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intRoduction
The Internet of Things (IoT) paradigm will enable exciting appli-
cations, such as remote surgery, autonomous cars, augmented/
virtual reality, all of which demand faster processing, higher 
data rates, and more reliable communications beyond what is 
realizable today. To meet such demands, most modern WiFi 
standards deployed in commercial consumer IoT devices today, 
including IEEE 802.11a/g/n/ac and other emerging standards 
use Orthogonal Frequency Division Multiplexing (OFDM). 

The typical OFDM receiver consists of several signal pro-
cessing blocks that detect and synchronize the packet, estimate 
the channel and equalize the payload to overcome channel-in-
duced distortions, and finally extract useful bit representa-
tions through demapping and error correction (decoding). An 
overview of the traditional processing blocks is shown in Fig. 
1 (bottom). Indeed, hand-engineered processing steps (e.g., 
using custom-designed packet preambles or fi xed modulation 
schemes) off er limited opportunities for on-the-fl y adaptation. 
Moreover, the wireless environment is too complex to be mod-
eled accurately, and constraining the choice of the processing 
blocks to only one of several candidates may lower the perfor-
mance. On the other hand, Neural Networks (NNs) provide an 
adaptable and noise-resilient solution for many physical layer 
processing tasks, such as modulation classifi cation [1] and RF 
fi ngerprinting [2, 3], that improve the performance of their tra-
ditional counterparts. Similarly, in the domain of receiver design, 
NNs can off er a closed-form and fl exible solution by learning to 
imitate previous channel estimations, symbol demappings, and 
decodings, instead of explicitly realizing the mathematical form 

aBstRact
Orthogonal Frequency Division Multiplexing (OFDM)-based waveforms are used for communication links in many current and emerging 
Internet of Things (IoT) applications, including the latest WiFi standards. For such OFDM-based transceivers, many core physical layer 
functions related to channel estimation, demapping, and decoding are implemented for specifi c choices of channel types and modulation 
schemes, among others. To decouple hard-wired choices from the receiver chain and thereby enhance the fl exibility of IoT deployment in 
many novel scenarios without changing the underlying hardware, we explore a novel, modular Machine Learning (ML)-based receiver chain 
design. Here, ML blocks replace the individual processing blocks of an OFDM receiver, and we specifi cally describe this swapping for the 
legacy channel estimation, symbol demapping, and decoding blocks with Neural Networks (NNs). A unique aspect of this modular design is 
providing fl exible allocation of processing functions to the legacy or ML blocks, allowing them to interchangeably coexist. Furthermore, we 
study the implementation cost-benefi ts of the proposed NNs in resource-constrained IoT devices through pruning and quantization, as well 
as emulation of these compressed NNs within Field Programmable Gate Arrays (FPGAs). Our evaluations demonstrate that the proposed 
modular NN-based receiver improves bit error rate of the traditional non-ML receiver by averagely 61 percent and 10 percent for the sim-
ulated and over-the-air datasets, respectively. We further show complexity-performance tradeoff s by presenting computational complexity 

comparisons between the traditional algorithms and the proposed compressed NNs.
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Figure 1. An overview of the proposed Neural Network (NN)-
based receiver. The channel estimator, demapper, and error 
corrector (decoder) blocks are substituted with individual 
NNs. The NNs are trained and compressed off line, for online 
FPGA deployment.
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of these processing blocks.
•	 Real-time Computation. The flexibility and performance 

improvement arising from including ML blocks within the 
receiver processing chain comes at a computational cost. 
Although NN computations are simple multiplications and 
additions, NNs are overall compute-intensive, and thus 
deploying them might cause delays that impact time-sensitive 
applications. In the wireless receiver, delays even as small as 
a few microseconds might prevent the processing chain to 
remain synchronized with the streaming data, which causes 
incorrect decoding. Thus, methods to achieve real-time NN 
computations are critical.

•	 Proposed Modular Design. While a single NN that captures 
the entire receiver processing chain simplifies the OFDM 
receiver, the routing of data, and NN inference execution, 
there are several drawbacks of such a monolithic design. 
First, this becomes a “black-box” approach that yields no 
insights on the performance of the intermediate functional 
steps. Thus, if say the demapper is under-performing in a 
given situation, there is no way for the designer to know 
this. Second, the receiver may be frequently deployed in 
new wireless environments, which necessitates re-training of 
the entire NN with massive volumes of data each time. For 
example, introducing a new modulation scheme or coding 
rate to the original waveform renders the entire prior train-
ing inadmissible. These considerations motivate us to pur-
sue a model-driven design, with the goal of maintaining full 
compatibility with the classical processing chain. Thus, any 
individual classical processing block could be swapped with 
its ML block counterpart in a way that is transparent to the 
rest of the receiver chain. This fully modular approach distin-
guishes our work from other recent work that use NN-based 
solutions for cyclic prefix free [4], DFT free [5] or pilotless 
communications [6] in OFDM systems. 
In this article, we propose an NN-based end-to-end OFDM 

receiver. Our scheme is composed of channel estimator, 
demapper, and error corrector (decoder) NNs with totally 
3.1M parameters, cascaded to build a complete receiver, 
as shown in Fig. 1 (top). Using both simulated and Over-The-
Air (OTA) datasets, we show that these NNs perform better 
than their non-ML counterparts. Moreover, we propose Block 
Column Row (BCR) pruning and Mixed Scheme Quantiza-
tion (MSQ) to compress these models without accuracy loss 
for Field Programmable Gate Arrays (FPGA) deployment, and 
present FPGA results. We further calculate computational com-
plexity in terms of floating-point operations (FLOPs) for the 
traditional and NN algorithms and provide comparisons of 
the two. Our prototype design can be implemented in small 
form-factor FPGAs that may be present in IoT devices, or it can 
be used to design a custom chip for NN-based OFDM receivers 
for specific IoT applications.

Related Work
We categorize the previous work on modeling the OFDM 
receiver chain into
•	 Data-driven approaches, where the NN models are devel-

oped using data, without domain knowledge being involved, 
•	 Model-driven approaches, where domain knowledge is used 

in the design of NN-based receivers
In [7], a data-driven approach is proposed that directly predicts 
the transmitted symbols without explicit channel estimation, by 
a single deep NN. This NN is trained to minimize the difference 
between its output and the transmitted data. In [5], the authors 
eliminate the DFT in the OFDM receiver using a complex-val-
ued deep NN. They train their channel equalizer based on a 
frozen pre-trained basic receiver.

In contrast, in model-driven design, domain knowledge is 
adopted to design separate NNs for each function in the receiver 
chain [8]. Reference [4] proposes an AI-aided OFDM chain for 
a cyclic prefix-free system, where channel estimation and signal 

detection are done by separate NNs. The authors integrate the 
orthogonal approximate message passing algorithm with the 
signal detection NN. The authors in [6] propose end-to-end learn-
ing with the purpose of eliminating orthogonal pilots in OFDM 
symbols by jointly optimizing parts of the transmitter and the 
receiver. percent, which results in no bit error rate deterioration. 

There are additional work on replacing individual blocks in 
the traditional receiver with NNs. For example, [9] proposes a 
multi-layer perceptron NN for estimating the channel in massive 
MIMO systems for 5G and beyond. Authors in [10] propose 
a soft-demapper using a fully-connected NN. Aside from the 
OFDM receiver context, authors in [11] propose a recurrent 
neural network to decode different coding schemes, including 
the convolutional codes in the Viterbi algorithm [12].

A summary of the aforementioned categories is shown in 
Fig. 2. Despite the large body of literature that propose NNs 
for performing different tasks in OFDM receivers, to the best of 
our knowledge, prior work do not propose a fully-modular NN 
design for OFDM receivers, which is customized for implemen-
tation on resource-constrained hardware.

Model-Driven NN-Based OFDM Receiver
In this section, we describe channel estimation, demapping, 
and decoding tasks in the OFDM receiver, through both the 
classical and NN methods. These NNs are individually trained 
and then cascaded to build the complete receiver. Finally, we 
describe our pruning and quantization methods to compress 
these NNs for FPGA implementation.

Channel Estimation
Classical Approach: After packet detection, the OFDM 

wireless receiver estimates the Channel State Information (CSI) 
to compensate for channel-induced distortions in the received 
signal. This estimation is done in the frequency domain, for 
different OFDM formats in WiFi 802.11a/g/n/ac, by leveraging 
the Legacy Long Training Field (L-LTF) in the preamble.

The L-LTF consists of 2 identical OFDM symbols containing 
pilot information, known at the receiver. The Least Square (LS) 
channel estimation is used to estimate the channel coefficients 
of each sub-carrier. In the traditional receiver, after OFDM 
demodulation, LS method divides the received pilot sequence 
element-wise by the known pilot sequence. The final CSI is the 
average of the two different CSI vectors obtained by perform-
ing the LS estimation on the two OFDM symbols in the L-LTF.

Proposed NN Architecture: In contrast to the classical chan-
nel estimator whose input is frequency-domain L-LTF, our pro-

Figure 2. Related work summary for OFDM receivers.
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posed channel estimator NN processes the 
time-domain L-LTF. This obviates the need 
for the FFT operation during demodulation, 
as shown in Fig. 1, which is beneficial as FFT 
becomes expensive for large number of sub-
carriers. As the estimated channel is calcu-
lated independently for each sub-carrier, we 
use fully-connected layers to design the chan-
nel estimator NN. Our NN consists of two 
Multi-Layer Perceptron (MLP) architectures 
that estimate the real and imaginary parts of 
CSI independently. Each MLP has an input size 
of 160 with 2 hidden layers, of 512 and 256 
neurons, respectively. The hidden layers have 
ReLU activation. Without loss of generality, 
we use WiFi 802.11a-compliant waveform that 
has 52 channel coefficients. Thus, the chan-
nel estimator output layer also is of size 52, 
with linear activation for the regression task. 
We add a dropout layer with drop probability 
15 percent between the first and the second 
hidden layers to avoid overfitting. Each MLP 
has 227k parameters giving 450k parameters 
cumulatively for the complete architecture.

Training Process: We create the training dataset by generating 
10k standard compliant transmissions and passing them through 
a simulated wlanTGnChannel in MATLAB. These are packets 
distorted by the wireless channel without Additive White Gaussian 
Noise (AWGN). We collect these packets at the receiver-side, and 
create a set of time-domain L-LTF OFDM symbols denoted as X(a)

trains. We estimate the channel with LS method and save the set 
of 52 CSI coefficients (one for each subcarrier) as Y(a)

trains. Similar 
to the noise model introduced within the data augmentation pipe-
line in [2], we dynamically add different levels of AWGN to X(a)

trains, before feeding them to the NN. This added noise simulates 
SNRs within the range of 0 to 30 dB with steps of 5 dB. Since Y(a)

trains are estimated from noiseless preambles, this dynamic addition 
of noise helps the NN learn to generalize and associate noisy X(a)

trains with noiseless Y(a)
trains, which improves channel estimator NN 

performance over its traditional counterpart.
We use Mean Squared Error (MSE) loss function, computed 

between the output of the MLP and its corresponding ground 
truth CSI computed through LS. In order to make our model 
able to process signals received at different power levels, we 
use Root Mean Square (RMS) normalization on the signal to 
bring it to a nominal signal power of 1W (i.e., 0 dBW).

Demapping
Classical Approach: After estimating the wireless channel, 

we equalize the demodulated payload, through dividing the 
frequency-domain payload by the frequency-domain estimated 
channel. The task of the demapper block is to map complex 
equalized symbols to a sequence of either soft or hard bits in 
soft-demapping and hard-demapping, respectively. The length 
of the output bit sequence is proportional to the modulation 
order. For example, in 16QAM, the transmitter-side mapper 
relates every four bits to one complex symbol. Consequently, 
in the receiver, the demapper demaps each equalized symbol 
to four bits.

Proposed NN Architecture: We follow the traditional demap-
per concept, and propose an NN that generates a sequence 
of bits for each equalized symbol. Without losing generality, 
we design an example demapper that demaps symbols from 
16QAM. Consequently, our NN has an input size of 2 that rep-
resent In-phase (I) and Quadrature (Q) parts of one equalized 
symbol. Since the demapper NN is supposed to work on one 
equalized symbol at a time and the symbols are independent 
from each other, we use a fully-connected NN. Unlike convo-
lutional networks with window size > 1, our approach operates 
on each equalized sample separately. The output layer has size 

4, where each neuron represents one bit. Since 
each output bit must be set to either “0” or “1”, 
and multiple bits can be “1” simultaneously, we 
consider demapping as a multi-label classifica-
tion problem, and choose Sigmoid activation 
for the last layer. To determine the number of 
layers, we search the design space of fully-con-
nected NNs with different number of layers and 
different number of neurons in each layer. We 
find out that the smallest NN for the 16QAM 
demapper is a fully-connected NN with 2 layers, 
with output sizes of 20 and 4, respectively. This 
model has only 144 total parameters.

Training Process: The best demapping perfor-
mance is achieved when the training set contains 
only low SNR packets. We train the demapper 
NN with equalized symbols, as X(b)

trains, from 16k 
packets with SNR 2 dB. For the labels (Y(b)

trains), we 
use inputs of the mapper at the transmitter-side. 
In this way, the demapper learns to demap the 
equalized symbols to the original, non-distorted 
bits at the transmitter-side.

During inference, the NN receives the 
equalized symbols. Since we use Sigmoid activation in the last 
layer that produces outputs in the range of [0,1], we consider 
the probability of firing each neuron as the probability of corre-
sponding bit being “1”. The soft-bits (i.e., Log Likelihood Ratios 
(LLRs)) are calculated by taking the logarithm of probability of 
the output being “0” divided by the probability of the output 
being “1”. Using this relationship, one LLR value is calculated 
for each output neuron. These LLR values are scaled by a com-
bination of CSI and noise variance, calculated by the equalizer. 
Next, the scaled LLRs are de-interleaved and provided to the 
Forward Error Correction (FEC) decoder to compute the actual 
transmitted bits, as shown in Fig. 1.

Error Correction
Classical Approach: The role of the forward error correc-

tion (FEC) decoder block is to convert the de-interleaved bits 
to an error-corrected sequence of bits, as shown in Fig. 1. The 
relationship between the input size and the output size of the 
decoder depends on the coding rate Crate, with the output size 
being Crate times the input size. Similar to demapping, con-
ventional decoding can be done in two ways of soft-decoding 
and hard-decoding, depending on the decoder inputs being 
whether soft-bits or hard-bits, respectively. In the traditional 
decoder, the Viterbi [12] algorithm is used to decode the cor-
rect sequence of bits.

Proposed NN Architecture: Unlike the demapper NN 
where each equalized sample is mapped to a bit sequence 
independently, decoding from a convolutional code requires 
processing of a sequence of inputs. For this reason, instead 
of a simple fully-connected network, the decoder uses Recur-
rent Neural Networks (RNNs), which are designed to process 
sequential data. To have the input of the decoder NN between 
0 and 1, we convert the de-interleaved LLRs to the probabil-
ity of a bit being equal to “1”. This probability is achieved by 
inverting the LLR formula, therefore, probability of each soft-bit 
(LLR) being “1” equals 1/(1 + eLLR). 

Due to the nature of RNNs, the input size of our proposed 
decoder NN can vary up to l, which corresponds to the size of 
de-interleaved LLR vector for the payload. The decoder RNN 
architecture consists of a recurrent part and a fully-connected 
part stacked together. The recurrent part has 3 Gated Recurrent 
Unit (GRU) layers, each with 256 units. The fully-connected part 
has 2 dense layers. The hidden layer has 16 neurons with ReLU 
activation, and the output layer has 1 neuron. Since, same as 
the demapper, the decoder produces bit sequences, the output 
layer has Sigmoid activation with size Crate times the size of the 
LLR vector. The decoder NN has 2.7M total parameters.

Unlike the demap-
per NN where each 
equalized sample 
is mapped to a 

bit sequence inde-
pendently, decoding 
from a convolutional 
code requires process-
ing of a sequence of 

inputs.
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Training Process: Similar to demapping, the best decoding 
performance is achieved when the training set contains only 
low SNR packets. Therefore, we use 16k packets in SNR 2 dB 
to train the decoder. As shown in Fig. 1, we train the decoder 
NN with outputs of de-interleaver at the receiver-side as X(c)

trains 
and the scrambled bits at the transmitter-side as Y(c)

trains. Using 
transmitter-side scrambled bits as Y(c)

trains helps the NN learn to 
map noisy inputs to undistorted original bits, which boosts the 
decoder performance.

During inference, the decoder NN generates the probability 
of each bit being “1”. To yield the final bit sequence, these 
probabilities are mapped to bit “1” if they are greater than 0.5, 
and to bit “0” otherwise.

So far, we described how NNs can substitute classical sig-
nal processing blocks in the OFDM receiver chain. Next, we 
describe how the NNs are compressed during training for 
FPGA deployment.

Fpga iMpleMentation
The NNs described in this article span a range from small (144 
parameters) to large (up to 2.7M parameters). Direct deploy-
ment of such components on resource-constrained hardware 
(i.e., FPGA) is not possible. To compress these architectures 
suitably for FPGA deployment, we use two approaches:
1. Making the network sparser by reducing the number of 

weights (pruning)
2. Restricting the weights to be represented by a small number 

of bits (quantization)
The latter not only reduces the memory needed to store each 
weight, but also fits the limitations of a fixed-point hardware 
such as FPGA. Moreover, by implementing diff erent quantiza-
tion methods, we can control which FPGA resources will be 
used for weight multiplication. Both pruning and quantization 
methods happen along training and the resulting model has 
quantized weights where many are set to zero (are pruned).
1. Pruning: Two popular types of pruning are structured pruning

and irregular pruning. Structured pruning is a coarse-grained 
pruning approach that removes the whole fi lter or channel in 
an NN layer, and is the best for hardware acceleration. How-
ever, structured pruning adversely affects the accuracy. In 
contrast, irregular pruning is a fi ne-grained pruning approach 
that sets the weights with small magnitudes to zero, pre-
serves the accuracy, but does not attain acceleration on most 
hardware platforms. To solve this issue, we propose a Block-
based Column Row (BCR) pruning scheme that serves as 
the universal fine-grained structured pruning. This pruning 
method can prune convolutional and fully-connected layers. 
As shown in Fig. 3, in BCR pruning, each weight matrix is 
divided into multiple blocks, and row and column pruning is 
applied to each block separately. We employ ADMM-based 
pruning [13] to determine the row/column pruning ratio 
automatically. The described fi ne-grained BCR pruning can 
signifi cantly outperform the traditional coarse-grained struc-
tured pruning, and can provide larger acceleration compared 
to the more fl exible irregular pruning.

2. Quantization: Weight quantization is another method for 
compressing the NN for FPGA implementation. Two popular 
methods of quantization are fixed-point quantization and 
power-of-two quantization. Fixed-point quantization is a naive 
quantization method that prepares the NN to run on a fi xed-
point hardware such as FPGA. Power-of-two quantization 
converts weight multiplications to simple bit shifts. In this 
way, weight multiplications, that are typically implemented 
on the specialized hardware blocks called DSP48s inside 
FPGAs, will be implemented on the Look-Up Tables (LUTs) 
as simple bit shifts. Based on these two schemes, we propose 
a Mixed Scheme Quantization (MSQ) approach that applies 
fixed-point quantization and power-of-two quantization on 
different rows of the weight matrix. There are two major 
motivations for using MSQ: First, diff erent rows of the weight 

matrix have diff erent distributions. Since power-of-two quan-
tization has higher resolution around the center, it is best to 
be applied to the rows with a lower variance. In contrast, 
fi xed-point quantization is suitable for rows with near uniform 
weight distribution, that have higher variance. Second, by 
using a specifi c type of quantization for each row, a mix of 
FPGA resources (DSP48s and LUTs) are used, which balanc-
es the resource utilization for NN weight multiplications. We 
observe that MSQ maintains the accuracy of the two single 
methods, due to being able to accommodate to different 
weight distributions.

peRFoRMance evaluation
We use PyTorch on Nvidia RTX 2080Ti GPUs to train indi-
vidual NNs. The metric we use for evaluating the proposed 
NN-based receiver is the Bit Error Rate (BER), that shows the 
rate of incorrectly recovered received bits after error correc-
tion. percent, after the signal passes through all the parts in the 
OFDM chain. We evaluate the individual performance of the 
NNs by inserting each NN in the OFDM receiver, while the 
rest of the processing is performed by the classical blocks. To 
evaluate the whole NN-based OFDM receiver, we cascade all 
the 3 NNs and measure the BER. For fair comparison, we fur-
ther create a MATLAB baseline, which demonstrates the BER 
of a traditional MATLAB OFDM chain, without ML involved, as 
shown in Fig. 1 (bottom). In the MATLAB processing chain, for 
channel estimation, we use the standard compliant LS estima-
tion for preamble-based frequency-domain channel estimation 
that is implemented in MATLAB function wlanLLTFChan-
nelEstimate. For the demapper, we use soft-demapping 
through approximate LLR method implemented in MATLAB 
function wlanConstellationDemap. For the decoder, we 
use convolutional decoder (that decodes Binary Convolutional 
Coding (BCC)) implemented in MATLAB function wlanBC-
CDecode . For BER evaluation, we use simulated and OTA 
datasets that are briefl y described below. 

Figure 3. The proposed BCR pruning method is applied to all the 
fully-connected layers in the channel estimator, demapper, 
and decoder NNs.
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Test Dataset Description
Simulated dataset: We use WLAN toolbox in MATLAB R2020a 

to create a simulated dataset by generating 192k packets, each 
containing a random sequence of bits. These packets are then 
modulated in accordance with IEEE 802.11a standard with Mod-
ulation Coding Scheme (MCS) 16QAM 1/2, before passing 
through a simulated wlanTGnChannel and an AWGN channel 
with desired SNR level. The SNR levels we use are between 2 dB 
and 24 dB with steps of 2 dB. With 192k total packets distributed 
among 12 SNR levels, we create a test set of 16k packets per SNR.

Over-The-Air (OTA) Dataset: We collect an OTA dataset in 
Arena [14], using one transmitter and one receiver. Similar to 
the simulated data, we generate random bit sequences, mod-
ulate them according to IEEE 802.11a standard, and transmit 
them via Software-Defined Radios (SDRs) placed in an over-
head ceiling-mounted array. We repeat this process with dif-
ferent power levels to account for different SNRs, and collect 
17k real-channel-distorted packets with SNRs between 11 to 
24 dB, as our OTA test set.

Receiver Bit Error Rate Results

Figure 4 shows the BER yielded from classical MATLAB process-
ing chain (MATLAB baseline). We also demonstrate the BER 
when only one of the channel estimator, demapper, or decoder 
blocks is replaced by the corresponding NN, as well as the end-
to-end BER when all the classical blocks are replaced with NNs 
in the OFDM receiver chain. 

We observe that channel estimator, demapper, and decoder 
NNs provide up to 86 percent, 36 percent, and 36 percent 
improvement in BER, respectively, compared to the MATLAB 
baseline. We observe that the cascade of the 3 NNs trained 
separately tagged as “Channel+Demapper+Decoder” in Fig. 
4 shows 61 percent BER improvement compared to MATLAB 
baseline. We further perform another experiment where we 
train the 3 NNs jointly. We test the cascade of the trained NNs 
on the simulated data and show it as “Trained jointly” in Fig. 4, 
which improves MATLAB baseline BER by 77 percent.

Before testing the OFDM NN-based receiver on the OTA 
dataset, we need to re-train the channel estimator NN to learn 
the variations of the real wireless channel. However, the demap-
per and the decoder NNs do not need to be re-trained. This is 
because, as shown in Fig. 1, the channel effects are compensat-
ed by the equalizer before the data reaches the demapper and 
the decoder, and hence, demapper and decoder NNs perform 
independently of the wireless channel. 

As explained earlier, we need data with very high SNR for 
training the channel estimator NN. Therefore, we collect addi-
tional OTA data of totally 35k packets between SNRs 25 and 
37 dB, to re-train the channel estimator NN. Figure 5 shows 
the BER generated by processing the OTA data via the classical 
MATLAB processing chain (MATLAB baseline), as well as indi-
vidual and cascaded NN BERs. For the OTA dataset, the chan-
nel estimator and the demapper NNs provide up to 12 percent 
and 20 percent BER improvement, respectively, over MATLAB 
baseline. This results in improved BER performance with the 
end-to-end NN-based receiver showing an average of 10 per-
cent BER improvement compared to the MATLAB baseline.

FPGA Results
During the training phase that happens on GPUs, we apply the 
proposed BCR pruning to all the fully-connected and recurrent lay-
ers in the channel estimator, demapper, and decoder NNs. Then, 
we use the proposed MSQ to quantize the NN parameters. We 
run FPGA emulation to estimate FPGA resources for our models, 
which are shown in Table 1. We verify the speedup introduced 
by our compression methods on Ettus X310 SDRs with Xilinx Kin-
tex7 T410 FPGA, by measuring the inference latency before and 
after NN compression. As shown in Table 1, the inference latency 
of the model decreases by 80 percent, 82 percent, and 81 per-
cent after compression, for the channel estimator, demapper, and 
decoder NNs, respectively. We also measure the BER after com-
pression and observe that compression increases the BER average-
ly by a negligible ratio of 3 percent, 1 percent, and 4 percent in 
the channel estimator, demapper and decoder NNs, respectively.

Computational Complexity
Finally, we compare the computational complexity of the pro-
posed compressed NNs with the traditional counterparts, in 
terms of FLOPs. 

Channel estimator: As explained earlier and shown in Fig. 
1 (bottom), our channel estimator NN replaces both the FFT 
and the LS algorithms in the standard MATLAB pipeline. We 
estimate the traditional MATLAB channel estimation to have 
4.4  103 FLOPs for our L-LTF length of 160 time-domain 
complex samples. By comparing this value to the compressed 
channel estimator NN FLOPs shown in the last row of Table 1, 
we observe that NN FLOPs are 50  the traditional algorithm.

Demapper: The traditional demapping algorithm that we use 
in MATLAB is implemented through approximate LLR method. 

Figure 4. BER of simulated dataset achieved from NNs and 
MATLAB baseline. For the simulated dataset, individual 
Channel Estimator, Demapper, and Decoder NNs, trained 
separately, show 86 percent, 36 percent, and 36 percent 
average BER improvement over MATLAB baseline. The 
cascade of separately trained NNs provide 61 percent BER 
improvement over MATLAB baseline. If the NNs are trained 
jointly, BER improvement reaches 77 percent, compared to 
MATLAB baseline.
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Fig. 9: BER of simulated dataset achieved from NNs and MAT-
LAB baseline. For the simulated dataset, individual Channel
Estimator, Demapper, and Decoder NNs, trained separately,
show 86%, 36%, and 36% average BER improvement over
MATLAB baseline. The cascade of separately trained NNs
provide 61% BER improvement over MATLAB baseline. If
the NNs are trained jointly, BER improvement reaches 77%,
compared to MATLAB baseline.

Figure 5. BER of the OTA dataset achieved from NNs and MATLAB 
baseline. For OTA dataset, Channel Estimator and Demapper 
NNs provide upto 12 percent and 20 percent BER improvement 
over MATLAB baseline. The cascade of these NNs yields an 
average 10 percent BER improvement over all SNRs.
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Fig. 10: BER of the OTA dataset achieved from NNs and
MATLAB baseline. For OTA dataset, Channel Estimator and
Demapper NNs provide upto 12% and 20% BER improvement
over MATLAB baseline. The cascade of these NNs yields an
average 10% BER improvement over all SNRs.
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We estimate the complexity of this algorithm to be 82 FLOPs 
per generated soft-bits for 16QAM, as this algorithm calculates 
the distance of each equalized symbol from all the known sym-
bols in the constellation. The FLOPs add up to 1.3  106 for 
our packet length of 4128 equalized 16QAM symbols (4128  
4 soft-bit). By comparing this value to the compressed demap-
per NN FLOPs shown in the last row of Table 1, we observe 
that NN FLOPs are 0.37 those of the traditional algorithm.

Decoder: The traditional decoding algorithm that we use 
in MATLAB is implemented through Viterbi algorithm, as 
explained earlier. We calculate the decoder function complexity 
to be 5.6  108 FLOPs for our decoder input length of 16512 
soft-bits. By comparing traditional algorithm FLOPs to the com-
pressed decoder NN FLOPs shown in the last row of Table 1, 
we observe that NN FLOPs are 79 the traditional algorithm.

The total FLOPs for the three compressed NN blocks add 
up to 4.45   1010 which is compared with total FLOPs for 
the traditional algorithms, 5.61  108. We observe that FLOPs 
count of the proposed compressed NNs are overall 79  the 
cumulative FLOPs for the traditional algorithms. This opens up 
new research topics to study the tradeoff and identify switching 
instances, as discussed next.

Open Research Challenges
1. Processing granularity: In our proposed NN-based scheme, 

there is a difference between processing granularity for dif-
ferent NNs. The channel estimator processes one packet at 
a time, however, the demapper granularity is one equalized 
sample. This granularity gap opens up opportunities for ways 
to parallelize the operations via an ensemble of demapper 
NNs that demap successive samples in parallel. This brings up 
interesting resource-performance planning and tradeoffs in the 
choice of FPGA size versus the possible speedup in time.

2. Performance under different environments or configura-
tions: Our results show that properly compressed NN-based 
receiver provides better BER performance and has fewer 
FLOPs compared to the traditional MATLAB receiver. How-
ever, the NN-based receiver has its limitations. For example, 
different channel estimators, demappers, and decoders need 
to be trained for different environments, different modula-
tion schemes, and different coding rates, respectively. These 
further impose larger memory requirements to store weights 
for multiple NNs for each block. Methods such as transfer 

learning and life-long learning with pruning [15] 
can be explored to reuse and share a portion 
of NN weights among different configurations, 
and reduce large memory requirements.
3. Identifying switching instances between 
classical and NN blocks: We have shown 
that the NN-based OFDM receiver provides 
better performance compared to the classical 
one, in a variety of circumstances. However, a 
purer NN-based receiver can consume more 
resources and power compared to the tradi-
tional receiver. Since our NN-based receiver is 
modular, the logic that determines which mod-
ules to introduce into the receiver chain and 
when, is a completely new area of research. As 
an example, this decision may be made at run-
time, based on desired reception performance 
and available on-board resources.

Conclusion
In this article, we proposed a model-driven 
design for NN-based OFDM receivers. Our 
receiver chain consists of 3 NNs for channel 
estimation, symbol to bit demapping, and error 
correction decoding. The NNs were designed 
based on wireless domain knowledge, and 
trained independently with data acquired from 

different data parts in the traditional transmitter and receiver. The 
trained networks were then cascaded to compose the complete 
receiver chain. The proposed NN-based receiver was evaluated 
with both simulated and OTA datasets, and showed averagely 61 
percent and 10 percent improvement in BER compared to the 
traditional solution, when tested with simulated and OTA data-
sets, respectively. We further proposed two methods of pruning 
and quantization to compress our NNs and prepare them for 
FPGA implementation. We also showed that despite the BER per-
formance gain, the proposed compressed NNs FLOPs are 79 
their traditional counterparts. This complexity-performance trade-
off opens up new research opportunities as discussed earlier.
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