
IEEE Internet of Things Magazine • September 2022158 2576-3180/22/$25.00 © 2022 ieee

ACCEPTED FROM OPEN CALL

Nasim Soltani, Hai Cheng, Mauro Belgiovine, Yanyu Li, Haoqing Li, Bahar Azari, Salvatore D’Oro, Tales Imbiriba,
Tommaso Melodia, Pau Closas, Yanzhi Wang, Deniz Erdogmus, and Kaushik Chowdhury

NEURAL NETWORK-BASED OFDM RECEIVER
FOR RESOURCE CONSTRAINED IOT DEVICES

intRoduction
The Internet of Things (IoT) paradigm will enable exciting appli-
cations, such as remote surgery, autonomous cars, augmented/
virtual reality, all of which demand faster processing, higher
data rates, and more reliable communications beyond what is
realizable today. To meet such demands, most modern WiFi
standards deployed in commercial consumer IoT devices today,
including IEEE 802.11a/g/n/ac and other emerging standards
use Orthogonal Frequency Division Multiplexing (OFDM).

The typical OFDM receiver consists of several signal pro-
cessing blocks that detect and synchronize the packet, estimate
the channel and equalize the payload to overcome channel-in-
duced distortions, and finally extract useful bit representa-
tions through demapping and error correction (decoding). An
overview of the traditional processing blocks is shown in Fig.
1 (bottom). Indeed, hand-engineered processing steps (e.g.,
using custom-designed packet preambles or fi xed modulation
schemes) off er limited opportunities for on-the-fl y adaptation.
Moreover, the wireless environment is too complex to be mod-
eled accurately, and constraining the choice of the processing
blocks to only one of several candidates may lower the perfor-
mance. On the other hand, Neural Networks (NNs) provide an
adaptable and noise-resilient solution for many physical layer
processing tasks, such as modulation classifi cation [1] and RF
fi ngerprinting [2, 3], that improve the performance of their tra-
ditional counterparts. Similarly, in the domain of receiver design,
NNs can off er a closed-form and fl exible solution by learning to
imitate previous channel estimations, symbol demappings, and
decodings, instead of explicitly realizing the mathematical form

aBstRact
Orthogonal Frequency Division Multiplexing (OFDM)-based waveforms are used for communication links in many current and emerging
Internet of Things (IoT) applications, including the latest WiFi standards. For such OFDM-based transceivers, many core physical layer
functions related to channel estimation, demapping, and decoding are implemented for specifi c choices of channel types and modulation
schemes, among others. To decouple hard-wired choices from the receiver chain and thereby enhance the fl exibility of IoT deployment in
many novel scenarios without changing the underlying hardware, we explore a novel, modular Machine Learning (ML)-based receiver chain
design. Here, ML blocks replace the individual processing blocks of an OFDM receiver, and we specifi cally describe this swapping for the
legacy channel estimation, symbol demapping, and decoding blocks with Neural Networks (NNs). A unique aspect of this modular design is
providing fl exible allocation of processing functions to the legacy or ML blocks, allowing them to interchangeably coexist. Furthermore, we
study the implementation cost-benefi ts of the proposed NNs in resource-constrained IoT devices through pruning and quantization, as well
as emulation of these compressed NNs within Field Programmable Gate Arrays (FPGAs). Our evaluations demonstrate that the proposed
modular NN-based receiver improves bit error rate of the traditional non-ML receiver by averagely 61 percent and 10 percent for the sim-
ulated and over-the-air datasets, respectively. We further show complexity-performance tradeoff s by presenting computational complexity

comparisons between the traditional algorithms and the proposed compressed NNs.

Digital Object Identifi er: 10.1109/IOTM.001.2200051

The authors are with Northeastern University, USA.

Hai Cheng, Mauro Belgiovine, Yanyu Li, and Haoqing Li have equally contributed
to this article.

Figure 1. An overview of the proposed Neural Network (NN)-
based receiver. The channel estimator, demapper, and error
corrector (decoder) blocks are substituted with individual
NNs. The NNs are trained and compressed off line, for online
FPGA deployment.

L-LTF preamble
at the Rx

Estimated channel
by the Rx

Channel estimator

Equalized
symbols
at the Rx

Input of mapper
at the Tx

Demapper
Deinter-

leaved bits
at the Rx

Scrambled bits
at the Tx

Decoder
Offline

NN-Based
OFDM Rx

Chain

Preamble

Equalizer
Remove
Cyclic
Prefix

Serial to
Parallel

Payload
FFT

Parallel
to Serial

Deinter
-leaver

Traditional
OFDM Rx

Chain

Channel
Estimator

Preamble

Equalizer
Remove
Cyclic
Prefix

Serial to
Parallel

Payload
FFT

Parallel
to Serial

QAM
Demapper

Deinter-
leaver

FEC
Decoder

Channel
Estimator NN

Demapper NN Decoder NN

Bits

Bits

Training
Equalized

leaved bits

Compressing

Test

FFT

Traditional processing block
Replaced by NNs

Authorized licensed use limited to: Northeastern University. Downloaded on April 07,2023 at 20:12:10 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • September 2022 159

of these processing blocks.
•	 Real-time Computation. The flexibility and performance

improvement arising from including ML blocks within the
receiver processing chain comes at a computational cost.
Although NN computations are simple multiplications and
additions, NNs are overall compute-intensive, and thus
deploying them might cause delays that impact time-sensitive
applications. In the wireless receiver, delays even as small as
a few microseconds might prevent the processing chain to
remain synchronized with the streaming data, which causes
incorrect decoding. Thus, methods to achieve real-time NN
computations are critical.

•	 Proposed Modular Design. While a single NN that captures
the entire receiver processing chain simplifies the OFDM
receiver, the routing of data, and NN inference execution,
there are several drawbacks of such a monolithic design.
First, this becomes a “black-box” approach that yields no
insights on the performance of the intermediate functional
steps. Thus, if say the demapper is under-performing in a
given situation, there is no way for the designer to know
this. Second, the receiver may be frequently deployed in
new wireless environments, which necessitates re-training of
the entire NN with massive volumes of data each time. For
example, introducing a new modulation scheme or coding
rate to the original waveform renders the entire prior train-
ing inadmissible. These considerations motivate us to pur-
sue a model-driven design, with the goal of maintaining full
compatibility with the classical processing chain. Thus, any
individual classical processing block could be swapped with
its ML block counterpart in a way that is transparent to the
rest of the receiver chain. This fully modular approach distin-
guishes our work from other recent work that use NN-based
solutions for cyclic prefix free [4], DFT free [5] or pilotless
communications [6] in OFDM systems.
In this article, we propose an NN-based end-to-end OFDM

receiver. Our scheme is composed of channel estimator,
demapper, and error corrector (decoder) NNs with totally
3.1M parameters, cascaded to build a complete receiver,
as shown in Fig. 1 (top). Using both simulated and Over-The-
Air (OTA) datasets, we show that these NNs perform better
than their non-ML counterparts. Moreover, we propose Block
Column Row (BCR) pruning and Mixed Scheme Quantiza-
tion (MSQ) to compress these models without accuracy loss
for Field Programmable Gate Arrays (FPGA) deployment, and
present FPGA results. We further calculate computational com-
plexity in terms of floating-point operations (FLOPs) for the
traditional and NN algorithms and provide comparisons of
the two. Our prototype design can be implemented in small
form-factor FPGAs that may be present in IoT devices, or it can
be used to design a custom chip for NN-based OFDM receivers
for specific IoT applications.

Related Work
We categorize the previous work on modeling the OFDM
receiver chain into
•	 Data-driven approaches, where the NN models are devel-

oped using data, without domain knowledge being involved,
•	 Model-driven approaches, where domain knowledge is used

in the design of NN-based receivers
In [7], a data-driven approach is proposed that directly predicts
the transmitted symbols without explicit channel estimation, by
a single deep NN. This NN is trained to minimize the difference
between its output and the transmitted data. In [5], the authors
eliminate the DFT in the OFDM receiver using a complex-val-
ued deep NN. They train their channel equalizer based on a
frozen pre-trained basic receiver.

In contrast, in model-driven design, domain knowledge is
adopted to design separate NNs for each function in the receiver
chain [8]. Reference [4] proposes an AI-aided OFDM chain for
a cyclic prefix-free system, where channel estimation and signal

detection are done by separate NNs. The authors integrate the
orthogonal approximate message passing algorithm with the
signal detection NN. The authors in [6] propose end-to-end learn-
ing with the purpose of eliminating orthogonal pilots in OFDM
symbols by jointly optimizing parts of the transmitter and the
receiver. percent, which results in no bit error rate deterioration.

There are additional work on replacing individual blocks in
the traditional receiver with NNs. For example, [9] proposes a
multi-layer perceptron NN for estimating the channel in massive
MIMO systems for 5G and beyond. Authors in [10] propose
a soft-demapper using a fully-connected NN. Aside from the
OFDM receiver context, authors in [11] propose a recurrent
neural network to decode different coding schemes, including
the convolutional codes in the Viterbi algorithm [12].

A summary of the aforementioned categories is shown in
Fig. 2. Despite the large body of literature that propose NNs
for performing different tasks in OFDM receivers, to the best of
our knowledge, prior work do not propose a fully-modular NN
design for OFDM receivers, which is customized for implemen-
tation on resource-constrained hardware.

Model-Driven NN-Based OFDM Receiver
In this section, we describe channel estimation, demapping,
and decoding tasks in the OFDM receiver, through both the
classical and NN methods. These NNs are individually trained
and then cascaded to build the complete receiver. Finally, we
describe our pruning and quantization methods to compress
these NNs for FPGA implementation.

Channel Estimation
Classical Approach: After packet detection, the OFDM

wireless receiver estimates the Channel State Information (CSI)
to compensate for channel-induced distortions in the received
signal. This estimation is done in the frequency domain, for
different OFDM formats in WiFi 802.11a/g/n/ac, by leveraging
the Legacy Long Training Field (L-LTF) in the preamble.

The L-LTF consists of 2 identical OFDM symbols containing
pilot information, known at the receiver. The Least Square (LS)
channel estimation is used to estimate the channel coefficients
of each sub-carrier. In the traditional receiver, after OFDM
demodulation, LS method divides the received pilot sequence
element-wise by the known pilot sequence. The final CSI is the
average of the two different CSI vectors obtained by perform-
ing the LS estimation on the two OFDM symbols in the L-LTF.

Proposed NN Architecture: In contrast to the classical chan-
nel estimator whose input is frequency-domain L-LTF, our pro-

Figure 2. Related work summary for OFDM receivers.

OFDM receivers

Neural network basedConventional

Data-driven
approaches [5][7]

Model-driven
approaches

Design of whole Rx chain
with 2 NNs: channel
estimation + signal
detection [4][6][8]

1 Large NN to model the
receiver [7]

disadvantages: inflexible, not
suitable for hardware

This work: 3 NNs,
modular, the most

suitable for HW, smaller
individual models

Design of single blocks:
Channel estimator [9]

Demapper [10]
Decoder [11]

Authorized licensed use limited to: Northeastern University. Downloaded on April 07,2023 at 20:12:10 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • September 2022160

posed channel estimator NN processes the
time-domain L-LTF. This obviates the need
for the FFT operation during demodulation,
as shown in Fig. 1, which is beneficial as FFT
becomes expensive for large number of sub-
carriers. As the estimated channel is calcu-
lated independently for each sub-carrier, we
use fully-connected layers to design the chan-
nel estimator NN. Our NN consists of two
Multi-Layer Perceptron (MLP) architectures
that estimate the real and imaginary parts of
CSI independently. Each MLP has an input size
of 160 with 2 hidden layers, of 512 and 256
neurons, respectively. The hidden layers have
ReLU activation. Without loss of generality,
we use WiFi 802.11a-compliant waveform that
has 52 channel coefficients. Thus, the chan-
nel estimator output layer also is of size 52,
with linear activation for the regression task.
We add a dropout layer with drop probability
15 percent between the first and the second
hidden layers to avoid overfitting. Each MLP
has 227k parameters giving 450k parameters
cumulatively for the complete architecture.

Training Process: We create the training dataset by generating
10k standard compliant transmissions and passing them through
a simulated wlanTGnChannel in MATLAB. These are packets
distorted by the wireless channel without Additive White Gaussian
Noise (AWGN). We collect these packets at the receiver-side, and
create a set of time-domain L-LTF OFDM symbols denoted as X(a)

trains. We estimate the channel with LS method and save the set
of 52 CSI coefficients (one for each subcarrier) as Y(a)

trains. Similar
to the noise model introduced within the data augmentation pipe-
line in [2], we dynamically add different levels of AWGN to X(a)

trains, before feeding them to the NN. This added noise simulates
SNRs within the range of 0 to 30 dB with steps of 5 dB. Since Y(a)

trains are estimated from noiseless preambles, this dynamic addition
of noise helps the NN learn to generalize and associate noisy X(a)

trains with noiseless Y(a)
trains, which improves channel estimator NN

performance over its traditional counterpart.
We use Mean Squared Error (MSE) loss function, computed

between the output of the MLP and its corresponding ground
truth CSI computed through LS. In order to make our model
able to process signals received at different power levels, we
use Root Mean Square (RMS) normalization on the signal to
bring it to a nominal signal power of 1W (i.e., 0 dBW).

Demapping
Classical Approach: After estimating the wireless channel,

we equalize the demodulated payload, through dividing the
frequency-domain payload by the frequency-domain estimated
channel. The task of the demapper block is to map complex
equalized symbols to a sequence of either soft or hard bits in
soft-demapping and hard-demapping, respectively. The length
of the output bit sequence is proportional to the modulation
order. For example, in 16QAM, the transmitter-side mapper
relates every four bits to one complex symbol. Consequently,
in the receiver, the demapper demaps each equalized symbol
to four bits.

Proposed NN Architecture: We follow the traditional demap-
per concept, and propose an NN that generates a sequence
of bits for each equalized symbol. Without losing generality,
we design an example demapper that demaps symbols from
16QAM. Consequently, our NN has an input size of 2 that rep-
resent In-phase (I) and Quadrature (Q) parts of one equalized
symbol. Since the demapper NN is supposed to work on one
equalized symbol at a time and the symbols are independent
from each other, we use a fully-connected NN. Unlike convo-
lutional networks with window size > 1, our approach operates
on each equalized sample separately. The output layer has size

4, where each neuron represents one bit. Since
each output bit must be set to either “0” or “1”,
and multiple bits can be “1” simultaneously, we
consider demapping as a multi-label classifica-
tion problem, and choose Sigmoid activation
for the last layer. To determine the number of
layers, we search the design space of fully-con-
nected NNs with different number of layers and
different number of neurons in each layer. We
find out that the smallest NN for the 16QAM
demapper is a fully-connected NN with 2 layers,
with output sizes of 20 and 4, respectively. This
model has only 144 total parameters.

Training Process: The best demapping perfor-
mance is achieved when the training set contains
only low SNR packets. We train the demapper
NN with equalized symbols, as X(b)

trains, from 16k
packets with SNR 2 dB. For the labels (Y(b)

trains), we
use inputs of the mapper at the transmitter-side.
In this way, the demapper learns to demap the
equalized symbols to the original, non-distorted
bits at the transmitter-side.

During inference, the NN receives the
equalized symbols. Since we use Sigmoid activation in the last
layer that produces outputs in the range of [0,1], we consider
the probability of firing each neuron as the probability of corre-
sponding bit being “1”. The soft-bits (i.e., Log Likelihood Ratios
(LLRs)) are calculated by taking the logarithm of probability of
the output being “0” divided by the probability of the output
being “1”. Using this relationship, one LLR value is calculated
for each output neuron. These LLR values are scaled by a com-
bination of CSI and noise variance, calculated by the equalizer.
Next, the scaled LLRs are de-interleaved and provided to the
Forward Error Correction (FEC) decoder to compute the actual
transmitted bits, as shown in Fig. 1.

Error Correction
Classical Approach: The role of the forward error correc-

tion (FEC) decoder block is to convert the de-interleaved bits
to an error-corrected sequence of bits, as shown in Fig. 1. The
relationship between the input size and the output size of the
decoder depends on the coding rate Crate, with the output size
being Crate times the input size. Similar to demapping, con-
ventional decoding can be done in two ways of soft-decoding
and hard-decoding, depending on the decoder inputs being
whether soft-bits or hard-bits, respectively. In the traditional
decoder, the Viterbi [12] algorithm is used to decode the cor-
rect sequence of bits.

Proposed NN Architecture: Unlike the demapper NN
where each equalized sample is mapped to a bit sequence
independently, decoding from a convolutional code requires
processing of a sequence of inputs. For this reason, instead
of a simple fully-connected network, the decoder uses Recur-
rent Neural Networks (RNNs), which are designed to process
sequential data. To have the input of the decoder NN between
0 and 1, we convert the de-interleaved LLRs to the probabil-
ity of a bit being equal to “1”. This probability is achieved by
inverting the LLR formula, therefore, probability of each soft-bit
(LLR) being “1” equals 1/(1 + eLLR).

Due to the nature of RNNs, the input size of our proposed
decoder NN can vary up to l, which corresponds to the size of
de-interleaved LLR vector for the payload. The decoder RNN
architecture consists of a recurrent part and a fully-connected
part stacked together. The recurrent part has 3 Gated Recurrent
Unit (GRU) layers, each with 256 units. The fully-connected part
has 2 dense layers. The hidden layer has 16 neurons with ReLU
activation, and the output layer has 1 neuron. Since, same as
the demapper, the decoder produces bit sequences, the output
layer has Sigmoid activation with size Crate times the size of the
LLR vector. The decoder NN has 2.7M total parameters.

Unlike the demap-
per NN where each
equalized sample
is mapped to a

bit sequence inde-
pendently, decoding
from a convolutional
code requires process-
ing of a sequence of

inputs.

Authorized licensed use limited to: Northeastern University. Downloaded on April 07,2023 at 20:12:10 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • September 2022 161

Training Process: Similar to demapping, the best decoding
performance is achieved when the training set contains only
low SNR packets. Therefore, we use 16k packets in SNR 2 dB
to train the decoder. As shown in Fig. 1, we train the decoder
NN with outputs of de-interleaver at the receiver-side as X(c)

trains
and the scrambled bits at the transmitter-side as Y(c)

trains. Using
transmitter-side scrambled bits as Y(c)

trains helps the NN learn to
map noisy inputs to undistorted original bits, which boosts the
decoder performance.

During inference, the decoder NN generates the probability
of each bit being “1”. To yield the final bit sequence, these
probabilities are mapped to bit “1” if they are greater than 0.5,
and to bit “0” otherwise.

So far, we described how NNs can substitute classical sig-
nal processing blocks in the OFDM receiver chain. Next, we
describe how the NNs are compressed during training for
FPGA deployment.

Fpga iMpleMentation
The NNs described in this article span a range from small (144
parameters) to large (up to 2.7M parameters). Direct deploy-
ment of such components on resource-constrained hardware
(i.e., FPGA) is not possible. To compress these architectures
suitably for FPGA deployment, we use two approaches:
1. Making the network sparser by reducing the number of

weights (pruning)
2. Restricting the weights to be represented by a small number

of bits (quantization)
The latter not only reduces the memory needed to store each
weight, but also fits the limitations of a fixed-point hardware
such as FPGA. Moreover, by implementing diff erent quantiza-
tion methods, we can control which FPGA resources will be
used for weight multiplication. Both pruning and quantization
methods happen along training and the resulting model has
quantized weights where many are set to zero (are pruned).
1. Pruning: Two popular types of pruning are structured pruning

and irregular pruning. Structured pruning is a coarse-grained
pruning approach that removes the whole fi lter or channel in
an NN layer, and is the best for hardware acceleration. How-
ever, structured pruning adversely affects the accuracy. In
contrast, irregular pruning is a fi ne-grained pruning approach
that sets the weights with small magnitudes to zero, pre-
serves the accuracy, but does not attain acceleration on most
hardware platforms. To solve this issue, we propose a Block-
based Column Row (BCR) pruning scheme that serves as
the universal fine-grained structured pruning. This pruning
method can prune convolutional and fully-connected layers.
As shown in Fig. 3, in BCR pruning, each weight matrix is
divided into multiple blocks, and row and column pruning is
applied to each block separately. We employ ADMM-based
pruning [13] to determine the row/column pruning ratio
automatically. The described fi ne-grained BCR pruning can
signifi cantly outperform the traditional coarse-grained struc-
tured pruning, and can provide larger acceleration compared
to the more fl exible irregular pruning.

2. Quantization: Weight quantization is another method for
compressing the NN for FPGA implementation. Two popular
methods of quantization are fixed-point quantization and
power-of-two quantization. Fixed-point quantization is a naive
quantization method that prepares the NN to run on a fi xed-
point hardware such as FPGA. Power-of-two quantization
converts weight multiplications to simple bit shifts. In this
way, weight multiplications, that are typically implemented
on the specialized hardware blocks called DSP48s inside
FPGAs, will be implemented on the Look-Up Tables (LUTs)
as simple bit shifts. Based on these two schemes, we propose
a Mixed Scheme Quantization (MSQ) approach that applies
fixed-point quantization and power-of-two quantization on
different rows of the weight matrix. There are two major
motivations for using MSQ: First, diff erent rows of the weight

matrix have diff erent distributions. Since power-of-two quan-
tization has higher resolution around the center, it is best to
be applied to the rows with a lower variance. In contrast,
fi xed-point quantization is suitable for rows with near uniform
weight distribution, that have higher variance. Second, by
using a specifi c type of quantization for each row, a mix of
FPGA resources (DSP48s and LUTs) are used, which balanc-
es the resource utilization for NN weight multiplications. We
observe that MSQ maintains the accuracy of the two single
methods, due to being able to accommodate to different
weight distributions.

peRFoRMance evaluation
We use PyTorch on Nvidia RTX 2080Ti GPUs to train indi-
vidual NNs. The metric we use for evaluating the proposed
NN-based receiver is the Bit Error Rate (BER), that shows the
rate of incorrectly recovered received bits after error correc-
tion. percent, after the signal passes through all the parts in the
OFDM chain. We evaluate the individual performance of the
NNs by inserting each NN in the OFDM receiver, while the
rest of the processing is performed by the classical blocks. To
evaluate the whole NN-based OFDM receiver, we cascade all
the 3 NNs and measure the BER. For fair comparison, we fur-
ther create a MATLAB baseline, which demonstrates the BER
of a traditional MATLAB OFDM chain, without ML involved, as
shown in Fig. 1 (bottom). In the MATLAB processing chain, for
channel estimation, we use the standard compliant LS estima-
tion for preamble-based frequency-domain channel estimation
that is implemented in MATLAB function wlanLLTFChan-
nelEstimate. For the demapper, we use soft-demapping
through approximate LLR method implemented in MATLAB
function wlanConstellationDemap. For the decoder, we
use convolutional decoder (that decodes Binary Convolutional
Coding (BCC)) implemented in MATLAB function wlanBC-
CDecode . For BER evaluation, we use simulated and OTA
datasets that are briefl y described below.

Figure 3. The proposed BCR pruning method is applied to all the
fully-connected layers in the channel estimator, demapper,
and decoder NNs.

NN weight matrix
Columns

R
ow

s

Block 1 Block 2 Block 3

Block 4 Block 5 Block 6

Block 7 Block 8 Block 9
row

pruning

column pruning

BCR pruning

Channel
estimator NN

Demapper
NN

Decoder
NN

Pruned channel
estimator NN

Pruned
Demapper NN

Pruned
Decoder NNDemapper NN Decoder NN

Authorized licensed use limited to: Northeastern University. Downloaded on April 07,2023 at 20:12:10 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • September 2022162

Test Dataset Description
Simulated dataset: We use WLAN toolbox in MATLAB R2020a

to create a simulated dataset by generating 192k packets, each
containing a random sequence of bits. These packets are then
modulated in accordance with IEEE 802.11a standard with Mod-
ulation Coding Scheme (MCS) 16QAM 1/2, before passing
through a simulated wlanTGnChannel and an AWGN channel
with desired SNR level. The SNR levels we use are between 2 dB
and 24 dB with steps of 2 dB. With 192k total packets distributed
among 12 SNR levels, we create a test set of 16k packets per SNR.

Over-The-Air (OTA) Dataset: We collect an OTA dataset in
Arena [14], using one transmitter and one receiver. Similar to
the simulated data, we generate random bit sequences, mod-
ulate them according to IEEE 802.11a standard, and transmit
them via Software-Defined Radios (SDRs) placed in an over-
head ceiling-mounted array. We repeat this process with dif-
ferent power levels to account for different SNRs, and collect
17k real-channel-distorted packets with SNRs between 11 to
24 dB, as our OTA test set.

Receiver Bit Error Rate Results

Figure 4 shows the BER yielded from classical MATLAB process-
ing chain (MATLAB baseline). We also demonstrate the BER
when only one of the channel estimator, demapper, or decoder
blocks is replaced by the corresponding NN, as well as the end-
to-end BER when all the classical blocks are replaced with NNs
in the OFDM receiver chain.

We observe that channel estimator, demapper, and decoder
NNs provide up to 86 percent, 36 percent, and 36 percent
improvement in BER, respectively, compared to the MATLAB
baseline. We observe that the cascade of the 3 NNs trained
separately tagged as “Channel+Demapper+Decoder” in Fig.
4 shows 61 percent BER improvement compared to MATLAB
baseline. We further perform another experiment where we
train the 3 NNs jointly. We test the cascade of the trained NNs
on the simulated data and show it as “Trained jointly” in Fig. 4,
which improves MATLAB baseline BER by 77 percent.

Before testing the OFDM NN-based receiver on the OTA
dataset, we need to re-train the channel estimator NN to learn
the variations of the real wireless channel. However, the demap-
per and the decoder NNs do not need to be re-trained. This is
because, as shown in Fig. 1, the channel effects are compensat-
ed by the equalizer before the data reaches the demapper and
the decoder, and hence, demapper and decoder NNs perform
independently of the wireless channel.

As explained earlier, we need data with very high SNR for
training the channel estimator NN. Therefore, we collect addi-
tional OTA data of totally 35k packets between SNRs 25 and
37 dB, to re-train the channel estimator NN. Figure 5 shows
the BER generated by processing the OTA data via the classical
MATLAB processing chain (MATLAB baseline), as well as indi-
vidual and cascaded NN BERs. For the OTA dataset, the chan-
nel estimator and the demapper NNs provide up to 12 percent
and 20 percent BER improvement, respectively, over MATLAB
baseline. This results in improved BER performance with the
end-to-end NN-based receiver showing an average of 10 per-
cent BER improvement compared to the MATLAB baseline.

FPGA Results
During the training phase that happens on GPUs, we apply the
proposed BCR pruning to all the fully-connected and recurrent lay-
ers in the channel estimator, demapper, and decoder NNs. Then,
we use the proposed MSQ to quantize the NN parameters. We
run FPGA emulation to estimate FPGA resources for our models,
which are shown in Table 1. We verify the speedup introduced
by our compression methods on Ettus X310 SDRs with Xilinx Kin-
tex7 T410 FPGA, by measuring the inference latency before and
after NN compression. As shown in Table 1, the inference latency
of the model decreases by 80 percent, 82 percent, and 81 per-
cent after compression, for the channel estimator, demapper, and
decoder NNs, respectively. We also measure the BER after com-
pression and observe that compression increases the BER average-
ly by a negligible ratio of 3 percent, 1 percent, and 4 percent in
the channel estimator, demapper and decoder NNs, respectively.

Computational Complexity
Finally, we compare the computational complexity of the pro-
posed compressed NNs with the traditional counterparts, in
terms of FLOPs.

Channel estimator: As explained earlier and shown in Fig.
1 (bottom), our channel estimator NN replaces both the FFT
and the LS algorithms in the standard MATLAB pipeline. We
estimate the traditional MATLAB channel estimation to have
4.4  103 FLOPs for our L-LTF length of 160 time-domain
complex samples. By comparing this value to the compressed
channel estimator NN FLOPs shown in the last row of Table 1,
we observe that NN FLOPs are 50  the traditional algorithm.

Demapper: The traditional demapping algorithm that we use
in MATLAB is implemented through approximate LLR method.

Figure 4. BER of simulated dataset achieved from NNs and
MATLAB baseline. For the simulated dataset, individual
Channel Estimator, Demapper, and Decoder NNs, trained
separately, show 86 percent, 36 percent, and 36 percent
average BER improvement over MATLAB baseline. The
cascade of separately trained NNs provide 61 percent BER
improvement over MATLAB baseline. If the NNs are trained
jointly, BER improvement reaches 77 percent, compared to
MATLAB baseline.

12

5 10 15 20 25

10−3

10−2

10−1

SNR (dB)

B
it
E
rr
or

R
at
e
(B
E
R
)

MATLAB baseline
Channel Estimator NN
Demapper NN
Decoder NN
Channel+Demapper+Decoder NNs
Trained jointly

Fig. 9: BER of simulated dataset achieved from NNs and MAT-
LAB baseline. For the simulated dataset, individual Channel
Estimator, Demapper, and Decoder NNs, trained separately,
show 86%, 36%, and 36% average BER improvement over
MATLAB baseline. The cascade of separately trained NNs
provide 61% BER improvement over MATLAB baseline. If
the NNs are trained jointly, BER improvement reaches 77%,
compared to MATLAB baseline.

Figure 5. BER of the OTA dataset achieved from NNs and MATLAB
baseline. For OTA dataset, Channel Estimator and Demapper
NNs provide upto 12 percent and 20 percent BER improvement
over MATLAB baseline. The cascade of these NNs yields an
average 10 percent BER improvement over all SNRs.

13

12 14 16 18 20 22 24

10−3

10−2

SNR (dB)

B
it
E
rr
or

R
at
e
(B
E
R
)

MATLAB baseline
Channel Estimator NN
Demapper NN
Channel+Demapper NN

Fig. 10: BER of the OTA dataset achieved from NNs and
MATLAB baseline. For OTA dataset, Channel Estimator and
Demapper NNs provide upto 12% and 20% BER improvement
over MATLAB baseline. The cascade of these NNs yields an
average 10% BER improvement over all SNRs.

Authorized licensed use limited to: Northeastern University. Downloaded on April 07,2023 at 20:12:10 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • September 2022 163

We estimate the complexity of this algorithm to be 82 FLOPs
per generated soft-bits for 16QAM, as this algorithm calculates
the distance of each equalized symbol from all the known sym-
bols in the constellation. The FLOPs add up to 1.3  106 for
our packet length of 4128 equalized 16QAM symbols (4128 
4 soft-bit). By comparing this value to the compressed demap-
per NN FLOPs shown in the last row of Table 1, we observe
that NN FLOPs are 0.37 those of the traditional algorithm.

Decoder: The traditional decoding algorithm that we use
in MATLAB is implemented through Viterbi algorithm, as
explained earlier. We calculate the decoder function complexity
to be 5.6  108 FLOPs for our decoder input length of 16512
soft-bits. By comparing traditional algorithm FLOPs to the com-
pressed decoder NN FLOPs shown in the last row of Table 1,
we observe that NN FLOPs are 79 the traditional algorithm.

The total FLOPs for the three compressed NN blocks add
up to 4.45  1010 which is compared with total FLOPs for
the traditional algorithms, 5.61  108. We observe that FLOPs
count of the proposed compressed NNs are overall 79  the
cumulative FLOPs for the traditional algorithms. This opens up
new research topics to study the tradeoff and identify switching
instances, as discussed next.

Open Research Challenges
1. Processing granularity: In our proposed NN-based scheme,

there is a difference between processing granularity for dif-
ferent NNs. The channel estimator processes one packet at
a time, however, the demapper granularity is one equalized
sample. This granularity gap opens up opportunities for ways
to parallelize the operations via an ensemble of demapper
NNs that demap successive samples in parallel. This brings up
interesting resource-performance planning and tradeoffs in the
choice of FPGA size versus the possible speedup in time.

2. Performance under different environments or configura-
tions: Our results show that properly compressed NN-based
receiver provides better BER performance and has fewer
FLOPs compared to the traditional MATLAB receiver. How-
ever, the NN-based receiver has its limitations. For example,
different channel estimators, demappers, and decoders need
to be trained for different environments, different modula-
tion schemes, and different coding rates, respectively. These
further impose larger memory requirements to store weights
for multiple NNs for each block. Methods such as transfer

learning and life-long learning with pruning [15]
can be explored to reuse and share a portion
of NN weights among different configurations,
and reduce large memory requirements.
3. Identifying switching instances between
classical and NN blocks: We have shown
that the NN-based OFDM receiver provides
better performance compared to the classical
one, in a variety of circumstances. However, a
purer NN-based receiver can consume more
resources and power compared to the tradi-
tional receiver. Since our NN-based receiver is
modular, the logic that determines which mod-
ules to introduce into the receiver chain and
when, is a completely new area of research. As
an example, this decision may be made at run-
time, based on desired reception performance
and available on-board resources.

Conclusion
In this article, we proposed a model-driven
design for NN-based OFDM receivers. Our
receiver chain consists of 3 NNs for channel
estimation, symbol to bit demapping, and error
correction decoding. The NNs were designed
based on wireless domain knowledge, and
trained independently with data acquired from

different data parts in the traditional transmitter and receiver. The
trained networks were then cascaded to compose the complete
receiver chain. The proposed NN-based receiver was evaluated
with both simulated and OTA datasets, and showed averagely 61
percent and 10 percent improvement in BER compared to the
traditional solution, when tested with simulated and OTA data-
sets, respectively. We further proposed two methods of pruning
and quantization to compress our NNs and prepare them for
FPGA implementation. We also showed that despite the BER per-
formance gain, the proposed compressed NNs FLOPs are 79
their traditional counterparts. This complexity-performance trade-
off opens up new research opportunities as discussed earlier.

Acknowledgement
This work is supported by DARPA SPiNN HR00112090055,
DARPA LwLL SC1821301, NSF 1923789, and NSF 1845833
awards.

References
[1] N. Soltani et al., “Spectrum Awareness at the edge: Modulation Classification

Using Smartphones,” 2019 IEEE Int’l. Symp. Dynamic Spectrum Access Net-
works (DySPAN), 2019, pp. 1–10.

[2] N. Soltani et al., “More is Better: Data Augmentation for Channel-Resilient RF
Fingerprinting,” IEEE Commun. Mag., vol. 58, no. 10, 2020, pp. 66–72.

[3] N. Soltani et al., “RF Fingerprinting Unmanned Aerial Vehicles with Non-stan-
dard Transmitter Waveforms,” IEEE Trans. Vehic. Tech., 2020.

[4] J. Zhang et al., “Artificial Intelligence-Aided Receiver for A CP-Free OFDM
System: Design, Simulation, and Experimental Test,” IEEE Access, vol. 7, 2019,
pp. 58,901–14.

[5] Z. Zhao et al., “Deep-Waveform: A Learned OFDM Receiver Based on Deep
Complex Convolutional Networks,” arXiv preprint arXiv:1810.07181, 2018.

[6] F. A. Aoudia and J. Hoydis, “End-to-End Learning for OFDM: From Neural
Receivers to Pilotless Communication,” IEEE Trans. Wireless Commun., 2021.

[7] H. Ye et al., “Power of Deep Learning for Channel Estimation and Signal
Detection in OFDM Systems,” IEEE Wireless Commun. Letters, vol. 7, no. 1,
2017, pp. 114–17.

[8] X. Gao et al., “ComNet: Combination of Deep Learning and Expert Knowl-
edge in OFDM Receivers,” IEEE Commun. Letters, vol. 22, no. 12, 2018, pp.
2627–30.

[9] M. Belgiovine et al., “Deep Learning at the Edge for Channel Estimation in
Beyond-5G Massive MIMO,” IEEE Wireless Commun., 2021, pp. 1–7.

[10] M. Schaedler et al., “Neural Network-Based Soft-Demapping for Nonlinear
Channels,” 020 Optical Fiber Commun. Conf. and Exhibition (OFC), 2020, pp.
1–3.

[11] H. Kim et al., “Communication Algorithms via Deep Learning,” Int’l. Conf.
Learning Representations, 2018.

[12] A. Viterbi, “Error Bounds for Convolutional Codes and An Asymptotically
Optimum Decoding Algorithm,” IEEE Trans. Info. Theory, vol. 13, no. 2, 1967,
pp. 260–69.

Table 1. Compression techniques, overall compression rate and FPGA speedup of
the proposed NNs. FLOPs are reported for an L-LTF length of 160 time-domain
samples in 5 MHz bandwidth as the Channel estimator NN, packet length of
4128 equalized symbols as the Demapper NN input, which yields 16512 soft-
bits for the Decoder NN input.

NN block Channel estimator Demapper Decoder

Model type Dense Dense RNN+Dense

Layers (input size, output
size)

Linear (160, 512)
Linear (512, 256)
Linear (256, 52)

Linear (2, 20)
Linear (20, 4)

(per-symbol)

bi-GRU
((2,256,3), 512)
Linear (512, 16)
Linear (16, 1)

Pruning Rate 2.0 1.0 2.0

Weight bit-width 8 4 8

Overall size compression 8 8 8

Working frequency 100 MHz 100 MHz 100 MHz

Non-compressed latency 1.67 ms 4.97 ms 210.04 ms

Compressed latency 0.33 ms 0.89 ms 38.19 ms

Non-compressed FLOPs 4.6  105 4.9  105 9.08  1010

Compressed FLOPs 2.2  105 4.9  105 4.45  1010

Authorized licensed use limited to: Northeastern University. Downloaded on April 07,2023 at 20:12:10 UTC from IEEE Xplore. Restrictions apply.

IEEE Internet of Things Magazine • September 2022164

[13] A. Ren et al., “Admm-NN: An Algorithm-Hardware Co-Design Framework of
DNNs Using Alternating Direction Methods of Multipliers,” Proc. 24th Int’.l
Conf. Architectural Support for Programming Languages and Operating Sys-
tems, 2019, pp. 925–38.

[14] L. Bertizzolo et al., “Arena: A 64-Antenna SDR-Based Ceiling Grid Testing
Platform for Sub-6 GHz 5G-and-Beyond Radio Spectrum Research,” Comput-
er Networks, vol. 181, 2020, p. 107436.

[15] Z. Wang et al., “Learn-Prune-Share for Lifelong Learning,” 2020 IEEE Int’l.
Conf. Data Mining (ICDM), 2020, pp. 641–50.

Biographies
Nasim Soltani (soltani.n@northeastern.edu) is a Ph.D. candidate at the Institute
for Wireless IoT at Northeastern University, advised by professor Chowdhury.
Her area of interest is AI-aided algorithms for applications in the physical layer of
wireless communications systems.

Hai Cheng (cheng.hai@northeastern.edu) is a Ph.D. candidate in Computer Engi-
neering at the Institute for Wireless IoT at Northeastern University. He received his
B.Eng degree in 2015 from Xidian University, China, and master degree in 2018
from ShanghaiTech University, China. His research interests include machine
learning and optimization in wireless network systems.

Mauro Belgiovine (belgiovine.m@northeastern.edu) is pursuing his Ph.D. at the
Electrical and Computer Engineering department at Northeastern University, under
the guidance of Professor Kaushik Chowdhury. His current research interests
involve deep learning, wireless communications, and heterogeneous computing.

Yanyu Li (li.yanyu@northeastern.edu) is a Ph.D. candidate at the Department of
Electrical and Computer Engineering in Northeastern University, advised by Pro-
fessor Yanzhi Wang. His research interests include deep learning, neural network
architecture search, pruning and quantization.

Haoqing Li (li.haoq@northeastern.edu) is a Ph.D. candidate in Electrical and
Computer Engineering at Northeastern University, Boston, MA. got his BS degree
in Electrical Engineering from Wuhan University, China and MS degree in Elec-
trical and Computer Engineering at Northeastern University, Boston, MA. His
research interests include GNSS signal processing, anti-jamming technology and
robust statistics.

Bahar Azari (azari@ece.neu.edu) is a Ph.D. student at the center for signal pro-
cessing, imaging, reasoning, and learning (SPIRAL) of Northeastern University.
She received her B.Sc. in electrical engineering from the Amirkabir University
of Technology in 2011 and her M.Sc. in telecommunications engineering from
Politecnico di Milano in 2014. Her research interests include applied signal pro-
cessing and machine learning with expertise in deep generative models and latent
variable models.

Salvatore D’Oro (s.doro@ece.neu.edu) is a Research Assistant Professor with
the Institute for the Wireless IoT at Northeastern University, USA. He received his
Ph.D. from the University of Catania in 2015. He serves on the technical program
committee of IEEE INFOCOM and the Elsevier Computer Communications jour-
nal. His research interests include optimization and learning in NextG systems.

Tales Imbiriba (talesim@ece.neu.edu) received his Doctorate degree from the
Department of Electrical Engineering (DEE) of the Federal University of Santa
Catarina (UFSC), Florianópolis, Brazil, in 2016. He served as a Postdoctoral
Researcher at the DEE--UFSC and is currently a Postdoctoral Researcher at the
ECE dept. of the Northeastern University, Boston, MA, USA. His research interests
include audio and image processing, pattern recognition, kernel methods, adap-
tive filtering, and Bayesian Inference.

Tommaso Melodia (t.melodia@ece.neu.edu) is a Professor at Northeastern Uni-
versity. He has been named William Lincoln Smith Professor in recognition of his
significant research contributions and exceptional leadership in the field of electri-
cal and computer engineering. He is the Director of the Institute for the Wireless
IoT, and the Director of Research for the PAWR Project Office. He received his
Ph.D. degree in Electrical and Computer Engineering from Georgia Institute of
Technology in 2007. His research focuses on modeling, optimization, and exper-
imental evaluation of wireless networked systems. He serves as Editor-in-Chief for
Computer Networks.

Pau Closas (pau.closas@ece.neu.edu) is an Assistant Professor at Northeastern
University, Boston, MA. He received the MS and Ph.D. degrees in Electrical
Engineering from UPC in 2003 and 2009. He also holds a MS in Advanced Math-
ematics from UPC, 2014. His primary areas of interest include statistical signal
processing, robust stochastic filtering, and machine learning, with applications to
positioning systems and wireless communications. He is the recipient of the 2014
EURASIP Best Ph.D. Thesis Award, the 9th Duran Farell Award, the 2016 ION
Early Achievements Award, and a 2019 NSF CAREER Award.

Yanzhi Wang (yanz.wang@northeastern.edu is currently an Assistant Professor
at the Department of ECE at Northeastern University, Boston, MA. His research
focuses on model compression and platform-specific acceleration of deep learn-
ing architectures, maintaining the highest model compression rates on representa-
tive DNNs. He received the U.S. Army Young Investigator Program Award (YIP),
Massachusetts Acorn Innovation Award, Ming Hsieh Scholar Award, and other
research awards from Google, MathWorks, etc. His recent research achievement,
CoCoPIE, can achieve real-time performance on almost all deep learning applica-
tions using off-the-shelf mobile devices, outperforming competing frameworks by
up to 180X acceleration.

Deniz Erdogmus [SM] (erdogmus@ece.neu.edu) is a Professor of ECE at North-
eastern University, Boston, MA. He received his Ph.D. degree in electrical and
computer engineering from the University of Florida, Gainesville, FL, in 2002. He
held a postdoctoral position at the University of Florida, until 2004. His researches
focus on statistical signal processing and machine learning with applications to
contextual signal/image/data analysis with applications in cyber-human systems.

Kaushik Chowdhury [M’09, SM’15] (krc@ece.neu.edu) is a Professor at North-
eastern University, Boston, MA. He received his Ph.D. degree from Georgia Insti-
tute of Technology in 2009. His current research interests involve systems aspects
of networked robotics, machine learning for agile spectrum sensing/access,
wireless energy transfer, and large-scale experimental deployment of emerging
wireless technologies.

Authorized licensed use limited to: Northeastern University. Downloaded on April 07,2023 at 20:12:10 UTC from IEEE Xplore. Restrictions apply.

