Li+1 3.0k Ax
ij.k
— ’2
= (H1, 0,2, T)v,
This proves the claim. O
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Now, we define two discrete curl operators:

curlﬁ,5 Vg — Vg

hi hi
0 _BZJEZz ay,Ezs E,
hi hi
(E1, Ez, E3) > az,E1l 0 —d.2 gz ,
h,> h,
_ }/)15'21 ax 2 0 3

and

urlh Vg — Vg

0 aZHz asz Hl
(Hy, Hy, H3) > ajgl 0 =l | | H

ho ko
= Oem, 0 Hj

We also introduce the multiplication operators Dj : Vg — Vg
such that

Dj,(E E Eyiy1jrin)

1E

Lij+3k+3> D2+ 5 k430

(Ez]+2,k+1Elz,j+§,k+% i Lk  Eaip L ikt 1o

€i+%,j+§,kE3,i+%,j+%,k)-

The operator DZ : Vg — Vg can be similarly defined.

Proof of Proposition 4.1. As we have seen, Dj and DZ are semi-
positive definite since € and g are non-negative. Hence, the
matrix H is semi-positive definite by its definition (Equation 7c).
Moreover, by Lemma 4.1, we have that (curth ) = curlﬁ , and so, J
is anti-symmetric. This completes the proof. O

We are next going to prove Proposition 4.2. Before that, we will
need a lemma.

Lemma 4.2 (The kernel of the finite difference curly, operators) We
have that

() Vi1 dijk

belongs to the kernel of curlhH R

o= Ty(dijr)

(11) vh,Z ¢i+%)j+%,k+% - Th (¢,+ 3 k+1 )

belongs to the kernel of curlh,

Where T, is the differencing operator given by

T, : — T(1,0,00 — T(0,0,0) T(0,1,0) — T(0,0,00 T(0,0,1) — T(0,0,0)
e Ax Ay Az
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Proof. We prove the lemma by a direct computation. Note that

r _aho0 h0 7 M T1,00 = %000 7]
0 aZ,I‘Iz a/v,H; - Ax
H _ h,0 h,0 7(0,1,0) ~7(0,0,0
curly’ o Vh,ld)i,j,k = 3Z,H1 0 —3x,H3 %},() (bi,j,k
_aho0 h,0 7(0,0,1) ~7(0,0,0)
L=, 0w, 0 J L7
_(T(o,l,l)—T(o,l,o))—(f(o,o,l)—f(o,o,o)) _ (1(0,1,1)—f(o,o,l))—(f(o,l,o)—T(o,o,o))-
AzAy AyAz
— | (o =%000) =000 =7000) _ Fuon=T100)=(T00n=T000) |

AxAz AxAz

(701,1,0 ~7(1,00) ~ (70,10 ~T(0,00) _ (T(1,1,0) ~T(0,1,0) —(7(1,0,0) ~T(0,0,0))
AyAx AxAy

0

Gijk =10

0

Hence, Lemma 4.2-(i) holds. Lemma 4.2-(ii) can be proven in a
similar manner. This completes the proof. O

Proof of Proposition 4.2. Note that we have
1+
H(z) = 32 Hz.

Hence, to prove that H is preserved in time, by Proposition 3.3,
we only need to show that HA + ATH = 0, which is true since
HA+ATH = HHH+ H'J'H,J" = —J, and H' = H. Thus,
the Hamiltonian # is preserved in time on the discrete orbits of the
numerical method.

Next, let us prove the conservation of the electric and magnetic
charges. By Proposition 3.3, this task reduces to identify the kernel
of AT. Since

AT — 0 —curth(DZ)_1
T | curly(Dg) 0 ’

by Lemma 4.2, we have

[Dzvm

€ ker(AT).
Dth,I‘/fj| (4

This completes the proof.

5. Symplectic-Hamiltonian finite
element methods

This section presents the recent development of the so-
called symplectic-Hamiltonian finite element methods for linear
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Hamiltonian partial differential equations. First, we discuss our
results on energy-preserving hybridizable discontinuous Galerkin
28], and then
describe our further contributions to finite element discretizations

(HDG) methods for the scalar wave equation [I,

of the linear elastic equation [2] and the Maxwell equations [3,
9]. We analyze in detail four finite element discretizations of
the linear scalar wave (Equation 2) based on standard Galerkin
methods, mixed methods, and HDG methods, and prove their
structure-preserving properties.

5.1. Notation

Let us first introduce some standard finite element notation.
For a given bounded domain @ C RY, let 7, = (K} be a
family of regular triangulations of 2, with mesh-size parameter
h the maximum diameter over the elements. We also assume for
simplicity the elements are only simplices. For a domain D € R? we
denote by (-, -)p the L? inner product for scalar, vector and tensor
valued functions

(w,v>D:=/wv, (w,v>D:=/w-v, (m)D:/y:z,
D D D

for (w,v) € L*(D), (w,v) € L*D)%, and (w,v) e L*(D)™
We extend these definitions for the inner product in (d — 1)-
dimensional domains. For discontinuous Galerkin methods, we
define by 97, the set of all element boundaries 0K, for K € Ty,
and by Fj, the set of all the faces F of the triangulation 7j,. Inner
product definitions are extended to these sets by

W)=Y wiks  (wv)er o= ) (mvak.

KeTy, KeTy,

for properly defined scalar-valued functions w,v. Similar

definitions are given for vector- and tensor-valued functions.

5.2. The continuous Galerkin method

We now present a standard finite element discretization of the
linear scalar wave equation using H'-conforming approximations
for the displacement and velocity variables. Let V}, be a continuous
piece-wise polynomial subspace of Hé(Q), then the semi-discrete
Galerkin method, corresponding to the primal formulation of the
wave (Equation 3), reads as follows: Find (up,vy) € Vi x Vp
such that

(10a)
(10b)

(pinw)g = (P Vi W » VYw € Vy,
(pvpw)q = — (KVup, Vw)q + (f, W)Q, Yw e V.

The system is initialized by projections of the initial conditions
up and vy onto the finite-dimensional space Vj,. It is clear that
the semi-discrete method inherits the Hamiltonian structure of the
continuous (Equation 3) with triplet (My, Hp, {-,-}), where the
discrete phase-space is M, = Vj, x V},, and the Hamiltonian and
Poisson brackets are the respective restrictions to this space, i.e.

1 1
Hpulup, vl = 3 (P v vig + 3 (ke Vup, Vup)g — (fr un) g »
SF 8G
F.G) = ‘1—,17) :
ol (p SCup, vi) " 8(upvp) ) g
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for linear functionals F = Fluy, v,], G = Gluy, vy,], for up, v, € Vp,
and where denotes the canonical anti-symmetric structure matrix
J e R2Im(Vi),

Equivalently, we can formulate the method in its matrix form
based on a given p-orthonormal basis {¢;} of the space V} and
define the matrix and vector

(Se)ij: = (kVois Vey) o fi=(f.0i)q -

Then, the evolution variables are represented in this basis by
means of the coefficients u, v, i.e, uy(x, 1) = >, ui(t)pi(x) and
vu(x, 1) = Y, vi(t)pi(x). We can write the Hamiltonian functional
as a function of the coefficients y = (u, T as

1 1 1 S¢ 0 f
Hlup, vy] = EVTV-F EuTSKu— ulf= EyT |:(;( Id:|y—yT |:0i| .

Therefore, computing the gradient of the Hamiltonian respect
to the coefficients y = (u,v)T, we conclude that the standard

Galerkin method (Equation 10) is equivalent to

(L]l -]

from where its Hamiltonian structure is evident. Note that
the resulting system of differential equations is a canonical
Hamiltonian system.

The semi-method is then discretized in time using a symplectic
time-marching scheme. Here we write down the discretization
by an s-stage explicit partitioned Runge-Kutta scheme with
coefficients b and b. The fully discrete scheme is written in terms
of the variables y" = (u",v") = (u(t"), v(t")), for t" = nAt,n € N,
and time-step At, by the iterations

[P,QIT « y" = (" v"),

P < P+ bjAtQ, Q <« Q— b;AfS,P,

(un+1)vn+1) :yn+1 «— [P, Q]T

forl <i<s,

5.3. Mixed methods

In Kirby and Kieu [19] the authors introduce a mixed method
for the scalar wave (Equation 4) and prove its Hamiltonian
structure, here we review their results and prove that the resulting
system of differential equations is a Poisson system.

Let W), € L*(Q) and V}, ¢ H(div; ) be mixed finite element
spaces and define the semi-discrete mixed method as follows: Find
(Vi qp,) € Wy, x V, solution of

(11a)
(11b)

Pvpwig = (V- qpw)g+ (frw)g, Ywe W,
(Kﬁlqh’r)g == V- 1gq, Vre V.

The system is initialized by (v(0), g;,(0)), where v}, (0) is taken
as the L2-projection of the initial data vy onto Wy, and g;,(0) € V,
is solution of the problem

(V- q,,00), w)Q = (V-«Vug,w)q, Ywe Wy,
(K_lqh(O), r)Q + (uh(O),V . r)Q =0, Vr e V.
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Moreover, the displacement approximation can be computed
by u(t) = up(0) + fot vy(s)ds. The semi-discrete method is
Hamiltonian with triplet (My, Hp, {-,-}) with M, = W, x Vy,

1 1, _
Hive, q,] = 3 (P Vi vi)q + > (g a) g = Fane 1) g

(F G}—( oF 157G>
T\ Svay) Svmay) ) o

_ 0 —(p~'V)oxk
J= (kV)op~t 0

Let {¢} be a p-orthonormal basis of W}, and {¢;} be a «~!-
orthonormal basis of V},, and denote by v and g the coefficients
associated to the solution of system (Equation 11), namely,
v(x,t) = Y vi()pi(x) and g,(x, 1) = Y, qi(t)¥;(x), and define
the matrix

Bi:= (V- ¥pdi)g-

We write the Hamiltonian functional in term of the coeflicients
(r,q)" =yby

SN Ve P s g | CRCH R I
H[thqh]—zv vtsa qa+q faiv = 2 o al?t? Fan

and thus the matrix system equivalent to the method (Equation 11)
is as follows

v 0 Bf|v 0 B||dH/adv
gl |-BTo|lq| |-BT of|aH/aq|
Finally, the time-discretization is carried out by a symplectic
time integrator. For instance, consider the Butcher array with
coefficients ¢, b, A of a symplectic Runge-Kutta method, then the

evolution system for the vector variable y* = (v",¢"T =~
(v(t”),q(t”))T, for t" = nAt, n € N and time-step At,

Q(AtA)Y"™ = P(AtA)y", where A = [_%T 1;}

and where P(z) = det(I — zA + zeb" ) and Q(z) = det(I — zA).

5.4. Hybridizable discontinuous Galerkin
methods

Note that both finite element discretizations introduced
above, the continuous Galerkin and the mixed method, inherit
the Hamiltonian structure property of the continuous equations
due to the conformity of their finite element sub-spaces. Non-
conforming finite element discretizations, such as discontinuous
Galerkin methods, present more challenges. Here we discuss
two hybridizable discontinuous Galerkin schemes for the
approximation of solutions of the linear scalar wave equation, the
first one a dissipative scheme and the second one a method that
inherits the Hamiltonian property.
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FIGURE 3

polynomial approximation spaces of order 3 and the implicit midpoint.

Computational mesh of the rectangular domain @ with an obstacle (second row, right) used for all the computation. The first row and second (left
and middle) show snapshots at t = 0, 2, 4, 6, 8 of the velocity variables v, approximated by the Hamiltonian HDG method (Equation 13) with

5.4.1. A dissipative HDG scheme

Let us consider hybridizable discontinuous Galerkin methods
for the formulation of velocity-gradient variables [29, 30]. We
define the discontinuous element spaces

Wy, = {w € L*(Q): wlx € W(K), VK € Tp},
Vi = {re LXQ): rlx € V(K),

VK € T},
My, = {u € L*(Fp): ur € M(F), ¥F € Fy),

Where W(K), V(K), M(F) are local (polynomial) spaces. The
semi-discrete HDG method then is as follows: Find (v, qh,?h) S
Wy, x Vi, x My, such that

(0w, = —(a, VW) 7, + @), - m, W)y, + (W), (12a)
Yw e Wy, (12b)

(Kﬁlqh,r)Th == V-7, + @pr-n)y7, VreVy,
(12¢)

@, - npw)or;, =0, n € My,
(12d)

q,-n:=gq, n—1t(v, — ), on 7.

(12e)

The formulation is no longer Hamiltonian, due to the definition
of the numerical traces. In fact, we can prove that the discrete
energy defined by

1 1 _
Epr = E(P"hﬂ’h)Th + E(K 'y a1,)7;-
is dissipative,

En = —(th =) v — o, + (Fr V)T

5.4.2. A symplectic Hamiltonian HDG scheme
In Sénchez et al. [1] we rewrote the method using the primal
formulation (Equation 3), that is, we reintroduce the displacement
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variables and compute a steady-state approximation ¢;,. The semi-
discrete method is find (up, vi, 4y, 1) € Wi, x W, x Vi X M), such
that

(ot W), = (VR W) T, Yw e Wy,
(13a)

oV W), = —(q, VW) T, + (@), - W)y, + (f, w7, Yw € W),
(13b)

(K_lq’ ")771 = —(up, V- ")7;, + (up, - s, VreVy,
(13¢)

@, - ) =0, w e My,
(13d)

qy-n:=q,-n—t(uy —up), on d7}.

(13e)

This system is Hamiltonian with triplet (M, Hp, {-, -}), where
the phase space is M}, = Wy, x Wy, {-,-} is the canonical Poisson
bracket and #y, is the discrete Hamiltonian given by

1 1 _
Hilup, vir] = E(Vh)vh)ﬂ + E(K "9 )7

1 ~ ~
+5(T(Mh —Up), up —up)a7y, — (f> un) 75,

Let {¢;} the p-orthonormal basis of Wj, {¥;} the «~!-
orthonormal basis of Vj, and {n,} a basis of M. Define the
matrices

Chm: = Wi mnma7,, Bi:=(V ¥ )7,
(80)ij = = (Tdi®jlor,,  Eo)im: = (tdi>nm)oT;,»
(G)mn: = (Tnm>77n)8'77,~

Then, the variables are written in terms of the coeflicients
vectors u, v, g, U as follows

up(o ) =Y w(Bgix), vl t) =Y vit)gi(x),

G =Y aOPx), T =Y dn(E)m(0).
k m
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FIGURE 4

Plots of the approximated physical quantities: Energy loss (left), linear momentum loss (middle), and pseudomomentum. The first row shows a
comparison of the continuous Galerkin methods using the implicit midpoint (dot-dashed blue line) and an sDIRK method of order 3 (dashed red line).
The second row shows a comparison of the Mixed method using the Raviart-Thomas element with a polynomial approximation of order 3, using the
Stérmer-Verlet scheme and the sDIRK method of order 3. The third row shows a comparison of the Hamiltonian HDG scheme (Equation 13) and the
dissipative HDG scheme (Equation 12), for both we use the implicit midpoint.

The Hamiltonian is then rewritten in terms of the coefficients as We rewrite (Equations 13¢, 13d) in matrix form, take derivative
with respect to u, and multiply on the left by [qT, —% ] we obtain

1 1 S —E u
Hylup, vp] = v v+ -q" +[uT,7IT] ’ L =uTf,
wlu il = 594 BT G, ||@ f e 14— [3q/0u o BT
1> cT G, ||omou| =1 ET |
and where the coefficients solve
which can be expressed as a column vector
| | 0 Id||S;u—Bg—E.u 0| | 0 Id||dH/ou
=| =|_ : 9 /1 R | PN ~
Id 0 v f Id 0 ||dH/ov a—(quq—uTCTq—zuTGfu)=—Bq—Efu.
u

In effect, it is clear that 9H /dv = v, and
n effect, itis clear that 974/9v = v, an Therefore, this proves that

oH NS SIS N S T SN 9K
E—Sr”‘Fa(zq q—u Erut-u G ) —f E:Sfu—Bq—Efﬁ—f

1 1 —~
=S;u+ — (—qTq —a'Cclq— —’ﬁTGru> —f.
du \2 2 and thus the Hamiltonian form of Equation (13) follows.
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TABLE 5 Butcher array for a singly diagonally implicit Runge-Kutta
method, with y = (1 + +/3)/2.

1—y 1-2y Y

1/2 1/2

The method is of order 3 and non-symplectic.

5.5. A numerical example

We manufacture a numerical example to test the

energy-conserving properties of the schemes
Consider the

an obstacle € depicted in Figure 3. We solve the scalar

presented

in this section. rectangular domain with

wave equation with Homogeneous Neumann boundary
conditions at all domain boundaries and initial conditions
set as ug(x,y) = exp(—0.5(x — 4)2/(1/5)%) and vy =
—25(x — 4) exp(—0.5(x — 4)%/(1/5)%).

In Figure 3, we present the computational mesh of the domain

used in our computations. We compare six numerical schemes:

e CG-symp: Continuous Galerkin with polynomial order 3, and
implicit midpoint scheme (symplectic).

e CG-diss: Continuous Galerkin with polynomial order 3 and
singly DIRK method of order 3 (nonsymplectic), see Table 5.

e Mixed-symp: Mixed method with Raviart-Thomas spaces of
order 3, and Stérmer-Verlet scheme (symplectic PRK method
of order 2).

e Mixed-diss: Mixed method with Raviart-Thomas spaces of
order 3 and singly DIRK method of order 3 (nonsymplectic),
see Table 5.

e HDG-symp: Hamiltonian HDG method (Equation 13)
with polynomial order 3, and implicit midpoint scheme
(symplectic).

e HDG-diss: HDG method (Equation 12) (non-Hamiltonian)
with polynomial order 3, and implicit midpoint scheme
(symplectic).

evolution of the numerical
Hamiltonian HDG method
with polynomial approximations of order 3 and implicit

We illustrate  the
approximation given by the

midpoint in Figure 3.
t=0,2,4,6,8.
In Figure4 we present a comparison of the numerical

Snapshots are presented at times

schemes computing the physical quantities energy (see Table 1),
linear momentum, and the norm of the pseudomomentum
for the six methods. In the first column, we plot the
energy loss, that is, |£,(0) — &,(t")|, for the energy &,(t")
computed with each numerical scheme at the time ¢". In the
second column, we plot the linear momentum loss and, in
the third column the evolution of the pseudomomentum.
We observe the improved approximation of the energy
Hamiltonian

and pseudomomentum of the symplectic

finite element methods. The linear momentum, which is
a first integral of the system, is preserved for each of the

numerical schemes.
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6. Ongoing work

As we have seen, the application of a symplectic time-marching
method to a Hamiltonian system of ODEs can guarantee the
preservation of all its linear and quadratic invariants. On the
other hand, to obtain such a system of ODEs, one uses space
discretizations which do not guarantee the preservation of all the
linear and quadratic invariants of the original Hamiltonian PDEs!
Indeed, as far as we can tell, it is not well understood how to obtain
all the discrete versions of those invariants for any given space
discretization, by finite difference or finite element methods. In fact,
although it is almost automatic how to find discrete versions of the
energy, the discrete equivalents of other conserved quantities, like
the Lipkin’s invariants for electromagnetism, for example, remain
elusive. This topic constitutes the subject of ongoing work.

Recently, a new class of symplectic Discontinuous Galerkin
methods were found whose distinctive feature is the use of time
operators for defining their numerical traces, see Cockburn et al.
[9]. Work to find how useful this type of methods are is under way.

The combination of Galerkin space discretizations with
symplectic time-marching methods to a variety of systems of
nonlinear Hamiltonian problems, including the Schrodinger and
KdV equations, finite deformation elasticity, water waves and
nonlinear wave equations, is also the subject of ongoing work.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it

for publication.

Funding

BC was supported in part by the NSF through grant no. DMS-
1912646. MS was partially supported by FONDECYT Regular grant
no. 1221189 and by Centro Nacional de Inteligencia Artificial
CENIA, FB210017, Basal ANID Chile.

Acknowledgments

The authors would like to express their gratitude to EC
for the invitation to write this article. The authors also want
to thank Peter Olver for many useful clarifications on the
various concepts used for the systems under consideration
and for bringing to their attention the Olver [5, Example
4.36] and Walter [32] about conservation laws for the scalar
wave equation.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

frontiersin.org


https://doi.org/10.3389/fams.2023.1165371
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Cockburn et al.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

References

1. SanchezMA, Ciuca C, Nguyen NC, Peraire J, Cockburn B. Symplectic Hamiltonian
HDG methods for wave propagation phenomena. ] Comput Phys. (2017) 350:951-73.
doi: 10.1016/j.jcp.2017.09.010

2. SdnchezMA, Cockburn B, Nguyen NC, Peraire J. Symplectic Hamiltonian finite
element methods for linear elastodynamics. Comput Methods Appl Mech Engrg. (2021)
381:113843. doi: 10.1016/j.cma.2021.113843

3. SdnchezMA, Du S, Cockburn B, Nguyen NC, Peraire J. Symplectic Hamiltonian
finite element methods for electromagnetics. Comput Methods Appl Mech Engrg. (2022)
396:114969. doi: 10.1016/j.cma.2022.114969

4. Fu G, Shu CW. Optimal energy-conserving discontinuous Galerkin methods
for linear symmetric hyperbolic systems. J Comput Phys. (2019) 394:329-63.
doi: 10.1016/j.jcp.2019.05.050

5. Olver P). Applications of Lie Groups to Differential Equations. Vol. 107 of Graduate
Texts in Mathematics. 2nd ed. New York, NY: Springer-Verlag (1993).

6. Marsden JE, Ratiu TS. Introduction to Mechanics and Symmetry. Vol. 17 of Texts
in Applied Mathematics. 2nd ed. New York, NY: Springer-Verlag (1999).

7. Leimkuhler B, Reich S. Simulating Hamiltonian Dynamics. Vol. 14 of Cambridge
Monographs on Applied and Computational Mathematics. Cambridge: Cambridge
University Press (2004).

8. Feng K, Qin MZ. Symplectic geometric algorithms for Hamiltonian systems. In:
Zhejiang Science and Technology Publishing House, Hangzhou: Springer, Heidelberg;
(2010).

9. Cockburn B, Du S, Sdnchez MA. Discontinuous Galerkin methods with time-
operators in their numerical traces for time-dependent electromagnetics. Comput
Methods Appl Math. (2022) 22:775-96. doi: 10.1515/cmam-2021-0215

10. Ge Z, Feng K. On the Approximations of linear Hamiltonian systems. ] Comput
Math. (1988) 6:88-97.

11. Feng K, Qin MZ. The symplectic methods for the computation of Hamiltonian
equations. In: Numerical methods for partial differential equations (Shanghai, 1987). vol.
1297 of Lecture Notes in Math. Berlin: Springer (1987). p. 1-37.

12. Feng K, Wu HM, Z M. Symplectic difference schemes for linear Hamiltonian
systems. ] Comput Math. (1990) 8:371-80.

13. Sanz-Serna JM. Symplectic integrators for Hamiltonian problems: an overview.
In: Acta Numerica 1992 Acta Numer. Cambridge: Cambridge Univ. Press (1992). p.
243-86.

14. Hairer E, Lubich C, Wanner G. Geometric numerical integration : structure-
preserving algorithms for ordinary differential equations. In: Springer Series in
Computational Mathematics. Berlin; Heidelberg; New York, NY: Springer. (2006).

15. Yee K. Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media. IEEE Trans Antennas Propagat. (1966)
14:302-7. doi: 10.1109/TAP.1966.1138693

16. McLachlan R. Symplectic integration of Hamiltonian wave equations. Numer
Math. (1993) 66:465-92. doi: 10.1007/BF01385708

17. Grofl M, Betsch P, Steinmann P. Conservation properties of a time
FE method. Part IV: Higher order energy and momentum conserving

Frontiersin Applied Mathematics and Statistics

21

10.3389/fams.2023.1165371

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

schemes. Internat ] Numer Methods Engrg. (2005) 63:1849-97. doi: 10.1002/
nme.1339

18. Xu Y, van der Vegt JJW, Bokhove O. Discontinuous Hamiltonian finite
element method for linear hyperbolic systems. J Sci Comput. (2008) 35:241-65.
doi: 10.1007/s10915-008-9191-y

19. Kirby RC, Kieu TT. Symplectic-mixed finite
of linear acoustic wave equations. Numer Math.
doi: 10.1007/s00211-014-0667-4

element approximation
(2015)  130:257-91.

20. Fletcher DC. Conservation laws in linear elastodynamics. Arch Rational Mech
Anal. (1976) 60:329-53. doi: 10.1007/BF00248884

21. Lipkin DM. Existence of a new conservation law in electromagnetic theory. J
Math Phys. (1964) 5:695-700. doi: 10.1063/1.1704165

22. Tang Y, Cohen AE. Optical chirality and its interaction with matter. Phys Rev
Lett. (2010) 104:163901. doi: 10.1103/PhysRevLett.104.163901

23. Yoshida H. Construction of higher order symplectic integrators. Phys Lett A.
(1990) 150:262-8. doi: 10.1016/0375-9601(90)90092-3

24. Bridges JT, Reich S. Numerical methods for Hamiltonian PDEs. ] Phys A. (2006)
39:5287-320. doi: 10.1088/0305-4470/39/19/502

25. Taflove A. Application of the finite-difference time-domain method to sinusoidal
steady-state electromagnetic-penetration problems. IEEE Trans Electromagn
Compatibil. (1980) 3:191-202. doi: 10.1109/TEMC.1980.303879

26. Sun Y, Tse PSP. Symplectic and
methods for Maxwell's equations. ] Comput
doi: 10.1016/j.jcp.2010.12.006

numerical
230:2076-94.

multisymplectic
Phys.  (2011)

27. Stern A, Tong Y, Desbrun M, Marsden JE. Geometric computational
electrodynamics with variational integrators and discrete differential forms. In:
Geometry, Mechanics, and Dynamics. vol. 73 of Fields Inst. Commun. New York, NY:
Springer (2015). p. 437-75.

28. Cockburn B, Fu Z, Hungria A, Ji L, Sénchez MA, Sayas FJ. Stormer-
Numerov HDG methods for acoustic waves. ] Sci Comput. (2018) 75:597-624.
doi: 10.1007/s10915-017-0547-z

29. Nguyen NC, Peraire J, Cockburn B. High—nrder implicit hybridizable
discontinuous Galerkin methods for acoustics and elastodynamics. ] Comput Phys.
(2011) 230:3695-718. doi: 10.1016/j.jcp.2011.01.035

30. Cockburn B, Quenneville-Bélair V. Uniform-in-time superconvergence of
HDG methods for the acoustic wave equation. Math Comp. (2014) 83:65-85.
doi: 10.1090/S0025-5718-2013-02743-3

31. Hairer E, Wanner G. Solving ordinary differential equations. II, volume 14 of
Springer Series in Computational Mathematics. 2nd ed. Berlin: Springer-Verlag (1996).

32. Walter AS. Nonlinear invariant wave equations. In: Invariant Wave Equations
(Proc. Ettore Majorana International School of Mathematical Physics Erice, 1977),
Lecture Notes in Physics, Vol. 73. Berlin: Springer (1978). p. 197-249.

33. Anco SC, Pohjanpelto J. Classification of local conservation laws of
Maxwell’s equations. Acta Appl. Math. (2001) 69:285-327. doi: 10.1023/A:10142639
03283

frontiersin.org


https://doi.org/10.3389/fams.2023.1165371
https://doi.org/10.1016/j.jcp.2017.09.010
https://doi.org/10.1016/j.cma.2021.113843
https://doi.org/10.1016/j.cma.2022.114969
https://doi.org/10.1016/j.jcp.2019.05.050
https://doi.org/10.1515/cmam-2021-0215
https://doi.org/10.1109/TAP.1966.1138693
https://doi.org/10.1007/BF01385708
https://doi.org/10.1002/nme.1339
https://doi.org/10.1007/s10915-008-9191-y
https://doi.org/10.1007/s00211-014-0667-4
https://doi.org/10.1007/BF00248884
https://doi.org/10.1063/1.1704165
https://doi.org/10.1103/PhysRevLett.104.163901
https://doi.org/10.1016/0375-9601(90)90092-3
https://doi.org/10.1088/0305-4470/39/19/S02
https://doi.org/10.1109/TEMC.1980.303879
https://doi.org/10.1016/j.jcp.2010.12.006
https://doi.org/10.1007/s10915-017-0547-z
https://doi.org/10.1016/j.jcp.2011.01.035
https://doi.org/10.1090/S0025-5718-2013-02743-3
https://doi.org/10.1023/A:1014263903283
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Cockburn et al.

Appendix

1. Symplectic partitioned Runge-Kutta
methods

Here, we provide a proof of Proposition 3.8 which characterizes
the Symplectic Partitioned Runge-Kutta (PRK) methods for ODEs.
We use the notation of Section 3.4.

We must show that ®: = ubT (ENI EL — ])u2 is zero for
any u' and #? in RY. By Theorem 3.3, E],v = v for any element
v of the kernel of J. Thus, we can take u! and u? in the range of
J. On that subspace, J is invertible and it is enough to prove that
©:=uT(E]J7VE], — J71)u? is zero.

Inserting the definition of the PRK numerical method Eay, we
obtain

S N
O =At Y ubTJTIABUT + ALY U BAT
j=1 i=1

S
+(An? Y U}’TB,-AT]—lABjU}
ij=1

N N
=At Y u"THBU} + At Y U} BiHu?
j=1 i=1

s
—(an* Yy U}’TB,-H]HB,-UJ?,
ij=1

because A = JH. Sinceu = Uy — AtA Y, _| Aum Uy, we get that

S
— AtJH ZA]-,- U} THB;U?

i=1

S
®= At Z(U}
j:l
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N
— AtJH Y Aj U7)
j=1

s
+At Y UPTBHU?

i=1

S
—(an* ) U}’TBiHJTHBjU},
ij=1

and so

N N
O= At Y Uy THU+ (A Y UpTS;U7,
(=1

ij=1
where
H, = HB; — ByH and S,'j= AﬁH]HBj + B,’H]HA,‘]' — B,‘H]HB]‘.

Next, we incorporate the information of the Hamiltonian being
separable:

0 A
H= Hpp 0 and HJH= T rq where
0 Hy, ~AJ 0

Apq = HpplpqHags

0 _ by Idpp B 0
by quq 0 by quq ’

He =H(B¢ — By) =0
S,j = H]H(TAjiBj + TB,‘A,‘]‘ — TB,'Bj)
= O,

and, with TB(g: =T |:b£ dep

conclude that

and

hypothesis. This completes the proof  of

by
Proposition 3.8.
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