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Abstract

Real-time satellite imaging has a central role in monitoring, detecting and estimating the
intensity of key natural phenomena such as floods, earthquakes, etc. One important con-
straint of satellite imaging is the trade-off between spatial/spectral resolution and their
revisiting time, a consequence of design and physical constraints imposed by satellite or-
bit among other technical limitations. In this paper, we focus on fusing multi-temporal,
multi-spectral images where data acquired from different instruments with different spatial
resolutions is used. We leverage the spatial relationship between images at multiple modal-
ities to generate high-resolution image sequences at higher revisiting rates. To achieve this
goal, we formulate the fusion method as a recursive state estimation problem and study
its performance in filtering and smoothing contexts. Furthermore, a calibration strategy is
proposed to estimate the time-varying temporal dynamics of the image sequence using only
a small amount of historical image data. Differently from the training process in traditional
machine learning algorithms, which usually require large datasets and computation times,
the parameters of the temporal dynamical model are calibrated based on an analytical ex-
pression that uses only two of the images in the historical dataset. A distributed version
of the Bayesian filtering and smoothing strategies is also proposed to reduce its compu-
tational complexity. To evaluate the proposed methodology we consider a water mapping
task where real data acquired by the Landsat and MODIS instruments are fused generating
high spatial-temporal resolution image estimates. Our experiments show that the proposed
methodology outperforms the competing methods in both estimation accuracy and water
mapping tasks.

Keywords: Multimodal image fusion, Online Fusion, Bayesian Filtering, Water mapping,
Super-resolution

1. Introduction

High spatial resolution satellite image data is a fundamental tool for remote sensing
applications such as the monitoring of land cover changes [1, 2|, deforestation [3, 4] or wa-
ter mapping [5, 6] and water quality [7]. Moreover, to adequately deal with the variability
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of such events over time it is important to have short time spans between different image
acquisitions of the same scene (i.e., a high temporal resolution, or low revisit times). How-
ever, fundamental limitations of multiband imaging instruments and large sensor-to-target
distances impose a trade-off between spatial and temporal resolutions of satellite image
sequences.

This means that instruments providing high spatial resolution have long revisit times,
while the converse holds for instruments with short revisit times. This can be illustrated, for
instance, by considering Landsat 8 and MODIS instruments (with 30 and 250/500 meters
spatial resolution, respectively). While MODIS is able to provide daily images at coarse
resolution, Landsat-8 only revisits the same site once every 16 days [8].

Considering these limitations, many works proposed multimodal image fusion techniques
to generate high (spatial, spectral or temporal) resolution remote sensing images. Multi-
modal image fusion aims to combine multiple observed images, each of which having high
resolution in a given dimension — spatial, temporal, or spectral — to generate high reso-
lution image sequences.  Several instances of image fusion have been considered, some
works aim to directly supply classification maps from multiple satellite image and surface
elevation data at each time instant [9], integrating optical and radar data for time-series
crop classification [10, 11], or fusing spatio-temporal optical and elevation data to obtain
high-resolution land temperature maps [12].

In particular, classification or mapping tasks based on time-series remote sensing data
is receiving increasing interest in the literature [13, 14, 10, 11]. Thus, to overcome the limi-
tations of existing instruments, fusing images with different spectral and spatial resolutions
has been extensively studied to generate images with high spatial and spectral resolutions,
which are critical for accurately distinguishing different materials in a pixel [15, 16, 17].
Recently, an increasing interest has been observed in applying multimodal image fusion to
generate image sequences with high spatial and temporal resolutions [18], with particular
interest dedicated to fusing data from multiple satellites to obtain daily images with high
(e.g., 30 m) resolution [19]. This has already had an important impact in applications
such as the generation of daily snow cover maps [20] and the study of drought-induced
tree mortality [21]. Existing spatiotemporal image fusion methods are usually divided in
weighted fusion, umixing-based, learning-based and Bayesian approaches [22]. There also
exist hybrid techniques, which leverage ideas from more than one family of approaches.

Weighted fusion methods assume that the temporal changes occurring between two time
instants are consistent between the high and low spatial resolution images for low resolution
pixels which are composed of only a single material [23]. However, coarse resolution pixels
are often mixtures of different materials. The predicted high resolution pixels are then
computed as a weighted linear combination of the previous high resolution pixels and of
the changes occurring at low resolution pixels in a given neighborhood [24, 25]. Different
works have designed various weighting functions, which aim to select neighboring pixels
that are homogeneous and spatially/spectrally similar to the pixel whose change is being
predicted [24, 22, 26]. Other works have extended such framework account for sudden
changes [27] or to use different weighting functions [25].
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Figure 1: Overview of the proposed method. Multimodal (e.g., Landsat and MODIS over time) images time
series are fused by the Distributed Multimodal Bayesian Fusion algorithm resulting in a high spatial-temporal
resolution estimated sequence. Covariance estimates for the dynamical model are estimated through a weakly
supervised strategy based on local high-resolution historical data. We highlight that the Bayesian fusion
methodology employed here is agnostic to the multimodal measurement model making the strategy easily
generalizable to different data scenarios.

Unmixing-based methods make use of the linear mixing model (LMM), which assumes
that each pixel in the low resolution image can be represented as a convex combination of the
reflectance of a small number of pure spectral signatures, called endmembers [28, 29]. The
LMM has been used for multimodal image fusion by assuming the proportions of each mate-
rial in a low resolution pixel to be stable/constant over time [30, 31, 32]. This way, spectral
unmixing [28] is used to estimate the endmembers at different time instants from low reso-
lution images, while using different strategies to mitigate the spectral variability of a single
material [30, 33, 34]. However, abrupt abundance variations (originating from, e.g., land
cover changes) are commonly found in multitemporal image streams [35, 36, 37, 38], which
may negatively impact the performance of such methods and can be particularly challeng-
ing to address when occurring jointly with finer endmember variations [35]. Thus, special
care is required when fusing images which are temporally distant from one another [39],
motivating the development of strategies using, e.g., spatially adaptive quantification of the
reliability of the input images to guide unmixing based image fusion strategies [40].

Learning-based approaches leverage training data and different machine learning al-
gorithms in order to perform image fusion. Those approaches are varied, ranging from
approaches such as dictionary learning [41], which are based on a sparse representation
of image pixels and have a strong connection to the LMM, to convolutional neural net-
works [42], which are flexible function approximations which are typically used to learn a
mapping from the low-resolution to high resolution data.

Bayesian methods are flexible alternatives to the previous approaches that take into ac-
count the uncertainty present both in the imaging model and in the estimated images. The



Bayesian framework is based on the definition of probabilistic models to describe the rela-
tionship between images of different spatial, spectral and temporal resolutions acquired by
different instruments. This allows image fusion to be formulated as a maximum a posteriori
estimation problem [43]. Although Bayesian methods usually consider Gaussian distribu-
tions for mathematical tractability, different variations have been proposed depending on
how the image acquisition process is modelled and on how the mean and covariance matri-
ces are estimated. This included assuming them diagonal [44], estimating image covariance
matrices based on an initial estimate of the high resolution image [43], or based on the low
resolution image pixels [45].

A recent work considered a Kalman filter-based approach to estimate a high resolution
image sequence based on mixed resolution observations from the Landsat and MODIS in-
struments [46]. However, to define the model for the Kalman filter, two Landsat+MODIS
image pairs at times tg and ty are considered, as well as a time series of MODIS images
at instants t € [to,tx], making it unsuitable for online operation. Moreover, changes be-
tween each pair of images were assumed to be constant/uniform over predefined groups of
high resolution image pixels, which can be restrictive (due to the large resolution difference
between the measured images, the groups must contain many pixels in order to make the
model well-posed). It also does not benefit from auxiliary information that could aid the
estimation of the high resolution images. Another work used the Kalman filter to esti-
mate normalized difference vegetation indices (NDVI) time series images from Landsat and
MODIS observations, using an affine model for the dynamics of the states whose coeffi-
cients are selected based on the seasonality, and another affine model to relate the NVDI
estimate obtained from MODIS and Landsat measurements [47]. The Kalman filter was
also recently applied to estimate land surface temperature by fusing thermal infrared and
microwave data [48].

In this paper, we propose a weakly supervised Kalman filter and smoother framework
for spatio-temporal fusion of multispectral images. The proposed framework relies on ex-
plicit modeling assumptions about the image acquisition and temporal evolution processes,
under which the proposed solution is statistically optimal. The Kalman filter-based meth-
ods can operate in a fully online setting, where high-resolution images are only available
as past data. We also develop a smoother-based method to optimally exploit information
contained in future high-resolution observed images when processing images in a time win-
dow. However, the quality of the reconstruction of Kalman filter and smoother strategies
depend directly on the quality of the dynamical image evolution model. Thus, to overcome
this limitation, a weakly supervised strategy is proposed to learn the temporal dynamics
of the high-resolution images from a small amount of past data. More precisely, instead of
considering the changes to be constant over areas comprising large amounts of image pixels,
we propose an analytical calibration strategy to estimate a more informative time-varying
dynamical image model by leveraging historical data. This allows for a better localiza-
tion of changes in the high resolution image even in intervals where only coarse resolution
observations (e.g., MODIS) are available. Moreover, to mitigate the high computational
complexity of the Kalman filter and smoother, we propose a distributed implementation



by exploiting different independence assumptions about the high-resolution state space,
allowing the proposed methods to be applied to large datasets and geographical areas. Fig-
ure 1 depicts the proposed methodology where high-resolution (spatially and temporally)
estimates are generated by fusing different data modalities. We illustrate the application
of the proposed framework by fusing images from the Landsat and MODIS instruments.
Experimental results indicate that the proposed method can lead to considerable improve-
ments compared to using a non-informative dynamical model and to widely used image
fusion algorithms, both in image reconstruction and in downstream water classification
and hydrograph estimation tasks. A software package containing an implementation of the
proposed method and the image dataset is available at https://github.com/HaoqingLi/
Multi-resolution-Multispectral-image-fusion-based-weakly-supervised-constrained-Kalman-fi

This paper is organized as follows. In Section 2, we present the paper notation and the
proposed imaging model. Section 3 presents the Kalman filter and smoother approaches
for multimodal image fusion. Section 5 contains simulation experiments that illustrate the
performance of the proposed method. Finally, Section 6 concludes the paper.

2. Dynamical Imaging Model

2.1. Definitions and notation

Let us denote the the ¢-th band of the k-th acquired image reflectances from modality
m € Q by yi', € RNm.e with Ny ¢ pixels for each of the bands ¢ = 1,..., L,,, and (2 denoting
the set of irﬁage modalities. As a practical example, we consider Q = {L, M} to contain
the Landsat-8, and MODIS image modalities, without loss of generality. We also denote by
Qp the highest resolution image modality, e.g., Qy = {L}. We denote the corresponding
high resolution latent reflectances by Sj € RV#*Li  with Ny pixels and Ly bands, with
Ly > Ly, and Ny = Ny, ¢, V¢, m. Subindex k € N, denotes the acquisition time index. We
also denote by vec(-), col{-}, diag{-} and by blkdiag{-} the vectorization, vector stacking,
diagonal and block diagonal matrix operators, respectively. The notation x,.; for a,b € N,
represents the set {xq, Tai1,...,2p}. We use N(u,X) to denote a Gaussian distribution
with mean p and covariance matrix 3.

2.2. Measurement model

To formulate our measurement model we assume that the acquired image at time index
k, for any imaging modality, is a spatially degraded and spectrally transformed version of
the high resolution latent reflectance image Sj. Following this assumption our measurement
model for the m-th modality becomes:

Yo = Hy' (Sk)el" + i, (=1,...,Ly,, (1)

where ¢} € RY# denotes a spectral transformation vector, mapping all bands in S, to the
(-th measured band at modality m; Hj" is a linear operator representing the band-wise
spatial degradation, modeling blurring and downsampling effects of each high resolution
band, and 7}, represents the measurement noise. Note that, while we consider the spatial



resolution of the high resolution bands in S to be the same, different bands from the
same modality can have different resolutions. We also assume the measurement noise to
be Gaussian and uncorrelated among bands, that is, T'Z?E ~ N(0, R}") with time-invariant
covariance matrix given by R}* € RNm.oXNme and cov(ryl;, mity) = 0 for all j # L.

Note that satellite images may be corrupted by several effects, including dead pixels
in the sensor, incorrect atmospheric compensation, and the presence of heavy cloud cover.
Such pixels cannot be reliably used in the image fusion process as they may degrade the
performance of the method. Directly addressing these effects using a statistical model
would require the choice of a non-Gaussian distribution for the noise vector r}',, which
could make the computational complexity of the fusion procedure prohibitive. r7fhus, we
consider a matrix D}' € RNm*Nm which eliminates outlier pixels from the image, leading
to the following transformed measurement model:

Yre = DI (Sk)el + 7, (2)

where ﬂ’,& = Dj'y}", and FZ?Z = Dj'r}, denotes the measured image band and the mea-
surement noise in which the outlier values have been removed.

Using (2) and the properties of the vectorization operator, we can write this model
equivalently as

’!lem,é = [(C?)T ® DZ‘] vec (H?L(Sk)) + ;Z?e
= [(¢")" @ DI |HY s + 7, )

where ® denotes the Kronecker product. The variable s, € RLaNH denotes a vector-
ordering of the high-resolution image S which is obtained by grouping all pixels such that
the bands of a single HR pixel are adjacent to each other, and the pixels that are contained
within a single “lowest-resolution” pixel are also adjacent to each other, that is:

- T _ I
Sk‘,l,b(l,l) Sk,l,L(l,Nm/’el)
Sp = Sk, Ly u(1,1) Sk,Lizt(1,N, 1 1) (4)
g ey )
Sk,1,(2,1) Sk,1,u(2,N, 1 1)
| LSk, Lyou(d,1) | Sk,Ly,u(d.Nyy o) |

where sy, ; ; is the (4, j)-th position of Sy, m’ and ¢’ are the modality and spectral band with
the lowest spatial resolution (i.e., for which Ny, ¢ is smallest), d = Ng /N, ¢ is the number of
HR pixels inside each low resolution pixel of band ¢ and modality m’, and ¢ : Ny x N, — N,
is a function such that (4, j) returns the index (in S}) of the of the i-th HR pixel contained
inside the j-th low resolution pixel (where i € {1,...,d}) for modality m’ and band ¢. H}"
is a matrix form representation of the operator Hj*, such that vec(H}"(Sk)) = H}'sj.



We can now represent all bands from each modality in the form of a single vector
~m NywLm
yp €R as

[(ei)' ® D' |HY'
Ur = : Sk + 7L (5)
[(ci’ )T ® D! |HT,
H'
where 7" ~ N(0, R}, ), and
@? = col {’kar,le"'vﬂsz}a (6)
%’];n = COl {'I""’Zﬂfl, N 77’\(:22[/7”} 5 (7)
R, = blkdiag {D'R(D{)",..., DI'RY (D)7} (8)

Note that at most time instants k, one or more of the modalities m € €2 is not observed. In
this case, we set the matrix D" as an empty (zero-dimensional) matrix, which simplifies
the problem and avoids introducing additional notation.

2.8. Dynamical evolution model

Defining reasonable dynamical models for image fusion requires detailed knowledge re-
garding the scene evolution over time, which is often unattainable. In this contribution, we
alm at a complete data driven strategy assuming very little knowledge regarding the scene
evolution except for past data coming from the imaging modalities being used. To match
such lack of prior knowledge we consider a simple random-walk process to model the latent
state dynamics as:

Sk+1 = Fisp +qy, (9)

where F), € RLeNoxLuNm ig the state transition matrix, which is assumed to satisfy
|Fil2 < 1, and g, ~ N(0,Q,) with Q, € RE#NuxLuNu heing the state process noise
covariance matrix. Note that the above model plays a crucial role in the estimation results,
as it describes both the distribution of the changes occurring in the image at time &, as well
as the marginal distribution of the states. This means that more sophisticated dynamics
can be introduced in the problem through the appropriate design of the process noise co-
variance matrix Q. Although expectation maximization (EM) can be used to estimate Q,
in time invariant models [49], the problem becomes extremely ill-posed in the time-varying
setting. Another issue relates to the computational complexity of EM-based strategies re-
quiring the solution of the Kalman filter and smoother systems multiple times, becoming
unfeasible when dealing with large images. For these reasons, we propose an alternative
route to estimate Q.



2.4. A weakly supervised approach for estimating Q)

We consider Q(Dy) as a function of the set Dy, = {_@TGQH }o<k of past high resolution
images. The set Dy, represents historical data and images currently being fused up the the
time step k. Although many strategies could be leveraged to find suitable past time windows
to account for more relevant covariance estimation and consider full covariance matrices,
in this preliminary work we choose a simple route to validate this type of approach. For
this, let yZL_E?H be the the most recently observed high resolution image!. We compute Q,,
by finding in our historical data the most similar image to yZL_E? 7 and then computing the
pixelwise variance across the following n € N, images in our historical data. That is, we

compute Q) executing the following three steps for every time step k:

1. Identify the most similar state over Dy, that is, the image that is most similar, ac-
cording to a metric £
. Q
(* = arg min E(yszT ", [Dk]g) , (10)
fGIDk
with [Dy], being the ¢-th image in the historical set Dy, and Zp, < Z is the set
containing the time index of each image in Dy,.
2. select a time window [Dy]p#.p% -

3. compute the diagonal process noise covariance matrix, i.e., Q) = diag{qz’l, e ql%,LHNH }
as "
var ([Dk]gzw* )
Q%,j = max ( ALF —n ’52 x Ay, (11)
Dy,
where [Dk]g):g* in = [gem*ijH e ,yjﬁ‘fﬂ], e > 0 is a small scalar allowing for changes on the

scene that were unseen on the historical data window [Dy]p.p% 1, Ak is the time interval
(in days) between yZLEQH and y?f? " and AKD*,C is the time interval (in days) between [Dy] g

and [Dg]e#4p- As similarity metric we used the cosine similarity £(y, z) = cos(y, z).

3. Multimodal image fusion using a weakly supervised constrained Kalman fil-
ter

Considering models (5) and (9), the online multimodal image fusion problem can be
formulated as the problem of computing the posterior distribution of the high resolution
image given all previous measurements available, i.e.,

P(sk[{FT e tmea) = N (S Pryi) - (12)

Due to the choice of a linear Gaussian model, this distribution is also Gaussian. Moreover,
its mean vector sy;, and covariance matrix Py, can be computed recursively using the
standard Kalman filter with a prediction and update steps [50].

That is, 7 € Z4 is the smallest integer such that a high resolution image was observed at time instant
k—T.



More precisely, the prediction step of the Kalman filter computes the first and second
order moments of p(si|{F1%_1}mea) as:

Skik—1 = Fr-18p 111 (13)
Py =Fr 1Py 1 Fl_ +Qp (14)
The update step computes then computes of (12). Note that the update step can be

simplified and implemented separately for each data modality by using the Markov property
of the model and the independence between noise vectors of different modelities:

p(sk‘{'y?;lk}meﬁ)
mp({?jzn}meﬁl‘sk)p(sk‘{@T}c_l}me(l)
= p(sk‘{'glf;k_l}ueﬂ) H p('ljkm‘sk) . (15)

med
By computing the first product in the right hand side as:
(k{1 k-1 ue) D (" [51)
op(sk{Tlp_1 e, Ui') (16)

which is an update step of the Kalman filter with image modality m to yield a new posterior
in the r.h.s. of (16). This can be computed as:

vl =Yy — ﬁgsk\k—l (17)
k= ?Ikmpkmfl(ﬁ;n)—r + ﬁ;n (18)
K} = Py (HY) ' (T7) (19)
Sklk = Sklk—1 + Kj vy (20)
Py = Py — Kp'T}! (K?)T (21)

for m € Q. By proceeding with the computation of the product in the r.h.s. of (15)
recursively, the Kalman update can then be performed separately for each of the modalities
observed at time instant k. Note that after the first modality is processed, the update
equations above are used again for the subsequent modalities by setting sy, 1, and Py qx
as equal to the posterior estimates from the previously processed modality.

3.1. The Linear Smoother

Given a window of K image samples, the Bayesian smoothing problem consists of com-
puting the posterior distribution of the high resolution image given all available measure-
ments available, i.e.,

p(sk[{FT K tmen) = N (skrcs Prixc) - (22)



which is also a Gaussian. Just like in the filtering problem, the linear and Gaussian model
allows this solution to be computed efficiently using the Rauch-Tung-Striebel (RTS) smooth-
ing equations [50], which consist of a forward pass of the Kalman filter (as described before),
followed by a backwards recursion that updates the previously computed mean and covari-
ances matrices of the state with information from future time instants.

We note that the smoothing can also be performed efficiently for the case when multiple
image modalities are available. Let us consider the Bayesian smoothing equations as defined
in [51, 50], which is performed in two steps. Starting from the Kalman state estimate at
time K, given by p(s K‘{ﬂTK}mEQ), the smoothing distribution is computed recursively for
k=k—1,...,1, according to the following relation:

p(se[{UT K tmea) = p(Sk[{TT%}men)
y Jp(Sk:-i-lysk)p(sk-i-l’{@??}(}meﬂ)
p(3k+1’{:’7717?k}meﬂ)

dsk-‘rl ’ (23)

where p(sp[{F1}me) = N (Sgjk, Pyjx) is the Kalman estimate of the state PDF at time k,
p(sk+1]sk)) is the state transition PDF, computed according to (9), p(sk1|{U1:x tmen) =
N (8k41)k5 Pri1)i) 18 the smoothing distribution obtained at the previous iteration, and
p(skﬂy{ﬂfk}meg) is the predictive state distribution, which is computed exactly as in the
prediction step of the Kalman filter.

In the linear and Gaussian case this translates into the following closed form solution [50],
with

Skr1jk = Frsik (24)
Py, = FrPypFL + Q (25)

being used to compute the predictive state distribution, and

G = PywF P}, (26)
Skik = Skjk T Gr(Skt1)K — Skt1)k) (27)
Pk = Pp+ Gu(Priyx — Prip)Gi (28)

to update the covariances. It should be noted that the mean and covariance sy, and Py,
used in the Smoothing equations are the final result obtained from the Kalman update after
processing all image modalities that were available at instant k.

Thus, while in the Kalman filtering the update equations must be computed sequentially
at each time step w.r.t. the different image modalities, smoothing only needs only the final
state estimates at each instant, no matter how many modalities are present.

3.2. Constraining the estimates

Although the Kalman filter provides closed-form solutions to the estimation of the high-
resolution image sequence, it relies on a Gaussian assumption on the states and observations

10



which does not correspond to the physics of the problem. In fact, represented in reflectance
values, each pixel and band of a high-resolution images sj is actually constrained to an
interval sy ; j € [0, Smax|, Where spay is the maximum reflectance values of the scene. Since
this information can potentially improve the accuracy of the estimated states, we propose
to incorporate this information by considering the linearly constrained Kalman filter [52],
in which the final constrained state s;i ;. 18 obtained as the solution to a constrained opti-
mization problem:

s]':‘k = argmsin (s — sk‘k)TP,;'}c (s - sk|k)

Nt (29)

subject to s € [0, Smax]

Problem (29) consists in a constrained quadratic program, which can be costly to solve due
to the high dimensionality of the variables. Thus, we propose a simple solution consisting
of truncating the result of the traditional Kalman update:

Sy = max (min (sgjk, Smax),0) , (30)

where functions max(-,-) and min(-,-) compute the elementwise maximum and minimum
value between a vector and a scalar. Note that this truncation provides the exact solution
when Py, is diagonal. The same truncation strategy was also applied to the results of the
linear smoother sy ;. We generally observed that this gave good results in practice. smax
can be estimated as the maximum value of the observed images in a time window, or from
the historical data.

4. A distributed implementation

A problem with the Kalman filter is the need to compute and store the state covariance
matrix, Pp;,. This incurs in storage and operations asymptotic complexity in the order of
O(N%4L2) and O(NF, L3,), respectively. This can make the method intractable for images
with a large number of pixels. Thus, to reduce the complexity of the filter and of the
smoother, we consider splitting the pixels in the estimated state s; into multiple groups
which are assumed to be statistically independent [53, 54, 55]. To this end, we divide the
state space into G groups as:

Sk = vec ([sg), ey s,(gc)]) : (31)

where the variables within each block sl(f) are correlated, but different blocks 81(691) and 31(692)

are assumed to be independent for g; # go. This leads to the following approximation for
the predictive and posterior covariance matrices Py, _1 and Py, as block diagonal matrices:

e (1) (@)
Py = blkdiag {PWH, . ,PM,H} (32)
. 1 G
Py = blkdiag { P\ ..., P\ | (33)

We consider different splitting possibilities, with different trade-offs between approxi-
mation accuracy with respect to the full-state-covariance Kalman filter and complexity:

11



i) A fully diagonal model (with G = Ny Ly blocks).

1) A block diagonal model where each block consists of all bands of one single high-
resolution pixel (with G = Ny blocks).

ii1) A block diagonal model, with blocks corresponding to the high-resolution pixels which
reside inside a single MODIS pixel (with G = Ny Lg/Nyopis blocks).

Following [54], the Kalman equations for the prediction step (13)—(14) can be written
for each block as:

355-21“4 = [Fk](g),;sk (34)
T
chg~21|k [Fk](g),;Pk([Fk](g),;) + Qég) (35)

where [Fk] means the matrix formed by taking from Fj the rows which correspond to

(9)
k

(9)y
the indices in the group of states g, and all columns. Matrices

Q; = blkdiag {Q!", ..., @'V} (36)

Similarly, the Kalman update equations (17)—(21) are performed separately for each block
of variables, and are given by:

are defined as:

sl(fg) = s](f“)g Lt K(g)'vm (37)
P](Cg) Pl(gul = K(Q)Tm (K(g)) (38)
with:

Kl(cg) = Eigg,mkq(Tzn)il (39)
off = ' — Hy s (40)
T7 = H, Py J(HO+ R (41)

Eigy)mk 1= [Pk\k 1(ch ) ](g),:
- [Pk\k—l](g),;(Hk )T (42)

where [Pk| k—l](g) . means the matrix formed by taking from Pp;_; the rows which corre-
spond to the indices in the group of states g, and all columns. Note that the block diagonal
structure of Py;_; and Py, can be explored to perform the above operations efficiently,
since these matrices are very sparse.

Following the same approach, the linear smoother can also be approximated in blockwise
fashion as in [55], for the predictive equations (24)—(25):

i(ﬁzukz [F] .5k (43)
Pl(guk [Fk]( ). Pk([Fk] ) +Q (44)

12



and for the smoothing equations (26)—(28):

G(g) [P FT](g),(g)( i(ﬂuk)_l
@ ([Fel g).) Py (45)
s,(j’}( - 'Sk + G (Sk+1|1< k+1|k) (46)
P%ﬂ( -P P l(c+)1\K Pl(cll\k)(Gl(cg))T (47)
where
Gy, = blkdiag {G\", ..., GV} (48)

One last issue is that the innovation covariance matrix 77" can also be large for big
images (e.g., Landsat measurements), as it has (L,, Hf;"l Nyne)? elements. Fortunately, the
model implicitly imposes a simple structure for this matrix. To show this, let us consider a
permutation of the pixels IT,,, such that I1,,y;" reorders y;' by making different bands of
each LR pixel contiguous:

Y11 Yk, 1,Nm
~m . .
Hmyk = : sy : ) (49)
~m ~m
Yk,Lim 1 Yk,Lin,Non

where g, . is the n-th pixel of the (-th band of yj.

If we assume that H7}" is a local filter, i.e., each pixel in the low-resolution image is
generated according to a fixed linear Comblnatlon of a distinct subset of HR pixels, this
allows us to express the row-permuted version of H, r equivalently as:

HmHk = blkdiag { H,H,...,H }, (50)
Ny, times
where matrix H € REm*d*Lu ig given by:
H=hr"C", (51)
where C™ = [(CT)T, . (ch)T]T is the spectral response function for all bands, h™ €
R4 is the local spatial response filter, which defined how the HI pixels inside each LR

pixels are combined, and d is the number of HR pixel in each LR pixel.
Using this permutation, the innovation covariance matrix can be written as:

IL, T, = Hmﬁ;cnPMk—l(I_NI;cn)TH; + 1L, R, 11,
= blkdiag{H, ..., H}Py_, blkdiag{H",... . H"}

+ 1L, R, TI]
blkdlag{HPk‘k JH',... HP{J) H'}
+ 1L, R, I, . (52)
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Algorithm 1: Weakly supervised online image fusion

Input : Measured multimodal images y}", for all time instants k = 1,..., K and
modalities m, historical datasets of high-resolution images Dy, parameters sy ax-
Output: Estimated image sequence sy g

=

Initialize Po‘o and 80‘0;

2 // Filter ;

3 for k=1,2,..., K do

a Compute innovation covariance matrix Q,, using s;—1 and Dj, according to Section 2.4 ;
5 Compute sy, and Py, using equations (31), (32), (34) and (35) ; // Prediction
6 Compute sy, and Py, using equation (33) and equations (37)-(42) ; // Update
7 Constrain sy, using (30) ;

s end

9

// Smoother ;
for k=K K—-1,...,1do
Compute 8j,41); and Py q);, using equations (31), (32), (43) and (44) ; // Prediction
Compute sy and Py using equations (45)-(47) and equation (48) ; // Backwards
update

I
= O

=
N

13 end
14 return Estimated images sy i

Thus, as long as the noise is independent among different pixels (i.e., INQ;: is block diago-
nal), it is possible to express the innovation covariance matrix in block diagonal form by
adequately permuting the LR image pixels. This shows that each pixel from the lowest
resolution image modality can be processed independently when Q; and Py also have a
block diagonal structure. The proposed image fusion method is summarized in Algorithm 1.

5. Experiments

In this section, we use the proposed methodology to fuse Landsat and MODIS image
over time. The Kalman filter and smoother are built under the three different assumptions
for the state covariance matrices regarding the distributed implementation discussed in
Section 4: i) diagonal state covariance (denoted by KF-D and SM-D); ii) block-diagonal
state covariance with one block per Landsat multispectral pixel (denoted by KF-B and SM-
B); and #i7) block-diagonal with blocks for all Landsat multispectral pixels corresponding to
the same coarse pixel in a MODIS image being correlated (denoted by KF-F and SM-F). A
filter in which Landsat multispectral pixels corresponding to more than one coarse pixel in
a MODIS image being all correlated could not be implemented due to computational and
memory limitations.

Although in our experiments we consider only two modalities the proposed methodology
admits multiple different modalities provided that enough computational power is available.
As benchmark, we compare the performance of Kalman filter and smoother under all three
assumptions to that of the Enhanced Spatial and Temporal Adaptive ReFlectancefusion
Model (ESTARFM) algorithm [25], and the Prediction Smooth Reflectance Fusion Model
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(PSRFM) algorithm [56, 57]. The ESTARFM algorithm requires two high-resolution (e.g.,
Landsat) images at the beginning of the image sequence, and can generate high-resolution
reconstructions at later time instants based on MODIS measurements. Thus, it is a good
candidate for comparison with the Kalman filtering based strategies, which also do not
require future data. The PSRFM method, on the other hand, uses two high-resolution (e.g.,
Landsat) images (one at the beginning and one at the end of the sequence), and provides
high-resolution reconstruction for the intermediate MODIS images. Thus, it consists in an
adequate comparison to the smoother algorithms, which also require future high-resolution
images. In the following, we describe the data and simulation setup, followed by the results
and the discussions.

5.1. Study region

For the experiments, we consider two sites. The first is the Oroville dam (Figure 2, left
panel), located on the Feather River, in the Sierra Nevada Foothills (38° 35.3” North and
122° 27.8" W) is the tallest dam in USA and is major water storage facility in California
State Water Project. The reservoir has a maximum storage capacity of 1.54 x 10! ft3
or 4.36 x 10° m3, which fills during heavy rains or large spring snow melts and water is
carefully released to prevent flooding in downstream areas, mainly to prevent large flooding
in Butte County and area along the Feather River. The reservoir water storage change in
between 07/03 and 09/21 of 2018 is as shown as the hydrograph curve in Figure 8. Another
unique characteristic is that it has three power plants at this reservoir. The water released
downstream is used to maintain the Feather and Sacramento Rivers and the San Francisco-
San Joaquin delta. Lake Oroville is at an elevation of 935 feet (285 meters) above sea level.
We focus at a particular area of the Oroville dam delimited by the red box in Figure 2.

The second site is the Elephant Butte reservoir (Figure 2, right panel), located in the
southern part of the Rio Grande river, in New Maxico, USA (33° 19.4’ N and 107° 26.2’ W).
It is the largest reservoir in New Mexico, providing power and irrigation to southern New
Mexico and Texas. Elephant Butte reservoir is at an elevation of 4,414 ft (1,345 meters),
and has a surface area of 36,500 acres (14,800 ha).

Table 1: Spectral angle mapper between the estimated high-resolution image and the Landsat measurement
for the Oroville Dam example (note that the Landsat images at dates 07/19, 08/20, and 09/05 were not
supplied to the algorithms and only used for evaluation purposes). However, the Landsat image at 09/21
was available to all algorithms. Note that the spectral angle is not reported for PSRFM at 09/21. This is so
since PSRFM uses the last pair (MODIS-Landsat) of images and directly sets its estimations at this dates
to the ground-truth.

Method || KF-F | SM-F | KF-B | SM-B | KF-D [ SM-D | ESTARFM | PSRFM
Image (07/19) || 7.1240 | 10.8537 | 4.2356 | 6.1515 | 4.9304 | 5.064 | 6.0810 | 6.8837
Tmage (08/20) || 27.6343 | 26.2786 | 26.1229 | 25.1520 | 27.1928 | 26.1758 | 29.0892 | 27.7802
Image (09/05) || 8.5741 | 6.0366 | 6.6246 | 3.6838 | 7.4482 | 4.4135 | 11.4553 | 6.0354
Image (09/21) || 8.0588 | 3.6385 | 6.4042 | 0.5471 | 6.9754 | 0.6960 | 11.9584 -

Average [ 12.8478 [ 11.7019 [ 10.8468 | 8.8836 [ 11.6367 | 9.2979 | 14.6460 | 10.1748
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Figure 2: (Left) Oroville dam site. (Right) Elephant Butte site. The red boxes delimit the specific study
areas used in our experiments.

Table 2: Percentage of misclassified pixels for the Oroville Dam example (the Landsat image at 09/21 was
available to all algorithms). Note that the misclassification percentage is not reported for PSRFM at 09/21.
This is so since PSRFM uses the last pair (MODIS-Landsat) of images and directly sets its estimations at
this dates to the ground-truth.

Method || KF-F | SM-F | KF-B | SM-B [ KF-D | SM-D | ESTARFM | PSRFM
Image (07/19) | 9.5412 | 7.6360 | 6.4472 | 8.2914 | 6.1119 | 8.0171 | 5.4870 | 5.2431
Tmage (08/20) || 14.9215 | 10.4405 | 7.8647 | 4.1000 | 7.2245 | 3.7799 | 18.2809 | 17.9851
Image (09/05) || 13.4888 | 8.2152 | 9.6632 | 4.7859 | 9.4345 | 4.5877 | 22.7404 | 20.8962
Tmage (09/21) || 11.7360 | 3.8409 | 9.3583 | 0.2439 | 9.2974 | 0.2501 | 26.3374 -

Average [ 124219 | 7.5332 | 8.3333 | 4.3553 | 8.0171 | 4.1610 | 182137 [ 11.0311

5.2. Remote Sensed data

For our simulations with the Oroville Dam site, we collected MODIS and Landsat data
acquired from the region marked with a red square on Figure 2, and on a interval ranging
from 2018/07/03 to 2018/09/21. This interval was selected since the hydrograph analysis
indicates high variation in the water level of the reservoir, see, the hydrograph curve in
Figure 8. Such variation in the water levels result in large changes in the acquired images,
exposing flooded areas. In this experiment we will focus on the red and near-infrared (NIR)
bands since they are often used to distinguish water from other landcover elements in the
image [58]. We also collected 5 Landsat data from 2017/08/01 to 2017/12/07 to serve as a
past historical dataset Dy.

The study region marked in the left panel of Figure 2 corresponds to Landsat and
MODIS images with 81 x 81 and 9 x 9 pixels, respectively?. After filtering for heavy cloud
cover during the designated time periods, a set of 6 Landsat and 16 MODIS images were
obtained. We used the first MODIS and Landsat images for initialization of all methods
leading to 5 and 15 images used in the remaining fusion process.

2The Landsat images were also upsampled to a spatial resolution of 27.77 meters to make its resolution
exactly 9 times that of MODIS.
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From the set of 5 Landsat images of the Oroville Dam site that were available for
testing, three of them were set aside and not processed by any of the the algorithms.
These images were acquired at dates 07/19, 08/20 and 09/05, when MODIS observations
were also available, and will be used in the form of a reference for the evaluation of the
algorithms’ capability of estimating the high resolution images at these dates solely from
the low resolution MODIS measurements.

For the simulations with the Elephant Butte site, shown in the right panel of Figure 2, we
aim to evaluate the performance of the algorithms when processing a larger geographical
area, with an area of approximately 9km x 9km. The setup is similar to the Oroville
Dam example. We focus on the red and near-infrared bands of the Landsat and MODIS
instruments, and collect 47 Landsat images from 2014/01/16 to 2017/11/24 to serve as the
past historical dataset Dj,.

The study region corresponds to Landsat and MODIS images with 324 x 324 and 36 x 36
pixels, respectively. After removing images with significant cloud cover, we obtained a set
of 5 Landsat and 7 MODIS images to process. We used the first MODIS and Landsat
image pair to initialize the algorithms, leading to 4 Landsat and 6 MODIS images to be
used in the remaining fusion process. From the set of 4 Landsat images that were available
for testing, 2 of them were set aside as ground truth to evaluate the algorithms. Theses
images are acquired at dates 06/07 and 06/23. However, the MODIS measurements at those
dates contained significant cloud cover, and had to be discarded. Therefore, we evaluate
the performance of the algorithms through the estimation results obtained dates 06/14 and
06/27 (in which the MODIS observations were available).

5.8. Algorithm setup

We initialized the proposed Kalman filter and smoother using a high resolution Landsat
observation as the state, i.e., sgo = :17'5, and set Pgo = 1071Py. The structure of Py
varies with different assumptions: i) Py = I if the state covariance is diagonal; ii) Py =
blkdiag{ Py 1, Po2,- -, Pony}, where Pg; = %]l + %I, with 1 being an all ones matrix,
if the state covariance matrix has a block-diagonal structure with one block per Landsat
multispectral pixel; iii) Po = blkdiag{Po1, Po2, -, Py 5 ., }, where Po; = 31+ 3T if
the state covariance matrix has a block-diagonal structure with each block containing all
Landsat multispectral pixels corresponding to the same coarse pixel in a MODIS image.
Figure 7 shows an example of the final Py, k = 13, obtained with the KF under all the
assumptions discussed in Section 4. The noise covariance matrices were set as R'g =107191
and R)' = 1071, for all £. The blurring and downsampling matrices were set as Hy = I
for Landsat, while for MODIS H 2/' consisted of a convolution by an uniform 9 x 9 filter,
defined by h = 871119><9 (where Lgyg is a 9 x 9 matrix of ones), followed by decimation by
a factor of 9, which represents the degradation occurring at the sensor (see, e.g., [44]). We
also set F';, = I for all k. The vectors ¢j* contained a positive gain in the /-th position
which compensated for scaling differences between Landsat and MODIS sensors, and zeros
elsewhere.

The matrices Dl'l/' were constructed based on the quality codes (i.e., the QA bits) released
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by MODIS for each image pixel [59]. QA bits provides information regarding pixel quality
and cloud cover for all pixels and all bands. In our experiments we dropped any pixel not
classified as corrected product produced at ideal quality in the QA bits [59] by adding zeros
at corresponding positions in D,'X'. Matrices Q;, were computed following our data-driven
strategy described in Section 2.4 where €2 = 107 and n = 1.

The ESTARFM algorithm was parametrized as follows [25], w = 14 as half of the window
size, the number of classes was set to 4, and the pixels range was set to [0, 0.5]. The PSRFM
algorithm was parametrized as follows, CLUSTER_METHOD = KMEAN, and CLUSTER_DATA =
fine + coarse. We highlight that all methods have access only to the first (07/03) and last
(09/21) Landsat images, which allows the algorithms to produce estimates for the MODIS
images observed from the second (07/09, k = 2) up to the last date (09/21, k = 16).
However, PSRFM uses the the last pair (MODIS-Landsat) during its inference process. For
this reason, error metrics computed for PSRFM on (09/21) should be disregarded as the
estimate is directly the ground-truth (i.e., the Landsat image) and, thus, are not reported
in the experimental results.

All algorithms are evaluated using three metrics, which are computed taking as reference
the Landsat images, three of which are not observed by the algorithms. The first metric
is the Spectral Angle Mapper (SAM), which attempts to measure the estimation accuracy
directly:

o 1 s 3
AM = E i
SAM(S, 5) Nu = e (Hsrwgrﬂ) , %)

where S and S denote the true and the estimated images, respectively. s, and S, denote
the r-th pixels of different bands in .S and S , respectively. The two remaining metrics are
related to downstream tasks of water classification and water level monitoring, which are
performed on the reconstructed image sequence.

We evaluate the direct benefit of the different fusion strategies in classifying water pixels
from the estimated images. To classify water pixels we resorted to a KNN classifier whose
centroids of water and non-water 2-band pixels were computed using K-Means algorithm.
Finally, we evaluate the performance of the algorithms for hydrograph estimation by plot-
ting the proportion of pixels in the image classified as water over time against the true
hydrograph for the period, for all algorithms.

5.4. Results for the Oroville Dam site

As discussed, we fused the red and NIR reflectance bands of MODIS and Landsat for
the selected study region. In Figure 3, we show the fused red (Figure 3a) and NIR (Fig-
ure 3b) reflectances as well as the acquired red and NIR reflectance values from MODIS and
Landsat. Acquisition dates are displayed in the top labels at each column with a character,
M for MODIS and L for Landsat, indicating the image used in the fusion algorithms. We
recall that only the first and last Landsat images were used in the fusion process, keep-
ing the remaining three images as ground-truth for evaluation purposes. Analyzing the
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results we can see that the images estimated by the proposed Kalman filter and smoother
methods, under different assumptions, produce better visual similarity with the Landsat
(ground-truth) images for both bands. For instance, the increase in the island and the
expansion of other land parts are clearly visible for the proposed methods. In contrast,
analyzing ESTARFM results we note that land parts remain mainly constant through time
until a new Landsat image is observed. Although lighter areas on the water portions can
be noticed, specially for & > 8, its distribution does not resemble the ground-truth. This
is expected since ESTARFM is not designed to acknowledge prior information or historical
data. PSRFM results show an improvement compared with ESTARFM results, since it
uses both the first and the last Landsat images. However, the PSRFM results does not
resemble the ground-truth very closely, and significant blurring occurs around the edge of
the island when k& < 8. The blurring results in PSRFM are caused by the fact that the
reconstructions provided by this algorithm are based on a form of interpolation which does
not consider any information about the transition of the pixel reflectance values, whereas
in our proposed methods we use the historical data to calibrate the time-varying dynamical
model by means of matrix @), which can increase the accuracy of the estimations.

Note that the images estimated by KF-F and SM-F (which used a full state covariance
matrix) contained more artifacts when compared to the ones obtained by KF-B, SM-B,
KF-D and SM-D (which constrained the state covariance matrix to be diagonal or block
diagonal). This occurs due to the high-dimensionality of the state vector (i.e., equivalent
to a vectorized Landsat image) when compared to the MODIS measurements, as this leads
to the amount of measurements not being sufficient to provide an accurate estimate of the
full state vector and its covariance matrix, as shown in [60]. Thus, the extra degrees of
freedom of KF-F and SM-F end up impacting their performance negatively. By setting the
covariance matrix of the Kalman filter and smoother to be block diagonal or fully diagonal,
the amount of parameters to be estimated is greatly reduced in KF-B, SM-B, KF-D and
SM-D, leading to better results.

The results discussed above are corroborated by the absolute error maps displayed in
Figure 4, and SAM results shown in Table 1 for dates in which ground-truth is available.
Analyzing Figure 4 we highlight that SM-B and SM-D clearly present the smallest errors
(i.e., overall darker pixels) for both bands and all dates. KF-B also presents low absolute
error except for contour regions. PSRFM is the third overall darker image, followed by
KF-B, KF-D, SM-F, KF-F and ESTARFM with exception of the results on 07/19 (first col-
umn), where ESTARFM is close to the ground-truth. Similar conclusions can be achieved
by analyzing Table 1. The difference between the images estimated by the Kalman filter
and smoother under the different approximations for the state covariance matrices (which
are discussed in Section 4 and illustrated for this example in Figure 7) is shown in Figure 5.
It can be seen that the approximations had a more pronounced effect on the Kalman filter
compared to the smoother. Moreover, the differences between the filter with a diagonal
(assumption ¢) and block diagonal state covariance with one block per Landsat pixel (as-
sumption i) was relatively small. Taking in to consideration the quantitative metrics in
Table 1, this indicates that using a diagonal or block diagonal assumption on the state
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covariance matrix with small blocks has a positive effect on the estimation performance,
which likely occurs since it drastically reduces the amount of unknowns in the model that
have to be estimated by the methods.

The left panel in Figure 6 presents the water maps for the ground-truth (first row) and
all studied algorithms obtained using K-means clustering, while the right panel in Figure 6
shows the misclassification maps (i.e., the absolute error between the water maps obtained
by each algorithm and the ground-truth). When comparing the resulting classification maps
and the misclassification error with the ground-truth, the proposed methods present classi-
fication maps that are semantically better than the competing methods. This conclusion is
also reached by considering the quantitative misclassification results presented in Table 2,
in which the Kalman filter- and smoother-based methods led to smaller misclassification
rates for all images except the ones on 07/19 and 09/21. A closer analysis reveals that the
SM-D and SM-B methods hold the first and second best performance on average, followed
by SM-F, KF-D, KF-B, PSRFM, KF-F and ESTARFM. Note that the PSRFM method
requires access to the ground-truth (Landsat image) on 09/21 in order to produce an esti-
mation for the MODIS image observed in this same date (i.e., measurement k£ = 16), which
is why the corresponding misclassification percentage is not reported. We also remark that
KF-D and KF-B also obtained competitive misclassification performance (i.e., better than
PSRFM), despite using no knowledge of the Landsat image at 09/21. Moreover, comparing
the results in Table 1 and 2, it can be seen that the higher SAM results observed for all
methods at date 08/20 does not translates into a worse classification performance. This
indicates that the SAM results at this date were influenced by the acquisition conditions of
the Landsat image which was used for ground truth, making the classification performance
more straightforward to interpret.

Finally, we plotted the percentage of pixels classified as water over the time index k in
Figure 8, as well as a hydrograph which serves as an indicative of the dynamical evolution
of the true level of the reservoir over time. It can be seen that ESTARFM was not able to
properly identify the dynamical evolution of the reservoir level, leading to an estimation that
was almost constant for all £k < 17 and very different from the hydrograph curve. PSRFM
led to results that, although showing relatively high day-to-day variations, were closer to
the hydrograph curve. The Kalman filter and smoother-based algorithms, particularly those
with the diagonal and block diagonal state covariance assumption (KF-D, KF-B, SM-B and
SM-D) led to curves that were very close to the hydrograph. Thus, the Kalman filter
methods captured the general trends of the hydrograph curves, even without having access
to information from the Landsat image at the end of the sequence (like the smoothers and
PSRFM). We note, however, that the connection between the hydrograph and the water
surface area is indirect; thus, small differences between the algorithms have to be interpreted
with proper care.

5.5. Contribution of the temporal dynamics calibration strategy

This subsection aims to show the impact of the proposed calibration strategy, which
learns the temporal dynamical model parameters Q; using historical data, on the perfor-
mance of the proposed KF and SM algorithms. To this end, we compared the proposed
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KF-D and SM-D (which estimate @, and use a diagonal assumption on the state covari-
ance matrix), to a Kalman filter and smoother with a fixed Q, = 10721, which we denote
by KF-I and SM-I, respectively. In Figure 9, we show the fused red (Figure 9a) and NIR
(Figure 9b) reflectance images, as well as the acquired red and NIR reflectance values from
MODIS and Landsat. Acquisition dates are displayed in the top labels at each column with
a character, M for MODIS and L for Landsat indicating the image used in the fusion algo-
rithms. We recall that only the first and last Landsat images were used in the fusion process,
keeping the remaining three images as ground-truth for evaluation purposes. Analyzing the
results, we can see that the images estimated by the proposed KF-D and SM-D methods
produce significantly better visual similarity with the Landsat (ground-truth) images for
both bands. For instance, the increase in the island and the expansion of other land parts
at date 08/20 are clearly visible for the proposed methods. On the other hand, analyzing
the results of the KF-I and SM-I methods, where the temporal dynamics matrix @, was
kept constant and independent of past data, we observe that the results appear very blurry,
with a resolution that is comparable to that of the MODIS images. This shows that the
proposed weakly supervised calibration strategy is key in order for the KF- and SM-based
strategies to obtain high quality reconstructions.

5.6. Results for larger scale Elephant Butte site

In this subsection, we compare the proposed strategies to ESTARFM and PSRFM in
the Elephant Butte example, which comprises a larger geographical area. For simplicity
and to reduce the use of space, we compare only proposed Kalman filter and smoother
methods with the block diagonal assumption on the state covariance matrices (i.e., KF-B
and SM-B).

The fusion results for both bands and all algorithms are shown in Figure 10, while
Figure 11 shows the corresponding water mapping results. To measure the performances
of different methods in this large area, the Landsat images at dates 06/07 and 06/23 were
chosen as a ground truth to evaluate the quality of the reconstructed images at dates 06/14
and 06/27 (we remark that the MODIS images at dates 06/07 and 06/23 were not available
due to the presence of cloud cover). It can be seen that the proposed KF-B, SM-B and the
PSRFM methods provide estimates that are close to the ground truth images, whereas the
ESTARFM method shows an inferior performance. This can be seen more clearly for the
image at date 06/14 (k = 5), in which the smoother method better captured the increase in
the area of the reservoir. To evaluate the performances of different methods more clearly,
Figure 12 shows the absolute error of water maps of images compared with the ground
truth, and Figures 13 and 14 show a zoomed-in area of the image of the fused image and
water mapping result, respectively. It can be seen from Figure 12 that the misclassification
errors are concentrated at the borders of the reservoir, which is the area that undergoes the
largest amounts of changes over time, and consequently the hardest to classify correctly.
The SM-B algorithm shows the best results, followed by KF-B, PSRFM and ESTARFM.
Nevertheless, PSRFM provides results that contain less artifacts compared to KF-B, despite
the lower classification accuracy. The superior visual quality of the results of SM-B and
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PSRFM is explained by their use of Landsat images both at the beginning and at the end of
the image sequence, whereas KF-B and ESTARFM do not have access to the last Landsat
image.

Table 3 presents the SAM results, and Table 4 shows the corresponding percentage of
misclassified pixels for the different methods. It can be seen that in terms of SAM, the SM-B
method obtained the best results for both dates, followed by PSRFM and ESTARFM. How-
ever, the KF-B strategy was able to obtain a better water mapping performance compared
to PSRFM. This indicates that the artifacts seen in the (comparatively noisier) reconstruc-
tions of KF-B impact the the classification performance in a less substantial way compared
to the SAM. This shows that the proposed Kalman-filter based strategy can provide mean-
ingful water mapping results in a real-time setting, in which we do not have access to future
Landsat images, precluding smoothing-based algorithms (such as SM-B and PSRFM) to be
used.

Table 3: Spectral angle mapper between the estimated high-resolution image and the Land- sat measurement
for the Elephant Butte example (note that the Landsat images at dates 06/07 and 06/23 were not supplied
to the algorithms and only used for evaluation purposes).

Method || KF-B | SM-B_| ESTARFM | PSRFM
Tmage (06/07) || 5.5416 | 2.9993 |  9.2678 4.2608
Tmage (06/23) || 5.7514 | 1.9923 |  6.2158 4.8719

Average || 5.6465 | 2.4958 | 7.7418 | 4.5709

Table 4: Percentage of misclassified pixels for the Elephant Butte example (note that the Landsat images
at dates 06/07 and 06/23 were not supplied to the algorithms and only used for evaluation purposes).

Method || KF-B | SM-B | ESTARFM | PSRFM
Tmage (06/07) || 5.3593 | 1.4289 9.2678 6.6606
Tmage (06/23) || 5.9233 | 0.8250 | 10.8330 7.8675

Average || 5.6413 | 1.1269 | 10.0504 | 7.2640

5.7. Discussion

The results presented above clearly indicate that the proposed weakly supervised smoother-
based image fusion strategy outperforms the ESTARFM and PSRFM algorithms in terms of
image reconstruction when an appropriate covariance structure is selected (SM-D and SM-
B). This highlights that having less model parameters to estimate (i.e., a more constrained
state covariance model) can lead to better results. Moreover, even the Kalman filter strate-
gies (particularly KF-B and KF-D), which estimate high-resolution images from MODIS
without having access to any future data, have shown very competitive performance, with
great potential for tasks in which high-resolution estimates are required online and one can-
not wait for another Landsat image to be available before computing the high-resolution
reconstructions.

The advantage of the proposed filter and smoother strategies is more clear when eval-
uated semantically by means of the water classification performance. For instance, the
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growth of the island portion over time in regions that are semantically meaningful leads
to more meaningful results that cannot be entirely captured by one standard metric such
as the SAM. This can be observed more clearly through the spatial distribution of the
misclassification error maps in Figure 6, which for ESTARFM and PSRFM are signifi-
cantly more concentrated on the borders between land and water. In general, the proposed
filtering-based strategies clearly outperformed both the ESTARFM and PSRFM algorithms,
a standard and a state of the art remote sensing image fusion algorithms. Moreover, the
proposed distributed implementation, described in Section 4, is able to reduce the com-
putational power and memory demand of the standard Kalman filter and smoother when
applied for large images.

6. Conclusions

In this paper, an online Bayesian approach for fusing multi-resolution space-borne mul-
tispectral images was proposed. By formulating the image acquisition process as a linear
and Gaussian measurement model, the proposed method leveraged the Kalman filter and
smoother to perform image fusion by estimating the latent high resolution image from the
different observed modalities. Moreover, a weakly supervised strategy is also proposed to
define an informative time-varying dynamical image model by leveraging historical data,
which leads to a better localization of changes occurring in the high-resolution image even
in intervals where only coarse resolution observations are available. Experimental results
indicate that the proposed strategy can lead to considerable improvements compared to
both classical and state-of-the-art image fusion algorithms.
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Figure 3: Fused bands from MODIS and Landsat for the Oroville Dam example using different strategies over
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Figure 4: Absolute difference between the estimated and ground truth (Landsat) images for the Oroville
Dam example in the red (upper panel) and NIR (lower panel) bands.
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Figure 5: Absolute differences between the images estimated by the KF and Smoother under different model
assumptions for red (upper panel) and NIR (lower panel) bands, for the Oroville Dam example. KF-BF:
difference between the estimates of KF-B and KF-F. KF-DF': difference between the estimates of KF-D and
KF-F. KF-DB: difference between the estimates of KF-D and KF-B. An analogous notation holds for the
smoother (SM) estimates.
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Figure 6: (Upper Panel) Water map of the reconstructed images of the Oroville Dam example based
on K-means clustering strategy, where 1 indicates land and 0 indicates water pixels. Classification maps
obtained from Landsat images not observed by the image fusion algorithms establish the ground-truth (first
row). (Lower Panel) Absolute error of Water map of images based on K-means clustering strategy, where
0 indicates correctly classified pixels and 1 indicates misclassifications. The ground-truth is shown in the
first row.
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Figure 7: (Top Colored Panel) Estimated state covariance structure of the Kalman filter under model
assumptions 4, it and i for a small image area in the Oroville Dam example and k = 13. Top row depicts
the whole covariance matrix with a red square indicating the zoomed part displayed on the bottom row. The
plots indicate that correlations are present when assuming block diagonal covariance matrices. (Bottom
Panel) Zoom of the MODIS image for bands 1 and 2 (left), and the corresponding Landsat observations for
bands 4 and 5 (right) corresponding to the covariance matrices plotted in the right panels.

28



80 \ T 1
N =o=KF-F
==SM-F
75 KF-B
n2.6
=4=SM-B
[0} ==KF-D
g7 “SMD |
% ==ESTARFM B
O 65 - ==PSRFM e
8_ ==Hydrograph '5'
— 2.2 c
g S
-5_60 - >
6 >
= -2
=550
50 118
45 | | | | | | | L | 16
0 2 4 6 8 10 12 14 16 18 20

Image Indices (k)

Figure 8: Percentage of water pixels in the estimated images over image index (time) and the reservoir
volume in m® (hydrograph) for the Oroville Dam example. Classification of water was done by performing
clustering on the estimated bands for each method and time index. High resolution Landsat images were
observed at indices k € {1,17}.
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Figure 9: Fused bands from MODIS and Landsat for the Oroville Dam example using different strategies
over time. The first two rows of each subfigure depict MODIS and Landsat bands acquired at dates displayed
on top labels. At each time index estimation results of the diagonal Kalman filter and smoother with the
proposed weakly supervised calibration strategy (KF-D and SM-D) are compared to the result of a Kalman
filter and smoother with @, being proportional to the identity (denoted by KF-I and SM-I). Landsat images
at dates 07/19, 08/20 and 08/29 were omitted from the estimation process and used solely as ground-truth.
Images used at each update step are indicated on top labels where “M” stands for MODIS and “L” for
Landsat.
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Figure 10: Fused bands from MODIS and Landsat for the Elephant Butte example using different strategies
over time. The first two rows of each subfigure depict MODIS and Landsat bands acquired at dates displayed
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Figure 11: Water map of images for the Elephant Butte example based on K-means clustering strategy where
1 indicates land and 0 indicates water pixels. Unused Landsat classification maps establish the ground-truth
(first column).
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Figure 12: Absolute error of Water map of images for the Elephant Butte example based on K-means

clustering strategy. Unused Landsat classification maps establish the ground-truth (first column).
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Figure 13: Zoomed-in water map of images for the Elephant Butte example based on K-means clustering
strategy where 1 indicates land and 0 indicates water pixels. Unused Landsat classification map at date
06/23 establish the ground-truth (first column).
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Figure 14: Zoomed-in version of the fused bands from MODIS and Landsat for the Elephant Butte example
using different strategies at date 06/27 (ground-truth at 06/23 is shown in the first column).
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