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ABSTRACT

Orthogonal Frequency Division Multiplexing (OFDM)-based waveforms are used for communication links in many current and emerging
Internet of Things (1oT) applications, including the latest WiFi standards. For such OFDM-based transceivers, many core physical layer
functions related to channel estimation, demapping, and decoding are implemented for specific choices of channel types and modulation
schemes, among others. To decouple hard-wired choices from the receiver chain and thereby enhance the flexibility of loT deployment in
many novel scenarios without changing the underlying hardware, we explore a novel, modular Machine Learning (ML)-based receiver chain
design. Here, ML blocks replace the individual processing blocks of an OFDM receiver, and we specifically describe this swapping for the
legacy channel estimation, symbol demapping, and decoding blocks with Neural Networks (NNs). A unique aspect of this modular design is
providing flexible allocation of processing functions to the legacy or ML blocks, allowing them to interchangeably coexist. Furthermore, we
study the implementation cost-benefits of the proposed NNs in resource-constrained loT devices through pruning and quantization, as well
as emulation of these compressed NNs within Field Programmable Gate Arrays (FPGAs). Our evaluations demonstrate that the proposed
modular NN-based receiver improves bit error rate of the traditional non-ML receiver by averagely 61 percent and 10 percent for the sim-
ulated and over-the-air datasets, respectively. We further show complexity-performance tradeoffs by presenting computational complexity
comparisons between the traditional algorithms and the proposed compressed NNs.
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of these processing blocks.

* Real-time Computation. The flexibility and performance
improvement arising from including ML blocks within the
receiver processing chain comes at a computational cost.
Although NN computations are simple multiplications and
additions, NNs are overall compute-intensive, and thus
deploying them might cause delays that impact time-sensitive
applications. In the wireless receiver, delays even as small as
a few microseconds might prevent the processing chain to
remain synchronized with the streaming data, which causes
incorrect decoding. Thus, methods to achieve real-time NN
computations are critical.

+ Proposed Modular Design. While a single NN that captures
the entire receiver processing chain simplifies the OFDM
receiver, the routing of data, and NN inference execution,
there are several drawbacks of such a monolithic design.
First, this becomes a “black-box” approach that yields no
insights on the performance of the intermediate functional
steps. Thus, if say the demapper is under-performing in a
given situation, there is no way for the designer to know
this. Second, the receiver may be frequently deployed in
new wireless environments, which necessitates re-training of
the entire NN with massive volumes of data each time. For
example, introducing a new modulation scheme or coding
rate to the original waveform renders the entire prior train-
ing inadmissible. These considerations motivate us to pur-
sue a model-driven design, with the goal of maintaining full
compatibility with the classical processing chain. Thus, any
individual classical processing block could be swapped with
its ML block counterpart in a way that is transparent to the
rest of the receiver chain. This fully modular approach distin-
guishes our work from other recent work that use NN-based
solutions for cyclic prefix free [4], DFT free [5] or pilotless
communications [6] in OFDM systems.

In this article, we propose an NN-based end-to-end OFDM
receiver. Our scheme is composed of channel estimator,
demapper, and error corrector (decoder) NNs with totally
~3.1M parameters, cascaded to build a complete receiver,
as shown in Fig. 1 (top). Using both simulated and Over-The-
Air (OTA) datasets, we show that these NNs perform better
than their non-ML counterparts. Moreover, we propose Block
Column Row (BCR) pruning and Mixed Scheme Quantiza-
tion (MSQ) to compress these models without accuracy loss
for Field Programmable Gate Arrays (FPGA) deployment, and
present FPGA results. We further calculate computational com-
plexity in terms of floating-point operations (FLOPs) for the
traditional and NN algorithms and provide comparisons of
the two. Our prototype design can be implemented in small
form-factor FPGAs that may be present in loT devices, or it can
be used to design a custom chip for NN-based OFDM receivers
for specific 10T applications.

RELATED WORK

We categorize the previous work on modeling the OFDM
receiver chain into
+ Data-driven approaches, where the NN models are devel-
oped using data, without domain knowledge being involved,
* Model-driven approaches, where domain knowledge is used
in the design of NN-based receivers
In [7], a data-driven approach is proposed that directly predicts
the transmitted symbols without explicit channel estimation, by
a single deep NN. This NN is trained to minimize the difference
between its output and the transmitted data. In [5], the authors
eliminate the DFT in the OFDM receiver using a complex-val-
ued deep NN. They train their channel equalizer based on a
frozen pre-trained basic receiver.

In contrast, in model-driven design, domain knowledge is
adopted to design separate NNs for each function in the receiver
chain [8]. Reference [4] proposes an Al-aided OFDM chain for
a cyclic prefix-free system, where channel estimation and signal
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FIGURE 2. Related work summary for OFDM receivers.

detection are done by separate NNs. The authors integrate the
orthogonal approximate message passing algorithm with the
signal detection NN. The authors in [6] propose end-to-end learn-
ing with the purpose of eliminating orthogonal pilots in OFDM
symbols by jointly optimizing parts of the transmitter and the
receiver. percent, which results in no bit error rate deterioration.

There are additional work on replacing individual blocks in
the traditional receiver with NNs. For example, [9] proposes a
multi-layer perceptron NN for estimating the channel in massive
MIMO systems for 5G and beyond. Authors in [10] propose
a soft-demapper using a fully-connected NN. Aside from the
OFDM receiver context, authors in [11] propose a recurrent
neural network to decode different coding schemes, including
the convolutional codes in the Viterbi algorithm [12].

A summary of the aforementioned categories is shown in
Fig. 2. Despite the large body of literature that propose NNs
for performing different tasks in OFDM receivers, to the best of
our knowledge, prior work do not propose a fully-modular NN
design for OFDM receivers, which is customized for implemen-
tation on resource-constrained hardware.

MODEL-DRIVEN NN-BASED OFDM RECEIVER

In this section, we describe channel estimation, demapping,
and decoding tasks in the OFDM receiver, through both the
classical and NN methods. These NNs are individually trained
and then cascaded to build the complete receiver. Finally, we
describe our pruning and quantization methods to compress
these NNs for FPGA implementation.

CHANNEL ESTIMATION

Classical Approach: After packet detection, the OFDM
wireless receiver estimates the Channel State Information (CSI)
to compensate for channel-induced distortions in the received
signal. This estimation is done in the frequency domain, for
different OFDM formats in WiFi 802.11a/g/n/ac, by leveraging
the Legacy Long Training Field (L-LTF) in the preamble.

The L-LTF consists of 2 identical OFDM symbols containing
pilot information, known at the receiver. The Least Square (LS)
channel estimation is used to estimate the channel coefficients
of each sub-carrier. In the traditional receiver, after OFDM
demodulation, LS method divides the received pilot sequence
element-wise by the known pilot sequence. The final CSl is the
average of the two different CSI vectors obtained by perform-
ing the LS estimation on the two OFDM symbols in the L-LTF.

Proposed NN Architecture: In contrast to the classical chan-
nel estimator whose input is frequency-domain L-LTF, our pro-
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posed channel estimator NN processes the
time-domain L-LTF. This obviates the need
for the FFT operation during demodulation,
as shown in Fig. 1, which is beneficial as FFT
becomes expensive for large number of sub-
carriers. As the estimated channel is calcu-
lated independently for each sub-carrier, we
use fully-connected layers to design the chan-
nel estimator NN. Our NN consists of two
Multi-Layer Perceptron (MLP) architectures
that estimate the real and imaginary parts of
CSl independently. Each MLP has an input size
of 160 with 2 hidden layers, of 512 and 256
neurons, respectively. The hidden layers have
ReLU activation. Without loss of generality,
we use WiFi 802.11a-compliant waveform that
has 52 channel coefficients. Thus, the chan-
nel estimator output layer also is of size 52,
with linear activation for the regression task.
We add a dropout layer with drop probability
15 percent between the first and the second
hidden layers to avoid overfitting. Each MLP
has 227k parameters giving ~450k parameters
cumulatively for the complete architecture.

Training Process: We create the training dataset by generating
10k standard compliant transmissions and passing them through
a simulated wlanTGnChannel in MATLAB. These are packets
distorted by the wireless channel without Additive White Gaussian
Noise (AWGN). We collect these packets at the receiver-side, and
create a set of time-domain L-LTF OFDM symbols denoted as X@
trains- We estimate the channel with LS method and save the set
of 52 CSI coefficients (one for each subcarrier) as Yi&h,s. Similar
to the noise model introduced within the data augmentation pipe-
line in [2], we dynamically add different levels of AWGN to X
wrainS, before feeding them to the NN. This added noise simulates
SNRs within the range of 0 to 30 dB with steps of 5 dB. Since Y@
trainS are estimated from noiseless preambles, this dynamic addition
of noise helps the NN learn to generalize and associate noisy X@
trainS With noiseless Y@,ins/ which improves channel estimator NN
performance over its traditional counterpart.

We use Mean Squared Error (MSE) loss function, computed
between the output of the MLP and its corresponding ground
truth CSI computed through LS. In order to make our model
able to process signals received at different power levels, we
use Root Mean Square (RMS) normalization on the signal to
bring it to a nominal signal power of 1W (i.e., 0 dBW).

DEMAPPING

Classical Approach: After estimating the wireless channel,
we equalize the demodulated payload, through dividing the
frequency-domain payload by the frequency-domain estimated
channel. The task of the demapper block is to map complex
equalized symbols to a sequence of either soft or hard bits in
soft-demapping and hard-demapping, respectively. The length
of the output bit sequence is proportional to the modulation
order. For example, in T6QAM, the transmitter-side mapper
relates every four bits to one complex symbol. Consequently,
in the receiver, the demapper demaps each equalized symbol
to four bits.

Proposed NN Architecture: We follow the traditional demap-
per concept, and propose an NN that generates a sequence
of bits for each equalized symbol. Without losing generality,
we design an example demapper that demaps symbols from
16QAM. Consequently, our NN has an input size of 2 that rep-
resent In-phase (1) and Quadrature (Q) parts of one equalized
symbol. Since the demapper NN is supposed to work on one
equalized symbol at a time and the symbols are independent
from each other, we use a fully-connected NN. Unlike convo-
lutional networks with window size > 1, our approach operates
on each equalized sample separately. The output layer has size

Unlike the demap-
per NN where each
equalized sample
is mapped to a
bit sequence inde-

pendently, decoding

from a convolutional

code requires process-

ing of a sequence of
inputs.

4, where each neuron represents one bit. Since
each output bit must be set to either “0” or “1”,
and multiple bits can be “1” simultaneously, we
consider demapping as a multi-label classifica-
tion problem, and choose Sigmoid activation
for the last layer. To determine the number of
layers, we search the design space of fully-con-
nected NNs with different number of layers and
different number of neurons in each layer. We
find out that the smallest NN for the T6QAM
demapper is a fully-connected NN with 2 layers,
with output sizes of 20 and 4, respectively. This
model has only 144 total parameters.

Training Process: The best demapping perfor-
mance is achieved when the training set contains
only low SNR packets. We train the demapper
NN with equalized symbols, as xE)os, from 16k
packets with SNR 2 dB. For the labels (Y{£);.s), we
use inputs of the mapper at the transmitter-side.
In this way, the demapper learns to demap the
equalized symbols to the original, non-distorted
bits at the transmitter-side.

During inference, the NN receives the
equalized symbols. Since we use Sigmoid activation in the last
layer that produces outputs in the range of [0,1], we consider
the probability of firing each neuron as the probability of corre-
sponding bit being “1”. The soft-bits (i.e., Log Likelihood Ratios
(LLRs)) are calculated by taking the logarithm of probability of
the output being “0” divided by the probability of the output
being “1”. Using this relationship, one LLR value is calculated
for each output neuron. These LLR values are scaled by a com-
bination of CSI and noise variance, calculated by the equalizer.
Next, the scaled LLRs are de-interleaved and provided to the
Forward Error Correction (FEC) decoder to compute the actual
transmitted bits, as shown in Fig. 1.

ERROR CORRECTION

Classical Approach: The role of the forward error correc-
tion (FEC) decoder block is to convert the de-interleaved bits
to an error-corrected sequence of bits, as shown in Fig. 1. The
relationship between the input size and the output size of the
decoder depends on the coding rate C,,,, with the output size
being C,.e times the input size. Similar to demapping, con-
ventional decoding can be done in two ways of soft-decoding
and hard-decoding, depending on the decoder inputs being
whether soft-bits or hard-bits, respectively. In the traditional
decoder, the Viterbi [12] algorithm is used to decode the cor-
rect sequence of bits.

Proposed NN Architecture: Unlike the demapper NN
where each equalized sample is mapped to a bit sequence
independently, decoding from a convolutional code requires
processing of a sequence of inputs. For this reason, instead
of a simple fully-connected network, the decoder uses Recur-
rent Neural Networks (RNNs), which are designed to process
sequential data. To have the input of the decoder NN between
0 and 1, we convert the de-interleaved LLRs to the probabil-
ity of a bit being equal to “1”. This probability is achieved by
inverting the LLR formula, therefore, probability of each soft-bit
(LLR) being “1” equals 1/(1 + elLR).

Due to the nature of RNNSs, the input size of our proposed
decoder NN can vary up to /, which corresponds to the size of
de-interleaved LLR vector for the payload. The decoder RNN
architecture consists of a recurrent part and a fully-connected
part stacked together. The recurrent part has 3 Gated Recurrent
Unit (GRU) layers, each with 256 units. The fully-connected part
has 2 dense layers. The hidden layer has 16 neurons with ReLU
activation, and the output layer has 1 neuron. Since, same as
the demapper, the decoder produces bit sequences, the output
layer has Sigmoid activation with size C,, times the size of the
LLR vector. The decoder NN has ~2.7M total parameters.
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Training Process: Similar to demapping, the best decoding
performance is achieved when the training set contains only
low SNR packets. Therefore, we use 16k packets in SNR 2 dB
to train the decoder. As shown in Fig. 1, we train the decoder
NN with outputs of de-interleaver at the receiver- snde as X(Sins
and the scrambled bits at the transmltter side as Ytra,ns Using
transmitter-side scrambled bits as Y(&;,s helps the NN learn to
map noisy inputs to undistorted original bits, which boosts the
decoder performance.

During inference, the decoder NN generates the probability
of each bit being “1”. To yield the final bit sequence, these
probabilities are mapped to bit “1” if they are greater than 0.5,
and to bit “0” otherwise.

So far, we described how NNs can substitute classical sig-
nal processing blocks in the OFDM receiver chain. Next, we
describe how the NNs are compressed during training for
FPGA deployment.

FPGA IMPLEMENTATION

The NNs described in this article span a range from small (144
parameters) to large (up to ~2.7M parameters). Direct deploy-
ment of such components on resource-constrained hardware
(i.e., FPGA) is not possible. To compress these architectures
suitably for FPGA deployment, we use two approaches:

1. Making the network sparser by reducing the number of
weights (pruning)

2. Restricting the weights to be represented by a small number
of bits (quantization)

The latter not only reduces the memory needed to store each
weight, but also fits the limitations of a fixed-point hardware
such as FPGA. Moreover, by implementing different quantiza-
tion methods, we can control which FPGA resources will be
used for weight multiplication. Both pruning and quantization
methods happen along training and the resulting model has
quantized weights where many are set to zero (are pruned).

1. Pruning: Two popular types of pruning are structured pruning
and irregular pruning. Structured pruning is a coarse-grained
pruning approach that removes the whole filter or channel in
an NN layer, and is the best for hardware acceleration. How-
ever, structured pruning adversely affects the accuracy. In
contrast, irregular pruning is a fine-grained pruning approach
that sets the weights with small magnitudes to zero, pre-
serves the accuracy, but does not attain acceleration on most
hardware platforms. To solve this issue, we propose a Block-
based Column Row (BCR) pruning scheme that serves as
the universal fine-grained structured pruning. This pruning
method can prune convolutional and fully-connected layers.
As shown in Fig. 3, in BCR pruning, each weight matrix is
divided into multiple blocks, and row and column pruning is
applied to each block separately. We employ ADMM-based
pruning [13] to determine the row/column pruning ratio
automatically. The described fine-grained BCR pruning can
significantly outperform the traditional coarse-grained struc-
tured pruning, and can provide larger acceleration compared
to the more flexible irregular pruning.

2. Quantization: Weight quantization is another method for
compressing the NN for FPGA implementation. Two popular
methods of quantization are fixed-point quantization and
power-of-two quantization. Fixed-point quantization is a naive
quantization method that prepares the NN to run on a fixed-
point hardware such as FPGA. Power-of-two quantization
converts weight multiplications to simple bit shifts. In this
way, weight multiplications, that are typically implemented
on the specialized hardware blocks called DSP48s inside
FPGAs, will be implemented on the Look-Up Tables (LUTs)
as simple bit shifts. Based on these two schemes, we propose
a Mixed Scheme Quantization (MSQ) approach that applies
fixed-point quantization and power-of-two quantization on
different rows of the weight matrix. There are two major
motivations for using MSQ: First, different rows of the weight
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FIGURE 3. The proposed BCR pruning method is applied to all the
fully-connected layers in the channel estimator, demapper,
and decoder NNs.

matrix have different distributions. Since power-oftwo quan-
tization has higher resolution around the center, it is best to
be applied to the rows with a lower variance. In contrast,
fixed-point quantization is suitable for rows with near uniform
weight distribution, that have higher variance. Second, by
using a specific type of quantization for each row, a mix of
FPGA resources (DSP48s and LUTs) are used, which balanc-
es the resource utilization for NN weight multiplications. We
observe that MSQ maintains the accuracy of the two single
methods, due to being able to accommodate to different
weight distributions.

PERFORMANCE EVALUATION

We use PyTorch on Nvidia RTX 2080Ti GPUs to train indi-
vidual NNs. The metric we use for evaluating the proposed
NN-based receiver is the Bit Error Rate (BER), that shows the
rate of incorrectly recovered received bits after error correc-
tion. percent, after the signal passes through all the parts in the
OFDM chain. We evaluate the individual performance of the
NNs by inserting each NN in the OFDM receiver, while the
rest of the processing is performed by the classical blocks. To
evaluate the whole NN-based OFDM receiver, we cascade all
the 3 NNs and measure the BER. For fair comparison, we fur-
ther create a MATLAB baseline, which demonstrates the BER
of a traditional MATLAB OFDM chain, without ML involved, as
shown in Fig. 1 (bottom). In the MATLAB processing chain, for
channel estimation, we use the standard compliant LS estima-
tion for preamble-based frequency-domain channel estimation
that is implemented in MATLAB function wlanLLTFChan-—
nelEstimate. For the demapper, we use soft-demapping
through approximate LLR method implemented in MATLAB
function wlanConstellationDemap. For the decoder, we
use convolutional decoder (that decodes Binary Convolutional
Coding (BCC)) implemented in MATLAB function wlanBC-
CDecode. For BER evaluation, we use simulated and OTA
datasets that are briefly described below.
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FIGURE 4. BER of simulated dataset achieved from NNs and
MATLAB baseline. For the simulated dataset, individual
Channel Estimator, Demapper, and Decoder NNss, trained
separately, show 86 percent, 36 percent, and 36 percent
average BER improvement over MATLAB baseline. The
cascade of separately trained NNs provide 61 percent BER
improvement over MATLAB baseline. If the NNs are trained
jointly, BER improvement reaches 77 percent, compared to
MATLAB baseline.
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FIGURE 5. BER of the OTA dataset achieved from NNs and MATLAB
baseline. For OTA dataset, Channel Estimator and Demapper
NNs provide upto 12 percent and 20 percent BER improvement
over MATLAB baseline. The cascade of these NN yields an
average 10 percent BER improvement over all SNRs.

TeST DATASET DESCRIPTION

Simulated dataset: We use WLAN toolbox in MATLAB R2020a
to create a simulated dataset by generating 192k packets, each
containing a random sequence of bits. These packets are then
modulated in accordance with IEEE 802.11a standard with Mod-
ulation Coding Scheme (MCS) 16QAM 1/2, before passing
through a simulated wlanTGnChannel and an AWGN channel
with desired SNR level. The SNR levels we use are between 2 dB
and 24 dB with steps of 2 dB. With 192k total packets distributed
among 12 SNR levels, we create a test set of 16k packets per SNR.

Over-The-Air (OTA) Dataset: We collect an OTA dataset in
Arena [14], using one transmitter and one receiver. Similar to
the simulated data, we generate random bit sequences, mod-
ulate them according to IEEE 802.11a standard, and transmit
them via Software-Defined Radios (SDRs) placed in an over-
head ceiling-mounted array. We repeat this process with dif-
ferent power levels to account for different SNRs, and collect
~17k real-channel-distorted packets with SNRs between 11 to
24 dB, as our OTA test set.

RECEIVER BIT ERROR RATE RESULTS

Figure 4 shows the BER yielded from classical MATLAB process-
ing chain (MATLAB baseline). We also demonstrate the BER
when only one of the channel estimator, demapper, or decoder
blocks is replaced by the corresponding NN, as well as the end-
to-end BER when all the classical blocks are replaced with NNs
in the OFDM receiver chain.

We observe that channel estimator, demapper, and decoder
NNs provide up to 86 percent, 36 percent, and 36 percent
improvement in BER, respectively, compared to the MATLAB
baseline. We observe that the cascade of the 3 NNs trained
separately tagged as “Channel+Demapper+Decoder” in Fig.
4 shows 61 percent BER improvement compared to MATLAB
baseline. We further perform another experiment where we
train the 3 NN jointly. We test the cascade of the trained NNs
on the simulated data and show it as “Trained jointly” in Fig. 4,
which improves MATLAB baseline BER by 77 percent.

Before testing the OFDM NN-based receiver on the OTA
dataset, we need to re-train the channel estimator NN to learn
the variations of the real wireless channel. However, the demap-
per and the decoder NNs do not need to be re-trained. This is
because, as shown in Fig. 1, the channel effects are compensat-
ed by the equalizer before the data reaches the demapper and
the decoder, and hence, demapper and decoder NNs perform
independently of the wireless channel.

As explained earlier, we need data with very high SNR for
training the channel estimator NN. Therefore, we collect addi-
tional OTA data of totally ~35k packets between SNRs 25 and
37 dB, to re-train the channel estimator NN. Figure 5 shows
the BER generated by processing the OTA data via the classical
MATLAB processing chain (MATLAB baseline), as well as indi-
vidual and cascaded NN BERs. For the OTA dataset, the chan-
nel estimator and the demapper NNs provide up to 12 percent
and 20 percent BER improvement, respectively, over MATLAB
baseline. This results in improved BER performance with the
end-to-end NN-based receiver showing an average of 10 per-
cent BER improvement compared to the MATLAB baseline.

FPGA RESULTS

During the training phase that happens on GPUs, we apply the
proposed BCR pruning to all the fully-connected and recurrent lay-
ers in the channel estimator, demapper, and decoder NNs. Then,
we use the proposed MSQ to quantize the NN parameters. We
run FPGA emulation to estimate FPGA resources for our models,
which are shown in Table 1. We verify the speedup introduced
by our compression methods on Ettus X310 SDRs with Xilinx Kin-
tex7 T410 FPGA, by measuring the inference latency before and
after NN compression. As shown in Table 1, the inference latency
of the model decreases by 80 percent, 82 percent, and 81 per-
cent after compression, for the channel estimator, demapper, and
decoder NN, respectively. We also measure the BER after com-
pression and observe that compression increases the BER average-
ly by a negligible ratio of 3 percent, 1 percent, and 4 percent in
the channel estimator, demapper and decoder NN, respectively.

COMPUTATIONAL COMPLEXITY

Finally, we compare the computational complexity of the pro-
posed compressed NNs with the traditional counterparts, in
terms of FLOPs.

Channel estimator: As explained earlier and shown in Fig.
1 (bottom), our channel estimator NN replaces both the FFT
and the LS algorithms in the standard MATLAB pipeline. We
estimate the traditional MATLAB channel estimation to have
~4.4 x 103 FLOPs for our L-LTF length of 160 time-domain
complex samples. By comparing this value to the compressed
channel estimator NN FLOPs shown in the last row of Table 1,
we observe that NN FLOPs are ~50 x the traditional algorithm.

Demapper: The traditional demapping algorithm that we use
in MATLAB is implemented through approximate LLR method.
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NN block Channel estimator ~ Demapper Decoder learning and life-long learning with pruning [.1 5]

can be explored to reuse and share a portion

Model type Dense Dense RNN+Dense of NN weights among different configurations,
Linear (2, 20)  biGRU and reduce large memory requirements.

Linear (160, 512)

Layers (input size, output Linear (512, 256)

Linear (20, 4)

((2,256,3), 512)
Linear (512, 16)
Linear (16, 1)

3. Identifying switching instances between
classical and NN blocks: We have shown
that the NN-based OFDM receiver provides
better performance compared to the classical

2.0x one, in a variety of circumstances. However, a
purer NN-based receiver can consume more
8 resources and power compared to the tradi-
8x tional receiver. Since our NN-based receiver is
modular, the logic that determines which mod-
100 MHz ules to introduce into the receiver chain and
210.04 s when, is a completely new area of research. As
an example, this decision may be made at run-
38.19 s time, based on desired reception performance
T e ([ and available on-board resources.
4.45 x 1010 CONCLUSION

0, Linear (256, 52) (per-symbo)
Pruning Rate 2.0x 1.0x

Weight bit-width 8 4

Overall size compression 8x 8x

Working frequency 100 MHz 100 MHz
Non-compressed latency 1.67 ms 4.97 ps
Compressed latency 0.33 ms 0.89 ps
Non-compressed FLOPs 4.6 x 10° 4.9 x 105
Compressed FLOPs 2.2 x 10° 4.9 x 105

TABLE 1. Compression techniques, overall compression rate and FPGA speedup of
the proposed NNs. FLOPs are reported for an L-LTF length of 160 time-domain
samples in 5 MHz bandwidth as the Channel estimator NN, packet length of
4128 equalized symbols as the Demapper NN input, which yields 16512 soft-

bits for the Decoder NN input.

We estimate the complexity of this algorithm to be 82 FLOPs
per generated soft-bits for T6QAM, as this algorithm calculates
the distance of each equalized symbol from all the known sym-
bols in the constellation. The FLOPs add up to ~1.3 x 10° for
our packet length of 4128 equalized 16QAM symbols (4128 x
4 soft-bit). By comparing this value to the compressed demap-
per NN FLOPs shown in the last row of Table 1, we observe
that NN FLOPs are ~0.37x those of the traditional algorithm.

Decoder: The traditional decoding algorithm that we use
in MATLAB is implemented through Viterbi algorithm, as
explained earlier. We calculate the decoder function complexity
to be ~5.6 x 108 FLOPs for our decoder input length of 16512
soft-bits. By comparing traditional algorithm FLOPs to the com-
pressed decoder NN FLOPs shown in the last row of Table 1,
we observe that NN FLOPs are ~79x the traditional algorithm.

The total FLOPs for the three compressed NN blocks add
up to 4.45 x 1010 which is compared with total FLOPs for
the traditional algorithms, 5.61 x 108. We observe that FLOPs
count of the proposed compressed NNs are overall 79 x the
cumulative FLOPs for the traditional algorithms. This opens up
new research topics to study the tradeoff and identify switching
instances, as discussed next.

OPEN RESEARCH CHALLENGES

1. Processing granularity: In our proposed NN-based scheme,
there is a difference between processing granularity for dif-
ferent NNs. The channel estimator processes one packet at
a time, however, the demapper granularity is one equalized
sample. This granularity gap opens up opportunities for ways
to parallelize the operations via an ensemble of demapper
NNs that demap successive samples in parallel. This brings up
interesting resource-performance planning and tradeoffs in the
choice of FPGA size versus the possible speedup in time.

2. Performance under different environments or configura-
tions: Our results show that properly compressed NN-based
receiver provides better BER performance and has fewer
FLOPs compared to the traditional MATLAB receiver. How-
ever, the NN-based receiver has its limitations. For example,
different channel estimators, demappers, and decoders need
to be trained for different environments, different modula-
tion schemes, and different coding rates, respectively. These
further impose larger memory requirements to store weights
for multiple NNs for each block. Methods such as transfer

In this article, we proposed a model-driven
design for NN-based OFDM receivers. Our
receiver chain consists of 3 NNs for channel
estimation, symbol to bit demapping, and error
correction decoding. The NNs were designed
based on wireless domain knowledge, and
trained independently with data acquired from
different data parts in the traditional transmitter and receiver. The
trained networks were then cascaded to compose the complete
receiver chain. The proposed NN-based receiver was evaluated
with both simulated and OTA datasets, and showed averagely 61
percent and 10 percent improvement in BER compared to the
traditional solution, when tested with simulated and OTA data-
sets, respectively. We further proposed two methods of pruning
and quantization to compress our NNs and prepare them for
FPGA implementation. We also showed that despite the BER per-
formance gain, the proposed compressed NNs FLOPs are ~79x
their traditional counterparts. This complexity-performance trade-
off opens up new research opportunities as discussed earlier.
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